ON TYPE DEFINITIONS
WITH PARAMETERS

by

Marvin Solomon

DAIMI PB-54
November 1975

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

LH |

S

On Type Definitions With Parameters

Table of Contents

Abstract

1. INTRODUCTION
1.1 Equivalence of Modes

1.2 Example

2. A TYPE DEFINITION SYSTEM
2.1 Notation

3. SEMANTICS
3.1 Trees and Cpo's
3.2 Substitution Operators

3.3 Functions and Trees

4, TREES AND LANGUAGES
4,1 Description LLanguages
4,2 From Definitions to Pushdown Automata

4,3 From Pushdown Automata to Definitions

5. SUMMARY AND CONCLUSIONS

Acknowledgements

References

Appendix

11
13

17
18
20
22

26

28

29
31

On Type Definitions With Parameters

by Marvin Solomon
Department of Computer Science

Aarhus University

Aarhus, Denmark

Phone : 06-128355

Abstract

This paper analyzes some of the consequences of allowing the
definition of parameterized data types in programming languages. A
typical use of such types is :

type queue (x) = struct (x, ref (queue (x))),

Il

intqueue = queue (int).

It is shown thatthe addition of parameters permits the definition of new
types not definable without parameters. In particular, the types definable
with parameters are closely related to the deterministic context-free
languages, whereas the author has previously shown that the types de-
finable without parameters are characterized by the regular (i. e. finite
state) languages.

An important consedquence of this fact is that the type equivalence
problem, which is easily solvable in the absence of parameters, becomes
equivalent to the (currently open) equivalence problem for deterministic
pushdown automata.

Keywords and phrases : data types, modes, modals, lattice-

theoretic models, deterministic pushdown automata, formal
semantics.

CR Categories : 4,12, 5.22, 5.23, 5.27.

1. INTRODUCTION

Several authors [4, 6, 8, 12] have pointed out the usefulness
of parameterized data types in a highly typed language such as
ALGOL 68 [18] or Pascal [9]. For example, a general queueing
facility might be defined by

(1. 1) type queue(x) = struct (x, ref queue (x)) and later

used by Including definitions such as

(1.2) type intlist = queue (int)

(1.3) type waiting line = queue (person)

(where person is some programmer defined data type). We shall adopt

the terminology of [8, 12] and call an object like queue a modal.
It should come as no great surprise that allowing modals creates
new difficulties for the implementor. For example, if a parameter to a
procedure can be declared to be of type queue (x), then the code
generated may depend heavily on the size of objects of type x, and even
if Xx is passed as a parameter (of type L\@g) a good deal of run—time
checking may be needed. Lindsey [12] suggests allowing only variables
of type ref queue (x), and Gehani [4] discusses restrictions under
which several copies of the troublesome procedure may be generated.
All these problems arise from attempts to use modals in
variable declarations. The purpose of this paper is to point out a more
subtle problem that remains even if modals are never used in variable
declarations, but én!y as a tool for defining (ordinary) types as in
(1. 1-3.). The problem in question is to decide when two definitions are
equivalent. As Krél [10] points out, the algorithm for equivalence of
modes in ALGOL. 68 is similar to the equivalence algorithm for finite

automata. As we showed in [16], this similarity is due to the fact that

modes defined by ALGOL. 68-like mode declarations are regular,

in the sense that they are characterized by regular sets of strings.
With the introduction of parameters, this no longer holds true; the
definable types are now characterized by arbitrarily complex deter-
ministic context-free languages. The result of this is that the
equivalence problem becomes of the same level of difficulty as the
equivalence problem for deterministic languages. Since the latter
problem is at present a famous open problem, we see that the addition

of parameters adds an essential new complication.

1.1 Equivalence of Modes

The foregoing discussion presumes that there is an obvious ca-
nonical notion of "equivalence of types!'. This is not true. One school
holds that any two distinct definitions define different types. Of
course in this case the equivalence problem is trivial. We will take
a point of view closer to that of ALGOL 68, one which has been
supported in [11] and [16]. Briefly, we say that two types are
equivalent if all values of one type are "'the same shape as'! values
of the other type. To be somewhat more specific, we assume that there

are atomic values partitioned into disjoint atomic type classes, and

structuring operators which construct values from component values.
Two values are the same type if they are both of the same atomic typé
or if they are constructed by the same operator from components which
are, respectively, of the same types. This defines (recursively) an
equivalence relation: '"to be the same type as'', and types are nothing
more than equivalence classes. The important point is that the type

of a variable x should tell the following about the value of x': either
the type of x is atomic; then the value of x is atomic and of that

atomic type or the type of x is f(t1, ooy tk) where f is a structuring

operator and LR tk are types; then k selection operations are
applicable to the value of x and the result of applying the i'th is a
value of type t By induction, then, the type of a variable is suf-
ficient to determine whether any given finite sequence of selection
operations is applicable to x, and if so, what the type of the result
will be. This means that the type of information may be summarized

as a (possibly infinite) tree.

1.2 Example

Figure la gives an example of a type definition which defines a
modal of one argument and applies it to a constant type to obtain a
new type. Figure 1b "unrolls' the definition by repeatedly replacing
occurrences of the variable Vo by its definition. The result of ap~
plying Vo to. int is shown in Figure 1c. As we shall see later, this
type could not be defined without parameters.

The contents of the remainder of this paper are as follows:
In section 2, we formally present a syntax for a type definition facility
with parameters so as to have a concrete example to illustrate our
ideas. In section 3, we endow the facility with a formal semantics based
on ideas from [11, 14, 15, 16] and elsewhere. The reader who is
satisfied that the trees of figures 1b and 1c accurately reflect the
fmeaning" of the definition is figure la may skip this section, at least
on first reading. He should, however, look at those paragraphs
labeled "notation”._aection 4 contains the central results of this paper
(4.2.4 and 4.3.7). We show that types defined in our example language
fragment are "deterministic context-free!' and hence that the equivalence
problem for types is of equal difficulty as the (open) equivalence

problem for deterministic languages. Section 5 contains a discussion

of these results and their implications for language design.

2. A TYPE DEFINITION SYSTEM

Our example language fragment will be a stripped-down version

of the

type declaration facilities of ALGOL 68 [18] or Pascal [9]

minimally augmented with the ability to specify a partially defined

type as in (1. 1) or figure la. We assume that the following lexical

classes are defined:

- Q,

a set of modal constants. Each o € has a rank (humber

of arguments) which is a non-negative integer. Modal con-

stants of rank 0 may be called type constants and correspond

to atomic types such as int or real. Modal constants of rank
> 0 are the built-in type constructors of the language, such

as struct and ref of ALGOL 68.

-V, a set of modal variables. These also have ranks associated

with them. A variable of rank 0 may be thought of as a type
variable. Thus ordinary (non-parameterized) types are a
special case of modals. For example, in figure la, Vor Vi €V

and rank (vo) = 1, rank (VI) = 0.

a set of parameter symbols. These are all of rank 0, We now

specify the syntax of a modal definition using BNF and some

context-sensitive restrictions.
<definition> = <declar~ation>]<definition><declar‘ation>

<modal variable> <formal parameters>

<declaration> ::

<modal expression>

<formal parameters> ::= <empty>|<parameter list>)
<parameter list> ::= <parameter symbol>|<par~ameter list>,
<parameter symbol>

<modal expression> ::= <modal constant> <actual parameters>
| <modal variable> <actual parameters>
| <parameter symbol>

<actual parameters> ::= <empty> |(<expression list>)

<expression list> ::= <modal expression>

< expression list>, <modal expression>

Restrictions

(1) There is exactly one <declaration> for each <modal variable>
appearing in the <definition>.

(2) If 0 € QU V and rank (o) = 0, then each <formal parameters>
or <actual parameters> following ¢ is <empty>; if rank (o) = n, then
each <formal parameters> or <actual parameters> following ¢ has
exactly n members.

(3) Each <parameter symbol> appearing in a <declaration>
must appear in the <formal parameters> of that <declaration>. The

<parameter symbol>s in any <parameter list> are all distinct.

2. 1 Notation

To simplify notation, we will assume for the remainder of this
paper that we are talking about one fixed definition D, that the set
of modal variables is V = {vo, cos ’Vn-l} for some n, and that D

has the form:

= e

VO(XO’ T xr‘ank(vo)-1) 0

(2.1.1) .

)=e

Vn—1(x0”" ’xr‘ank(vn_1)-—1 n—1

where each e, is an expression. We also adopt a convention due
to B. Rosen [13] and omit mention of ranks of symbols when they
are evident from the context or irrelevant. For example,

vo(xo, vy X 1) is written as vo(xo,. o ,x_1). In such a

r‘ank(vo)-—

context, '"-1" is pronounced ''last''. 0

3. SEMANTICS

Once we have constructed T, the set of types, it should be
clear that the meaning of a modal t of rank n is a function fun(t):
T74 T. If each modal constant 0 is given a standard meaning fun(c)
and a meaning fun(vi) is assighed to each modal variable Vis then
each expression e; represents a function fun(ei): Tk -+ T in an
obvious way. (Here k is any integer larger than any j such that
x; appears in ei.) Since fun(ei) depends on the assignments of fun(vj)
to Vj, e, may also be thought of as a functional from D0 X D1 Xoeas

r‘ank(vj)

x D to Di’ where Dj is the set of functions from T to T.

1
In this way, a definition may be read as a set of simultaneous
equations asserting the equality of various functions over T. Under
certain circumstances, the equations have a unique solution. (See

[16] for more about when the solution is unique. A sufficient con-

dition is that no e is of the form Vj(' ..)or Vj')

The set we use for T is the same as the one we constructed
in [16]. See that paper, [11], and section 1 of this paper for mo-
tivation for this choice of model. We briefly review the construction

of T and some of its properties.

3.1 Trees and Cpo's

3. 1. 1 Definition
Let 2 be any ranked set (a set together with a function

+

rank: -+ N). A tree over T is a partial function t:N¥* + T

with domain dom(t) € N* satisfying:

(3.1.1) If an € dom(t) for some g € N*¥ and n € N, then
n < rank (t(x)) and 8 € dom(t) for all prefixes 8

of & (including g). O

3. 1.2 Notation

Let T[Z] denote the set of trees over L. Let. T =T[Q]. We
will write t[e/] rather than t{er) for the value of t at'the string
o € N¥. Let L denote the tree with empty domain, and let t[a] = |
mean that o ¢ dom(t). lfyc € Z, then we also use ¢ to denote the

function o: T[E]Pank((’) + T[Z] where

-1— N denotes the set of non-negative integers. N¥* is the set of
finite sequences of elements of N including €, the sequence of

length O,

olty,eeeyt_g)a]l = Joifa=c
ti[B] if ¢ = iB and i < rank(c)
undefined otherwise.
It is easy to verify that this satisfies (3. 1. 1). 0
This gives us a notation for all finite trees as the following

remark shows.

3. 1.3 Remark
Let F[E] denote the set of finite trees over I (trees with finite

domain). Then F[Z] is the least set satisfying:

LeEF[D]
(3.1.2) Ifoc € 2 and tO""’t-—iér__[E]’ then

O(tgseenst_g)€ F[Z].

Moreover, each t € F[Z] can be written in the form of (3. 1. 2) in
a unique way.
This result allows us to define functions on F[Z] by induction

on the complexity of the tree.

3. 1.4 Example a\
The tree depicted t = b — l a informally
N
e

to the right is defined formally by:

tfe] = a t{o1] = e
t[0] = b tf21] = b
tf1] = ¢ t[22] = ¢
tf{2] = a tfta] = | otherwise

and may be denoted by t = a(b(e), c,a(b(}]),c,})).

3. 1.5 Theorem
(i) The relation= on T[Z] defined by

(3.1.3) t = t, iff foralla e N, t,[a] =] or t,[a] = t,[a]
is a partial order (reflexive, transitive, and anti—symmetric).

(ii) f<tforall t€ T

(ifi) Ifty<t,<... is a countable sequence of trees in T[Z],
then there is a unique tree, denoted Iub§ ti} such that
t, < 1ub{ti} for all i and if t, <t for all i, then

lub{ ti} = t.

Proof
(i) and (ii) are trivial. For (iii), |ub{ti} =t where t[a] =¢
if there is some 0 # | and some i such that ti[a] =g. (There is at

most one such ¢.) t[a] =_| otherwise. a

3. 1.6 Definition
A set, together with an element | and a relation = satisfying the

conditions of theorem 3. 1.5 is called a cpo (chain-complete poset).

3. 1.7 Theorem
Letp : T[Z]+F[Z] by p ()] = t[a] if length (&) < n
1 otherwise.
Given a tree t € T[Z], let ¥(t) be the sequence Ctgytyye..> of
members of F[XL] defined by t; = p;(t). Then
(i) t.=t. . for alli

i i+1

(i) t.

1
(iti) t= Iub{ti}

pi(tj) for all j= i

(iv) ¥ is an order isomorphism between T[Z] and the set of

sequences over F[Z] satisfying (i) and (ii) and ordered

componentwise. O

10

3. 1.8 Remark

By the above theorem, we could take 3. 1. 3 as the definition
of F[Z] and define T[Z] to be the set of sequences satisfying (i)
and (ii) of 3. 1.7. This is the approach taken in [15] and [16]. We
prefer the method here (which was inspired by [5]) since it seems

O

more intuitively accessible.

3. 1.9 Definition
If A and B are cpo's then f:A #+ B is continuous if f(_L) =1,
x< vy implies f(x) < f(y), and Xg= %= ... implies lubf t(xi)} =
= f(lub{ xi§). [A -+ B] denotes the setf of continuous functions from
A to B, ordered point-wise, that is f< g iff f(x) = g(x) for all x € A.
A x B denotes the cortesian product of A and B ordered by

< i <
R Y > = <X, Y0 > ki x1_x2and y1Sy20 O

3.1.10 Proof
(i) [A-+B] and Ax B are cpo's.
(i) 1Iff€ [A»B]landg€ [B+C] theng-f€ [AC].
(iii) 1ff€ [A+B] and g€ [A+C] thenfx g€ [A+ Bx C]
where (fxg){x) = <f(x), g(x)>.
(iv) ", € [Agx «o xA_ - Aj] where ﬂ‘j(xo,... y%_q) = ;e
(v) 1f A is any set, then P(A) = {B | B c A} is a cpo, where
L =¢,B<CiffBcC, and Iub{Bi} =UB,. If A P(B)
is any function, then%\é [PA) » J/f)(B)] where 4’\(C) =
= (J{f(x) | x€ C}. If A is countable, then every

g€ | P(A) »+ ?(B)] is 2 for some f:A » P(B). 0

11

3. 1. 11 Remarks
(1) If S is any set, then % =S U {_]_} is a cpo, there | is
a new symbol and x<y iff x =y or x= |.
(2) T[Z] is a sub-cpo of []IQi* - :VJ]
(3) If A and B are alphabets, then any substitution (as
defined in [7, p. 124] or [1, p. 146]) h: P(A¥*)+ P(B*)

is continuous by 3. 1. 1(Vv). 0

3. 2 Substitution Operators

We stated above that under the assignment of functions to modal
variables, each expression e denotes a function "in an obvious way'l,
We now make this more precise.

Recall from 3. 1. 2 that each g €{) also denotes a function

rank(c)

o:T - T.

3.2.1 Lemma

o is continuous.]

3.2.2 Definition

Lete= <§O, ...,e .> be a sequence of expressions - I.e.

-1

members of F[Q U V U X] and let F=<f f_1> be a sequence of

07"

rank{vi) +T. Then e «f is the function defined by

functions where fi:T

induction on the complexity of € as follows:

[0}

«f = (eokf)x...x(e_l«—f)
cr(eo,...,e_I)«—f = g (eef)

vi(eo,...,e_1)<—f = f o (8« F)

(By 3. 1.3 this defines & + f completely.) O

The reader may find this definition easier to understand if he

notices that (f ¢ (g1 X 9o X +0u X 9_1))(><) = f(go(x), <o ,9_1(X))-

3.2.3 Lemma
(i) If each fi is continuous then e « f is continuous.
(ii) The operator ¥ defined by T(F) =8+« T is continuous -
. m=
fe. J€[DyxDyx...xD_;?Dygx DX ...xD_;]

where Di = [Tr'ank(vi)

-+ T].
Proof
(i) = follows from 3. 1. 10(ii, iii, and iv) and 3. 2. 1.
(ii) follows from the fact that the operators * and x are

continuous. |

3.2.4 Theorem (Tarski [17])
If A is any cpo and f € [A +» A7, then f has a fixed point, an
element x € A such that f(x) = x. In fact, f has at least fixed point,

denoted Yf, which may be computed by

fo=_1
fn+1 - f(fn)
Yf = lub{f |

3.2.5 Corollary

For each definition D as in (2. 1. 1), there is a sequence
F =<fgy..c,f_;>such that f =8« f . O
This is the promised semantics for type definitions.
Summarizing, a mode definition D is of the form {vi(xo, ooy ><_1) =

=e. | 1=0, 1, 2,... } . A solution to the sequence of equations is

12

13

a sequence f of continuous functions such that fi(tO’ ceeyt 1) =

=(e.‘—f)(to,...,t_1)for‘all iand all tg,...,t

i -1°

3. 2.6 Notation
We will say that the solution of D is the least fixed point Y

computed as in theorem 3. 2.4, and the function defined by D

is the first component of this fixed point, T (Y ¥). Finally, and
most important, two definitions are equivalent if they define the

same function.

3.3 Functions and Trees

In 3. 1.2 we used a symbol g € 2 to denote a function. More
generally, many (not all) functions on T[Z] can be represented by

irees.

3. 3. 1 Definition

Let Xn={x0,...,x 1} and let t € T[qun]. Then for all

m=nand all £ 2 Q, t denotes a function fun(t): T[Z]™ » T[Z]
where fun(t) (to, ey tm-—1) is the result of replacing each occurrence
of X, by t in ti' More precisely, let s be the tree:

sle] tle] if tle] € Q

s[af) = t.[8] if tla] = x,

It is straightforward to check that this defines a unique tree. Let

fun(t)(to,...,t 1)=s. [

m—.
Notice that this definition extends 3. 1. 2 in the sense that

o= fun(c(xo, v ,x_1)) (as a function). Next, we extend this notation

of "replacing occurrences of the symbol 7 in t with the tree s!!' to the

case in which rank(r) ;é 0 - i.e. in which T can appear at an interior

node,

14

3.3.2Definition

Lete =<e e ,>and t = <tyye.-,t_y> be finite sequences

NERETLI
of trees where e, € F[Q U VU X] and t, € T[Q U VUX]. Then

e+ F, the result of replacing vi by ti in € is defined by induction

on the complexity of e as follows:

<e ¢ t,...,€ ¢ B>

e+ i
o'(eo,...,e_1)+— t =g(e«t)
vi(eo,...,e_1)4— t =fun(ti) (e ¢« 1)

X, ¢ [= x.

i i

(See, for example figure 1b or 2a.) O

3. 3.3 Remark

The restriction that each e; be finite is not essential. We could
define e + t directly (rather than inductively) for arbitrary e, but
the definition would be much more complicated, and we are only in-

terested in the case of finite e, O

In view of the similarity between definitions 3.2.2 and 3.3.2

it is not surprising that we have the following result.

3.3.4 Lemma

fun(e « T) = e « fun(t). O

3. 3.5 Remark
In the statement of 3. 3. 4 we implicitly extended the domain of

funfrom trees to tuples of trees by letting fun(<t eyt 1>) =

0"

= <fun(t,),...,fun(t 1)>. We will continue to make such extensions

o

without explicit mention. O

15

3.3.6 Lemma
(i) fun: T[Q U X [T~ T] is continuous
(ii) fun is one-to-one
(iii}) «+ as an operation on T[QU V U X] is associative

wherever it is defined. That is, e« (e'« t) = (e« e')« t.

3.3.7 Theorem
The minimal fixed point Y F of 3.2.3 can be described by trees.
More precisely, Y ¥ = fun(T) where T = ub{T'} and T' is defined by

t = <l,e., 1>

Proof

By 3.2. 4, v¥F = lub(\ffn(_]_)) where | is the nowhere defined
function.

We will show by induction on n that ffn(_]_) = fun(:ﬁ)z

jo(l) = | (where | is the nowhere defined function)

= fun(_]:) (where | is the nowhere defined tree)
0

= fun(t")
F™hp o= Fortw
=5« T"(]) by definition of ¥
=&+ fun(;ﬁ) by induction hypothesis
= fun(e « tT]) by lemma 3.3.4
= fun(?]ﬂ) by definition of t_n
Hence Y F = lub(J ™ iR))

Iub{fun(tn)}

fun(lub{t"}) by 3.3.6 (i)

= fun(t) O

16

3.3.8 Corollary

The function defined by definition D is fun('n'o(lub{ tn})). 0

3. 3.9 Notation

—

Let D be a definition, and T = lub{ t"} be derived from D as in

3.3.7. Thent is said to be the tuple of trees defined by D. The tree

defined by D is the first component of this tuple, T (t). O

o

3. 3. 10 Remark
Although a definition D technically defines a function, by

virtue of 3. 3.8 we can pretend that D defines a tree: If f, is the

0
function defined by D and to is the tree defined by D then fo = fun(to).

Since fun is one-to-one, two definitions are equivalent iff they

define the same tree. (]

3.3.11 Example

Return to example 1.2. The meaning of figure 1b can now be made

more precise. Notice that the tuples t" of 3.3.7 have the property

n n n - - -
thatt =e « <l,...,1>wheree =e¢ e+ ...« e (nfactors) or

(by induction)

0
e = <V0(x0""’x-l)""’V_I(XO”"’X_1)>
en-H = s+ e =eT¢ & (by the associativity of «).
. . 0 1 _ 2 _ -
The first 4 irees of figure 1b represent €y €9 =€ €9 = €p* &

3 - - .
and eg=eptece. (since v,

show e1.) The last tree in 1b represents t

does not appear in €y we need not

0’ and the tree of Ic

represents fun(to) (int) = t,. 0

—_— 1

17
4 TREES AND LANGUAGES

In this section, we establish an intimate connection between
modals and deterministic context-free languages, and use this
connhection to prove the main results of the paper
The first step has already been taken by noting (in 3. 3. 10) that we
can confine our attention to trees. The next step is to notice that

the trees involved all have finite range.

4,1 Lemma
All trees mentioned in theorem 3. 3.7 have finite range. (The

range of t is {o | t{a] =0 for some g € N*|).

Proof
Clearly, if t is any of these trees, then tfg] =0 only if ¢
appears somewhere in D. But D contains a finite number of symbols.

O

Now let ¥ be a (not necessarily finite) ranked set and let
t€ T[Z]. Suppose the range of t is finite. Let
n = max{ rank(o) | o € range ()}, and let [n] = {0, 1,...,n=-1}.
For each o € range(t), t_1[o] c [n] *; that is, t_1[o] is a language
over the finite alphabet [n]. t—1[c] may be thought of as '"the set
of addresses of nodes where g lives!''. This finite collection of
languages completely characterizes t. This observation is so im-

portant in what follows, that we state it as a theorem.

18

4,2 Theorem

If t€ T[T] has a finite range, then there is a finite alphabet
[n] €IN and a finite collection of disjoint languages LO c [n] * such that
that

(4.1) tla] =0 iffa€ L

and t[a]=_;_iffa§U{t_c}. O

In [16] we showed that for ordinary type definitions (i.e. those
without parameters), these languages are all regular sets, and,
conversely, that given any finite collection of regular sets such that
(4. 1) defines a tree t, t is definable by some definition. Notice,
however, that the definable tree t shown in 1c has the property that

f%ﬁ] = { 1Mo™T ns 0} which is not a regular set [7].

4.1 Description Languages

In the previous section we showed how a tree can be described
by a finite collection of languages. Here we introduce a device for

describing a tree by a single language.

4, 1.1 Definition

LetZ be a ranked set and let% =Y U {<0o,n> | 0 € 2 and
h < rank(o)} .

Let 8: T[Z] » P(E *) by

9(t) = {<co,n0> cen <O N4> 0]

kz0and t[ng,..

A
Note that if & is infinite, then U is infinite, but if range(t) is finite,

.,nj_l] = o, for all i<k},

then 8(t) € A* for some finite subset A ¢ i 8(t) is called the

description language of t.

19

4,1,2 Lemma

8 is continuous. O

4, 1. 3 Definition
For eacho € T, let 0 be the finite substitution (7, p. 124] or

[1, p. 196])defined by

hG(<T,i>) = {i} forallT €2
hy(r) =& fr#o
hc(c) = {el.

Since hc(w) contains at most one string for any string w, we will
regard hc as a partial function and write hc(w) = @ rather than

h (w) = {al}. 0

4,1,.4 1_emma

o7 = h (8(1). 0

4,1.5 Corollary

t, =t, iff AQ(t1) = 0(t

1 2 2)'

We have already given two meanings to the operator +. Now

we give a third.

4,1,6 Definition

Let$ beasin4. 1.1 whereS =Q U VU X. Let Mg,...,M_, 5%,

o’
where the number of M's is H VH *Let ¥ be the substitution defined

by

T For any set s, ||S|| is the cardinality of 5.

20

\Iz(v.)=M.—i*x
J J

={a € Mj | gg;f,Bxi for any B and i}

\I/(<vj,i>) = Mj/{xi} ={aed*] axié Mj}
U(r) ={r} for any.other 7 € ﬁ
A
LetlLg,...,L_;52 *. Then <lgreeesb_p> € <Mg,... yM_y> =
=<\I'(L.O),...,\I'(L—1)>. O

The reason for "overloading! the symbol « is the following:

4. 1.7 Proposition
Let T and € be tuples of trees in T[Q U VU X]. Then

8t « &) =8 (t)« 8 (e). 0

4.1.8 Corollary
Let t be the tree defined by the definition D. Then 8(t) =’;fTO(L—_)

where

)

L = <@,...,0>

LT - g @) e’
and C= () L".
n=0

Proof

By 3.3.7, 4.1.2, and the fact that 8(1) = @. O

4,2 From Definitions to Pushdown Automata.

In this section we show how, given a definition D and a symbol
0 appearing in D we can construct a deterministic pushdown automaton
(DPDA) P such that L(P) = t61[0]. Our notation for DPDA's is
exactly as in [1] (g.v) except that we use € rather than e for the

null string. The description languages introduced in section 4. 1

21

are not used directly in the construction, but are used in the proof
of correctness of the construction. First we present the construc-
tion, then we give an example. [A detailed correctness proof is

omitted in this draft. |

4, 2. 1 Construction

LetD be a definition as in (2. 1. 1) and let ¢ be a symbol
appearing inD. Let P =<Q, &, T, 0, dgr Zg» F> where
Q (the set of states) = {<i,a>] o € dom(ei)}
(A state is a node in some tree of D.)
T (the input alphabet) = {0,...,m-1} where
m = max {rank(r) | T € Q appears inD}

T (the stack alphabet) = { <i,a> € Q | ei[g] € V} J ZO

(A stack symbol is a node labeled by a modal variable.)

g (the initial state) = <p,e > (the root of the first tree in E=)) :
F (the set of final states) = { <j,a> € Q | ej[a] =0}
(A final state is a node labeled 7.)
and § (the transition function) is defined as follows:
(1) If e[i] € Q, then d(<i,a>,j,2) =(<i,aj>,Z)+Z€ET

(it) 1feli]

V> then 6(i,@>,e,Z) = (<k,e>,<i,a>,Z) 4 ZET

(iii) if eli] = X, > then b(<i,a>,e ,<j,B>)=(<j,Bk>,e)

4,2.2 Example

Letog, 7, p € Q and let rank(c) = 3, rank(rT) = rank(p) = 0.
Let D be the definition VO(XO’XI) =c(vo(c('r,xo,p),cr(-‘r’,p,x1)),xo,x1).
Let t be the tree defined by D. The derivation of t is illustrated
in figure 2a. Figures 2b and 2c illustrate the action of P on input
00110. L(P) =t~ '[r] = {0™1"0 | m=nz= 1jU{o™2" | m=zn= 1}.

(Notice that L(P) is not an LL language [1]).

22

4,2.3 Theorem

Let P be the DPDA constructed in 4.2. 1. Then L(P) = t—1

lo]

where t is the tree defined by D. il

4,2.4 Corollary

If the DPDA equivalence problem is decidable, then the type

equivalence problem is decidable.

Proof
Given two definitions D and D' D is equivalent to D' iff

to = tb where to and tb are the trees defined by D and D' , by

3.3.10. For each symbol ¢ appearing inD or D!, construct DPDA's

P, and P} according to 4.2. 1. Then t, = iff L(PG) = t61[0‘] =

1
0 0 to

-1
= t! = !
to [o] L(Pc) for each o. O

4,3 From Pushdown Automata to Definitions

By theorem 4.2.3, if t is a definable tree, then there is a finite
set of deterministic languages §L0} which completely characterize
t in the sense of (4. 1). Unfortunately, the converse is not true. Even
if t has finite range and t—1[0] is deterministic context-free for all
o, it may not be the case that t is definable. Fortunately, the con-
verse of 4. 2. 4 does not need the full converse of 4. 2.3; a weaker
result suffices. Given any deterministic context-free language L
(satisfying certain properties), there is a definable tree t built up
from the symbols ¢ and T such that t—T'[{r] =L and t~1[0] is com~
pletely determined by L.. The first step is to reduce an arbitrary

DPDA to an easily manageable form. Fortunately, this has already

been done in [1].

4, 3. 1 Definition (quoted from [1, p. 691]

A DPDA P = (Q,Z,I‘,G,qo,ZO,F) is in normal form if it has

23

all the following properties:

(1) P is loop~free. Thus, on each input, P can make only a bounded
number: of moves.

(2) F has a single member, qg, and if (qo,w,ZO) |—* (qf,e Y),

theny = Z_.. That is, if P accepts an input string, then P is in the
Y) ’

o
final state S and the pushdown list consists of the start symbol alone.
(3) Q@ can be writtenas Q = QS uQe, uQ u {qf} , where QS, Q.

and Q‘e are disjoint sets, called the scan, write, and erase states,

respectively; ds is in none of these three sets. The states have the
following properties:
(a) if gis in Q,, then for each a € 2, there is some state Py
such that 6 (q,a, Z) = (pa,Z) for all Z. Thus, if P is in a scan
state, the next move is to scan the input symbol. In addition,
this move is always independent of the symbol on top of the
pushdown list.
(b) If qis inQ , then 6(qg,e ,2) = (p,YZ) for some p and
Y and for all Z. A write state always prints a new symbol on
top of the pushdown list, and the move is independent of the
current input symbol and the symbol on top of the pushdown list.
(c) If qis in Qe, then for each Z € T', there is some state
p_ such that 6(q,e ,Z) = (pZ,E;). An erase state always removes
the topmost symbol from the pushdown list without scanning a
new input symbol.
(d) 6(q,a,Z)=¢for‘allai\nZU{e} and Z € I'. No moves
are possible in the final state.
(4) 1 (q,w, 2) [—+— (p,e ,2), thenw#e . That is, a sequence of moves
which (possibly) enlarges the stack and returns to the same level
cannot occur on € input. A sequence of moves (q,w, Z) }-—+— (p,e,2)

will be called a traverse. Note that the possibility o impossibility of a

24
traverse for given q, p, and w is independent of Z, the symbol on
top of the pushdown list,
In short, a scan state reads the next input symbol, a write state
prints a new symbol on the stack, and an erase state examines the top

stack symbol, erasing it. Only scan states may shift the input head. [

4.3.2 Theorem (quoted from [1, p. 691])

If L. €T % is a deterministic language, and {: is not in 2, then

L¢ is L(P) for some DPDA P in normal form. 0

We will assume henceforth thatL = {0,1,...,n-1} for some n.

4, 3.3 Definition
L.et P be a DPDA in normal form. Then the function 0 may be .
characterized by three functions: the scan goto function f, the
push-pop function g, and the push-goto function h defined as follows:
f:QsUZ}ﬂQwher*efor* all zeT, qiEQs, neExy
6(qa;,n, 2) = (f(q;,n), Z)
g9:Q,xQ *Qandh:Q = Q-Q_ whereforall Zz€T,
qa; € QW, pj € Q‘e
6(qi,€ ,2Z) = (h(qi), YiZ)for‘ some Y, € I" depending only on g,
and é(pj,e Y1) = (g(qi,pj),e)
(Notice that h(qi) $ Qe since otherwise there would be a traverse
(€ ,2) b— (hla;),e ,¥,2) b— (gla;,pse , 2)

contradicting point (4) of 4.3. 1. O

Now we can describe the construction of a type definition from

a normal form DPDA P.

4, 3. 4 Construction

Let P be a DPDA in normal form. Without loss of generality,

25

we may assume that d € Qe. LetQ ={0o ,'T} where rank(g) = [|E [l
and rank(t) = 0. Let V. = { Vgr e ,v_1§ where ||V]| = ||@ - QeH
and rank(vi) = ||Qe|l for each i. Let x denote <Xgp oo ,x‘[QeH_1>.

Arbitrarily order Qe and Q - Q, so that Qe = | Pgre - ,p_1} ,
Q- Q‘e = { Ags ==+ ,q_1} and 99 is the initial state.
For each a; let k(qi) be the expression (tree)
“vi(;<)” € T[Q U VUX] and for each p,, let k(pi) be the expression
"y € T[Q U VU X].

LetD be the definition

where
- if q; € Q_ then e, =0‘(l<(f(qi,0)), een ,k(f(qi,—1)))
-ifq,€Q thene, = vj(k(g(qi,po),. .. ,k(g(qi,p_1)))
where q‘i = h(gi)

- ifq, =q; thene, =T. O

4.3.5 Example
Let P be the normal form DPDA in figure 3a. L(P) =

= { 0"10™] n = 0} . Then the functions used and the definition

constructed according to 4. 3. 4 are illustrated in figure 3b. [

4, 3.6 Theorem
Let P be a DPDA in normal form and let D be the definition
constructed from P by 4.3. 4. Let t

~

Then tylo] = | T ifa€ L(P)

0 be the tree defined by D.

™ e,

1 ifa¢ L(P)buta =8y for somef € L(P)

g otherwise O

-

26

4.3.7 Corollary
If the type equivalence problem is decidable, then the DPDA

equivalence problem is decidable.

Proof
LetL, L.' €Y * be deterministic languages where
r =1{0,...,n=1}. By 4.3.2, we can construct DFDA's P and P!
such that L(P) =Ln<c (Z U {n})* and L(P') =L'nc (T U {n})*.
Let D and D! be definitions defining trees to and tb, constructed
according to 4. 3. 4. Then
D is equivalent to D!
iff oty = tb
iff L(P) = L(P!) (by 4.3.6)

(by 3.3.10)

iff L =L! O

5. SUMMARY AND CONCL.USIONS

We have presented a modest extension to the usual type de-
finition facilities found in current programming languages. We have
given a precise mathematical semantics to this extended facility using
a so-called "lattice theoretic!' or "Scott-like!" model. Using this
model, we were able to show an intimate connection between definable
types and deterministic context-free languages. In particular, we
have shown that the equivalence problem for definable types is of
equal difficulty with the equivalence problem for deterministic lan-

guages. Since the latter problem remains open in the face of several

27

years of concentrated efforts of researchers to close it, we must
either abandon attempts to decide equivalence of types or restrict
the range of types that may be defined.

What are the practical implications of this result? As we
mentioned in § 1.1, we can avoid the problem entirely by refusing
to consider separately declared types equivalent, or to consider
them equivalent only if the declarations are of "essentially the same
form!" in some sense. On the other hand, it may be that even the
modest extension we presented here is unnecessarily strong. For
example, definitions (1. 1), (1.2), and (1. 3), which were presented
as motivation. for modals, define regular types and thus could be de-
fined without the use of parameters. In this case, the parameters
serve merely as a convenience, allowing various aspects of the type
intlist to be specified separately. This one could require that all
types defined be regular (in the sense that t_][(ﬂ is a regular set for
all o). In view of the fact that it is decideable whether a given deter-
ministic context-free set is regular [7, p. 230], it should not be hard
to show that there is an algorithm to enforce this restriction. It re-
mains to be seen whether non-regular types are of any practical use.

In fact, a somewhat stronger restriction, which is sufficient to
ensure that all types declared are regular, is to change the syntax so
that actual parameters to modal variables must be parameter symbols
or modal constants of rank 0. This still allows definitions such as
(1. 1) but would be easier to enforce than the restriction of the previous
paragraph. More experience with modals is necessary before we can
state whether such restrictions prohibit any truly - useful type defi-

nitions.

28

Acknowledgements

The results reported in this paper were obtained with the in-
valueable help and encouragement of Alan Demers. The construction
of 4. 3.4 was inspired by the proof of theorem 4. 2.4 in [3] We feel
that the content of § 4 is essentially the same as that of [2], although
the paralliel is not exact, and we obtained our results before we were
aware of [2] Por‘tions of this research were completed while the

author was a student at Cornell University, Ithaca, N.Y.

29

References

[1] Aho, A.V. and Ullman, J.D. The Theory of Parsing, Transla-
tion and Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1973.

[2] Courcell,B. Recursive schemes, algebraic trees, and determini-
stic languages. IEEE Symp. on Switching and Automata
Theory, Vol. 15, 1974, pp. 52-62.

[3] Fischer, M.J. Grammars with Macro-like Productions. Ph.D. Thesis.

Harvard University, 1968.

[4] Gehani, N. Data Types for Very High Level Languages (Ph.D. Thesis).
Tech. Rep. TR75-258, Computer Sci. Dept., Cornell u.,
Ithaca, N.Y., 1975.

[5] Goguen, J. A. and Thatcher, J.W. Initial algebra semantics.
IEEE Symp. on Swithching and Automata Theory, VVol. 15,
1974, pp. 63-77.

[6] Gries, D. and Gehani, N. Some ideas on data types in high level
languages. Tech. Rep. TR75-244, Computer Sci. Dept.,

Cornell U., Ithaca, N.Y., 1975.

[7] Hopcroft, J.E. and Uliman, J.D. Formal |_anguages and their

Relation to Automata. Addison-Wesley, Reading, Mass., 1969,

[8] IFTP Working Group 2. 1. Report of the subcommittee on data—
processing and transport-modals, with application to sor-

ting. Algol Bulletin AB37. 4. 3 (May 1971).

[9] Jensen, K. and Wirth, N. Pascal User Manual and Report. Lecture

Notes in Computer Science. \Vol. 18. Springer Verlag,

Berlin, 1974,

[10] Kral, J. The equivalence of modes and the equivalence of finite
automata. Algol Bulletin AB35. 4. 5 (March 1973).

30

[11] Lewis, C.H. and Rosen, B. K. Recursively defined datatypes,
part 1. ACM Symposium on Principles of Programming

Languages, 1973.

[12] Lindsey, C.H. Modals. Algol Bulletin AB37. 4. 3 (1974).

[13] Rosen, B.K. Tree-manipulating systems and Church-Rosser
theorems. J. ACM, 20, 1 (January, 1973), 160-187.

[14] Rosen, B.K. and LLewis, C.H. Recursively defined datatypes,
part Il. Report RC4713, IBM J.J. Watson Research Center,
Yorktown Hts.,, N.Y., 1974,

[15] Scott, D. The Lattice of flow diagrams, in Semantics of Al-

gorithmic L anguages, E. Engler, ed., Lecture Notes in

Mathematics, Vol. 188, Springer Verlag, Berlin, 1971.

[16] Solomon, M. Modes, values and expressions. ACM Symp. on
Principles of Programming Languages, VVol. 2, 1975,
pp. 149-159. (Also available as Tech. Rep. TR74-219,
Computer Sci. Dept., Cornell U., Ithaca, N.Y., 1974),

[17] Tarski, A. A lattice-theoretic fixpoint theorem and its applications.
Pacific I. of Math. 5 (1955) 285-309.

[18] Wijngaarden, A. von et al. Revised report on the algorithmic
language AL.GOL. 68. Tech. Rep. TR74-3, Computing Sci.
Dept., U. of Alberta, Edmonton, Alberta, 1974.

31

1

U, (W) = struet (e, w3 (ref (%))

v, = 45 (int)
Figure 7@
Vo = struct s struet tr
1 ZEA TR =/
Xo Yo e Xo Sh”“b‘é% Ko Sff“i"ucj
, _
o oo
Ko Ao ‘%if
ref
5
x,
e R A
‘ﬁf;'f;f‘g,fi%z’“
I A
it }?Zu T
0 4
ve \s#'ruc;f"
o] 0 N
Int

32

&N
i
J
o
=
@
.
~a
Y
Ny
& ™~
2 b
b o
o TN >
wQ - Vﬂ\ WMIF
R et &
paS
TN

ﬁ{gw"@ ZCI

% Iz 7s fo 9% 9n

Figure Zb
States of P
State Stack Remaining Inpot — Move

o 2 oo 770 i
9 Z o710 il
7 9, Z, 0110 i
9, Gy Zo 77 0 I
7o % Gy Zo 110 I
9, 91 Gy Zo 10)0
Ty 97 Zo 70 {
Gz %y Zo © i
2 Z, O i
% Z, £ gecept

ngwe é@
Action of P on fhpu'f“ Co770

w - {%} 9,¢ 34
= j ?zi ?3; %f
@@ = f/;’;g; /:37]? 0 Pugh&f 2 — 9, = 1 /Oap’i 75
L] pushi O" PoP‘@w pop &
7o, f e pop @ O&,?
[= Ja,bf
/T/'guf@ 3 a
A pushdown avtomaton ia normal form.
£l o 1 9| Pe P h.
%9, 9, Pl 9y G ;};
7| po P 7 % 9 71 | 7
% Py Iy
kef | o 1 koGl Po P
Go | Vi (¥, %) V(X 2) Do | %%, 1,) Vilt,x)
9: X X % |, (X, %) 2)2,(;%’,,/%3
Dy V5 (0w)V (6, 20)
Vo (X, X)) = V2 (0 lv, 1), U (X, %)
Uy (X XY = Vi (U (v, M), vy (X, 1)
v, (Xew) = o (0 (Vo) V(K1)
v, (Ko,) = o (x,, %)
Uy (Ko, Xa) = cr(ﬁf‘;(:%), Vs (%:,0])
v (x, %) = 7

fzgmm 3 4

The %yp@ clefinition c/w;\vec/ From 3a.,

35

Yo o ¥ Vy ATy o7 => ...
N N o\ /N
AN N N R
Ko W Ko Xy Yy, A \%
J
l{.@'} ZZ? al (J"/ N
SN N
N\ ‘/ai /LS\' /0(
P Ve (x o
/N =D w/ \ = SN\ = t}'/ o
¥, x, Y %y o /\? /WJZ
0 . \x 4" % 20N
o5 o
= v/ \Cy = \Un.
e 7N Vi gl
\N. % ¥ SN F
gy "'\j:,t o ?f
\ 7\ ~ N\ 7
ty Y Ly ¥ 2 (4
N
N

=P 5‘“/ A =D =D / \;: o,

/ \ ty g e ?fy
S,V
/J’ {y fo \‘24_ / \Z;
'Z{,l \?f' N\ by \

oo N

ot V N
/ \; z, tfoor1001]= 2
ki

zf\’

(7 [r] =fo"10%1) n=of

/nguwe 3@;

