ON EXTENDED CONTEXT FREE
CRAMMARS AND L R-PARSING

by

Ole L.ehrmann Madsen

Bent Bruun Kristensen

DAIMI PB-53
September 1975

Institute of Mathematics University of Aarhus ]

Ny Munkegade - 8000 Aarhus C - Denmark

Phone 06-1283 55

DEPARTMENT OF COMPUTER SCIENCE Jr__

Siie




ABSTRACT

To facilitate the specification of grammars, it is common to
extend the Backus Naur Form (BNF) with the repetition and the
alternation operator. These so-called extended context free
grammars (ECFGs) are normal context free grammars (CFGs), where

the right hand sides are regular expressions over the terminal

and nonterminal symbols. It is described how ECFGS can be
treated in connection with LR~ parsing, partly by extending the
LR- theory to cover the ECFGs - and partly by giving

transformations from ECFGs to normal CFGs.
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1. INTRODUCTION.

An extended context free grammar (ECFG) is a context free

grammar (CFG) where the right hand sides of the production rules
are regular expressions over the terminal and nonterminal symbols
of the grammar. The topic treated here is how to parse strings
generated by such grammars deterministically, from left to right,
using a k-lookahead. The first step 1is to extend the LR(K)
{Xnuth (19651) and the SLR(k) (DeRemer [(19691,11971]1) definitions
for normal CFGs to the ECFGS.

Orne solution is then to extend the LR- theory to cover the

ECFGs, i.e. to specify both an LR- table construction algorithn
and a corresponding parsing algorithm.

Another solution is to apply some obvious transformations ¢to
the ECFG to construct an equivalent CFG. Such transformations
may introduce LR- problems. However if the language generated by

the ECFG is deterministic then there exists an equivalent CFG,

which is LR(k). Hence there exists also a corresponding
transformation. A treatment of ECFGs at such a level is not of
interest here. Instead an approach using rule to rule

transformations is given, which keeps the phrase structure of the
grammar. The main motivation is to use ECFGs as a practical
tool, 1i.e. to use ECFGs as input to translator writing systems
based on LR{(k) grammars. By that reason the original structure
of an ECFG has to be preserved.

In section 2 a proper notation is stated. Furthermore some
preliminary definitions are given.

Section 3 contains general motivations for ECFGs and the
problems with the obvious transformations are discussed.

A definition of LR{(k)'ness in the ECFG case is given in
section 4. The existing results concerning extensions of the LR~
theory are summarjized and are shown to be insufficient. Another
approach is then given and the LR- theory is extended on the
basis of this approach. Finally the SLR(k) concept is also
extended to ECFGs.

in section 5 the transformations from ECFGs to normal CFGs are
introduced. These transformations and their inverse
transformations are then shown to preserve the LR(k} and the
SLR(k) properties.

Finally section 6 <contains concluding remarks about the
results in the paper and some related topics are mentioned.



2. HOTATION.

The reader is assumed to be familiar with LR(k) grammars as
they are treated in Aho & Ullman 11972} and 11973). The

following notions are used: LR=-jtems LR-tables,the GOTO
function,the FIRST function, the e-free first function(EFF),the

FOLLOW function,viable prefix, consistent set of items.

When specifying grammars we use capital Latin letters as

nonterminal symbols, and lower <case Latin letters near the
beginning of the alphabet as terminal symbols. Lower case Latin
letters near the end of the alphabet indicate strings of terminal

symhols. The lower case Latin letter e denotes the empty string.

Lower case Greek letters denoted by atalphal,
btbetal,gtgammal,d(delta),etc, are used for strings of terminal
and nonterminal symbols. => 4 =>2r 5 =>% , =>r% denote direct

derivation ,direct rightmost derivation,and their reflexive and
transitive c¢losure, respectively.

We let T*k denote the set containing all strings over T with
length less than or equal to k, including e.

UsIy=ycy notin and x are used as set operators, denoting
union, intersection, difference, membership, not membership and
Cartesian product.

Underlined numbers and letters are also used as subscriptse.

We now give a formal definition of an extended context free
grammar.

Definition 2.1

An extended context free dgrampar (ECFG) is a 4-tuple
G:(N,TQP,S) where

(1) N is a finite set of nonterminal svmbols.

(2) T is a finite set of terminal symbols, disjoint from N.
(3) P is a (not necessarily finite) subset of N X (N U 7T)=%.
An element (A,a) in P will be written A->a and called a
production. For all A ¢ N, the set [g / A->g is in Pl is a
regular set.

(4) 8 is a distinguished symbol in N called the start symbol.
/77

An obvious way to express an ECFG is to permit the right hand
side of a production to be a regular expression over (N U T).



Definition 2.2

Let < 4y > 5 * , / be symbols not in (N U T). The set of
regular expressions over (N U T) , denoted R(N U T) is defined

inductively as follows:

(1) 1f a ¢ (N U T), then a ¢ R(N U T)

(2) If asb ¢ R(N U 7)),y the ab ¢ R(N U T)

(3) If a ¢ R(N U T)y, then <a>* ¢ R(N U T)

{(4) If 01+02vee490Rh € R{(N U T), |
then <01/02/.../00> ¢ R(N U T}

(5) e ¢ R(N U T)

(6) 1} ¢ RN U T)
/17

<a>* means that a can be repeated zero or more times.

<01/02/+../00> means precisely one of 01+02sce03Q0 e denotes
the regular set [el and (] denotes the empty set.

Notice, that we require explicit use of parentheses in regular
expressions, since this will ease the treatment in the following.

From now on any ECFG is expressed by means of regular
expressions.



3. MOTIVATION.

The most important reason for using the-operators * and / to
express grammars is the clearness and readability of the grammar.
The normal way of expressing a CFG is to use BNF or the reversed
BNF. The weakness of this method appears as soon as the language

generated by the grammar Dbecomes nontrivial. The number of
productions and nonterminals then grows very fast and the
structure of the language disappears slowly. Many of these

productions and nonterminals <come from simple repetitions and
alternations and they are not part of the global structure of the
granmar. To avoid such productions and nonterminals the wuse of
the operators * and / is excellent.

Example 3.1

The following part of a grammar expressed in reversed BNF is
taken from a PASCAL like language. The grammar generates the
case-~ statement of the language.

STATEMENT = "case" EXPRESSION "of"™ STATEMENTLIST "end"
STATEMENTLIST = LABEL-STATEMENT

/ STATEMENTLIST "$#* LABEL-STATEMENT
LABEL-STATEMENT = CASE-LABEL-LIST ":"

/ CASE-LABEL-LIST *":" STATEMENT
CASE-LABEL-LIST = CASE-LABEL

/ CASE-LABEL-LIST "," CASE-LABEL
CASE~-LABEL = "name"™ / "konst"

In the following grammar the operators * and / have been
introduced to eliminate the disturbing - productions and
nonterminals. The generated language is unchanged.

STATEMENT = "case"™ EXPRESSION "of" LABEL-STATEMENT
<"i" LABEL-STATEMENT>=* "end"
LABEL-STATEMENT = CASE-LABEL <"," CASE-LABEL>* "
<e/STATEMENT>
CASE-LABEL = <"name"/"konst">
17/

assuming that ECFGs are useful in practice, one has to solve
the parsing problem. For a big class of normal CFGs this problen
has already been solved satisfactorily by means of the invention
of the LR(k),LALR(Kk) and SLR(k) grammars.

One way of solving the parsing problem for ECFGSs is to rewrite
the ECFG to an equivalent CFG, which can be parsed . In practice
this rewriting to a CFG and parsing this CFG should take place



secretly and all applications should always be in terms of the
initial ECFG.

Two typical examples of productions involving *t's and /'s are

A ~->
>

A - /oot/QIl)Q

The obvious rewritings of these productions appear to be

A -> aBg A -> aBg
B -> Bb or B -> DbB
B -> e B -> e

{left—-and right-recursive, respectively) and

A ~> aWh
W ->0l1
W ->02
W ~-> on

However these rewriting rules are not satisfactory because
some unnecessary LR(k) problems may he introduced.

Example 3.2
Consider the ECFG with the productions
S =-> E
E =-> a<h>*bd
E -> a<b>%*bc¢

Applying the proposed rewriting rules, the result 1is the
grammars (CFGs) with the productions

S =-> E S =-> E

E => abDibhd E -> aD1bd
E -> ab2be E =-> ab2be
D1 -> Dib or D1 -> bD1

D1 -> e D1 -> e

pz2 -> D2b D2 -> bbh2

D2 -> e D2 -> e



Neither

intuitive,

LR{1)

W o

and

->
->
->
->
-2

Exanple 3.3

0of these grammars are

LR(1) or SLR(1). Two more

equivalent rewritings appear in turn both to Dbe

SLR{1). Namely the grammars with the productions

E S ->
aBd E ->
aBce or E =>
Bh B ->
e B ->

E

aBd

ade

bB

e /77

the ECFG with the productions

B
a<b/c>df
a<b/c>dg

the trivial rewriting rules, the result is a grammar

h the productions

E
awtdf

awzdg
b

c
b
¢

This grammar appears to be neither LR(1) nor SLR(1). A more
s equivalent rewriting appears in turn te be both
SLR{1). Namely the grammar with the productions

Consider
S ->
E ->
E ->
Applying
{CFG) wit
A ->
E =>
E ->
1 ->
Wi ~>
W2 ->
W2 ->
intuitive
LR{1) ang
§ =>
E =>
E ~>
B ~>
B ->

E
aBdf
aBdg
b
c

/77
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4. EXTENDED LR{(k) GRAMMARS.

4.1, LR(k) definitione.

our definition of an LR(k) grammar is the same as in aho &
Ullman t19721.

Definition 4.1

Let G={NyT,P,8) be a CFG and let GV=(N'"4T,P'",5') bhe its
augmented grammar. We say that G is LR(k), k>0, if the three
conditions

(1) S* =>r* aAw =>r a

o

W

{2) S'" =>r* gBx =>r a

o

v
(3) FIRSTk(w)=FIRSTk(y])

imply that aAy=gBx. (That is a=g, A=B and x=y)
/77

Using this definition of an LR(k) grammar in the CFG case we

want to give a corresponding definition of LR{(k)*ness in the ECFG
case., For this purpose we have to specify what we mean by a
derivation using the productions of an ECFG. A production A -> g
defines a set of productions and each production may be derived
from A -> a in more than one way, depending on the actual number
of repetitions used in the involved *-clause and the actual
selection in the /-clause.

Exanmple 4.1

Consider the grammar:
A => a<b>*<{b>%¢

The set of productions in the grammar :

A -> ac

A -> abc

A -> abbc
etc.

The right hand side in the rule A =-> abc can be derived fron
a<b>*<h>%¢ by taking one b from the first *-clause and zero
from the last or by taking zero from the first and one fronm
the last, i.e. abc = a<b>1 <b>0Q ¢ = a<b>Q <b>1 c. In general
we have a <b>p ¢ = a <b>i <b>j ¢ y i+j=m , 1,320,

’7/
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Definition 4.2.

Let a be a regular expression over (N U T). Let < y>i for i>0
be symbols not in (N U T). The set of jinstances derived fron

a2y denoted I(a), is defined inductively as follows:

(1) If a ¢ (N U T}y, then I(a)=[al

db & d+b ¢ R(N U T)y, then
={ Xy / x is in I{(d) &€ y is in I(h)]

(3) If a=<b>% & b ¢ R(N U T) , then
I(<h>*%)=[{<bib2...0i>1i 7/ bi ¢ I{(B)si=142seeesi & 1201}

(4) If a=<01/02/«¢+/00> & 01 ¢ R{(N U T)yi=142.c..ny then
1(<01/702/ /00> )=10<0i'">1 / 0i' ¢ I{oi)si ¢ {1ynl}]}
/77

An instance a' derived from a defines exactly one string over
(N U T} ' namely the string obtained from a' by removing all
symbols which are not in (N U T).

In a corresponding way an instance of a production & =-> g is a
production A -> a' in which a' is an instance of a.

Applying a production of an ECFG in a derivation is defined as
applying an instance of the production. This will have the
effect that the sentential forms of an ECFG may contain some of
the special symbols used to denote instances. When we match
sentential forms and other strings, all symbols but those in (N U

T) are blind symbols.

It will always be pointed out in the text when it is necessary
to distinguish between instances. Hopefully the reader will not
be confused.

Two rightmost derivations of a sentential form in an ECFG are
saié to be identical if in each step the same instance of a
production is applied in both derivations.

An ECFG is said to be ambiguous if for some string there exist
two different rightmost derivations.

The reason for introducing instances is the following:

The LR-parser we construct for an ECFG will be able to
announce when a reduction A -> a has to be applied . The next
step will then Dbe to detect which instance A => a' was
actually used. At this step there may be more than one
possibilitye. In our LR{(k) definition we state that there must
be exactly one.



Definition 4.3

12

its
the

Let G=(N,T,PyS) be an ECFG and let G'=(N',T,P*,S') be
augmented grammar. For k>0, we say that G' is LR{(k) if
three conditions

(1) S*' =>r*% aAw =>r abw

(2) S§* =>r* gBx =>r gpx = aby (as strings over (N U T))

(3) FIRSTk(w) = FIRSTk(y)

imply that aAy = gBx {(that is a=g, A=B and x=vy) and that A ->
b +B -> p are the same instance of a productione.

To explain the requirement that A& =-> b and B

same instance of a production,

Example 4.2

->p must Dbe
consider the following example:

Consider the ECFG with the productions :

S => Ad

A -> <ab/a><b>=xc¢c

We construct derivations:

(1) § =>r aaqd

(2) § =>r gAd

(3) FIRSTL1I(d)=FIRST1(d)=d

where a=g=e 4 A=A , d=4 ,
A -> <ab>1<>0c and A
A -> <ab/a><b>*%c¢c,

=>r a<ab>1<>0cd =

=>r g<a>2<h>1icd =

abcd

abecd

but
=> <a>2<h>1c are not the same instance of
sO0 the grammar is not LR(1).

/17

the

I
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4.2._ _Construction of the LR~tables for ECFG's.

One way of treating regular expressions in production rules is
to extend the LR parser construction technique. This can be done

by ¢iving rules for moving the LR marker (dot) through the
regular expressions for the purpose of «computing the LR-items.
The LR-items are «constructed in the normal way using the

following additional rules proposed by DeRemer [1974] and Early
{19701 :
(1) Any item of the form
(A => a .<h>*g,v]
is replaced by
A -> a< .h>*xg,vl
[A => a<h>* .g,v]
(2) Any item of the fornm
[A -> a<bh .>%g,vi
is replaced by
{A => a<bh>% ,g,v]
{A -> a< .b>*g,v]
(3) Any item of the form
{A -> a .<01/02/cce/00>b,yV])
is replaced by
[A => a<01/02/c0e/ eQi/eee/0N>b,V}
for i=1425ese9n
(4) Any item of the form
(A => a<01/02/eee/QL o/cee/0N>b,vV]
is replaced by
[A => 3<01/02/¢++/00> b,V
The idea behind these rules is to keep track of which parts of
which productions are applicable at a given point in the input

string, in a manner consistent with the LR construction technique
and with the meanings of regular expressions.
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Example 4.3
Consider the grammar with the productions:
S -> E
E => T<<K+ / =>T>*%

T => PKLK* / /OPO*

The LR(O)} items are:

O
[§ -> .E ,el E->1
{E => T+ / =>T>% ,el T=>2
[T => P/ /2P>% ,e] P=>4
[(p -> .a ,el a=>6

e e G s . Ny SR W W A TR ST W O M e GN GWD WS G A R GTe W S S W D R GO W e O

- e A SIS S - G W S D GO WS T I WP R A S SO GRS N G D O G WO WD e e e e e on

2
[E -> T<KK o+ / =DT>% ,el +=>3
[E => T+ /  o=2T>% e -—>3
[E => T+ / =2>T>% , ,el
3
[E => T<<+ / => T>% ,el T->2
[T => JPLLKx / />P>% el P=->4
(P => .a qel a->6
4
[T => P % / />P>% ,el LR 3
[T => PLL%E / o/>P>% ,el /=>5
[T => PR/ [OPO*% e g€l
5
[T => PLLH [/ /> JP>% ,el P-2>4
[P =-> .a sel a->6
6

T o e G G AR D WD A T ST TR TR A WM M M W O3 W SR WD MR 0 D O O Wh D B SO WO W ue G

17/

From the LR-~items the LR-tables can be constructed in the
usual way but unfortunately the LR-parsing algorithm is no
longer valid. When parsing a string it can be announced when a
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reduction has to be applied, but it is no longer obvious how much
to pop off the pushdown list, because the right hand side of a
production has no fixed length. Another disadvantage is that
even if the LR(k) items are consistent , the grammar may be

ambiguous and the parsing algorithm cannot uniquely determine the
length of the right hand side of the production applied.

Example 4.4
Consider the grammar with the productions:
S ~>A
A -> Aa<bAad>*c¢

A =-> 12

The LR(O) items are :

0
[S§ => A e} A->1
[A -> .Aa<bhra>*¢c ,e]
(A =-> .2 yel z2=->5
1
[S "'> A . ge]
[A -> A .a<bAa>%c ,el a->2
2
[a -> Aa< .bAa>xc ,el b=>3
[A => Aa<baad>% .¢c ,el c=>6
3
[A ~-> Aa<b ..Aa>%c ,e]) A->4
[A -> .Aa<bAa>*¢c ,e]
A =-> .2 ,e} z2->5
4
tA -> Aa<bA .a>%*c ,el a->2
A -> R .a<bia>xc ,el
5
(A -> 2 e 1e]
6

@ . wn v G W K e S e R D O S R MD P ED CF G S G R T OIS e SIS R OB R Ee @ WE Wm 2> WO
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The LR(O) items are consistent. However twOo parse trees exist
for the string: 2 a b z ac ac snamely

{1) )
I
......-A....-m
1 I 1
------ Aw=== 1 1
I 1111111
A I 1 aAI1I1I1IT1T1
I I 111111
2 abzacac
(2) S
I
________ A.._.._...._..
I 11 I 11
I1 I 1 ~-A~-- 11
I 1111111
A I I A1T111
I 1111111
2 a bz acac

/77

We shall now modify the algorithm for constructing the LR-
items, such that the LR=-parsing algorithm can be extended to
determine the length of the right hand sides unambiguously, if
the grammar is LR(k).

In the previous algorithm items of the form [A =-> a .<b>*g,vV]
and [A ~-> a<bh .>%g,v} are transformed into the same two items (I[A
=> a< Jh>%g,v] , [A =-> a<bhd>% .g,vl)e. This is where we loose
information about whether the LR-table associated with the itenms
is associated with a viable prefix da ({A -> a .<b>%*g,v}J) or with

a viable prefix dab ({A -> a<bh .>%gsvl}). In the same way the n
items of the form A ~> a<01/02/.../0}% ¢/sse/00>bB,v] are
transformed into one item (A => a<ol/02/.../00> .byv] and we
loose information about which oi actually accesses the LR-table.

The modified algorithm keeps this information in the table.

Assume now that the production A -> a is applied. Let a' be
the instance of a actually read. /a'/ symbols on top of the
pushdown list have to he popped . Now & can bhe split into
d1,82500..4n for m>1 such that ¢ a = did2...dm and each di has

the form:
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(1) di ¢ (N U T)* orx

(2) 4i = <p>* for some b or
(3) di = <01/02/++../00> for some 03 s J=132ceeshe
It then follows that at = d1'd2'...dn' where dji° is an

instance of di. The popping of the pushdown list can be split
into popping first /dm'/ symbols ,then /dm=1'/ symbols etc., and

finally

/d1'/ symbols. Let us investigate this process. Assunme

that /dn*/s /8RB=1'/y ecep/di*t1'/ symbols have Dbeen popped fronm
the pushdown list, and that we are going to reduce an instance of

di.

(a)

(o)

(¢)

If di has the form (1) , the only possible instance of dji
is di itself and we can pop /di/ symbols from the pushdown

list,

If di has the form (2) then di' is zero or more ©possibly
different instances of b. The process of popping /d4i'/
symbols then consists of repeatedly popping
/b1/+y/082/9e.0y/R1/ symbols (the sequence may be empty)
with bisi=1s250..91 being instances of b, If the item (A
-> dl...4i-1<b .>%di+l...8m,v]) is in the LR-table on top
of the pushdown list and v matches the next k input
symbols ,we can pop an instance of b. If the item [A =->
dleeodi~1 o<b>*djit+il...dmsv] is in the topmost LR-table we
can stop popping instances of b and we have recognized an
instance of di. If only one of the items is in the

-topmost LR-table we have only one thing to do, but if both

items are present we can .continue popping instances of D
Or Wwe can stop. In general we don't know what to do. if
we shall pop an instance of b we must split b as we did
with a and recursively perform the same process with h.

If d4i has the form (3) then di' is an instance of either
0190216090  OR. If the topmost LR~table contains the
item [A => d1l..081-1<017¢ee/0) o/0ee/Qn>di+lecoednsv] and v
matches the next k input symbols ,then an instance of ol
is valid. If the LR-table also contains A ->
Gleeoedi=1<01/¢ee/Q] e/ceo/0n>di*l...4Rsv] with j#1, then
Wwe in general don'*t know what to do. To pop an instance
of ol consists of splitting ol as we did with & and
recursively repeat the processe.
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We shall now formalize the rules for constructing LR-parsers
for extended context free grammars. Doing so we have to
generalize the LR(k) theory as described in Aho & Ullman (19721,
The generalization will not always be proved formally, as most of

the proofs are straightforward. Only the parts which have to do
with reducing right hand sides of applied productions are provede.

In the CFG case we know that an item fA =-> a «byv]l is
associated with a viable prefix gay, i.e.

§ =>r* gAw =>r gabw

and FIRSTk(w) =v

In the ECFG case a similar statement holds, but because we are
dealing with regular wexpressions, the dot in the a .b may be
inside some nesting in the regular expression. The LR-item (A ->

a4 «bsVv)l is then associated with a viable prefix ga' where a' 1is
obtained from 3. From b we get Bb' such that

§ =>r* gAWw =>r ga‘h'w
and FIRSTk(w)=v
and at*tht ¢ I(ab)

We need to state formally what a' and b' can be.

Definition 4.4

I1f ab is a regular expression over (N U T), then the set of
head instances obtained from a.b, denoted HI(a.h) is defined
inductively as follows

(1) 1f a,b ¢ R(N U T), then HI(a.D)=I(a)

(2) If a.b=d<bi .b2>%g & blsb2 ¢ R(N U T),then
1 ¢ I(b1) » hi ¢ I(R1b2) 4 J=1324eeesl 1
{31 b

¥
.

4<01/7¢ee/0il .0i2/¢s./00>8

eees0ily0i2veees0n ¢ R{N U T) , then

bl=1 x<1 /7 1 ¢ I{oil) & x ¢ HI(d.<01/02/.../00>4)]
/77

#

a
ol

If a.
&
HI(a
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Definition 4.5

If ab is a regular expression over (N U T}, t
$£ail instances obtained from a.bs denoted TI(a.h

as follows

hen the set of
) is defined

TI(a.p)=l 1 / there is an x ¢ HI(a.h) ¢ x1 ¢ I(ab) ]
/177

Definition 4.6

I1f ab is a regular expression over (N U T), then the FIRST
function is extended to a.b as follows

FIRSTk(a.b)=[ FIRSTk(X) / x ¢ TI(a.h) I
/77

Formally we should extend FIRST to instances, but according to
previous remarks on instances , we consider symbols not in (N U

T) to be blind. The e-free-first function (EFF) is extended in a
similar wave.

Definition 4.7
Let G={(NyT,P»S) be an ECFG, and let A -> ab be a production in

P. An LR(k) itenm IA -> a .b,ul is valid for pat, a viable
prefix of G, if there is a derivation

§ =>r*% DpAW =>r patbtw such that

U=FIRSTk(w) where

a' ¢ HI(a.b)y B' ¢ TI(a.h), a'b* ¢ I(ab)
//7/

Algorithm 4.1
Collection of sets of valid extended LR(k) items for G.
Input ECFG G=(N,T,P,S) and an integer k2>0.

gutput Sky the collection of sets of extended LR(k) items
valid for any viable prefix of G.

Kethod Use algorithms 5.8 and 5.9 from Aho & Ullman [1972]).
To move the dot bheyond the symhols <,> and /, wuse the
following additional rules

(1) Any item of the fornm



[A => a8 <b>*g,vl

is replaced by

th/too/Oﬂ)b,Vl

i

[A => a #<hb>*g,v]
[A -> a< .b>%*g,v]
{A => a<h>* .g,Vl
(2) Any item of the form
[A => a<kb .>%g,v]
is replaced hy
{A =-> a<b #>%g,vl
(A -> a<h>% .g,vli
[A => a< ..b>*g,v]
(3) any item of the form
A => a8 .<01/02/+¢./00>b,4V]
is replaced by
[A =-> 3a<01/02/c¢ee/
for i=142¢eesn
(4) Any item of the form

IA -> g(gl/gg/.../gl
is replaced by

(a ->

‘A -> Q(Ql/g;/.../gi/-../gﬂ)

An item containing the symbol # is not evaluated further

is a special "dead" dot)

o/.oo/QQ)QyV]

<gl/g;/oo./gl #/ooo/Q&)E'v}

ebyvl

20

(#

/7/

We claim that the above algorithm correctly constructs the set

of LR(k) items for any viable prefix of an ECFG G.
Lemma 4.1
Let G Dhe

extended LR(k) items for G. If [A
are in the same set of items in Sk,

~> a .bsv] and (B ->g
then there exist

an ECFG and Sk the canonical collection of sets of

«dyul
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at ¢ Hi(a.b)y g' ¢ HI(g.4) such that for all

b* ¢ TI(a.b)y 4' ¢ TI(g.d) with

atht ¢ I(ab) ,9'd4* ¢ I(gd) and some pDsLsXsW We have
{1) § =>r* pAW =>r pa‘tb'w

{2) S =>r* tBXx =>r tg'd'x

{3) FIRSTk(w)=v & FIRSTk(x)=u

{4) pa' = tg' (as strings over (N U T}))
' ‘ /77

Theorem 4.1

Let G bhe an ECFG and let Sk be the collection of sets of itenms
constructed by algorithm 4.1. G is LR(k) if and only if

(1) 1f (A -> 4 .4v] ané¢ [B =-> p .tyul are in the same set of

items in Sk then v is not in EFFk(p.tule.

{2) 1£ (A ~-> a #<b>*g,v}l and [A ~-> a<h #>*g,ul are in the sanme
set of items in Sk then vszu.

3<01/02/ee4/03 #/ee./0n>b,ul with i¥j are in the same set of

AL N

items in Sk then vu,.

Proof:

Only if. Let G be LR(k)

Case 1: The proof of (1) is a restatement of Theorem 5.9 in
Aho & Ullman {(19721].

case 2: Assume [A => a #<b>*g,vl and [A =-> a<bh #>*g,v} are in
the same set of items. We have (lemma 4.1) that there exist
a'ya"ybtyb"™ such that

a' ¢ HI(a .<b>*g), a" ¢ HI(a<h +>%gl,
ht ¢ TI(a .<b>%gl)y B" © TI(a<bh +>%Qq),

atby , a*h" ¢ I(a<b>*g).

He can choose

b = <>gg', b" = >ig',y i>1 for some g' ¢ TI(a<b>* .q).



22

For some pPstsWsXs We have

{1) S =>r* pAWw =>r pa‘'b'w

(2) § =>r* tAx =>r ta"b"x

(3) FIRSTk{(w)=FIRSTk(x)=V

(4) pa' = ta" (as strings over (N U T))

This implies that pa'b' = ta"b" (as strings over (N U T))
The LR(k) definition then gives

pAx=tAx and A -> a‘'b'y A -> a"b" are the same instance of A ~->
ac<h>*g. However a'b' is an instance with zero repetitions of
b and a"b" has at least one repetition of b, so a'b' and a"b"
cannot be the same instance of a<b>*g.

case 3: Assume that [A => a<01/.../0i #/.../00>b,v} and (A ->
3€01/eee/031 #/eoo/00>b,vi (i#3j) Dboth are in the same set of

items. We then have that there exist a*',a",b',hb" such that
é._* ¢ HI(Q(Ql/coo/Qi o'/.ctlg’ll)g)’

_@_“ C HI(£<QL/QQ./9_J_ o/-ot/_o_n_> )7

i=

Y ¢ TI(a<01/eee/0L o/eee/0n>B),

b" ¢ TI(a<0l/eee/031 o/ces/0n>b),

-

a'b'ya"b" c I(a<el/e2/.../0n>b)l,

We choose

b' = >id, b" = >id, for some d ¢ TI(a<01/02/.../00> .B).
For some DPyfyWeXy, We have

{1) S =>r* pAw =>r pa'b'w

{2) S =>r* t£AX =>r ta"b"x

{3) FIRSTkKk{(w)=FIRSTk(Xx)=V

{(4) pa' = ta" (as strings over (N U T)).

This implies that pa'h' = ta"b" (as strings over (N U T)).

The LR(k) definition then gives

pAx=tAx and A -> ath', A ->

a"h" are the same instance of A =>
a<Ql/02/.../00>by but this is a

contradictione.
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If part.

Assume that (1),(2) and (3) are satisfied, and that G 1s not
LR{k}), 1i.e. we can construct derivations such that

(cl) § =>r* DAW =>r pa‘'w
(c2) § =>r* tBX =>r tbh*x = pa'y

(c3) FIRSTk(w) = FIRSTk(yYy) = v

case 1 ¢ pAX # tBy

This case is a restatement of Theorem 5.9 in Aho & Ullman
{19721}

Case 2 ¢ PpAX = tBy, but A -> a* , B -> bh' are not the sane
instance of a production.

Case 2a ¢ A =-> at* is an instance of A -> a and

B =-> bt is an instance of B -> b with A -> a and B -> b bheing
different productions in G.

We then have that (A -> a .,v] and (B -> b .,v] both are valid

items for the viable prefix pa' = ¢tb* and this violates
condition (1).

Case 2b ¢ A -> a', B -> bt are different instances of the
production A -> a. Let B -> b*' have the form A -> a".

Let a = did2...4m,

let a'= d1'd2%...dn',

let a"= di1"d2"...dn",

where di ¢ (N U T)*, or di = <b>% for some Db,

or di = <01/02/.../0n>,f0r some Q0is j=1329ceeslly

and dit,di" ¢ I{(di) 4 i21725ccerle

Let dji',dji" be the first two instances from right to left
which are different. We then have

di+l'...dn' = di+1"...dn" (as strings and instances)
If di = <hb>=*, then
di*=<bl'...bl'>)1

_C}_};"=<_Ql"..op_l">i. Let leo
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We can assume that either j=0 or -bl*' # bj" as instances of
De.

(We can successively from right to left remove identical
instances of b until j=0 or the rightmost instances are
different, and then construct similiar derivations}.

If bl* # bj"™ (as instances), we recursively treat b as we
did with a.

If di = <01/02/.../720>, then
di' = <ol'>1l

di" = <ei">j

If 1=, then we recursively treat 0j as we did with a.

At last we end up with
(d1) a = d<b>*g,

a'= d'<pl...hi>jg’

with pd'<bl...bi = td" (as strings)

(d2) & = 4<01/02/..s/00>9
a's 4'<gi'>ig
a"s d"<oji">ig" ., i#j
with pd*<oi' = td"<oj" (as strings)
Case (d1) gives that [A -> d<b .>*g,v] and
[A -> 4 .<b>*g,v] both are valid items for the viable prefix
pd*<bil...bi = td", violating condition (2}.
Case (d2) gives that [A -> d<0l/c¢ee/QL o/ eee/Qn>g,yV]
and (A -> 4<01/+¢¢e/031 o/e../Q0>4,v] both are valid items for

the viable prefix pd'<eoi' = td"<oj"™ violating condition (3)
/77
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I1f the conditions {2) and (3} in theorem 4.1 are not
satisfied, then it is in general not possible to determine how to
reduce the stack.

Example 4.5
Consider the grammar with the productions
§ -> A
A ~> hB<V>*x
A => BLVD>*y

B -> <b>x

The grammar is clearly unambiguous. The two items (B =-> #<bd>x*
+v]l and [B => <b #>*% ,v] will be in the same set of items if
we construct the LR(1) items, so the grammar is not LEk(1}.
When performing the reduction B -> <b>* it is not possible by
using k-lookahead to detexmine how to reduce the stack.

/77
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We now give the rules for constructing the LR-tables from a
collection of sets of LR-items.

Definition 4.8

Let G=(N,T+P,S) be an ECFG and let SK be a collection of sets
of LR(k) items for G. T(A), the LR(k) table associated with
the set of items A in SK, is a triple <f,g,r> ,f is called the
parsing action function, ¢ the goto function and r the reduce

function.

(1),(2) £,9 are constructed as in Aho & Ullman (19721 p. 392

(3) r maps T=*k into sets of so-called reduce jtems. A reduce
item has the form [A -> a #b} where A =-> ab is a production in

G. If fA ~-> a #b,ul is in A, then [A => & #bl] is in r(u).

/77

Example 4.6

Consider the ECFG with the productions

0§ =-> 7

1. T -> Aa

2 T =-> Bb

3 A =-> a<cbge>%>xd
4 B -> a<b/c>d

The LR{1) items are (items marked with - , are the items which
have bheen replaced by other items)

0
[S§ => .T ,el T -> 1
[T => .Aa el A ~-> 2
[T -> .Bb el B => 4
A -> .ad<b<ed>%*>%d ;al a => 6
{B =-> .a<bh/c>d 4D}
1
[S "> T ° Qel
2
[T =-> & .38 ;€] a =-> 3
3
(T "> Aa .9@’
4
[T -> B .b ,el b «> 5
5

O wn e v o oe B €M W W GOm A GW O G %GB @GR D GX> W OO G e @D CD OO @D @n e S wm e



a .<h<eo>H>%gd
a «<b/c¢c>d ,bl
a #<h<e>%>%g
ad h<e>E>%Rg
a<b<e>%>% ,d
a< .b/c>d bl
a<b/ .c>d 4bl

sal

sal

yal
sal

27

adh .<cO%>%g
a<b ./¢>d 4bi}
adbh #<cO>*>%d
ad<bq< .c>%>%d
adh<e>®x >%g
a<b<ec>x #>xd
a<hge>x>x @
a< .b<e>H>%kd
a<h #/¢>4 ,b}
a<bh/c> .4 e D}

sal

gal
yal
yal
val
val
yal

-> 11
-> 10

e O T - - T D SN D CD G WS TE SO S D WD TD ED O G R S G TR A D R En =D e e e

adhb<c >%D>RG
a<b<c #>*>%d
ad<hge>® >*4
a<h< JC>%H>%4
al<b<ec>* #>%d
ad<bh<ecr%>% .4
ad <h<e>*>%d

T w0 O - G TR G S S . - > Y G € e W T G D G T N0 W GEA OB O3 e 0D R e

> . - " OB D D e > G G A B DM G @D G W OB N G T WY WD TE e S 6% WD e oD m o o

adbh .<c>%>%4
a<bh #<ed>%>xg
ad<bh< JcO>®>%G
ad<bge>x >xgd
ac<hb<eo>x #>%d
ad<h<e>®>% .4
ad Jbh<ed>#>%G

al<h<c>%>%d .
a<hs/c>d . bl

e > Gn G D e e D W D s S B €OV T WD B m ST eI G W AW WD WD An CD N TN S O WO

a<b/c .>d b1
a<b/¢c #>4 :bl

a<b/c> .4 ,bl

B R R e e e R R R

6
A ->
[B ->
(A =>
A =>
(A ~>
[B =>
[B ->
7
(A =>
{B ->
(A ->
(a >
[a ->
[a ->
(A ->
(A ->
[B ->
[B8 ~>
8
(a ->
(a ->
A =>
(A ->
[A =->
A ->
tA =->
9
(A ->
10
A ->
(A ->
[A ~->
[A ~>
(A ->
(A ->
(A ->
11
[A =>
[B ->
12
[B ->
(B =>
(B ->
13
[B ->

0 e oD W D OD TN WD R D OB G0 G We e G G G 0P B WK G G W K @R GO e G G o GO @D DY W e S



r
a b
E E
E E
E E
E E
E E
E E
ri E
r2 r3
r4 E
E E
rz2z E
E E
E 15
E E
empty

]

]

set

The LR(1) tables associated with the above items are:

foo o on § oo o o o o & o om0 o s o 0 o o o > o O o o +
I I I g 1
+ ————————————————————————————————————————————
I I I 1
I I ab de1l T A B a b c d I
I I 1 I
+ ————————————————————————————————————————————
I I I I
1 t0 I s x x x I t1 t2 t4 té X X x 1
I I I I
It I X X x a 1 x X X X X X x I
I I 1 be
I t2 I s x *¥ x I x X x t3 X X x 1
I I I 1
I t3 I x x X1 1 x X X X X X x I
I I 1 1
I t4 I x s x x I x X X X tS5 X x I
1 I I I
I t5 1 %x X x 21 x X X X X X X I
1 I I I
I té6 I x s s x 1 X X X X t7 t12 tg9 1
1 1 I I
I t7 I x s s ¥ 1 X X X X t10 t8 t111
1 I I I
I ¢t8 1 x s s x I X X X X t10 t8 t9 I
1 I 1 I
I t9 1 3 x x x I X X X X X X X I
I 1 I 1
I t10 I x s s X I X X X X t10 t8 t9 I
I 1 I I
I t11 1 3 4 X x I x X X X X X X I
I I I I
I t12 I x x s x I x X X X X x ti131
I 1 I 1
I ¢13 1 x 4 x x I x X X X X X x I
I I I 1
N $ o o o o o o $ o e e o o o o e +
s=shift , i=reduce i , a=accept , X=error, E=the
ri = [ tA -> a #<h<e>%>%4] )

r2 = | [BA => a<bh #<c>u>*xd] 4 [A =-> a<cb<ed>® #>%4]
r3 = [ IB => a<bh #/c¢>d} 1

r4 = [ LA => a<h<c #>%>%d} , [A => a<h<c>* #>*4]
r5 = [ {B => a<b/c #>d4) 1

28

+

Pt bt B bt bk P Ped b bed Bed Ped b ed b Pl b B bed el Bed bt e Pl B e e Bt

/177
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The parsing algorithm for the extended LR(k) grammars is a
modification of the algorithm given in Aho & Ullman [1972] p.375.

Algorithm. Extended LR(k) parsing algorithm.

Input. A set J of LR(k) tables for an extended LR(k) grammar
G={(NyTyPsyS)}y Wwith TO ¢ J designated as the initial table, and
an input string 2z ¢ T*k, which is to he parsed.

Qutput. If 2 ¢ L(G), the right parse of 2. Othervwise, an
error indication.

Method. Perform step (1) and (2) until acceptance occurs or an
error is encountered. If acceptance occurs, the string in the
output buffer is the right parse of z.

{1} The lookahead string wu, consisting of the next k input
symbols, is determined.

(2) When using the triple <f,g,r> in the following, it 1is
always on the table on top of the pushdown list. The
parsing action function f is applied to the lookahead
string u.

{a) If f(u)=shift, then the next input symbol, say as is
removed from the input. The goto function g is applied to
a to determine the new table to be placed on top of the
pushdown liste. If g(a) is undefined, or there is no next
input symbol, halt and declare error.

(b) If f(u)= error, we halt parsing (ands, in practice,
transfer to an error recovery routine)l.

(c) If flu)=accepty we halt and declare the string in the
output buffer to be the right parse of the original input

string.

{d) If f(u)=reduce i and production i is A=>a, then place

L3 >

production number i1 in the output huffer and call

REDUCE({A -> a #1,a).
The goto function g of the top table of the pushdown list
is applied to A to determine the next table to be put on
the pushdown list.

REDUCE is the recursive procedure defined as follows:
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PROCEDURE REDUCE(VALUE IT:REDUCEITEM; VALUE d:STRING);
BEGIN

LET IT=(A =->ad #gl

LET d=d1d2...4dn

WHERE di ¢ (N U T)®

<b>% for some b

#

OR di

"

OR dai <01/02/.../00> for some 03 sJ=152¢0003
FOR I:=m DOWNTO 1 DO
IF ¢i ¢ (N U T)* THEN
remove /di/ tables from the pushdown list
ELSE
IF di=<b>*%* THEN
BEGIN
WHILE [A =->adleeedi~1i<b #>*di+i...dmgl ¢ xr(u) DO
REDUCE({A->ad1...8i-1<b #>*di+1...4Rq1,0)3
UNLESS (A->3dl...dji-1 #<b>*ditl...dpgl ¢ r(u)
THEN ERROR
END
ELSE
IF there exist an item (j ¢ {1,nl1}) such that
[A->adle..0i-1<01/¢0e/0] #/ees/0n>ditl...dmal ¢ r(u)
THEN REDUCE(
[A=>adleecedi=1<01/cco/03 #/ee/00>ditl...dmgls01)
ELSE ERROR

END3 /77
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Example 4.7

The parsing algorithm is applied to the initial <configuration
(t0, abbccdaye) using the LR({(k) tables in example 4.6. To
facilitate the reading of the example , we also put the input
symbols on pushdown list. The following sequence of moves are

made:

(tO,abbeccdaye) =>shift
{tOaté6,bbccdase) ¥>shift
(tOoatébt7,bccdaye) =>shift
(tOatéebt7bt7,ccdaye) =>shift
(tOaté6bt7pt7ct8,cda,e) =>shift

{tOatb6ht7hbt7¢ctBct8,dase) =>shift
{t0at6hbt7bt7ct8ct8dtT,ase)=>reduce 3 (A ~-> a<cb<ecdu>xd)

reduce an instance 0f a<b<c>*>%g

reduce an instance of d
(tOoaté6bt7bt7ctB8ct8yay3) => reduce an instance of <b<c>*>x%

reduce an instance of b<c>x%

reduce an instance of <¢>%

reduce an instance of ¢

{tOaté6ht7bt7ct8ya4 3) =D reduce an instance of ¢
{tOatéebt7ht7,a,3) => reduce an instance of b
(tOaté6bt7,a3,3) => reduce an instance 0f b<cH>*

reduce an instance of <c>x%

reduce an instance of b

(tOaté,a,3) => reduce an instance of a
{(t0ya,3) =>g(A)

(tOAt2,a43) =>shift

(tOAt2at3,e,3) =>reduce 1 (T -> Aa)
(tOSt1,e,31) accept

/77
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4.3, Extended SLR{k) grammarse.

Now we turn to the so-called simple LR(k) grammars. In the
following section we shall need a definition of SLR(k)'ness in

the ECFG case.

Definition 4.9

Let G=(N,T,P4S}) Dbe an ECFG. Let SO be the canonical
collection of sets of extended LR(O) items for 6. G is said
to be a simple LR(k) grammar (SLR(k)) 1if the following
conditions are satisfied, for any set of items A in SO.

{a) Whenever (A -> a .byel and (B -> g .d.el are two distinct
items in A, one of the following conditions is satisfied.

{1) Neither of b and 4 are e.

(2) b#e , d=e and

FOLLOWkK(B) I EFFk(<a .B>FOLLOWk(A)) = empty
{3) b=e , d#e and

FOLLOWK(A) I EFFk(<d .g>FOLLOWkK(B)) = enpty
(4) b=d=e and

FOLLOWkK(A) I FOLLOWkK(B) = empty

(b) Two items of the form (A =-> a #<b>*g,e] and [A => a<hb
#>%g,e) are not both in A.

{c) Two items of the form [A => 3<0l/.ce/0i #/.../00>he] and
(A => 3a<01/ce./03 #/7c../00>bse) with i#j are not both in

A.
77/

This definition is similar to the one given by Aho & Ullman
{19721 and is the same for a normal CFG where condition (b)) and
(c) are superfluous. The conditions (b} and (c) assure that the
right hand side of an applied production <can be uniquely
determined without using lookahead. Global lookahead on the left
hand side will not help us. In case (b)) it is not possible Dby
means of glohal lookahead on A, to determine whether to¢ continue
or to stop reducing instances of b. Similarly in case (c¢) global
lookahead on A cannot determine whether to reduce an instance of
oi or oi.
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5. TRANSFORMATION OF AN ECFG TO A_CFG.

5ele_Introduction of the transformation rules,

In this section we show how to transform ECFGs into normal CFGs
such that LR(k) and SLR(k) properties are preserved.

The transformations are introduced using two typical <cases of
productions which involve *ts and /t's s namely

pP) A -> a<h>*g

These productions are transformed into

{ introducing the new nonterminal symbol D )} and

qa*) A -> aW

=
§
A4
o
fr=s
[

=
§
v
<
Ino
L)

=
i
\4
o]
=]
o

o}
§
A\
le g

{ introducing the new nonterminal symbols W,D) ,;respectively.

Intuitively the intention of production p is to recognize as an
unknown number of b's and finally g and then reduce this string
into the nonterminal symbol A. The right recursive production set
p' prescribes this action sequence. Note that no reduction 1is
performed before g has been recognized. An analogous remark holds
for q.

Investigating the LR(O) machines (the GOTO0O graph in Aho &
Uilman {19731) of an ECFG and its transformed grammar the
resemblance of the two machines is striking. Not surprisingly the
number of states in the machine for the transformed grammar has
increased, however the machine has kept the structure of the
original machine.

To illustrate this fact consider again the two typical
productions and the isolated parts of the machines related to

these productions. All new states appear to be necessary in order
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to keep track of the reductions corresponding to the two
possibilities

1) the number of repetitions of the string D

2) the selected string oji

*~-case

p) A ~-> alh>%g

o o ===+ ]
I I

b ———+ & ===+ 1 b +===%+ ]

1 1 Ie===>] 2 I-4-=2>1 3 I~+

§ o - -t I =+ I
1 I
[ewm—— ===+ g
I
1 g +===-+
+==>1 &4 I-=-=> A->a<lh>=*g

ot

p')A">_§_D,D">D_D,D">g_

bt a t-=——%t D +===+
I111I--=-=>1 2 I~~==>1 D I--> A->3D
o — T S ¢ § ot

I

I {===+ D

I I

I b #===+ I D ===+t
I-=>I 3 I=+==>1 D I=--> D=>hD

1 ==t 1 $om——t
I I

| (===t g

I

I g +===+%

+==>1 4 I=-=> D->g
b omm—t
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/~-case :

g} A -> a<gl1/02/.../00>h

o a4 t===+ 0] t==—+
I 1 I---->1 2 I=-~-=>1 3 I-+ )
+ o pm——t 1 ot ]

I 1

I I

1 I

102 #+===+ 1 b +t=-==+
I==>1 3 I-+-->1 4 I--> A=->3<01/02/.../00>h

I tm——t I tmm—t
I 1
I I
1 I
I I
I I
1 I
Ion +---+ 1
+==>1 3 1-+ b
tmm—
q*t) A -> aW , W => 01D 4 W => 02D 4 cee sy W => onbd 5, D =>
$m——t a t==-+ |
I 1 Iv~~=>1 2 J====>1 W I==-> A->aW
b pommemt T -t
I
I B temem—— D e e b +
I I I
I01 #+=~=+ I D +-~--+ I
I«=>] 3 I====>1 D I-=> W~=>01D I
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Example 5.1

Illustration of application of the transformation rules

illustration of the

transformations.

Consider the grammar (

Applying the transformation rules on the grammar
with the production set,

is a grammar ( CFG )}

The resemblance of the
fig. 5.1 is striking.

LR(O)

ECFG

LR(O}
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and
machines before and after the
} with the production set,
t >% a )
the result
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Fig. 5.1 The LR(O) machines for the grammar and the

transformed grammar.
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In the following two sections we are going to prove that the
proposed rewriting rules for productions of ECFGs preserve the
SLR(k) and LR(k) properties. For this purpose let us specify the
rewriting rules precisely.

Definition 5.1
Definition of the transformations T* and T/ .
*-case @
Given a production of the form
A -> a<b>*g , where a ¢ (N U T})=
define T* to
T* { A -> a<h>*g ) =
{ A -> ab , D =>DbD o D -> g} , where D notin N
/-case :
Given a production of the form
A -> a<01/02/e¢es/0n>b s where a ¢ (N U T)x%
define T/ to
T/ (A => a<01/02/+../00>bh ) =
[ A => aW o W => 01D 4 W => 02D 5 see

W ->onb , D ->b | 4, where W,D notin N
Yy

Starting with a production involving one or more applications
of the operators * and/or / on its righthand side it is possible,
by means of a number of repeated applications of the
transformations T*% and T/ in an appropriate order, to end up with
a set of productions, free of all occurences of the operators
and / .

{ Notice, the definitions of T* and T/ 1include the restriction,
that the affected operator ( * or / ) is always found leftmost in
order to make T* and T/ unambiguous ).
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Definition 5.2
Definition of the transformed grammars G* and G/ .
Applying either the T% or T/ transformation on a production
from a grammar G ( ECFG ), a new grammar G* or G/ is produced

which is also an ECFG. More precisely, let G = (N,To,P,S) be an
ECFGy then

*~case :

Let p: A =-> a<bh>*g ¢ P, where a ¢ (N U T}x*, Applying
the transformation T* on p, we achieve a new grammar

G* = (N%,T,P%,5) 4, where

px = p / Ip}l U T*(p) , (introducing D notin N)
N* = N U (DI}
/-case

Let q: A -> a<91/02/.../00>b ¢ Py, where a ¢ (N U T)*,

Applying the transformation T/ on q, we achieve a new

grammar
G/ = (N/yTyP/4S) 4 Where

p/ = P / Iql U T/(g) , (introducing W,D notin N)
N/ = N U [W,D]

77/
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5.2+ The SLR{k]) ca%e.

In this section we are going to prove that, applying either the
T* or the T/ transformation on a production of an ECFG which is
SLR{k), we produce a new ECFG which has preserved the SLR(k)
propertve.

Because the definition 4.9 of SLR{(k) for an ECFG is based on

the canonical collection of sets of LR(O) items for the grammar ,
the proof shall also be in terms of LR(O) items.

For the proof we shall need some lemmas. These are concerned
with egualities of the LR{(O) items before and after applying one

of the transformations T* or T/ to the grammar.

First let us state a proper notation.

Notation.

Let ¢ = (NyT+PyS) be an ECFG and let G*, G/ he as in definition
5.2 « Let SOy S* and S8/ be the canonical sets of LR{(O) itens
for G, G%* and G/ ,respectively.

Furthermore define Mx%, M/ to be the following sets of sets of

items,
Mx = [ [ (A -> aD. el 1,
{ ID -> bD. ,el 1,
[ [A -> aDe. ,e} 4 ID =-> bD. ,el ] 1}
¥/ = L t A =-> aW. s€] 1 1 U

I I IW -> 0iiD. 4el s [W => 0i2D. ,el

coes W => 0ikDe sel / k ¢ [1snl)y 1] ¢ [1,4n] 1
/77

We are now going to define some relations between the items in SO
and items in either $* or S/ .

Definition 5.3

*-case @

If X->r is a production in P then for any r°
r'r" and for the item [X -> rt.r™ ,el in a set in

s Where g =

s L™
S¥* we define
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iX => rt."™ ,e) = [X => rv.r" ,el

For any a',a"™ with a = a'a" and for the iten fA -> at.a"Dd
se]l in a set in 8%, we define

1A ~-> at.a"D 4e}] = [A => at.a"<hb>%g ,el

For any Db',b" with b = b*b" and for the item (D -> b*.b"D
s€] in a set in §*, we define

ID => hv.b"D ,e]l = (A =-> a<bh'.h">xg ,e]l

For any g',g" with g = g'g"” and for the item (D -> g'.g" ,el
in a set in §%, we define

ID =-> gt.g" se}] = (A =-> ach>*gt.g" ,el

We shall not define associated items for the items [A =-> abD.
se1 and (D -> bD. el
/=-case

If X->r is a production in P then for any r*,r", where =
r'r" and for the item (X -> r'.r" ,el in a set in S/ we define

X =>rt.r" ye}l = [X => rt.r" ,el

For any a‘',a"™ with a = a'a" and for the item [A -> g't.a"W

) in a set in S8/, we define
IA -> at.a" W 4el = [A =-> 2a'.a"<01/02/¢eo/00>h s€]

For any ¢i',0i" with o0l = 90i'oi" and for the iten (W =>
0i'.0i"D se] in a set in S/, we define

IW => 0i'.0i"D sel = [A => a<01/02/c¢ee/0i'e0i"/ece./0n>b ,e}

For any b*,b" with b = b'b" and for the item [D =-> bh'.hb" ,el
in a set in §/, vwe define

ID =-> bt.b" ,el = A -> a<01/02/.../00>b'.b" ,el

‘We shall not define associated items for the items [A ~-> aW.
sel and [¥W ~-> o0iD. el sfor i ¢ {1,ynl.
/17

Notice, some of the following lemmas contain notational
difficulties. The problems may exist when we try to move the dot
in an LR(O) item backwards over the symbol, which accesses the set

of items. In this case there may exist some disturbing
parentheses from the regular expressions, due to0o the extended
algorithm 4.1. However, when this difficulty arises, one gets

over it by using the following rules of interpretation
In case that an item is of the form [(C -> k<.1>*m ,el or (¢ =->

k<l>*.m el it can he interpreted as either [C => k.<1>%m ,e] or
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{C -> k<l.>*m ,el, depending on whether (C -> k#<1l>%p ,e}] or I[C =>
k<l#>*m ,el also exists in the same set of itenms.

Similarly, 1if an item is of the form IC -> k<l1i/12/eee.
/oli/eee/ln>m se) it can be interpreted as {C =-> ko<ll1l/12/¢.../1lB>R

vel and finally - if an item is of the form {ic =->

k<li/12/.../1ln>.m el it can be interpreted as {C ->

k<li/12/ece/1i#/ees/1ln>R s}l also exists in the same set of items.
This interpretation proceeds until none of the mentioned cases are
applicable.

Lemma 5.1
Let x ¢ (N U E)e If [C -> gx.t el is an item in a set of
items in §%* ~- M% (in the T#*-case - or in 8/ - M/Z in the T/~
case) and [IC -> gx.t ,el = [B -> p.d ,el then
{1} p = p'x for some p°?

(2) 1C -> g.xt +e} = [B => p'.xd ,el

Proof.
T*-Ccase

There are three nontrivial cases of the item [C -> gXx.t el v
namely

Case 1 : fA =-> ox.£'D ,el with £ = £'D and a = oxt'. This
implies that

(A -> 0X.t'<hb>%g ,e)
[A =-> 0.%xt'<b>%g ,e] .

1A => ox.t'D ,el
{A =-> 0.%Xt'D se]

Hooa

Case 2 : (D =-> ox.t*'D ,el with t = t£°*D and b = oxtt. This
implies that

[A -> Zx<0X.L'>%g ,e]
(A > X<0.Xt'>%g ,el

t—a foe
noown

Case 3 : ID -> o%x.t sl with g = oxt. This implies that

ID -> ox.t ,e]

= [A =-> a<b>*gx.t el
ID -> 0.%xt ,el =

[A -> a<h>%g.xt sel! .

T/~case @

There are three nontrivial cases of the item (C -> gx.t se] ,
namnely

Case 1 : (A -> gx.L'W ,el with £ = £'W and a = gxt'e. this
implies that
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_LA -> QXUL'W ye_’__ = [A -> QX.L'(QL/QZ/..-/QD_)Q 'e]
IA => g.xt'¥W ye] = (A -> g.X£'<01/02/¢.o/00>0 s€])
Case 2 : (W -> gXx.£*'D se] with £ = £'D and gji gxtt , (fixed
i ¢ (1eynl)e This implies that
W => gx.t'D 4e]l = [A => 8<01/02/c¢ee/dXet'/eee/0n>b el
IW => geXxt'D 5] = A => 3<K01/02/ cce/QeXt'/coe/0n>h sl o
Case 3 {b -> gx.t e}l ,with b = gxt . This implies that
ID =-> gx.t sel = [A => a<0l/02/¢../00>0X.Lt el
ID => gext sel = [A =-> 3<01/02/.../0D>9.XL s€} .
/77
Lemma 5.2
Let Y,V ¢ N% (or N/) and Y =>% Vu for some u ¢ E*.
If the items [X -> r.Ys ,e} and [V -> .4 ,e)l are in the sane
set of items in §* - M% (in the T*-case - or in §/ - M/ in the
T/-case), then the items (X -> r.¥s ,e} and [V -> .4 ,el are in
the same set of items in SO.
proof.
*-case
There are four nontrivial cases of the items [X =-> r.¥s el
and [V -> .4 se)] in a set in §* - K%, namely
Case 1 : (A -> a.D ,el, ID => .bD sel,y, then
lA -> a.D se]l = [B ~> a.<bh>*%g ,el ¢ S in SO, implying that
{A =-> a<.b>*g e} = [D =-> .bD 4el is in S.
Case 2 ¢ A => a.D sel, D -> g ,el, then
A -> a.D ,e}l = (A -> a.<h>*g ,el ¢ § in SQ, implying that
[A -> a<b>*.g e} = [D -> .g ,e] is in S.
Case 3 : {D -> bh.D el ID =-> .bD e}, then
ID =-> b.D 4el = [A -> a<b.>*g ,e}l ¢ S in S0, implving that
[A -> a<.p>*g ,e} = [{D -> .bD ,e]l is in S§S.
Case 4 [D -> b.D s}y ID -> .g sel,y, then
ID -> b.D sl = (A -> a<b.>*g s} ¢ § in S0, implving that
(A ~> a<h>*.,g el = [D -> .g ] is in S.
T/-case @
There are two nontrivial cases of the items {X -> r.¥Ys ,el
and (v -> .4 ,el in a set in S/ - M/, namely



Case 1 : (A -> a.¥W ,ely [W -> .0iD ,el, (fixed 1 ¢ [1en
then

45

1)

_LA - éow 13}_ = {tA => Q.(Q}_/QZ/..-/QL\_>D, ,ej_ c S 1!1 _S_Q_f

implying that
[A -> A(Ql/gg/-../.gi/.../gﬂ)g 'el_ = ._LW -> o_O_i_D 1e_]_ is
Se

Case 2 @ [W => 0i.D ,ely, (D => b sel, (fixed i ¢ [1,ynl), ¢t

IW  => 0ji.D se]l = [A -> a<01/02/¢ee/0ie/eee/0n>D sl ¢ S
S0,y implying that
(A -> a<01/02/¢../00>.0 el = {D -> .b se}l is in S.

Lenma 5.3

Let IC -> g.t sel and [B -> p.d ,el be items in a set T
§% - K% (in the T*-case - or in S/ - M/ in the T/-case)
then there exists a set S in SO containing the items
Ic -> g.t sel and {B -> p.d ,el .

Proof.
Tk-case ¢

Let §* = (T1sT2ree0seTh] be ordered such that, for a set
items Ti ¢ §%, i ¢ [2yn] there exists a set of items T3j ¢
and an x such that GOTO(Ti,x) = Ti and j < i .

Let 50 = [S1952y...550) be ordered similarly.

The ordering is obtained directly from the order of creation
the sets in the LR-construction algorithm.

The proof is by induction on T} :

Basis ¢ i=1

#hen IC =-> g.t sel and (B -> p.d ,el are items in T1, t
g=p=e. Purthermore the item [(S* -> .5 ,e}l is in T1l.

in

hen

in

/77

in

of

hen

Obviously, the items [C ~-> g.t ,e]l and [B -> p.d se)l are Dboth

in S§i.
Inductive step:

Assume that the implication is true for all Ti, i < k+i.

Let the items [C -> g.t ,e] and (B -> p.d ,el both be in Tktl.

Three possibilities exist for gs,p, namely

Case 1 ¢ g#e 4 Dp¥e .

According to the ordering in $*, there exists Ti ¢ 8% ,
k+1, containing the items [C => g'.xt se] and (B ~-> p'.xd
such that GOTO(Ti.x) = Tk+l, where g = g*x and p = p'X .

i<
s 0]
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By the inductive hypothesis, there exists S1 ¢ 80 containing
the items [C -> g'.Xxt se]l and [B -> p'.xd ,el .

An application of lemma 5.1 implies there exists §j ¢ 8§80
containing the items fC -> g.t ,e}l and (B -> p.d ,e] such that
GOTO(SLsx) = S .

Case 2 ¢ g=p=e .

In this case there exist items in Tk+i, (X1 -> rix.Y1isl .el and
[X2 => r2%.Y2s2 +e]l such that Y1 =>% Cvl, Y2 =>% Bv2 for some
visv2.

According to the ordering in S$* there exists Ti ¢ Sx%, i < k+1,
containing the items [X1 -> ri.x¥1isl ,el and [X2 -> r2.xY2s2
e} such that GOTO(Ti.,x) = Tktl. :

By the inductive hypothesis there exists Sl ¢ SO containing the
items (X1 -> ri.x¥isl ,el and [X2 -> r2.xY2s2 sel.

An application of lemma 5.1 implies then, that there exists §j
¢ SO0, containing the items {X1 -> rlx.Y¥Ylsl el and [X2 =>
[2%X.Y282 ,e)l such that GOTO(Sl.Xx) = Sj.

An application of lemma 5.2 implies now that Sj also contains
the items [C -> g.t ,e}] and IB -> p.d ,el.

Case 3 ¢ either g=e and p#e or ¢g#e and p=e .

Assume that g=e and p#e. (The other case is equivalent).,

In this case there exists an item in Tk+1, (X -> rXx.¥YS ,e] such
that ¥ => Cv for some V.

According to the ordering in §%*, there exists Ti, 1 < k+1,
containing the items [X -> r.x¥s ,e} and [B -> p*.xd sel such
that GOTO(Ti,x) = Tk+l, where p = p'x .

By the inductive hypothesis, there exists S1 ¢ S0, containing
the items [IX ~> r.x¥s s+el and [B -> pt.xd ,el.

An application of lemma 5.1 implies then, there exists Sj ¢ S0,
containing the items [X ~>» rx.Ys se] and [B -> p'x.d ,el such
that GOTO(SLsX) = Si.

An application of lemma 5.2 implies now that Sj alsc contains
the item [C -> g.t sel.

T/-case :

The case is equivalent to the T*-case.
/177



Lemma 5.4

T=~case :

If the items [A -> abD. ,el and (D =-> bD.
set of items in S*, then G is not SLR(k).
T/-case 3

If the items [A -> ¢oiW. ,el) and [A -> gjW.
in the same set of items in S/,

Proof.

T*-case

The assumption implies that there exists
containing the items [A -> a.D ,e} and [D

lemma 5.3 it follows, that there exists
containing the items [A -> a.<b>*%g ,e} and
However this violates the condition (b) in
T/-case ¢

The assumption implies that there exists
containing the items (A -> gi.W ,el and [A
lemma 5.3 it follows, that there exists

containing the items

lA -> Q<9_l/9__2_/c-0/9__1_0/000/9__n_>_b_
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sel are in the sane

sel (i#3), are

then G is not SLR{k).

a set of items in §x

-> p_:D ,e]o FI’OKR
a set of items in SQ
A -> a<kp.>*g ,el.

definition 4.9.

a set of
a set of

items in S/
sel. Fronm
items in S0
sel and [a

-> a<01/02/+ee/03e/ecee/0D>0 el However this violates the
condition (c¢) in definition 4.9.
/77
Lemma 5.5
Let the item [A -> r.s sel be in §* - M% ( in the T*-case - 0OF
in 8§/ - M/ in the T/~case ).
If [A -> r.5 sl = [B -> e.g se] then
FOLLOWkK(A) = FOLLOWkK(B) &
Proof.
The proof is straightforward and is omitted.
/77
Lemma 5.6
Let the item [A -> r.S sel be in g% - M¥x% in the T*=-case - or
in 8/ - M/ in the T/~-case ).
If A -> r.s se)l = [B => e.g se] then
EFFk(r.s) = EFFk(e.qg) .
Proof.

The proof is straightforward and is omitted.

/77
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Theorem 5.1
The SLR(k) property under T* and T/ transformation.

Let ¢ = (NyT4P,5) be an ECFG and let G* and G/ be given by
definition 5.2 « Then

*=-Ccase
G is SLR(k) if and only if G* is SLR(k).

/-case 3
G is SLR(k) if and only if G/ is SLR({k).

Proofe.
only if :

The proof is straightforward by application of lemma 5.3y 5.4,
5.5 and 5.6. Therefore we shall only give an outline of the
proof.

#*-case ¢

We have to show, that the conditions {a)s (b) and (¢} of
definition 4.9 are satisfied for G=.

Let [B => x.t se) and IC =-> g.d ,el Dbe two distinct items in a
set A in §x,

Lemma 5.4 assures us that these items are not of the form (A =>
ab. sel » (D -> hD. sely therefore A ¢ 8% - M%x,

Then lemma 5.3 enables us to establish the proof by means of
the conditions (a)y, (b) and (c) for the items in s0 for G and
appropriate applications of lemma 5.5 and 5.6.

/~case :
The proof is equivalent to the *-case.
I1f ¢

The proof is almost similar to the only if =-case and is

omitted.
/77
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5.3+ The LR{(k) case.

In this section we are going to prove that, applying either the
?% or the T/ transformation on a production of an ECFG which is
LR(k)y, we produce a new ECFG, which has preserved the LR(Xk)
propertye.

The proof of the wequivalent theorem for the SLR(k) <case
{theorem 5.1) given in the previous section is based on the
canonical collection of sets of LR(O) items for the grammar and

the transformed grammar. The proof of theorem 5.1 can be extended
to cover the LR(k) case. However we prefer to give a proof in
terms of the grammars, because the definition 4.1 of LR{k)'ness of

an ECFG is based only on the grammar.

Theorem 5.2
The LR(k) property under 7% and T/ transformation.

Let G = (NysT,Ps8) be an ECFG and¢ let G* and G/ be given Dby
definition 5.2 .

#~Ccase
G is LR(k) 1if and only if G= is LR(k).

/~case
G is LR(k) if and only if G/ is LR{(k).

Proof.

To facilitate the reading of the proof we assume that G, G* and
G/ are already the augmented grammarse.

Proof of *-case ¢
only if :

Assuming that G is LR(k})y prove that G* is LR(k), that is,
prove that the three conditions

c1) S% =>r* dBw =>r dpmpw

€2) S§% =>rx 1CXx =>r lpx = dmny

¢c3) FIRSTk(w) = FIRSTk(vy)
imply that dBx = lCy, (that is ¢=1, B=C and x=vy) and that B =>
ms C -> p are the same instance of a production.

The derivations cl, c¢c2 applying productions of G* are directly
obtainable in 6 as long as the productions A -> aDs D ~> DD and
D -> g are not included in the derivations.

If sequences of these are applied and completed (i.e.
terminated with D => g) in the =>* -parts of c¢1, ¢2 then the
same effect is obtainable in G by means of choosing an
appropriate instance of the production A -> a<h>*g.
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If sequences of these are applied and not completed, then we
have to investigate the possible cases more explicitly.

The only interesting productions of which B -=> m 1is an
instance, are then

i1t} A -> abn

i2z) D -> bD

i3y D -> g

Case i1 ¢
The only possible productions, of which € =-> p is an instance,
are then
i1t) A -> ab
it2) D -> hbd
goth 111 and i12 imply directly that x=y.

Case 111 :
B ->n, C -> p are both instances of A -> aD, (of the form A ->
atDsy A -> a"D) iL.e. B=C=RA.
Turning to G we use ci1, c2 and ¢3 to construct three conditions
d1) S =>r% dAW =>r da‘txw
d2) S =>r* lAx =>r la"xx = da'xy
d3) FIRSTki{w) = FIRSTk(y)
The 1instances of the production A -> a<p>%xgq applied in 41, d2
are A -> a'X, A -> a"x, where x is an instance of <hb>*g .
Using that G is LR(k), the conditions imply that d=1 and that A
-> a'x, A -> a"x are the same instance of A -> a<b>*g.
Hence a',a" are the same instance of a, implying that A -> a'D,
A -> a"D are the same instance of the production A => abD.

Case 112 :
B ->n is an instance of A -> aD, (of the form A -> a'D) and ¢
-> p is an instance of D -> hD, (0of the form D -> b'D).
The string 1 can be split l=lta"bib2...bis i > O, where a" is
an instance of a and bj is an instance of b, for j ¢ [1,1il.
TUrning to G we use ¢1, c2 and c¢3 to construct three conditions
d1) § =>r* dAw =>r da'<>0ew
d2) S =>r* L'Ax =>r l'a"<bib2...bib'>jirlex = da'<>0ey
d43) FIRSTk(w) = FIRSTk(y)}
The instances of the production A -> a<h>%*g applied in di, d2
are A =-> a't<>0e, A => a"<bilb2...bib'>jitle, where g is an
instance of g.
Using that G is LR(k), the conditions imply that d=1' and that
B -> a'<>0ey A ~-> a"<blb2...pib'>j+le are the same instance of
A -> a<b>*g,
Hence a*'<>Qey a"<bib2...bib*>i+l1e are the same instance of
albh>*g.
This is a8 contradiction, since this implies that i+1=0, where i
> 0.

Case 12 :
The only possible productions, of which C ~> p is an instance,
are then
i21)y A -> ab
i22)y D -> bD
Both 121 and i22 imply directly that xX=vy.
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Case 121 :
The case is equivalent to case i12.

Case 122 ¢
B ->my ¢ =-> p are both instances of D -> bD, (0f the form D ->
Q'Dy D -> Q"D), i.e. B=C=Do
The strings 4, 1 can be split d=4'a'b1'b2' .01
l=]1'a"bi"h2"e.ebhi"*y 143 2 0O, where at, a" are instances of a
and br', bs" are instances of by, for r ¢ [1,i] and s ¢ (1,3}
Turning to G we use cily ¢2 and ¢3 to construct three conditions
d1) S =>r#% d'Aw =>r d'a'<bi'b2'...bitb'>ititw
d2) § =>r* 1'AX =>r 1'a"<bl"b2"...bi"h">jitltx =
d*'a'<bi'b2'...hi'b'>i+1ty
d3) FIRSTk(w) = FIRSTk(y)
The instances of the production A -> a<h>*g applied in di, dz
are A -> a'<bil'b2'...Di'h'>i*it, A -> a"<bi"b2"...bj"b">jrit,
where ¢t is an instance of g.
Using that G is LR(k), the conditions imply that d*=1* and that
A -> a'<pl'*b2'...bi'b'>itit, A -> a"<bi"b2"...Bi"b">jxlt are
the same instance of A -> a<b>*g.
Hence a'<pi'b2'...bi'h'>i+1, av*<hi"b2"...bji"b">j+1 are the sanme
instance of a<bhb>*, This implies, that D', h" are the sanme
instance of b and that a'bi'b2'...bi'y a"bi"b2"...0j" are the
same instance, i.e. i=7j.
Thus d=1 and D -> D'D, D =-> b"D are the same instance of the
production D -> bD.

case i3 :

There are two possibilities for the nonterminal C, namely
i31) C=D
i32) C#D

Case 131 ¢
¢ -> p cannot be an instance of D ~-> bD, therefore B -> m, C ~->
p are hoth instances of D -> gy i.€. B=C=D.
The strings 4, 1 can be split d=d*x', l=1'x"y where x', x" are
hoth instances of a<b>*.
Turning to G we use ¢l, ¢2 and ¢3 to construct three conditions
d1) § =>r*® d'Aw =>r d'x‘aw dpw
d2) S =>r* ]'AX =>r lt'x"pXx dny
d3) FIRSTk(w) = FIRSTk(y)
The instances of the production A -> a<hb>*g applied in dt, d2
are A -> X'n, A -> X"p.
Using that G is LR(k), the conditions imply that dt'=1*' and that
A -> x'n, A -> x"p are the same instance of A -> a<bd>xg.
Hence X'm, X"p are the same instance of a<bhb>*g. This implies,
that m, p are the same instance of g and that x', x" are the
same instance of a<hb>*.
Thus d¢=] and D -> @, D -> p are the same 1instance of the
production D =-> 4.

LI 1}

Case 132 :

A ->p is an instance of D -> g . Because C#D and because C ~->
p cannot be an instance of A -> gD, the production C -> p
exists in G.

The string 4 can be split d=d4'x, where x is an instance of
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a<h>*,
Turning to G we use ¢1, €2 and ¢3 to construct three conditions
d1) 5 =>r% d'Aw =>r d'xmw = dmw
d2)y § =>r* ]1Cx =>r lpx = dmpy
d3) FIRSTk(w) = FIRSTkK(YVY)
The instance of the production A -> a<bhb>*g applied in d1 is A
-> Xhe
Using that G is LR(k), the conditions imply that d*'=1l, C=A, x=Vy
and that A =-> xm, C -> p are the same instance of A ->_agh>*g.
This is a contradiction, since A => a<b>%g is not available in
G*, but ¢ -> p is nevertheless an instance of this production,

If

Assuming that G is LR{(k); prove that G is LR{(k), that is,
prove that the three conditions

c1) S =>r#% dBw =>r 4pw

€2) § =>r% 1Cx =>r lpx = dpy

¢3) FIRSTk(w) = FIRSTk{v)
imply that dBx = 1Cy, (that is d=1, B=C and x=y)} and that B =~>
my C -> p are the same instance of a production.

The derivations in clsc2 applying productions of G are directly
obtainable in G* as long as the production A -> a<bd>*g is not
included in the derivations. If this production is applied in
the =>#% -parts of ¢1, c¢2 then the same effect is obtainable in
G* by means of choosing an appropriate sequence of instances of
the productions A ~> aby, D ~-> bD and D -> g . If the
production is applied in the => -parts we have to investigate
the case more explicitly.

Assume that B -> m is an instance of A -> a<b>*g, of the form A
-> a'<bl'b2'...bi'>ig' where a' is an instance of a, bk' is an
instance of by k ¢ (1,11 and g is an instance 0f g.
There are two possibilities for the instance ¢ -> p, namely

i1y ¢ -> p is an instance of A =-> a<cbd>x*g.

i2) ¢ -> p is not an instance of A -> adch>*g.

Case i1 :
Let ¢ -> p be of the form A -> a"<bi"b2"...bji">jg". where a",
bk" (k ¢ 11,31} and g* are instances of a, b and g,
respectively.
Turning to G* we use cil,c2 and ¢3 to construct three conditions
d1) S*% =>r% dAW
: =>r gdatDw
=>r da'bl'Dw
=>r* da'bi'b2'...bi'0Dw
=>r da'bl'b2'...bi'g'w
= dmw
d2) S% =>r%* lAX
=>r la"Dx
=>r l_é,"_Ql"DX
=>r* 1a"bi"b2"...Ri"DX
=>r la"bi"h2"...Di"g"x
= 1lpx = dmy
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d3) FIRSTk(w} = FIRSTk(y)
The instances applied in d1, d2 are obvious instances of the
productions A -> aDy, D ~-> bhD and D -> g.
Using that G* is LR(k) the conditions imply that
datbi'b2'.e.bi' = la®"bi"b2"...bji"™ and x=y and that D -> g'y, D
-> g" are the same instance of D -> g.
Applyving this result (and that G* is LR(k)) the conditions now
imply that da'b1'b2'...bi=-1"' = la"bi"b2"...bj-1" and that D =->
bi'Dy, D -> bi"D are the same instance of D -> bbD.
Continuing in this fashion, the conditions imply that 4 = 1 and
that A -> a'Dy & -> a"D are the same instance of A ~> aD and
finally that i=j and D -> bk'D, D => bk"D are the same instance
of D -> bhD for k ¢ 1,11,

Hence B -> m, C =-> 1 are the same instance of A =-> a<b>%g.

Case 12 :
Turning to G* we use ¢c1,c2 and ¢3 to construct three conditions
d1) §% =>r* dAw
=>r* da'bi'b2'...bi'Dw
=>r da'bi'b2'...hi'g'w
= dnw
d2) §%* =>r* ]1Cx
=>r lpx = dny
d43) FIRSTk{(w) = FIRSTk(Y)
The instances applied in d1 are obvious instances of the
productions A -> abBy D -> hD and D -> g.
Using that G is LR(k ), the conditions imply that
da'bi'b2'ecebi' = 1, D=C, x=y and that D =-> gt, C => p are the
same instance of D ~-> g.
This is a contradiction since D =-> g is not available in G, but
C -> p is nevertheless an instance of this production.

proof of /~case

The proof is similar to the *-case and is omitted.
17/
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6s EVALUATION,

In a practical implementation of an LR-generator system for
ECFGs, it seems to Dbhe most appropriate to rewrite the source
grammar as discussed in section 5, instead of <constructing the
LR-items directly. One can then use the standard technigues and
needs not modify the parsing algorithme.

Transforming the grammar is a relatively simple job. If the
rewriting rules are applied directly, a lot of single productions
may be introduced and special consideration can be taken in order
to avoid such productionse. However, if a system is available
which automatically removes single productions, one needs not
care about these special cases.

A point to consider is how and when to call semantic routinese.
Usuwally in LR-parsers a routine is called each time a reduction
is performed , using the number of the applied production as a
parameter.

In the ECFG case there is the possibility to give more or less
detailed information about which instance of the production has
been applied.

Semantic routines should not always be called exactly at the
moment of performing reductions in the transformed grammar.
Instead the parser has to act as if the grammar has not been
transformed i.e. a reduction in the original grammar corresponds
to a series of reductions in the transformed grammare.

We have required explicit wuse of parentheses in regular
expressionse. In a practical implementation, one can introduce
precedence rules between =, / and concatenation in order to avoid
some of the parentheses. The precedence rules for the operators
can then bhe: repetition is most binding, then concatenation,
then alternation.

The extra requirements in the LR(k) and SLR(k) definitions
state the conditions necessary to perform a unique reduction of
the 1right hand side of an applied production. If one does not
care about how the right hand side is determined , but just wants
one of the possiblities , one has to resolve ambhiguity problenms
in the transformed grammar.

Suppose that <conditions (2) and (3) in theorem 4.1 are not
satisfied. The transformed grammar will then in the *-case give
rise to a conflict between the productions A -> aD and D -> bD on
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a given lookahead symbol. Similarly in the /-case we get
conflicts between productions of the form W -> 90iD and A -> 0iDy
i#zje.

Some simple ambiguity problems may be solved, but this subject

is not treated further here. The reader is referred to Aho,
Johnston & Ullman (19731.

We have not generalized to LALR(k), but this seems to Dhe
straightforward. 1If conflicts in definition 4.9 may be solved by
using lookahead, then the transformed grammar will be LALR{(k).

Another frequently used operator is the repetition operator +,
which means at least one repetition. To construct the LR-items
the following rules can be used. :

Any item of the form

A => a <b>+tg
is replaced by

A -> a #<b>+g

A -> a< ..b>+g
Any item of the fornm

A -> a<bh .>+g
is replaced by

A -> a<b #>+g

A -> a<h>+ .g

Testing for LR{k), condition (2) in theorem 4.1 is also wvalid
with the *-operator replaced by the +-operator. Similarly in
definition 4.9, condition (b) is valid for the +-0operator.

To eliminate the +-0operator, the production A-> a<b>+g , With
a ¢ R(N U T)y may bhe replaced by
A -> abDy, D -> bDy D -> g

keeping possible LR-conditions invariant.
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