A TECHNIQUE FOR

IMPLEMENTING INTERACTIVE CONVERSATIONS

by
Michael J. Manthey

DAIMI PB-57
May 1976

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

Rinsll

—=

A TECHNIQUE FOR
IMPLEMENTING INTERACTIVE CONVERSATIONS

by
Michael J. Manthey

ABSTRACT

A general purpose parser for interactive command language construction is
described. The method takes advantage of the characteristic of mini-computers
that they are very often dedicated to a single user and thus during interaction can
devote their computing capability entirely to the parsing (i.e. the parsing
algorithm can be ’‘wasteful’” of computer time). Tables for the command
language are generated by a different program which accepts an LL(1) grammar
of the command language and produces output suitable for an assembler or
compiler. The parsing algorithm is non-recursive and suitable for either
character or graphic screens, but probably not for hard-copy devices.

Keywords:

command language
minicomputer
interactive parsing
table-driven parsing

2 Implementing Interactive Conversations

1. INTRODUCTION

This paper describes the design considerations and some implementation
aspects of a parser specifically intended for interactive conversations. As such,
the parsing technique must cater to those aspects of conversational interaction
which differ from batch-interaction, to wit:

1. Naturalness of expression, such that what the user should type next is
immediately apparent without reference to a manual, and thus more
consistent with the “off the top of the head” nature of normal
conversation;

2. Rapid feedback of results, so that the conversational atmosphere is
maintained;

3. Rapid feedback of errors in a non-disruptive fashion, such that the
conversation can be continued rather than repeated.

It can rightly be argued that these characteristics apply to all forms of interaction
with a computer; the argument here is that in the intimacy of interactive
conversation, they are dominant, and if not satisfied will result in clumsy (and in
the long run, annoying) conversations.

In addition to these general requirements, the design of the parsing technique
was also influenced by some local, though not uncommon, considerations: an
unsophisticated user community in possession of a minicomputer and CRT
terminal. [The actual problem was to implement a real-time sound synthesizer
for the Music Department.]

Michael J. Manthey 3

2. A SOLUTION

The above considerations led to the design of a table-driven command language
parser which is based on three assumptions:

1. There is an excess of compute time when the program is
communicating with the user;

2. There is a fast (e.g. > 1200 baud) silent terminal attached:;

3. Experienced users will not be annoyed by extra text as long as it is the
computer, not them, who is typing it.

The first of these assumptions means that the parsing algorithm can be
computationally lengthy, since in all cases it will still be fast enough to provide
instant response. This recognizes the fact that using a computer to interpret
typical commands is basically analogous to using dynamite to pull dandelions;
and that response times under 0.1 second are meaningless to humans.

The second assumption means that the user is interacting via a screentype
terminal which can write as much as several lines of text essentially
instantaneously. There is thus no problem of users becoming annoyed by waiting
for the computer to type text, nor by any associated noise such as one would get
from a hard-copy terminal.

The third assumption builds on the second by postulating that as long as the
experienced user doesn’t have to wait for or hear explanatory text, she will be
unannoyed by it. In fact, after having seen it N times, she will cease to see it at all.
On the other hand, the inexperienced user can receive reinforcement for what a
given command means each time she uses it, thus giving her a security blanket
and educating her at the same time.

2.1 Basic Language Characteristics

The explanation of how the command language itself looks starts with an
example of a typical (synthesizer) command seuquence, in this case a command
CREATE, which the user invokes to define a sound. in our first (quick and dirty)
command interpreter she typed (italics letters are what the user types):

C..VIOLIN }

where 7' ... " means any number of blanks are allowed, and " } "' means carriage
return. She was then presented with a series of questions regarding this sound
she wished to define. This type of single letter command is unfortunately

4 Implementing Interactive Conversations

endemic, and was clearly unacceptable for long term use.

In the new command interpreter the following happens:
CREATE A SOUND PATTERN CALLED: VIOLIN

Thus, the user types only a sufficient number of characters to disambiguate the
command from any others, whereafter the command with explanation is zipped
out without any further action (e.g. 3) on the part of the user. At each point where
the user is asked for input, she may respond with a "?" (and no }) and receive a
further explanation, which afterwards returns her to the point of questioning.
(Note: this "returning’”” mechanism is not shown here, but is done by specifying
*{<create 1>}; see below.)

The idea of requiring only disambiguating characters from the user is not very
startling - variations on this theme appear in a number of operating systems [1,2].
Perhaps some originality can be found in completing not only the command
mnemonic itself but also adding a supplementary explanation. However, the most
interesting part is how this command was specified:

<create>::='"CR’ (EATE A SOUND PATTERN CALLED:) <create1>;
<create1>:=<ident> | '?' <info.create>;

The above specification reads "the command called create is defined to be the
user—typed letters CR followed by the prompting text EATE A SOUND PATTERN
CALLED: followed either by an identifier (including)) or a ? followed by the
prompting text called info.create”,

In general, the syntax of the command language is specified in an augmented
BNF, as shown in Table 1. This "language for specifying command languages” is
called a command metalanguage, hereinafter referred to as the metalanguage or
grammar. The metalanguage is processed by a (SNOBOL 4) program, which
generates a (mildly optimized) tree representation of the input grammar (see
Figure 1). This tree representation is input to an assembler together with the
(hand coded) parsing algorithm and language dependent semantic routines,
resulting in a complete command language interpreter.

Michael J. Manthey

Symbol Terminology

“tor " Terminal .
character/symbol

ANY(...) string of alternative
terminal symbols

< > non-terminal symbol

()or[] prompting text

1.ident or 1.ident(...) pass 1 routine

2.ident or 2.ident(...} pass 2 routine

ident or ident(...) pass 1 and 2 routine

*error error mark

... repetition

empty empty symbol

alternative

Table 1

Meaning

a user—input character

a user—-input character
from the listed set

another object in
the grammar

text to appear automa-
tically on the screen
in pass one

a piece of code to be
executed in pass one
of the parse

a piece of code to be
executed in pass two
of the parse

a piece of code to be
executed in both passes
of the parse

marks a place in the
grammar to which backup
will be done if there is

a pass one error

specifies zero or more
occurrences of the
included syntax

generated by the table
generator program in the
reduction of repstition
clauses

"OR"

"is defined to be"

Syntactic Constructs in the Command Meta-Language

6 Implementing Interactive Conversations

2.2 The Parsing Algorithm

As mentioned above, the data structure operated upon by the parsing algorithm
is a tree representation of the input grammar. This tree is a set of nodes, each in
the form of a biock of contiguous memory cells, which contain the type of the
node, a pointer to next node, an optional pointer to an alternative node, and
optional values. It is the job of the parsing algorithm to march through this tree,
choosing a path based on the user 's input. As this is done, the algorithm
maintains a stack (called the history stack) of each node which is on the path of
the final successful parse, as well as a parse stack which is a mechanical aid for
keeping track of where it is in the tree. It also executes, as it stumbles over them,
the pass one routines specified by nodes of type "pass 1 routine’” and writes out
the prompting text specified by nodes of type "prompting text”.

When the algorithm has associated the entire syntax tree of a command with
characters from the input stream, it is said to have generated a complete parse,
and it therefore will switch over to pass two. (This changeover can also be forced
by specifying a pass one routine which has this effect.) The second pass of the
algorithm starts at the base of the history stack, and examines each of the nodes
in order from earliest to most recent. In this scan of the history stack, only
terminals (i.e. terminal character and ANY nodes) and pass—two-routine nodes
are of interest. The encounter of a terminal node causes the input character to be
rescanned; the routine specified in the pass—two-routine node is executed. When
the last history node has been consumed, the history stack is cleared and parsing
continues from the point in the grammar specified by the parse stack.

Michael J. Manthey 7

N D
ou
AS
AA Tt e e e e ;
TE : '
'c’ R EA| | E
type=0 type=4| | |type=2 |
1 ¥
- ! o i
R e O I
A At

~—<ident> T T T s e s e
alt: o 7

type=3 type=0

w

:

¥

t

type=2 !

v i
] 1]
4]

§ e e e !
<info.create>

<create>:='CR' (EATE A SOUND PATTERN CALLED) <create1>;
<create1>:=<ident> | '?" <info.create>:

Notes
1. The "ground” symbol signifies a null pointer value i.e. end of list.
2. The values of the "type" field are shown in Figure 2.

3. The dotted lines show the principal from of optimization performed by
the SNOBOL 4 program: deletion of non-terminals used only one time.

4. The 'CR’of the command definition becomes 'C’ followed by 'R’ to ease

the backspace process (see 2.3.2).

Figure 1.
Data Structure for the <create> Command

8 implementing Interactive Conversations

2.3 Other aspects of the parse technique

2.3.1 Lexical Analysis

A lexical prescan of the input stream in which such things as identifiers, numbers,
and keywords are gathered together was held to be unnecessary or even a
disadvantage in the case of an interactive command language. Such a prescan is
commonly included in compilers to remove such trivial processing from the
actual parsing, usually in the interests of speed. However as stated earlier, such
considerations do not apply here . On the other hand, the code for a lexical
analyzer could easily consume a large percent of the total for the algorithm; this
code also represents a function which is within the capabilities of the (already
existing) parsing algorithm. From a different point of view, a prescan which
unrecoverably groups terminal symbols together considerably complicates error
recovery, e.g. in the case of user typing errors.

2.3.2 Backspacing

Continuing the discussion of user typing errors, another use of the history stack
is now revealed. When the user discovers she has made a typing error, it must be
easy for her to backspace over the error(s) and then reenter new symbols. It is not
really acceptable that she be required to reenter the entire line or command. Thus
upon receipt of a backspace character, the parse stack is backed up by using the
information contained in the history stack.

At this point it is important to remember that the user backspaces according to
what she sees on the screen, which includes both things she has typed and
machine generated prompting text. The algorithm therefore backs up to the
preceding terminal for each received backspace character. The screen is
correspondingly blanked. It is worth noting that all intervening prompting text
(between two user inputs) is erased by a single backspace character.

2.3.3 Pass One and Pass Two

It was not explicitly stated in the previous discussion that backspacing may only
take place in pass one. This is consistent with the underlying philosophy of
having two passes, in which the first pass takes care of the syntactic correctness
of the input, and the second, the semantic execution implied by the input. In
practice, the pass one functions are used to check the superficial semantic
correctness of the input e.g. that input identifiers exist and numbers are within
range. It is convenient for the user that such checking is done in the first pass,
since here she retains her ability to backspace and reenter the information. It is

Michael J. Manthey 9

convenient as well for the implementor, since she can then undertake (possibly
unretractable) semantic actions in pass two with the knowledge that a certain
level of semantic consistency is assured.

There is of course nothing which prevents the implementor from semantic
execution of the command in the first pass, but this should only be done with an
awareness of its implications for error recovery. It should perhaps be noted that
the distinction between the two passes is invisible to the user, except insofar as
an intervening execution of pass two inhibits backspacing over the input
involved.

2.3.4 Syntactic Error Detection

The basic requirement laid on the grammar is that it be an LL(1) grammar, which
means that at any point where there are multiple paths in the grammar, the
decision as to which path is the correct one can be taken by looking at he next
input symbol. Thus it is impossible that the decision taken is the wrong one i.e.
the decision process is deterministic. This means that each alternative in the
grammar must begin with a contextually unique symbol, or a non—-terminal which
eventually yields such a terminal (in which case, no other path could lead to a
match). (Not allowing such non-terminals showed itself to be unacceptable
during implementation, since it precluded the usage of common non-terminals
such as <number> and <ident>; the result was much greater tabie size.) To
conserve space, the actual implementation allows a limited amount of
backtracking. However, the LL(1) property of the grammar (verified by a separate
program) ensures that any attempt to backtrack over a terminal node always
indicates a user syntax error.

2.3.6 Semantic Error Recovery

Using the LL(1)-ness of the grammar is one method of trapping user syntax
errors. Another technique is to include an explicit alternative in the grammar
which matches ""anything else’” the user might write. In either case the user must
be signalled that she has made an error, perhaps by writing some text on the
screen or (as we have done) refusing to accept further characters from the
keyboard and blinking the erroneous character. The user having been signalled,
it is now up to her to use the backspace function to correct her mistake by
backing up the parse. We now discuss recovery from semantic errors.

As shown in Table 1, there is a node type called ERROR which, when
encountered by the parsing algorithm, is merely placed on the history stack. If
during execution of a pass one routine it is desired to signal an error, the
appropriate text can be written on the screen and the algorithm requested to back
up to the most recently encountered ERROR node on the stack. Since it is still in

10 Implementing Interactive Conversations

pass one, the parsing will restart, and any prompting text encountered on the
restart will be written onto the screen. This means that the implementor, in
designing her grammar, has control over what errors are to be detected where,
where the parse is to be restarted, and what the user thereafter sees on the
screen.

2.3.6 Applications to Other Dialogue Forms

The parsing technique could also be used in systems having a light pen or using a
“frame’” type of presentation. In the former, some of the terminal symbols
specified in the grammar would correspond to lightpen hits. In the latter, the
mechanisms provided by the grammar could be used to control the sequencing
from one information frame to another, where an information frame is a
screen-sized prompting text. Clearly, the two techniques could be combined in a
dialogue form featuring light-pen selection of items displayed in a menu frame.

Michael J. Manthey 11

3. IMPLEMENTATION

3.1 The Meta-language

This rules for writing a grammar are:

1. A meta-language identifier may be any string of characters (not
beginning with "”$"”, or containing ">");

2. Both quote (') and apostrophe (') are available for enclosing terminal
symbol strings;

3. Both parentheses () and brackets [| are available for enclosing
prompting text;

4. Input is free format and blanks are not significant except within text
strings;

Py

5. Special characters such as carriage return, line feed and all the other
non-printing characters may be assigned mnemonics and values of the
(meta-language) user’'s choice;

6. Output from the generator program is easily modifiable for input to a
variety of assemblers and compilers.

These syntactic demands, coupled with a desire for quick implementation of a

~ machine-portable program, resulted in a program being written in SNOBOL 4
which accepts the grammar for the command language and produces output (the
tree form of the grammar) suitable for input to the assembler of the machine in
question. Clearly, however, any language with reasonable string handling and
recursion could be used.

3.2 The Parsing Algorithm

The command language interpreter exists as a free-standing task which is
activated by messages from the screen driver, each message containing one
character. It is the command interpreter's job to echo this character and
otherwise feed it to the parsing algorithm, which consumes it and returns to a
state of waiting for the next character. For the purposes of the second pass, a
stack of the "recognized” terminal symbols is maintained which is pushed by
terminal nodes and popped during backspacing.

12 Implementing Interactive Conversations

The parsing algorithm itself is non-recursive and consists of a short code
sequence for each node type.

3.3 The Tree

As mentioned before, the grammar is represented as a tree whose nodes specify
the node type, value, and pointers to other nodes. The detailed format of a node is
shown in Figure 2. it should be noted that in the interests of conserving memory
space, nodes having no alternative have no cell devoted to that purpose; also that
auxiliary node values such as the value of the terminal symbol(s), prompting text,
and action routine parameters appear with the node itself, rather than having a
pointer devoted to that function.

Depending on the size of the grammar and the capabilities of the receiving
assembler or compiler, it would be advantageous to pack these fields more
tightly.

Node type

10
Lh
12
13

14
15

Michael J. Manthey

Node Format

optional parameters
I to action routines

3: | node value e.g. char,

ptr to routine, text

2: | optional pointer to
‘alternative’ node

1: | node type

word 0: | pointer to 'next’
node

Memory Consumption

v

W
~

Figure 2

Description

Terminal symbol

Terminal Symbol
with alternative

Nonterminal Symbol

Nonterminal Symbol
with alternative

Prompting text

Prompting text
with alternative

Pass Two action routine

Pass Two action routine
with alternative

Empty Symbol

Empty Symbol
with alternative

ANY
ANY with alternative
Pass One action routine

Pass One action routine
with alternative

Error mark

Error mark
with alternative

Format of a Tree Node

13

14 Implementing Interactive Conversations

Figure 3 shows a sample grammar and the output of the SNOBOL 4 program.
One pleasant but unanticipated side-effect is also illustrated: that by defining
commonly used prompting texts with a non-terminal, non-trivial savings in string
storage can be realized painlessly.

<ENVG> t1= [(TYPE THE POINTS CONSTITUTING) 1 .WRITESTR(EGG.IDENT) [t]
<SYN.NEHLT2> 1.SETZEROC(EGG.CCUNTER)
1.PASS2
*[1.INC(EGG.COUNTER,150) <ENVIN> 1 #CR#:

{NBRIsseseeonee s <ENVELOPE POINT>

<ENVIN> 11z *ZRROR <SYN.NEWLTZ2> 1.WRITENBR(EGG.COUNTER) <SYN.BLANKS10>
<SYN.NUMBER> <CHECKIT> 2.MOVTOLIST(EGG +NBRPTR,EGG.COUNTER)
1.PASS23

<CHECKIT> 1= {.BETWEEN(1515) 7/ [+..MUST BE BETWEEN 1 AND 15 1

(- TRY AGAIN.} [BELL] 1.P1ERROR}

Figure 3a
A Sample Grammar

Michael J. Manthey 15

The resulting screen contents after a few repetitions of <envin> are:

Notes

TYPE THE POINTS CONSTITUTING XYZ:

13

3

25 ... must be between 1 and 15 - try again.
15

7

G WwWwNn

<syn.nlt2> is shared prompting text which contains carriage return, line
feed, and indenting spaces.

Pass two is forced twice to minimize history stack space, not because it
is logically necessary.

"INC" is a function which increments the first argument and fails when
the second argument is exceeded, thus terminating the repetition.

"BETWEEN" is a function which fails if the value of EGG.NBRPTR falls
outside of the arguments. This value is in essence the 'value’ of
<SYN.NUMBER?>, the shared definition of the syntax of a number. The
error problem mentioned in Section 4.2 does not occur here because
<SYN.NUMBER> contains no error nodes.

"CR'" and [BELL] are examples of strings (representing carriage return
and terminal bell résp.) which have been given special meanings in the
grammar compiler. The CR is necessary to allow termination of the data
entry before INC necessarily fails.

[Note: This should not be confused with the 'CR’ in the CReate
example, which in actual practice would be written ‘C’' 'R’ to avoid
translation to a carriage return.]

16 Implementing Interactive Conversations

F2
P3

NG

F5

3

N7

T10
$<XXREP1>
XXREP1
s11

Ni2

F13

N1&

N15

Ni6

c17

F18

} <CHECKIT>

GHECKIT

P20

F21

DATA

DATA

DATA
DATA
DATA
OATA
DATA
DATA
OATA
DATA

DATA

DATA

DATA

DATA

CATA

OATA

DATA

BATA

DATA

CATA

DATA

BATA

0ATA

DATA

DATA

F2yb s XE54592,X#5045#,X2205472, X2 U845Z,X£2050% §

XZL4FLOF X 2UESHE s XED320 2, X#L4IUF 24X 24ES3# X 254497

XEB435%, X25449 %, XELELT £, X220002 3
P3,12,WRITESTRyEGG.IDENT 3

Ni b, X23A00% H
F5,2,SYNJNERLT2 3

F6y12,SET2ERO, EGG.COUNTER 3
N7,12,PASSZ :

T10,2,XXREPL H
X£0000%,10,X20000%
S11,13,XXENPTY, INC,EGG.COUNTER, 150 3
N12,14 s
F13,2,SYN.NEWLT2 H
N14,12,WRITENER,EGG.COUNTER 3
N15,2,SYNLELANKSLO 3

N16y2, SYN.NUMBER H

C17,2,CHECKIT H

F18,0,MOVTIOLIST ,ECGoNBRPTR,EGG. COUNTER 3}
XXREP1,12,PASS?2 H
X#0000#,13,P20,BETHEEN,1,15 3}

F21,4 s XE2E2E# 3 X2 2EUD#,X #5553, X254 20#,X242457 §

X220422, X 245542, X 257452, X4U4DUE2, X #2031 #,X22041%
X#LE +479X22031#,X73520#,X#2D20%,X25452%,X25920%

XE414T7#,X201492, X#4E2E 2, X20700%

X#0010#,12,P1ERROR 3

Figure 3b

The Compiled version of 3a

Michael J. Manthey 17

4. DISCUSSION

The algorithm described above has been in use for over a year and has been used
not only for the synthesizer’s rather large (200 productions) grammar , but also
for the coding and decoding of the system’s binary tape format (a demonstration
of the misuse as well as the robustness of the technique). It was used with great
success in the creation of an interactive debugger, and has been re-implemented
on several other machines. In spite of these rather gratifying results, however, a
number of weak spots have revealed themselves, the discussion of which is the
topic of this section

4.1 The Choice of an LL(1) Grammar

The primary attraction of the LL(1) grammar is that a syntactically incorrect
character is immediately recognized and can be brought to the typist's attention.
The value of this property should not be underestimated, but nevertheless, this
strictness can be an annoyance to the implementor when she wishes to direct the
parse based on computed, rather than input, values. A typical example arises with
typed identifiers: depending on the type of an identifier, one of several possible
grammatical possibilities must be chosen. The differentiating information is
found in the symbol table, and not in the input string.

In the implementation described above, this problem is solved by allowing pass
one routines to return a "failure’ indicator which causes the parsing algorithm to
back up and try the next alternative in the parse stack. While this solution is
adequate, it is hardly elegant (the grammar is in fact no longer LL(1)), and
therefore it might be worthwhile investigating other types of grammars.

4.2 Error Nodes

The idea behind the introduction of Error nodes was to allow the implementor to
express where the parse should be backed up to when a semantic error occcured.
This idea is fine as far as it goes, e.g.

<ident>::=*ERROR.....<chklength>.....;
<chklength>::=1. TEST(IDLENGTH, MAXIDLENGTH) | {text} 1.signalerror;

The example shows the checking of an identifier’s length against the maximum
allowed identifier length - the pass one routine TEST fails (as explained in the
preceding section) if the maximum length is exceeded, causing the parser to try
the alternative, which first writes some explanatory "text’” on the screen and then
signals the parser to back up to the preceding error node.

Unfortunately, a problem arises at the next level in the grammar e.g.

18 Implementing Interactive Conversations

<newid>::="ERROR.....<ident><chkid>;
<chkid>::=1.doesntexist | {text] 1.signalerror;

The routine 'doesntexist’ checks to make sure that the new identifier which is
being entered is indeed new. The intent of the above is to restart the parse at
<newid> if the identifier already exists, but the error signal causes a retreat to the
first error node in the history stack, which examination of the previous example
will demonstrate to result in a restart at <ident>.

Although this example is perhaps slightly artificial, in practice the problem
considerably complicates the construction of a consistent approach to the
handling of semantic errors. The problem stands in clear analogy to the problem
of exit from nested loops in programming language design, for which the
following three solutions have been proposed: exit to a labelled point in the
program, exit from N of the loops, or exit to the exclosing loop. The latter
represents the parser’s current (unsatisfactory) approach, while the specification
of a constant number of Error nodes to be ignored makes the grammar's correct
functioning highly dependent on the grammar writer's understanding of the
parsing technique. The first alternative, labelled Error nodes, is very attractive but
complicates the "grammar compiler” if one desires to check that the labelled
nodes can indeed be reached from where they are referenced (by
1.signalerror(iabel)).

4.3 Reentrant Grammars

The synthesizer implementation of parser is written in assembly language, and it
was natural that the grammar tables also be presented in that language. Without
much forethought, the parameters to the action routines were typical of that
language: references to actual addresses in memory. As it later turned out, this
could have been (but in the case at hand was fortunately not) a grave error, since
highly recursive use of productions is effectively precluded, not to mention
shared usage of the same grammar by multiple users.

As example of the usefulness of reentrant grammars, consider a command
language where in the middle of conversational sequence A it becomes clear that
sequence B should have been performed first. In most systems, the user has no
alternative but to drop the current sequence and perform B, then reperform A. If
the grammar is reentrant, however, then B can be made an aiternative of A at the
appropriate point, thus allowing the user to 'parenthetically’ perform the omitted
sequence, and then resume. Furthermore, this philosophy can be applied
throughout the grammar, leading to a much friendlier user interface.

Michael J. Manthey 19

4.4 Miscellany

1.

It is difficult to arrange for unconditional escape from an arbitrary
command sequence given the intent of the two-pass parsing strategy.
Besides building in such unconditional escape, one could provide it
explicitly as an alternative to all or selected {non-critical) productions,
or as we have done, insist that the user finish a command she has
started upon. {The beginning dialogue can namely always be
backspaced out of.}

It was stated earlier that syntax errors are signalled by blinking the
offending character, but what this means is not obvious if the character
is a blank or otherwise non-printing. We chose to echo such characters
as a cross—hatch, but this is permissable only if such characters are
infrequent and/or erroneous. A related problem is selective suppression
of echoing, which must be integrated with care into the algorithm
because of the backspacing.

It is important to gather the constituent characters of <number>,
<ident>, and suchlike so that backspacing does not imply updating of
non—parser data structures. This is done by remembering where the
character stack pointer is when the production is begun and then
gathering the characters together when the closing symbol (e.g.
carriage return) is received.

20 Implementing Interactive Conversations

5. CLOSING COMMENTS <

The author’s most notable experience in implementing this system and then
using it came when it was time to construct the grammar for the actual command
language. It was striking what a difficult task it is to design clear, precise, and
meaningful interactive dialogue. The fact that | could (luxuriously) worry about
what to say rather that how to say it testified strongly for the suitability of the
algorithm for the intended application.

Acknowledgements

I would like to thank Erik Meineche Schmidt for his help in the formal language
theoretical aspects of this work; Henning Jeppesen, who has labored diligently
throughout; and Peter Houman, who helped greatly in the early implementation.

References

1. TENEX, a Paged Time Sharing System for the PDP-10.
Bobrow, Burchfield, Murphy, Tomlinson. CACM 15,3
March 72, p.139.

2. Scope Operators Guide, Control Data Corp. Pub. 60327300,
1971, p.1-3.

	PB-057_Page_01_Image_0001.t.tif
	PB-057_Page_02_Image_0001.t.tif
	PB-057_Page_03_Image_0001.t.tif
	PB-057_Page_04_Image_0001.t.tif
	PB-057_Page_05_Image_0001.t.tif
	PB-057_Page_06_Image_0001.t.tif
	PB-057_Page_07_Image_0001.t.tif
	PB-057_Page_08_Image_0001.t.tif
	PB-057_Page_09_Image_0001.t.tif
	PB-057_Page_10_Image_0001.t.tif
	PB-057_Page_11_Image_0001.t.tif
	PB-057_Page_12_Image_0001.t.tif
	PB-057_Page_13_Image_0001.t.tif
	PB-057_Page_14_Image_0001.t.tif
	PB-057_Page_15_Image_0001.t.tif
	PB-057_Page_16_Image_0001.t.tif
	PB-057_Page_17_Image_0001.t.tif
	PB-057_Page_18_Image_0001.t.tif
	PB-057_Page_19_Image_0001.t.tif
	PB-057_Page_20_Image_0001.t.tif
	PB-057_Page_21_Image_0001.t.tif

