The EGG
A Purely Digital Real-time Sound Synthesizer

Michael J. Manthey

DAIMI PB - 56
March 1976

DEPARTMENT OF COMPUTER SCIENCE [T
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

— [|

T
—
sl

The Egg
A Purely Digital Real-time Sound Synthesizer
by

Michael J. Manthey+

Abstract

The goal of this project was to produce a ''state of the
art! keyboard instrument, with special attention paid
to the requirements of live performance. The article
describes the basic characteristics and capabilities of

the result,

F# Authorls Address: Dept. of Computer Science, University
of Aarhus, Ny Munkegade, 8000 Arhus C

Denmark

0.0 INTRODUCTION

The purpose of this article is to describe in general the capabilities of the
Egg, a real-time digital musical instrument. This instrument distinguishes
itself from other synthesizers by its generality and ease of use, capabili-
ties which follow directly from its computer-based technology. In particular,
the dominating criteria from the project's inception four years ago has
always been that the final result be a musical instrument, in the fullest

sense of the word.

It is the author's opinion that other contemporary synthesizers do not live

up to this criterion for the following reasons:

a) Difficulty in changing registration - the patch-cord and switch
matrix approach to sound specification is ill-suited to performance
demands, both because of its complexity and its awkwardness.

A performer cannot insert a five-minute (or even five—-second)

pause into a solo in order to twiddle dials and change connections.

b) Repeatability - it is a well-known problem for synthesizer users
to remember the interconnections and settings which yield a par-
ticular sound. The level of detail at which the musician is forced
to operate, while being a great improvement over first generation
equipment, still represents a built-in obstacle for the realization

of non-trivial compositions.

c) The mono-voice problem ~ the first synthesizers only permitted
a single tone at a time to be played. In order to allow multipie simul-:
taneous tones, as has been done with newer synthesizers, the cir-
cuits involved must be physically duplicated as many times as there
are to be multiple simultaneous tones. Clearly economics plays a
role in the extent to which such a solution is practicable. With
analog technology, all the parameters of a sound are 'computed!
by the circuits involved as the sound is produced. This fact has two
implications: (1) that all parts of the circuit must be physically
present, and (2) that none of the sound parameters can be 'pre-com-

puted!. The former means that the mono-voice problem disappears

only insofar as the money exists to pay for the level of replication
desired. The latter means, in essence, that there is no alternative
i.e. it will be difficult for analog synthesizers to extract themselves
from the replication bind by e.g. mixing digital and analog techno-
logies. Given that synthesizers are viewed as the inheritors of the
keyboard traditions of first the organ and then the pianoforte (i.e.
symphonic instruments), and not special-effect gadgets, it is critical
that the mono~voice problem be solved in a less limiting and more

satisfactory manner than appears possible with analog technology.

d) Component precision - the sensitivity of the human ear requires that
the components used in analog synthesizers be manufactured to very
high lfevels of precision. Besides being therefore more expensive,
they are also more sensitive to the environment e.g. temperature.
Digital components, in contrast, are much less influenced by these

factors,

It is these drawbacks of analog synthesizers, and especially their crippling
effect [except (d)] on live performance, which inspired the Egg's construc-
tion. There have been and are a number of attempts to build synthesizers
which mix the two technologies, but it is this author'!s feeling that this approach,
while perhaps yielding a quick solution of the many problems in the short run,
is inevitably doomed by the limitations inherent in analog technoloigy. Con-— -
sonantly, the Egg is purely digital except for the final digital-to-analog con-~
verter on the output end. It is not however the author's contention that the
design presented herein has not replaced these problems with others equally
undesirable. As an example, a large amount of analog componentry has been
replaced by software, a medium notorious for its unreliability, it also appears
that any possibility for feedback is eliminated by the Egg's approach. On the
other hand, the following chapters should demonsirate that the general purpose

synthesizer's musical horizons have been significantly enlarged.

1.0 A CLOSER LOOK AT THE EGG SYNTHESIZER

This section contains a general overview of the Egg Synthesizer and the

strategy itUses to represent and produce sound.

1. 1 AnQOverview of the Instrument

Figure 1-1 is a block diagram of the current synthesizer, which includes

1. Two piano-ike keyboards
. A (Texas Instrument 960A) computer

. Sound Generator + Digital-to-Analog (D/A) tonverter

. Action Buttons

2

3

4, Input terminal

5

6. Paper tape reader and puncher
7

. Disk

1. 1.1 The Keyboards

The Egg has two touch-sensitive keyboards, which may be played upon si-

multaneously. Physically, the 'touch' of the keyboard resembles that of an
organ, but once the performer becomes accustomed to the keyboard, the nu-
ances of key motion (yielding velocity and acceleration) are available as
dynamic parameters to the sound patterns (see 1.3 and 2). Reference [5]
describes the mechanical and electronic design considerations for the key-

board, which uses photocells to track Key motion. See Figure 1.1.1.

As far as the two keyboards themselves are concerned, one has the layout of
an ordinary piano keyboard, i.e., two black keys signifying C# and Dzﬁ:, and
three more for F#, G#, and A¥. The other keyboard, intendedifor experi-
mentation with microtones, has a black key between every white key, and
thus is effectively a whole tone keyboard. [n addition, beiween each black
key and white key is a (e.g. gray) key, allowing a further subdivision of the
whole tone interval. Lest the reader feel that such a departure from the
standard diatonic format impliesunwarranted complication for the performer,
we must point out that as soon as one begins to deal with non-diatonic scales,
the traditional diatonic keyboard format becomes more and more of an alba-

tross. It is felt that a symmetrically laid-out keyboard in such circumstances

Jadeads-pno
pue Jdalil|duny
olpny

A

Ja1danuoD
Boeuy
< [e1ibiQ

JdBZISaYIuASs 663 oyl

I=1 sunBiy
yound
ade |
Joded
Jopeor
ode |
Joaded

(use210n ;)
Jojedsusg’
punog
—+]
—
L
—e
i
<+
{ £
[DO

|RUIWJIS | Indyj

Jaindwon

V¥ 096 1L

B!

Adowawl
MS1d

suolINg uoj1oy

sSAe> 251

pJdrogAay
QUO1|BUOIIORJ 4
didiswiuAg

sAax Gg

pJUBOgASY
pJBpUBRIS

Figure 1. 1.1

Above: The EGG Keyboard

Left : Keymotion Sensor {detail)
(seet1.1.1.)

is in fact easier to play on than a non-symmeiric one.
Both keyboards may be "registrated! in two independent ways:

A, frequency (pitch) registration.

B. sound~-type registration,

Point A refers to the fact that it is possible to define dynamically the funda-
mental frequency associated with each key, which facility can be used to
change the tempering of the scale or to divide the keyboards up into groups
of frequency ranges. Point B refers to the fact that it is possible to define
dynamically the 'klangfarbe!'! (timbre) associated with each key, which facility
can be used to divide the keyboards up into regions having different timbres.
These two facilities thus allow the user to define arbitrarily what pitch and

sound is to be produced by each key.

These definitions are specified to the Egg by the user by typing appropriate
commands on the input terminal (described below). For purposes of keyboard
registration, the two keyboards are considered one long keyboard, i.e. the
symmetric keyboard is an extension of the diatonic keyboard. Further infor-

mation on how registration is actually accomplished can be found in [2. 2].

1. 1,2 The Computer

The device which makes all the various capabilities (and limitations) of Egg
possible is the mini—-computer which sits in the middie of the whole and inter-
prets and controls all the events in the system. 1t is sufficient for our pur-
poses here to say that the computer's most important component is its memory,
which contains both the program which is the synthesizer's ""brains'', and the
necessary data e.g. waveforms, sound patterns, registrations, etc. It is the
job of the synthesizer program to interpret what is happening on the two key-
boards, translate these happenings to sound patterns, and cause the sound
generator to make the appropriate sounds. It is also its job to interpret the
commands written by the user on the input terminal and make the commanded

modifications to the data struciures in the memory.

1. 1.3 The Sound Generator and D/A Converter

The sound generator is the means by which the sound patterns, which consist
of waveform frequency, amplitude, and time specifications, are ultimately

conveprted to sound.

The process is as follows: a waveform [represented by 64 12-bit numbers |
is sent out to the sound generator, together with integers representing fre-
quency and amplitude, The frequency value is counted down at a rate of

20 MHZ, and each time it reaches zero, the next waveform point is fetched,
multiplied by the amplitude, and sent out. The digital-to-analog converter

is the final step in this conversion, translating the high-speed streams of
"finished'" numbers from the sound generator into analog voltage signals
suitable for driving an ordinary audio amplifier. This process continues
until new commands are received from the program e.g. stop, new waveform,

eic.

The sound generator consists of a number of channels or "voices!', each
containing a waveform buffer and frequency and amplitude logic, and at the
time of this writing there are sixteen such voices. Reference [6] describes

the sound generator in greater detail,

1. 1.4 input Terminal

This device consists of a typewriter-like alpha-numeric keyboard and a TV
screen. On the input-terminal's keyboard, the user can specify registrations,
define timbres (sound patterns), and ask the program to write on the screen

(hopefully) helpful information, to name some of the possibilities.

In the remainder of this article, the "input terminal keyboard' will be refer-
red to as the "alpha-keyboard'", to differentiate it from the symmetric or dia-
tonic (music) keyboards, which are referred to simply as ""the keyboard! or

Uthe keyboards!!.

1. 1.5 Action Buttons

There are a number of commands to Egg which could well be typed on the al-
pha-keyboard, but are so common that it is desirable to somehow abbreviate
them. Examples are changing registration while playing on the keyboards,
and controlling the Pseudo-Tape (see 4.0), This abbreviation is accomplished
by the action buttons, which need only be pressed down in ordepr to give the

associated command.

1. 1.6 Paper Tape Reader and Puncher

These two devices are responsible for the physical reading and punching

of paper tape. Paper tape allows the user to save copies of sound patterns
and registrations, ‘and later read these copies back into the synthesizer.
Recordings made by the Pseudo-Tape can also be saved and read via paper
tape. Thus, paper tape gives the user a means, which is Independent of what

other users do with Egg in the meantime, by which he can save his !'twork!.

1. 1.7 Disk

The disk provides a partial replacement for the paper-tape reader and
puncher, and is much more pleasant to use since it is so much faster. It is

a "partial replacement! since its capacity is finite, and also because its con-
tents can only be communicated via paper tape to other computers e.g. to

produce scores and parts from pseudo-tape recordings.

1.2 A Quick Survey of Real Sounds

This paragraph deals with the characteristics of !"real! sounds, which in our

context we mean real music sounds, such as those made by flutes, violins,
etc. An understanding of these characteristics will help in understanding the
Egg's strategy for sound production, which we call "sound patterns!'. It is
these sound patterns which the user defines and uses to produce sound via the

keyboards.

It has been well established that while most musical sounds are very complex,
they can be broken down into three pieces, corresponding to the qualitative
changes in the sound as time progresses. The first of these parts is called
the attack, which corresponds to the first 50-200 ms of the tone, and is cha~
racterized by very complex changes in the frequency, phase, and amplitude
spectra; this part, as far as the ear is concerned, is most characteristic of
the particular instrument involved. The second part, somewhat misleadingly

called the steady state, is characterized by a more or less stable spectrum,

and conveys less semantic information to the ear about the identity of the

sound (e.g. horn or clarinet) than the attack. The third stage of a sound is
called the decay, and is characterized by a falling off of amplitude to a level
below the perceptive threshold; it also carries the least differentiative in-
formation. Figure 1-2a below shows an idealized diagram of these three stages,

and 1-2b an actual sound spectrum for a clarinet.

4

Amplitude

Amplitude

50 -200 msecy

time

attack steady state decay

(a) Typical "Real!! Tone

| : (humerals represent
{ fundamental and overtones)
{
! i - 1
! 1
| f
| !
i |
| J
| »
& . 2
- 3
5 msec
>

(b) Clarinet (attack)

Figure 1-2. The Three Stages of a Sound

1.3 Egg's Basic Sound Synthesis Strategy

The approach taken in the design of the Egg's sound generation scheme is to
imitate this simple model of a sound, while at the same time allowing as much
flexibility as conscionable. Thus the user is concerned with defining patterns
for a sound, with particular details such as frequency, amplitude, and du-
ration to be filled in at performance time - but a pattern which corresponds
to the above attack - steady state - decay model. The user specifies the fun-
damental waveform and amplitude envelope for each stage of the tone's life,
and this "'sound pattern'' (when activated by a key on the keyboard) is then
interpreted by the synthesizer to yield specific numbers and commands to be

sent to the sound generating hardware,.

To elaborate a little on that last sentence, it is the user's job to build sound

patterns, patterns which consist of

1. a sequence of waveforms, which thus determines the timbre

of the sound;

2, a sequence of amplitude envelopes, which determines when

the sound is loud and when it is soft;

3. some othepr control information.
An example of a sound pattern which models Figure 1-2 is shown in Figure 1-3.

When the pattern of Figure 1-3 is activated, the square waveform is sent to

the sound generator, along with the frequency this waveform should be cycled
(around and around) at. [The frequency was deprived from which key on the
keyboard was depressed.] The sound geneprator also receives the amplitude
envelope and the fact that all this information is valid for 100 milliseconds. At
the end of the 100 msec, the sawtooth waveform, frequency, ''constantt enve-
lope, and 3seconds are sent to the sound generator. Finally after these 3 seconds
are elapsed, the sine waveform, frequency, decay envelope, and 2 seconds

are sent out. The sound thus dies after 5. 10 seconds. (This explanation is a

slight oversimplification, but good enough for now.)

10

a. A sequence of waveforms to model a "typical sound might consist of

a square wave for the attack portion, a sawtooth wave for the steady-

is

L

attack

— AV

state, and a sinewave for the decay. Thus, our waveform sequence

steady

state

Av

decay

b. A sequence of amplitude envelopes to model the Ytypical! sound

might consist of a rapidly increasing amplitude in the attack, con-

stant amplitude during the steady state, and decreasing amplitude
in the decay. Thus

_/

attack

steady

state

o

decay

c. The complete pattern, with some control information added, is

Houp
typical
sound!

It should be emphasized that,

sound,

ML

100 ms 3 sec
100 ms 3 sec

Y,

2 sec

been devised for the same Mtypical sound.

Figure 1

-3.

A Primitive Sound Pattern.

N

2 sec

while this pattern would make an acceptable
it is very primitive in comparison to the patterns that could have

11

2.0 THE STRUCTURE OF SOUND PATTERNS

This chapter contains a complete description of the elements which make

up a sound pattern, and of how they can be used to build complex sounds.

2.1 Elements of a Sound Pattern

The sound pattern of Figure 1-3c illustrates the three major components of
a sound pattern: the Name Head of the sound, the list of waveforms (the Tone
List), and the list of envelopes (the Envelope List). We now examine each of

these,

2.1.1 The Name Head

The Name Head (henceforth spelled "namehead!) is the component of the sound

pattern which contains, unsurprisingly, the hame of the sound pattern. Examp-
les of valid names are: OBOE, VIOLIN, BASS, DBL, A123. Besides the
name of the sound pattern, the namehead contains two other items, called
"preparation procedures!. These are used to define those items in the pattern

which are initially undefined (e.g. frequency), and are explained in [2. 2].

The name in the namehead of the sound pattern is the means by which the user

refers to the pattern using the command language.

2.1.2 The Tone List

The Tone List (henceforth spelled "tonelist!!) is the component of the sound
pattern which lists the sequence of waveforms, frequencies, and durations

for the sound. Each block in the tone list contains the following items:

a. the name of a waveform;

b. the length of time this waveform is to be played;

c. a timer value [explained in 2. 3]; ‘

d. a Y"pointer!' to another block in the tonelist [see 2. 3]

e. "Pointers" to three sequence-control procedures [see 2.3];
f. the frequency at which the waveform is to be played [see 3.3].

It should be clear that items a, b, and f are those needed to actually define a

physical sound. The others (c, d, e) are used to control more dynamic as~

12

pects of the pattern e.g. what action to take (in the sound) when a "key-off!
signal is received from the keyboard, vibrato control,etc. These are explained

in [2.3].
It is appropriate at this time to define the exact Egg values for these items:

1. A waveform consists of 64 points, which may range from 0 to
4095. The only restriction is that the 64'th point must have the
value 2048. By way of example, a sine wave is usually defined
between -1 and +1. To enter a sine wave into the Egg, each
of the 64 points (making up the approximation to the sine wave)
must be converted to the range 0 to 4095, with the original zero
of the sine being mapped onto 2048. It is not, however, necessary
for the user to concern himself with these matiers, as he may

use the predefined waveforms.
2. Frequency may range from 10 Hz to 20,000 Hz.

3. The duration of a given block may be from 3 msec to 32

seconds.

4, There is no theoretical limitation on the number of blocks in
a tonelist, although at the present there Is an implementation

restriction (easily changed) of 16,

2.1.3 The Envelope List

The Envelope List (henceforth spelled "envlist!!') is the component of the sound
pattern which lists the sequence of amplitude envelopes to be applied to the

sound. Each block in the envelope list contains the following items:

a. the name of an envelope,

b. time between envelope points;

c. the Timer [see 2. 3];

d. a''pointer! to another block in the envlist [see 2.3];

e. "pointers!' to three sequence control procedures [see 2. 37.

An envelope in the Egg is a set of e.g. 10 points which are sequentially mul-
tiplied with the waveform points to effect the final amplitude of the sound. [f

we prefer to the first (i.e. attack) envelope in Figure 1-3c, we see that the

13

envelope should take 100 msec. to complete, which is to say 100/10 =
10 msec. for each envelope point!s duration. It is this time (i.e. the

10 msec.) which is referred to in point b in the above list.
The exact values for these items follow..

1. An envelope consists of any humber of points, with values
between 1 and 15 The value 1 is equivalent to -42 db, whi-
le the value 15 is equivalent to 0 db. The difference between
each point (e.g. 13 and 14) is 3 dB. [We expect to decrease
this to 1.5 dB.]

2. The time between envelope points is counted in clock ticks of

1 msec.

For the user who is not interested in defining new envelopes, there

are a number of predefined envelopes available,

2.2 Preparing the Patterns.

Up until this point, we have discussed the sound patterns as rather
static structures i.e. from the point of view of their definition, rather
than their use. In this and the following sections, we examine what
happens with the patterns when they are activated (by a key-stroke)
and used to produce sound, We therefore begin our discussion by
seeing what happens when a key on the keybord is depressed deeply
enough to cause the key to be considered "ON!. At this point, the
sound pattern associated with that key [see 3. 2] must be particula-
rized with the data it has heretofore lacked: frequency, and perhaps

tone duration and attack-envelope speed (based on the key's velocity).

It is this particularization of the sound pattern for each individual
activation of it that is performed by the !preparation procedures!
first mentioned in [2.1.1] in our discussion of what is found in the
namehead. There are two preparation procedures, one for the tone-
list and one for the envlist. The tonelist preparation procedure is a
subprogram of the synthesizer which operates on each block of the
tonelist performing the same action in each to prepare it for use in

sound generation.

Envlist preparation procedures operate in manner completely analo-
gous to the tonelist preparers, except of course they are concerned

with envelopes instead of frequencies and waveforms.

Several different preparation procedures are available for each list,

depending on the effects desired.

2.3 Evehts and L.ooping

2.3. 1‘ Key-on and Key-off Events

The initial important event in the life of a sound is the "key-on!l signal
from the keyboard. Upon its receipt, the pattern is 'prepared' and
sound begins. The next important event which can occur is 'key-off!!
i.e. the key is released. On a piano, this event causes the string
dampers to be re-engaged, thereby beginning the decay phase of the

tone. If we re-examine Figure 1-3!s sound pattern, reproduced

:tonelist

below,
100 ms 3 sec 2 sec
Ezgﬂg ' E (aLt-t;Ick) (steady~-state) | (decay)
| 100 ms | 3 sec 2 sec

tenvlist

15

what we would like to model is the fact that no matter where in the pat-
tern (i. e. when) key-off occcurs, we are guaranteed that the decay phase
will immediately begin. This is accomplished by using the pointer to
another block in the list!" [see 2.1.2, 2.1, 3] found in each tone- and
envlist block. Thus, we can model this damping phenomenon by causing
this pointer, in each attack and steady-state block, to point to the corre-
sponding decay block. In order to make use of this pointer, finally, we
define the '"key-off event procedure" as being the one which causes con-
trol of the pattern to shift to the block defined in the "another block!

field. The completed pattern is shown in figure 2-1.

The pattern of Figure 2-1 illustrates the use of a block-to-block sequen-
cing procedure which is activated by a key-off signal. It should also be
noted that the '"key-off!!" sequencing procedure is activated only by a key-
off event. There are two other events which each activate their corre-
sponding sequencing procedure, in a manner exactly analogous to that

of key-off: these are the End-of-Points and Timer events.

2.3.2 The End-of Points (EOP) Event

The phrase '"end-of-points! refers to the exhaustion of the data points
which comprise the envelope or waveform. In the case of the envelope,
after the last point in the envelope has been consumed and the pattern
needs another one, the EOP sequencing procedure in the current block
is activated, with the result that control of the pattern passes to a new
block (either NEXT orJUMP), with a new envelope. The ""mew" block
may be the "old" one, but is considered ""new!" by the pattern and begun

all over again.

In the case of a waveform, which is repeated many times to make the
sound, "end-of-points! refers to the consumption of the stated duration
of that block i.e. point b in 2.1.2's list. As with envelopes, when EOP
occurs, the EOP sequencing procedure is activated, and depending upon
which sequencing procedure has been specified, control of the pattern
passes to either the NEXT or the JUMP block.

tonelist

block 1:

square wave

100 ms

block 3

JUMP on keyoff

block 2:

ey
sawtooth wave

3000 ms

block 3

JUMP on keyoff

L@‘block 3:

sine wave

2000 ms

block 3

JUMP on keyoff

th

th

name
head

the JUMP block

e keyoff procedure ...

(= 3 sec duration)

the JUMP block

e keyoff procedure ...

(= 2 sec duration)

the JUMP block

the JUMP block

is the same as
the current block,
so everything
just continues

as normal.

Figure 2-1

envlist

SRR AU U UV,

attack envelope

100 ms

block 3

JUMP on keyoff

steady state
envelope

3000 ms

block 3

JUMP on keyoff

S,
decay envelope

2000 ms

block 3

JUMBP on keyoff

A sound pattern which jumps to its decay phase

on the occurrence of a keyoff signal from the keyboard.

: block 1

: block 2

: block 3%

17

Figure 2-2 illustrates how the EOP sequencing procedure can be used
to create what is called a "loop!", which means that the same sequence
of blocks is repeated over and over again i.e. "looped through!'. The
example illustrates a vibrato in both amplitude and frequency. It should
also be pointed out whenever the !"target! block of a sequencing proce-
dure is either zero or nonexistent, the pattern is terminated and the
sound stopped; this fact is used by the key-off specifications in Figure

2-2 to cause the tone to stop.

2.3.3 The Timer Event

It is possible that one would like to define a pattern like that of Figure
2-2, but which, besides stopping on key-off, would also stop after a

certain amount of time has passed.

In general, the EOP and key-off events are sufficient to specify the
desired sound, but occasionally some other means of causing things to
happen is required. Each block can therefore contain a time interval
at which the effect can be caused (e.g. stop, frequency vibrato or

glissando).

Figure 2-3 is a copy of Figure 2-2 with a Timer of 2 seconds i.e, the
pattern will terminate either on key-off or when 2 seconds have elap-
sed, whichever occurs first. It should be noted that this is the first
pattern we have seen which is complete i.e. which could be defined
and used on the Egg. All the other patterns we have seen have lacked

the specification of one or another of the necessary fields in the blocks.

2. 4 Dynamic Modification of the Pattern

Up until this point, we have discussed sound patterns which, with the
exception of frequency, are completely specified in the defined pattern.
As examples we can point to the duration of the tone, the values of the
Timer, and the speed of bthe envelope!s application on attack. It is pos-
sible, however, to modify these specifications as well, and such mo-
difications happen when a key-onh event causes the sound pattern to be

activated.

18

O1RUGIA SPNI{duny PUB UOIRUUS]|Y ADUsnbad - Yiim uJelieg v

Z-Z 9unBiy

rolRdaqIin
sprilijdwe Z4 g & PiaiA pINOM SWOXYy AJdona palesadad Bulag
uodn uoium ‘gz ‘g’ sanien syl B9 UIRIUOD 1yBiw paiyioads
sdojanue ayl “(>POIg LXIAN ou) salp 3! jutod ysiym e ‘lohkex,
frun glast) uo sdoo| YIiym >Oolq B 4O SISISUOD IS sdojanus ayl
. *SUNDDO JIo-A3> [11UN

1eadod |1tm doo} SIUL TMD0(qQ 1Sdi} @yl 03 '8 Jdwnr o3 |oJdjuoD
SpUSS UDIUM BUO Byl S| paljidads sunpaooud Bulouanbas 403
sul ‘oasw 00l S pake|d sey 320[q PUODSS Yl USUM (z >ooiq
2 1) LX3N O} |O4IU0D SPpUas yoiym sunpasoud Bulouanbss JO=
sUl BiA ‘300|q PUODaS Byl 01 UJdiied BY) 4O [03U0D spuas 403
‘sasW Q0L 04 1SI] BUOT 8yl Ut MO0ig 1Sdi oyl BuwJdoJad oY

dO3 U0 odwni

oA Lo IX}IN| T

L >oiq
sSu Of :poads sdoianud
\/ adojanus HI Felel¥s]

Aduanbady

sunpasodd Bupusnbess O3

aunpasodd Buiouanbas yoAsy

+r sunpenodd Buiousnbas JO=

+raunpadodd BuiduaNbas }3O0ADN

aweu

0S¥

dO3 U WM

47 yohkad uo I X3AN

Sdoolg dwne 3 >oolq
sw 00l
7 wdojanem
'S
Adusnbad} Oty

Mooiq gwinr =

<03 o LX3N

110433 UD SN

o}

| wJoenem

AR
ﬂm:>cm¢/ FETETCH
peay J

B4

1

»o0o1q

>3oolq

19

dBWLL Byl BUISM INO-aWl] Yllm 27 9unBig 10 Udaniwg ayy

¢]

Jawy}] aJdouby

OS5 US ol

$0A23 U0) XEN

32019 NN 3

L >ooiq

U = anjen Jawt |
paads adotonus :

I >0ig :

Q

sSul Ot

ado|anua

€~C 9unbi4

Adusnbauy

aunpanoud Bulouanbas uswi]

3201 JWne

{09S Z =) snjen Jawij

Aouenbauy

crr s raunpadoud Buidusnbas dewir | o

peay
aweu

HO01G dWnir

an|BA Joawiy

0S¥

JBuWlL US 1IN

dOF VO NP

340495 Lo | X3N

4

L Pog

Sw 0007

Sw 00t

7 WJoisnem

E:

on

JBWI [UO GNP

O3 YO ILX3IN

HOADY UO AWM

0

Sw 0002

Sw ool

I wJaoysnem

2

1Y

32019

30049

20

There are basically two parameters available by which to accomplish
such dynamic modification: the velocity and acceleration (rate of chan-
ge of velocity) of the key. These parameters can be used to affect the
duration of the tone, the envelope speed, or Timer, to name the most
obvious possibilities. As an example, the velocity can be used to con-
trol envelope speed (attack rate) and acceleration to control duration
of the entire tone. These controls are specified by preparation proce-

dures as mentioned in [2. 2].

It is also possible to include sequencing procedures which modify the

pattern while it is producing sound, an example being (frequency)

glissando. Such an effect is spécified by specifying the appropriate

sequencing procedure.

2.5 Gemisches

A gemisch in the Egg is a collection of ordinary sound patterns and/or‘
other gemisches which can be activated by a single keystroke. How-
ever, before saying more about gemisches themselves, it is necessary
to motivate their- existence as a necessity, and not just a fancy faci-

lity.

We begin the discussion by defining two types of overtones:

a harmonic overtone is a frequency which is an integer

(i.e. 2,3,4....) raultiple of the

fundamental frequency of the tone;

an_inharmonic overtone is a frequency which is a non-in-

teger (e.g. 1.3, 2.1 etc.) multiple of

the fundamental frequency of the tone.

As an example, if the fundamental frequency of a tone is 1000 Hz (cycles
per second), then harmonic overtones would be 2000 Hz, 3000 Hz, 4000
Hz etc. Examples of inharmonic overtones would be 1001 Hz, 2500 Hz,
etc. The most dominant overtone is usually the octave, which corre-
sponds to the frequency 2 x F,' where F is the fundamental frequency;

3 x F is the fifth above the octave; 4 x F is two octaves above F. One
can clearly hear the effect of the overtones on a pipe organ by selecting
one stop and then, while holding a key down, successively adding more

stops. It is the overtones of a sound, along with the attack, which give

21

it its unique characteristics.

Harmonic overtones can be built by combining several waveforms into

ohe, for example:

I\}+/V\, =

T

The resulting tone now contains both the fundamental and its octave
(first overtone). Other harmonic overtones can be formed in a simi-
lar fashion, and all such waveforms can be used in ordinary sound

patterns [the generate command mentionel in [5.0] is used for this

purpose].

Inharmonic overtones present a more difficult situation because a mul-
tiple such as 2.1 will not "fit into the box!" in the above diagram as does
the multiplier 2. This is a way of saving that one cannot construct a
single Egg waveform which contains several partial tones having a non-
harmonic relationship to each other. Thus the only means by which in-
harmonic overtones can be realized is to activate an independent sound
pattern whose frequency is nonharmonic with the fundamental!s pat-
tern's frequency. This approach means that in order to define sounds
which contain inharmonic overtones and can be activated by a single
key-stroke, multiple sound patterns must be associated with each key.

Such a multiple-association is called a "gemisch!!,

Since gemisches allow sound patterns which have been defined ''stand
alone" to be used as (harmonic or non-harmonic) overtones (and also
under‘tones), some problems arise, because an ordinary sound pattern
expects to receive its (missing) velocity, acceleration and keynumber
(for defining frequency) from the keyboard. If we therefore wish to acti-
vate some Yextra' sound patterns, we must supply them with synthetic
versions of these values. These synthetic values in most cases will not
be same as the " originals" from the keyboard, since this would result in
identical attacks (and worse yet) fundamental frequencies for all the

partial tones.

22

Therefore, when one defines a gemisch, one first specifies which sound

patterns are to be activated, and then for each of these, the following

1. A ratio to be multiplied by the frequency which is associated
with the key. This new frequency thus defines the "fundamental

frequency of the over - or undertone.

2. A+ or - value to be added to the original key!s velocity. This
causes the attack (or whatever velocity is being used for in
the paitern) to be modified according to the pattern's subsidi-

ary role in the total sound.

3. A + or — value to be added to the original key's acceleration.

This is philosophically the same as (2) above.

4. The number of milliseconds of delay after the key-on and key-
off evenis before this pattern is to be affected. This allows

overtonhes to be 'oui-of--phasel! with respect to the fundamental.

Note that no one of the sound patterns in a gemisch has been singled out
as the !ground tone!! or "most important!. It is up to the user to decide
it he wishes onhe of the paiterns to dominate, which is done by specifying
1/1 for item one, and zero for items 2, 3, 4 above. A sound which is an
equal blending of several patterns would either have such values for all
the items, or in some other way adjust 1, 2, 3, 4 above to achieve the

desired characteristics.

23

3.0 Keyboard Registration

This section discusses the manner in which particular frequencies and

sound patterns are associated with each key on the keyboards.

3.1. Scales

A scale is a list of frequencies having a particular relationship to each

other.

Traditionally, these relationships have been

(1) increasing pitch coupled with

(2) a formula for calculating the next member of the scale.
In addition, there is the more subtle relationship of

(3) each successive element lying physically to the right of its pre-

decessor on the keyboard.

There is no reason to believe that all users of the Egg would be willing
to be bound by these strictures, and given the possibility of scales with
22 or 43 or 72 tones per octave, there are good performance reasons as

well for a more flexible approach.

Therefore, when a user defines a scale, it is defined merely as a list of
frequencies, this list having as yet no physical relationship with the keys
on the keyboard. The only inherent structure of such a list of frequenci-
es is that it is ordered i. e. the first frequency on the list, the second,
the third, etc. As to whether "first!" means "leftmost!' and "last!" means
"rightmost! or something entirely different is determined by the concept

of a "keyboard section", which we now explain.

3.2 Keyboard Sections

The keys on the keyboards are numbered from left to right, with the left-
most key of the upper keyboard being viewed as the successor of the
rightmost key on the lower keyboard. Thus, each key has a unique number

which differentiates it from all the others; this number is called the

physical key number.

24

A Keyboard Section is a list of physical key numbers. The only inherent

structure of such a list of key numbers is that it is ordered i.e. the first

key in the list, the second, the third, etc.

It is now possible to see how to construct a ''‘keyboard!" which resembles
that of a piano. We define a well-tempered diatonic scale, i.e. a list of
frequencies, with the lowest first and the highest last. We define a key-

board section listing the leftmost key on the lower keyboard first through

to the rightmost key on the lower keyboard last. The only relationship

between these two lists is the ordering of their respective elements i.e.

ordering 1 2 3
b

scale A B
1
1
1
1

R 1V

1
1
1
1
keynhumber 1 2 3 4

The fact that the keynumbers are identical to the ordering is a coindidence
due to the fact that the physical layout of the lower keyboard corresponds
directly to both the scale and the numbering - and this is not generally

true.,

3. 3 Sound Distributions

Up to this point, we have seen how a keyboard section and a scale can be
mapped together to allow any scale to be located anywhere on the keyboard.
A similar strategy is used to associate sounds (i.e. sound patterns or

gemisches) with a key.

A sound distribution is a list of sound patterns or gemisches. As with

scales and keyboard sections, the only inherent structure of such a list

is that it is ordered i.e. the first sound on the list, the second, the third,
etc. As with scales and sections, it is precisely this ordering which al-
lows them to be associated with each other to achieve the final goal: the
ability to associate any key with any frequency with any sound. Notice that
this has been accomplished while still allowing one to deal with useful
grouping concepts such as a ''scale!. Furthermore, these groupings are

independent of each other, and therefore need only be defined once e.g. a

25

well-tempered diatonic scale is defined once, and may henceforth be used

with any keyboard section and/or‘ any sound distribution.

3.4 Action Buttons

We have thus far seen how a keyboard section, a scale, and a sound distri-
bution can together specify an arbitrary partitioning of the keyboards. This
discussion however said nothing about how one causes said partitioning to

actually happen, and we now take this up.

The Egg is equipped with a numbered array of buttons which we call
action buttons. The user of the synthesizer can define any number of
abstract (hamed) buttons, and cause these abstract buttons to be con-
nected to the physical butitons. There are no restrictions on thi.s con-
nection i. e, an action button may have several abstract buttons attached
to it to achieve multiple simultaneous activation of the abstract buttons,
and/or‘ the same abstract button may be connected to several physical
buttons. The reason for introducing the concept of abstract buttons in-
stead of connecting scales, keyboard sections, and sound distributions
directly is that it is entirely likely that a composition will need more than
the approximately 30 physical buttons (i.e. keyboard registrations) avail-
able and therefore it is necessary to allow a much larger number of but-
ton definitions, and then just adjust their association with a physical

button.

In practice, therefore, the user of the Egg defines an abstract button to
contain some collection of scales, sound distributions, and keyboard
sections, and even other abstract buttons (either of the first two items
may be omitted, but there must be at least one keyboard section to drive
the mapping). The abstract button is then (by command to the computer)
connected to the specified physical button. Pressing that physical button

will cause the associated keyboard registration to takeplace.

26

4.0 THE PSEUDO-TAPE

The Pseudo-Tape is a model of a 63 track tape deck. As such, it can
record and playback what has happened on the keyboards, and also has
controls such as rewind, etc. It is called a pseudo tape because it is

not really a tape recorder, but rather a program simulation of one which
plays through the sound generator. Thus, what is recorded is not the
actual sound, but rather the key-on and key-off actions which caused the
sound. Because it is simulated, it has a number of characteristics which

are different from a normal tape recorder:

1. The recording is exact i.e. the time, velocity, and accelera-
tion of the struck key, and the time of its release (both ac-

curate to 51,5 msec.).

2. Due to 1 above and the fact that there are of course no play/re-
cord heads, the recording cannot deteriorate with repeated play-

ing, copying, editing, or overdubbing.

3. Each of the 63 tracks can be spaced forward or backward in-
dependently of the others. This is due to the fact that, unlike
multi-track analog tape, the individual tracks (because they

are only simulated) are not physically connected to each other.

4. Due to 3, insertions and deletions on one track have no effect
. ot other tracks, except insofar as the edited track takes a

longer or shorter time to play.

5. Either single or arbitrary combinations of tracks may be play-
ed back simultaneously, although of course the total number of
physical tones is limited by the number of hardware voices in

the sound generator.
Besides recording key-on and key-off events, action button definitions
and actions are also recorded. The net effect is that an exact recording
can be made of a composition, including registration changes.

The commands available for manipulating the tape include,

1. Copy track-a to track-b;

27

2. Move track forward/backward n sec/msec;
3. Shr‘ink/Expand track by timefactor;

4, Make track passive/active;

5. Write/erase audible/inaudible mark;

6. Wind tape forward/backward;

7. Single-step forward/backward;

8. Erase to mark/end-of-tape;

9. Play/stop;

10. Record/insert on track;

11. Align track-a with track-b (in time).

The pseudo-tape existed on an earlier version of the Egg, but due to
other pressures, its interface to the rest of the system has not been
updated. While it is therefore currently unavailable, its usefulness

was undeniable and we look forward to its reincarnation.

28

5.0 The Command L_anguage

We have deseribed in the foregoing sections the hardware configura-
tion, the basic idea underlying our scheme for génerating and control-
ling sound, and the abstract structures the user can build (waveforms,
envelopes, sound patterns, keyboard sections etc) to utilize the facili-
ties at hand. In this section, we will briefly discuss the concrete means

by which these structures are built and connected: the command language.

The command language consists of a number of imperative verbs which
form the start of a dialogue between the musician and the Egg. This
dialogue is carried out via the alpha~keyboard and screen. The lat-
ter's speed and silence is exploited by exhibiting generous amounts

of explanatory text automatically. This excess verbiage is the normal
mode of conversation and cannot be disabled - novice users are grateful

and experienced users (victims of habituation) stop seeing it.

Table 5-1 summarizes the commands available and what they do. Figure
5-1 shows a sample dialoque, which takes an experienced user about 20

seconds to complete.

The construction of a pleasant interactive interface, which we feel the
above is an example of, was an important aspect of the instrument's
development. It was always our philosophy that no more understanding
would be expected of our users than is contained in this article (though
a more digestible form is available in [4]), and all other details must
be readily apparent from the dialoque. In order to meet these require-
ments, a special parser for interactive conservations was designed and
programmed [1], and with this tool, conversations like the example are
trivial to express. We are thus able to supply our users with dialogues
which are much more supportive than the usual computer user

The point we wish to make is not that this parser or dialogue are any
kind of acme, but rather that these techniques are standard tools in
computer science, and that it is neither necessary nor humane to supply

the user with a less congenial environment.

29

CREATE - used to create all the aforementioned entities — WAVE-
FORMs, ENVEL OFPEs, BUTTONSs, etc.

RESTORE -~ used to restore WAVEFORMs, ENVEL OFPEs, etc.

to the Egg's memory from the library.

STATUS - writes the status of the objects in the Egg's memory

on the terminal.
SAVE - saves the given objects for entry in the library.

INSERT - used to insert additional (i.e. new) blocks in sound

patterns and gemisches (only).

MODIFY - used to modify existing blocks in sound patterns and

gemisches (only).

CONNECT - used to connect a (created) BUTTON to one of the
physical buttons.

KILL. - Kills all sound currently playing and reinitializes

the keyboard.

GENERATE - generate a waveform with a given overtone spectrum

for eventual inclusion in a sound pattern.

Table 5-1 User Commands

31

6.0 Conclusions

The preceding pages have described the Egg and how it functions.

We would now like to say a few words about how it is {o use.

From the point of view of a new user, learning to use the instrument
constitutes two phases - defining sounds {sound patterns and gemisches)
and defining registrations. One "guided" session of several hours on
each topic appears to be sufficient to equip the new user to use the in-
strument alone. Nevertheless, the effect of these sessions is some what
overwhelming for most, but with hindsight the experience can be compared
to encountering a large analog synthesizer for the first time. Presumably
when our library of sounds and registrations is more complete, it will
contribute to a "softer landing" on this point. In any event, both com-

posers and students have used the system successfully.

One somewhat unexpected dividend of the Egg's emphasis on performance
and ease of use has been that hitherto abstruse topics such as tuning

and temperament can be presented to students very successfully. By
actually playing in various tunings (and perhaps hearing a pure trichord
for the first time in their lives), students can attain an intuitive grasp

of the subject that no amount of theory can give.

The ability to generate arbitrarily complex waveforms (with a static
overtone spectrum) and then combine these in independently developing
sounds using gemisches has meant that it has been very easy to create
lush and dynamically varying tones, and such niceties as organ pipe
"pift"! are trivial to arrange. The general amplitude and timing facili-
ties available for enveloping, together with looping, allow a wide varie-

ty of complex rythmic passages to be performed.:-.

From the point of view of the facilities available, it does not appear
that there exist any major superfluities or omissions. We have however
noted that especially in the case of envelopes, it seems more natural
to say "from ppp to mf in N milliseconds!' than to specify to exact seri-
es of points and their A~ time. We are therefore considering changing
the Command Language so that such '"vector thinking! can be accommo-

dated (without changing the underlying software structure). The software

32

is forgiving of attempts to play using incompletely specified objects e. g.
sound patterns, and is in general so stable that one can concentrate

totally on the musical aspects of one'!s work.

Reference [2] contains some details on the pseudo~tape which do not
appear in the present paper, but is essentially otherwise identical.

Reference [3] describes the software design.

33

7.0 ACKNOWL EDGEMENTS

The original idea and early development for the Egg was done by the
author beginning in the spring of 1970, and iis . " subsequent devel-
opment proceeded with the support of Finn Egeland Hansen of the
Institute of Musicology in Aarhus and the Danish State Research Council.
This subsequent development saw the refinement of the original ideas
into a concrete specification, which was then implemented on a Texas
Instruments 960 A computer by the author with the help of Finn Haahr
Kristiansen and Peter Houmann; the necessary special purpose hard-
ware was designed and built under the direction of Kurt H. Andersen

of the Datalogisk Institut in Aarhus by Finn Sgberg Sdérensen. Special
mention should also be made of the supporting contributions of Ole Bro-
mose Mgller, Erik Bak Kristensen, Thorkild Laursen, Jens Otto

Michelsen, Erik Thomsen and Walter Rasmussen.

The Egg achieved its first squawks in the fall of 1973, became a usable
tool in January of 1976, and a public debut concert is planned for the
near future. This article is dedicated to all those without whose help it

would never have existed.

Incidentally, the instrument is called the Egg because of our hopes for
it in the future of music, and equally hopefully has nothing to do with the

laying of same.

34

References
1. Manthey, M. J. : "A Technique for Implementing Interactive

Conversations'!, CS Report PB-57, 1976.

2. Manthey, M. J.: "A Non-Technical Description of the Egg
Real-Time Sound Synthesizer!', CS Report PB-56, 1976.
Also in Electronic Music and Musical Acoustics No. 1,
1975. See [5].

3. Manthey, M. J. & F. E. Hansen: "The Design of the Egg
Real-Time Sound Synthesizer", CS Report PB-72, 1977.

4. Manthey, M. J.: '"Egg Users Manual!', CS Report MD-27
1977,

5. Andersen, K. H.: "The Design of the Egg Synthesizer's
Key-board!, Electronic Music and Musical Acoustics No. 2,
1976. Dept. of Musical Acoustics, Institute of Musicology,

Universitetsparken, University of ,&Phus DK.

6. Andersen, K. H. : "The Design of the Egg Synthesizer!s
Sound Generator!, Electronic Music and Musical Acoustics
No. 2, 1976. See [5].

	20050926091633_Page_01_Image_0001.tiff
	20050926091633_Page_02_Image_0001.tiff
	20050926091633_Page_03_Image_0001.tiff
	20050926091633_Page_04_Image_0001.tiff
	20050926091633_Page_05_Image_0001.tiff
	20050926091633_Page_06_Image_0001.tiff
	20050926091633_Page_07_Image_0001.tiff
	20050926091633_Page_08_Image_0001.tiff
	20050926091633_Page_09_Image_0001.tiff
	20050926091633_Page_10_Image_0001.tiff
	20050926091633_Page_11_Image_0001.tiff
	20050926091633_Page_12_Image_0001.tiff
	20050926091633_Page_13_Image_0001.tiff
	20050926091633_Page_14_Image_0001.tiff
	20050926091633_Page_15_Image_0001.tiff
	20050926091633_Page_16_Image_0001.tiff
	20050926091633_Page_17_Image_0001.tiff
	20050926091633_Page_18_Image_0001.tiff
	20050926091633_Page_19_Image_0001.tiff
	20050926091633_Page_20_Image_0001.tiff
	20050926091633_Page_21_Image_0001.tiff
	20050926091633_Page_22_Image_0001.tiff
	20050926091633_Page_23_Image_0001.tiff
	20050926091633_Page_24_Image_0001.tiff
	20050926091633_Page_25_Image_0001.tiff
	20050926091633_Page_26_Image_0001.tiff
	20050926091633_Page_27_Image_0001.tiff
	20050926091633_Page_28_Image_0001.tiff
	20050926091633_Page_29_Image_0001.tiff
	20050926091633_Page_30_Image_0001.tiff
	20050926091633_Page_31_Image_0001.tiff
	20050926091633_Page_32_Image_0001.tiff
	20050926091633_Page_33_Image_0001.tiff
	20050926091633_Page_34_Image_0001.tiff
	20050926091633_Page_35_Image_0001.tiff

