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Abstract

A dynamically microprogrammable processor called MATHILDA is described.
MATHILDA has been designed to be used as a tool in interpreter and processor
design research. It has a very general microinstruction sequencing scheme,
sophisticated masking and shifting capability, high speed local storage, a 64-bit
wide main data path, a partially encoded microinstruction, and other features which
make it reasonably well suited for this purpose. Also, hardware modification is
relatively easily undertaken to enhance the experimental nature of the machine.
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Foreword

It is the purpose of this document to give an introductory (yet reasonably detailed)
description of the MATHILDA Processor. The main data path, the registers and
functional units attached to it, and the control which can be exercised on these
resources are discussed. The document is not a reference manual. Rather, it is
written entirely from the pedagogical point of view, with the system described in a
modular fashion. Examples are introduced after each component is added to the
basic data path. The examples are written in the MARIA microassembler language
[3]. The examples are deliberately kept simple so the reader will not spend time
learning a complicated or clever algorithm but will learn the control mechanisms of
the particular resources involved. Thus, many of the examples are “contrived” and
do not perform any particular “useful” data transformations. [t is hoped that this
approach enhances the reader’'s understanding and underlines the overall
simplicity and homogeneity of the structure and its components. This document is a
fully revised version of an earlier report entitled, A Description of the MATHILDA
System’’, by B.D. Shriver, DAIMI PB-13.

September 1975

In this second printing a number of misprints in the text and in the examples have been
corrected. The notation of a few microoperations has been changed. The editing was
done by Jens Kristian Kjeergaard and Flemming Wibroe.

July 1980



A Description of the MATHILDA Processor

1.0 Introduction

MATHILDA is a dynamically microprogrammable processor which has been
designed to be used as a tool in interpreter-oriented and processor design research.
For the sake of completeness we will discuss briefly a short history of the unit and
then some of the criteria which served as a basis for its design.

1.1 Historical Notes

In the spring of 1971 the Department of Computer Science of the University of
Aarhus was considering the purchase of a standard minicomputer to act as a
controller for a variety of peripherals and to simulate a medium speed batch
terminal to the Computer Center’s large system. A group of people were, at this
time, working on the design of an integrated software and hardware description
language called BPL [4]. To support this group and to make the use of such a
minicomputer more flexible, it was decided to design and construct a
microprogrammable minicomputer within the department itself.

The design was started and completed during the summer of 1971. The resulting
machine, RIKKE-O [5], was constructed and began running in early 1972. In the
meantime a number of projects were proposed which were considered not to be
compatible with that design. Among these were various projects in numerical
analysis [7, 8] in which it was found that the word size and bus width of the
RIKKE-O (16-bit) was too short to obtain an efficient implementation of even
standard arithmetic operations on numbers. It was then suggested that a
microprogrammed functional unit with a wider data path and special features could
be attached to RIKKE-O as an |/0 device, or "functional unit”, together with a wider
memory, for use with these projects. A proposal was made to the Danish Research
Council to obtain a grant to design and construct such a functional unit. A grant was
made in June, 1972 in which funds were awarded for hardware and a memory (32
K, 64-bit wide, 1.4 microsecond cycle time). The manpower for the construction of
the unit was, in part, granted by the Research Council; two staff engineers and one
staff technician were provided by the department.

The motivation for building the MATHILDA instead of purchasing a commercially
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available machine can be summarized as follows. First, at the time we started our
efforts, there were (to the authors’ knowledge) no commercially available
dynamically microprogrammable processors efforts which: (a) were in the price
range we could afford, (b) were designed for or supported user written microcode or
{c) offered a reasonable experimental and growth oriented structure. We felt that
we had the in-house capability to design and construct the machine. The
availability of LSI circuits and convenient mounting techniques and our experience
with RIKKE-O supported this view.

1.2 General Design Criteria and Constraints

The MATHILDA machine is intended to be a research oriented machine. lts main
design criterion then, within the money and timing constraints on the project, was
to provide a machine on which a large variety of experiments related to processor
and interpreter design and evaluation could be performed. We attempted to use the
“top-down’ design approach which quite frequently was tempered by the “forces
from below”, see Rosin [6]. We, therefore, tried to have various software and
application-oriented ideas reflected in the design.

Two general software concepts had a reasonable impact on design. The one being
the ability to multiprogram virtual machines and the other being the concept that
virtual machines would be defined through several layers (e.g., R. Dorin [1]). The
effect of these ideas is apparent in the design of the control unit, especially with
respect to the capabilities of addressing. Many addressing features known on the
virtual level are present here on the micro level.

Another criterion was to have a clean and consistent way of dealing with timing
problems. We decided not to force the speed; rather we would have a slower
machine than obtainable with the componentry at hand, and thus one, hopefully,
with a reduced set of timing idiosynchrasies. It was alsoc decided to be able to
control all elements of the system from an immediate control or a residual control
capability, or some combination of both. The residual control was made
homogeneous to the user by having a reasonably "standard control register group”’
where ever such a control was provided.

Another design criterion dealt with the actual construction of the unit. It had been
decided, prior to the obtaining of the grant from the Danish Research Council, to
construct additional RIKKE’s by other funding. It became apparent, during the
design phase of MATHILDA, that the machine would be reasonably compiex and
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that several features of MATHILDA included or extended similar features on
RIKKE-O. Because of the complexity of the design, the limited funds and manpower
available, and the fact that we wished to design, construct, and test the machine
within one year, it was decided that the additional RIKKE's (now called RIKKE-1's
[10] should be modeled after the MATHILDA system. Thus, one design criterion was
to ensure a modularity in the hardware design. This would enable an economy in
print-lay out and construction to be achieved. As an example, the main data path is
laid out on one print board, 8-bits wide. Two of these boards interconnected,
comprise one RIKKE-1 main data path with all registers, shifters, etc. Four of these
RIKKE-1 boards interconnected, give the MATHILDA main data path.
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2.0 The MATHILDA Processor

MATHILDA, as has been stated earlier, has a microprogrammed controlled bus
structure. The major elements of the system are shown in Figure 2.1 and are the:
main data path , 2} decoding and sequencing unit, and 3) control facilities. In the
following sections we will describe each of these elements independently and give
examples of their utilization.

2.1 The Register Group and Standard Group

We begin by introducing a fundamental building block which is used in the various
control mechanisms of the system, viz, a Register Group, RG, as shown in Figure
2.2. (After a particular system element is first introduced, an abbreviation for its
name is given which, for the sake of brevity, is then used in the text; see the ‘'Tables
of First Occurrence of Abbreviations and Symbols™, Section 4.0.) ARG is a set of 16
or 256 registers. The width of the registers and the number of registers in a specific
RG will be stated when it is introduced. The element of a particular RG, which is to
be used as a source or destination for the transfer of data, is pointed to by the RG

address register. This register is called the Register Group Pointer, RGP, as shown
in Figure 2.2.

The fact that the RGP is used to access one of the registers in the RG is indicated in
Figure 2.2 by the output of the RGP going to the boxes.

Input Distributor
]
3
a

Output Selector

These are logical representations of the electronics which actually acccess the
specified register. The phrases “Input Distributor’” and ""Output Selector” will not be
included in any of the drawings which follow.



Symbolic Notation Microoperation

LI RGP = Paointer S

ource | Load the RGP from the Pointer Source

+1 | RGP + 1 Increment RGP by 1
-1 | RGP -1 Decrement RGP by 1
C RGPC Clear {i.e., set to zero) RGP

Microoperations for the control of an RG

Table 2.1

; Registery

¢
2
0
O
]
0

Pointer
3 0

16

Source Registers

Destination

*

* The width of the registers
depends on the particular selector involved,

Typical Standard Group
Figure 2.3
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There are four microoperations associated with an RGP. They are marked L, +1. -1.
and C in Figure 2.2 and all subsequent figures and are explained in Table 2.1.

The symbolic notation RGP+1, RGP-1, etc. which is used in the microassembler, is
used also in all of our examples. The abbreviation “RG’* will be replaced by the
abbreviation of the name of the functional unit with which that particular RG is
associated. Most of the RGP’s will have the microoperation

RGP :=Pointer Source

associated with them. The Pointer Source data itself can usually be selected to
come from any of four different sources. There is one additional microoperation
required for the control of an RG, namely the function labelled “"Load’* in Figure 2.2.
If the loading of an RG can be initiated by a microoperation it will be indicated by an
“L” on such a diagram. The output of a register group will be symbolically
represented as RG, i.e., the name of the register group will be taken to be the value
presented at its output. More completely, however, we could have written RG[RGP],
which specifies the contents of the RG pointed to by RGP. The " 1, then, are used
to represent the indexing operation. f a particular element of an RG is to be
specified, we will write RG[j], 0<j <15, e.g. RG[4).

A 16 element RG with the two Save registers and Pointer as shown in Figure 2.3 is
a fundamental control element in the system and will be used with many devices in
the subsequent sections. It will be referred to as a Standard Group, SG, and will be
noted on drawings as such. {t will not be explicitly drawn each time. Each SG will,
however, be given a name closely associated with the particular functional unit to
which it is connected.

Note, there are 2 new microoperations which are introduced to utilize these new
facilities, the Save 1 register and the Save 2 register load:

s1:=cMIEX|S1|s2
S2:=RGP.

The machine timing is such that it is possible to "save” the contents of the RGP in its
S2 register and then load the RGP from CM|EX|S1 in one microoperation. Use of this
facility will be seen in later sections. Note that the RGP and S1 can be loaded from
any one of four different sources. Which particular source is being selected is
determined by the value of the "Sel.” lines shown in Figure 2.3. The value associated
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Symbolic Notation

Microoperation

L | CA:=CM|EX|SB|SG

L.oad CA from either CM, EX.
SB, or CASG. Note the use of
| to mean "or" in the symbo-
lic notation for this microopera-

tion.
+1 [ CA + 1 Increment C Aby 1
-1 [CA -1 Decrement CA by 1
C | CAC Cilear (i.e., set to zero) CA

Table 2. 2

Microoperations for control of CA
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with the "Sel.” lines is specified by a data field within the microinstruction executing
the Load microoperation. This will be explained in Section 3.0.

2.2 Counter A

We will, from time to time, give small segments of microcode to iliustrate the use of
a device and its control. In order to make these examples clearer, and also to give a
more realistic view of how such a code is actually written, we introduce the system
counter, Counter A, CA. CA is a 16-bit wide counter as shown in Figure 2.4. CA has
four microoperations associated with it as shown in the box labelled “CA" in this
figure. These microoperations are given in Table 2.2.

Both the box labelled "Selector” in Figure 2.4 and the explanation of the
microoperation “L” in Table 2.2 state that CA can be loaded from one of four
possible sources:

1) immediate data within the Current Microinstruction, CM,

2) a 16-bit External Register, EX (discussed in Section 2.20.5),

3) bits O through 15 of the Shifted Bus (discussed in Section 2.5), SB(15:0).
Here, “(i;j)" denotes the contiguous string of bits labelled i, i-1,...,j+1, ji=j. If
i=j, “(i:j}" is written (i)”", and

4) from a 16-bit wide, 16 element SG called the Counter A Standard Group,
CASG.

Thus the microoperation
CA =37

loads CA with the constant 37 from a data field within the CM. While the
microoperation

CA =SG
loads CA with the contents of the element of CASG which is pointed to by the CASG
Pointer, CASGP. Notice that the CASG can be loaded with the contents of CA thus

allowing one to save the current value of CA. The microoperations associated with
the CASG, CASGP, and the Save registers are in Table 2.3 A.

However, the symbolic notation associated with the CASGP microoperations will



Preliminary (extended) notation

Symbolic Notation

Microoperation

CASG:=CA

L L.oad the element of CASG pointed to
by CASGP with CA
+1 | CASGP + 1 increment the CASGP by 1
-1 ] CASGP -1 Decrement the CASGP by 1.
Cc | caAsePC Clear (i.e., set to zero) CASGP
L | cASGP:i=CM|SB|S1]S2 Load the CASGP from CM, SB(3:0)
CASGPS1, or CASGPS2. The nota-
tion SB(3:0) specifies the least sig-
nificant {rightmost) bits of the Shifted
Bus
L | casePsi:=cM|sSB|S1 |52 L.oad the CASGPS1 from CM, SB(3:0),
CASGFS1, or CASGPS2
L | CASGPS2:=CASGP Load the CASGPS2 from the CASCP
Table 2. 3A
Microoperations for control of CASG and CASGP
Symbolic Notation Microoperation
L | CASG:=CA Load the element of CASG pointed to
by CAP with CA . v
+1 | CAP + 1 Increment the CAP by 1
-1 | CAP -1 Decrement the CAP by 1
CAPC Clear (i.e., set to zero) CASGP
CAP:=CM|SB|S1|S2 Load the CAP from CM, SB(3:0}
CAPS1 or CAPS2. The nota~-
tion SB(3:0) specifies the least sig-
nificant (rightmost) bits of the Shifted
Bus
L | cAPS1:=CM|SB|S1{S2 Load the CAPS1  from CM, SBI(3:0),
CAPS1, or CAPS2
L | CAPS2:=CAP Load the CAPS2 from the CAP

Table 2. 3B

Microoperations for Control of CASG and CAP
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not be written as shown in Table 2.3.A. The notation introduced therein was given
so that the reader could establish a firm understanding of the operation of CA and
its associated control. Since the “pointer” microoperations are concerned only with
the CASG and its associated control, the SG notation will be dropped in the
symbolic notation for these particular microoperations as well as in the text. This
causes no ambiguities since the CA itself does not have a pointer associated with it,
but only with its SG. We will use this abbreviated notation throughout this report,
and Table 2.3.B has been given so that the reader can compare both notations.
Duplicate tables will not, however, be given for other resources.

We see in Figure 2.4 that the data which can be loaded into the CAP can also be
loaded into an additional register called the CAPSave-1 register, CAPS1. If, for
example, we know in advance the address of a particular register of the CASG,
which we will want to use as counter data (e.g., some highly used constant), we can
store this pointer in CAPS1 by loading CAPS1 from the CM,

CAPS1 := <constant>.

Here the Z>'"" are meta brackets enclosing meta symbols. Whenever we wish to
use this stored pointer we can load it into the CAP by executing

CAP :=CAPS1

The CAP not only points to the element of the CASG which can be chosen as data
input to CA, but also can be stored in a register called the CAPSave2, CAPS2.
Suppose we are pointing to a particular element of the CASG and in the next
microinstruction we wish to have register 9 of the CAS to be used as counter data,
but we do not wish to loose the pointer to our current data. The following
microinstruction achieves this,

CAPS2 :=CAP,CAP =9
Thus at some later time if we execute
CAP :=CAPS2
the pointer information which had been saved in CAPS2 would be restored.
We can test to see if CA contains zero. We will demonstrate the use of this

condition and the microoperations in Tables 2.2 and 2.3B in subsequent
examples.
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2.3 Main Data Path Transport

Having introduced some elementary notions we will now examine in some detail
the Main Data Path, MDP, the registers and functional units attached to it, and the
control which can be exercised on these components. We will construct the MDP in
a modular fashion - hopefully to enhance the reader’s understanding and to
underscore the overall simplicity and homogeneity of the structure and its
components.

Let us introduce the concept of a MDP transport by considering a sub-system of the
MDP consisting of the Working Registers A, WA, Working Registers B, WB, and the
Bus Shifter, BS, as shown in Figure 2.5. The exact nature of WA, WB, and BS is not
important to us here.

The BUS is a 64-bit wide data path. The input to the BUS (its SOURCE) is obtained
from a bus selector which has eight inputs, two of which are shown here, i.e., WA
and WB. The particular input which is selected as the SOURCE for MDP transport
may be shifted a specified amount in the BS. The output of the BS, called the Shifted
Bus, BS, can then be stored in one of seven possible 64-bit destinations (called Shifted
Bus Destinations, SBD). Two such SBD’s are shown in Figure 2.5., i.e., WA and WB.
We will in this report specify bus transport information as we do in our
microassembler, viz,

< DESTINATION> :=< SOURCE> ,<BS Specification>

If the BS Specification field is empty, i.e., the BS is not to be used (no shift occurs)
then the bus transport is given by

< DESTINATION> := <SOURCE>.
As an example, the MDP transport WB := WA has the obvious meaning of a register
to register transfer from WA to WB. If a SOURCE is chosen to be transported but not
stored in any of the SBD’s, the bus transport information is written

< SOURCE>, <BS Specification>

or

< SOURCE>
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as is appropriate. The SOURCE may be stored in destinations, D, other than SBD's
during a MDP transport. We will learn what functional units or registers can serve
as these “'other destinations’ as this report develops. If the SOURCE is to be stored
in more than one destination, the DESTINATION portion of the MDP transport
specification is written as a list of destinations separated by commas, i.e.,

< LIST >:= <SOURCE>, < BS Specification>

|
| |
I ; or
| |
i ; < LIST>:= <SOURCE>
|| Sj: ! h
[ ! where
| Ll '
=F | ® | oo
S8 . O o i <LIST>::=SBD{,D}* | D{,D}
M ~>L£;‘)1J ‘
—}—-—j | where the ” { § " are meta brackets used for grouping symbols.
WAPS |
(Standard 1
Group J 1‘ The value of n and the units which can serve as destinations will be discussed later.
T
|
Sel 2.4 Working Registers
o ,,5‘ . La-1c WA and WB, introduced in the previous section, are not single registers but each is
ex o 2! {Lﬁ;}ﬂ a 64-bit wide, 256 element RG. Figure 2.6 shows WA; WB, not shown, is identical.
o - e A
|
!
[ i
A o oS T ; The first thing we wish to point out in this figure is that the WA Pointer, WAP, is a
) L S - ‘,...L. mechanism identical to CA except that it is 8-bits wide and not 16-bits wide. (Note
|t *1 . l thedashed-line box in Figure 2.6.) Therefore, WAP not only points to which element
: | | Wizl ] Bus of WA can be used as a SOURCE for bus transport but also can be stored in a RG
Rt ‘ | Registers [T setector called the WAP Save registers, WAPS. This is identical to CA being saved. Also, as
; \_J e co | indicated in the box labelled “Selector” in Figure 2.6 the WAP can be loaded from
0 e }_'|_.,| any of four sources:
Working Registers, A. W 1) immediate data from the CM,
Fiaure 2.6 ' 2) the least significant 8-bits from EX,
3) the least significant 8-bits of the SB, and
4) an element of WAPS.

This is identical to the loading of CA. Thus the microoperations WAP := 37 and WAP
=WAPS have well defined analogous meanings.



WAP = CM| EX| SB |56

wap := cM| EXI’SBISG, =

WAP + 1 wWBP + 1
WAP -1 wBP -1
WAPC WBPC

WAPS := WAP

WBPS = WBP

WAPSP + 1 WBPSP + 1
WAPSP -1 wBPSP -1
WAPSPC WBPSPC

WAPSP:=CM [SB [S1]|S52

WBPSP:=CM|SB|S1|S2

WAPSPS1:=CM|SB|S1|S2

WBPSPS1:=CM[SB|S1]|S52

WAPSPS2:=WAPSB

WBPSPS2:=WBPS2

Table 2. 4

Microoperations for control of WA and WB
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The WA (and WB) registers are not loaded by a microoperation, but rather as a
result of being chosen as a SBD in a bus transport specification; thus the loading of
these registers is shown by the function “SBD Load’’ on Figure 2.6. This notation
will be used in all subsequent drawings. The microoperations associated with the
WA and WB are given in Table 2.4. The actual microoperation descriptions can be
extracted from the previous tables and are not repeated here.

2.4.1 Microinstruction Format and a Few Examples
In order to present a few examples we will introduce the microinstruction format
which we use in the microassembler. The format of a microinstruction is:

<LABEL> : <MDP transport>; < microoperations and data>: < instruction
sequencing> . <comment>

where

a) <LABEL> is a symbolic name for the control store address of the
microinstruction,

b) <MDP transport> is a field giving the MDP transport information as
explained previously in Section 2.3,

¢) <microoperations and data> is a field of up to 7 microoperations and
immediate data to be executed or used during this microinstruction (the exact
combination of microinstructions and data which can be included in this field
and precise details of the timing of microoperations are given in Section 3.0),

d) <instruction sequencing> information will be written in the form

if c then A,c else A £

which is to mean: if a particular condition is true then choose address Ay as

the address of the next microinstruction else choose A -
e} <comment>: each instruction may be terminated with a ”.”
may be inserted.

It is not necessary or appropriate at this point to list all of the conditions which are
testable by the system nor how A, and A; are functions of the address of the
current microinstruction, n. These matters will be dealt with in Section 2.20.
However, conditions and address functions will be introduced as needed for

after which comments
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examples. If no condition is to be considered, i.e., if Ay = Ay, the sequencing
information will merely be written A; (and not "if ¢ then A, else A, " where ¢ is an
arbitrary condition).

One microinstruction execution of the machine may be considered as consisting of
four major sequentially executed steps:

A: Microinstruction fetch

B: MDP transport

C: Execute microoperations

D: Execute instruction sequencing.

Steps B, C, and D are controlied by fields within the microinstruction. Logically, to
the user, these steps and substeps within these may be considered sequentially
within the microinstruction execution, although of course many of the activities take
place in parallel in the physical implementation.

Thus, the microinstruction located at Control Store location n,
WA =WB; WBP+1; n+1.

means: load the element of WA pointed to by WAP from the element of WB which is
pointed to by WBP without shifting it during the bus transport; then increment WBP
by 1, then obtain the next microinstruction from location n+1. The action associated
with every microoperation specified in a microinstruction is completed pefore the
next microinstruction is executed. For example, in the above microinstruction if
WBP had been set to 9 before the beginning of the execution of this instruction,
then WB[9] would be the SOURCE for the bus transport. At the end of execution of
the instruction, the WBP would be set to 10. If, in the next microinstruction WB
were again selected as the SOURCE, then the contents of WB[10] would be gated
onto the BUS.

In order to give an example of a microinstruction using conditional branching, we
establish the following convention for the testing of conditions which will be used
in all of our examples (unless stated explicitly otherwise): a// conditions which arise
asa result of MDP transport and microoperation execution specified by a particular
microinstruction, M, are testable in the next microinstruction to be executed after M
is executed. This means that ali the conditions available or changed during the
execution of microinstruction M are “‘saved”. These ""saved” conditions are those
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tested in the next instruction to be executed. Therefore, our microinstruction can be
thought of being executed in the following sequential way:

A1: Save the conditions of the previous microinstruction

A2: Microinstruction fetch

B: MDP transport

C: Execute microoperations

D: Execute microinstruction sequencing based on saved conditions.

Let us introduce the notion that WA(63) is testable. (WA(B3) is, in conjunction with
the notation introduced in Sections 2.1 and 2.2, synonymous with
WA[WAP](63:63).) If we wish, for example, to test WA[71(63), and if it is set to 1,
jump to the microinstruction labelled BITON, else continue with the next
microinstruction, we could write,

s WAP =7,
; iIFWA(63) then BITON.

We could not write
; WAP :=7; if WA(63) then BITON.

according to our current convention.

Let us give an example which shows that it is possible to execute the same
instruction conditionally. Assume there is at least one register of WA which
contains bit 63 set to 1. The following microinstructions will: search WA, starting
with register O and transfer the first register of WA encountered with bit 63 set to 1
to register WBIOJ; then, store the address of the WA register which was transferred
in register WAPSI[O]; and then continue with the next microinstruction.

; WAPC, WAPSPC, WBPC.
LOOP: : WAP+1, ; if = WA(63) then LOOP.
; WAP-1,
WB:=WA ; WAPS:=WAP. |||

We have introduced some standard defaults in these examples:
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a) If the bus transport field is empty it means that an unspecified source is
selected for bus transport but is not stored anywhere.

b} If the microoperations field is empty it means that no microoperations are to
be executed during this particular microinstruction.

¢} An empty <instruction sequencing> field or <else part> implies the next
microinstruction to be executed is that in n+1 (if the address of the current
microinstruction is n). If the microinstruction sequencing field is empty the
specification "y dnstruction sequencing,” is replaced by ".”.

d) The instruction sequence shown is assumed to be located sequentially in
control store and the address name is used only when needed in the
microinstruction sequencing field.

e) The symbol [[l|| will be used to indicate the end of the group of
microinstructions in an example.

The notation HERE-1, HERE, and HERE+1 are used often in the microinstruction
sequencing field to mean A-1, A, and A+1 assuming the address of the current

microinstruction is A. As an example the instruction labelled LOOP above could
have been written

WAP +1 ; if —WA(63) then HERE ||

Through the use of CA the assumption that at least one register of WA contains bit
63 setto 1 is not required. CA can be used to control the number of elements of WA
we will search. If we establish a routine labelled NONE which handles the situation
when no element of WA contains bit 63 setto 1, then the code to perform the same
task as related above is,

;WAPC, , WAPSPC,WBPC.

;CA: =255 ;LOOP.
;WAP +1,CA-1 ;if CA then NONE,
LOOP: ; ;if 1 WA(63) then HERE-1.

WB: = WA;WAPS: = WAP.|||||

The final example in this section uses the capability of loading CA from the SB. In
the previous example CA was loaded with N-1 where N (2 <N < 256) is the number
of registers of WA to be searched. Let us suppose that this number is in WBI0] and
furthermore that we wish to save it in register CASG[O] because it may be
overwritten if a transfer is made to WB. A possible code segment is,
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BSSG:=SB

BSP:=CM|EX| 51|52

BSP + 1

BSP - 1

BSPC

BSPS1:=CM|EX|S1]|52

BSPS2:=BSP

BSS:=ICM! [IEX! |[IBE!|!SG!|

BsSsC

Table 2.5

Microoperations for control of the BS

; WAPC, WAPSPC, WBPC.
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WB ; CAPC, CA:=SB.
; CASG:=CA ; LOOP.
; WAP+1 ;if CA then NONE.
LOOP: ; CA-1

;if WA(63) then HERE+1 else HERE-1

WB:=WA ; WAPS:=WAP |||

2.5 The Bus Shifter

The Bus Shifter, BS, introduced in Figure 2.5 and shown in more detail in Figure
2.7, is a 64-bit wide right cyclic shifter which can be set to shift n bit positions,
0<n <63. There exists a dedicated bit in each microinstruction to control the BS
indicating whether or not the BS should be used (enabled) during the current bus
transport. If the BS is not enabled, no shift will occur.

If we wish to use the BS, the amount of shift can be selected from one of four

- possible sources as shown in Figure 2.7, i.e., from

1) adatafield in the CM,

2) the least significant 6 bits of the EX register,

3) the output of the Bit Encoder, BE, (discussed in Section 2.16), and
4) an element of a 6-bit wide 16 element RG called the BSSG.

Which of these sources is to be used is determined by the contents of the Bus
Shifter Selector, BSS. As shown in Figure 2.7, the BSS can be loaded irom a data
field in the CM. Once the BSS has been loaded the BS will be controlled as
described above. The loading of the BSS will be symbolicaily represented by

BSS = ‘CM}EX|BE|'SG".

Thus if BSS ;= 'SG’ is executed, this means that the BSS wiil be loaded with a value
which will select the BS shifter control to take its control data from the BSSG. The
BSSG will be the BS control source until a different BSS := 'CM'I'EX'T'BE’l'SG’
microoperation is executed.

Note that the quotes surrounding resource names here and in Table 2.5 are meant
to indicate that a specific encoding associated with each particular resource name
is loaded into the BSS register. This is to be contrasted with the semantics of
previous assignment type microoperations such as
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CA :=SG

which means that CA is loaded with the contents of the CASG register pointed to by
the CAP. The use of < resource name> " throughout this report in conjunction with
assignment type of microoperations will mean that a specific set of encodings has
been bound to particular resource names at machine fabrication time and this
binding is reflected in the microassembler.

In the following we will assume as a programming convention that the BSS
contains the value 'CM’, i.e., shiftinformation will be taken as data from the
microinstruction. Whenever the user establishes another data source, he is
assumed to reestablish the standard situation after the usage. The BSS register is
actually a 2-bit counter, the value O corresponds to the encoding for 'CM’. This
implies that the reestablishing of the standard situation can also be accomplished
by the microoperation BSSC.

The MDP transport specification

WA =WB

means: take the element WB[WBP] and store it in the element WA[WAP] without
shifting it. While the bus transport specification

WA =WB,~ 3
means: take the element WB[WBP], shift it 3 bits right cyclic and then store it in the
element WA[WAP].
A 64-bit left cyclic shifter and a 64-bit right cyclic shifter are related by the
expression

lcs =64 -rcs

where
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les is the amount of left cyclic shift and
res is the amount of right cyclic shift.

We can therefore write as a notational convenience
WB =WA, +24
to mean the same thing as
WB :=WA,? 40
thus using ¢ (left shift) or= {right shift), whichever makes the understanding of the

processing clearer. The microassembler will make the necessary computation.

The <BS specification™ in the MDP transport field of the microinstruction is given
by

- l - l + <constant>] -+ < constant>
Table 2.5 lists the microoperations associated with the BS in their symbolic form;

their meanings should be obvious from previous tables and the text. Note that the
BSSG is loaded with the least significant 6 bits of the SB, i.e., SB(5:0).

Example: Let us assume the following information to be in the register of WB to
which we are currently pointing:

WA ws Rshft
Ade Acr Data
83 22 21 14§13 6]s Q

P ——

We wish to take a given WB[WB Adr], shift it a given amount (Rshft Data), and store
it in a given WA[WA Adr]. The following code will: load the BSSG with the Rshft
Data, save the current WBP, load WBP with the WB Adr, load WAP with the WA
Adr, transfer the WB[WB Adr] to WA[WA Adr] shifting it right cyclic by the amount
Rshft Data during transport, restore the old WBP, and then continue.
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WB, -14 'WAP:=8B.

WB ;BSSG:=SB,WBPS: =WBP.
W8, -6 ‘WBP:=SB.

:BSS:='SG".
WA:=WB, - WBP.=5G.

;BSSC.]]|

In accordance with the programming convention expressed earlier in this section,
the BSS has been set back to CM control by use of the BSSC microoperation.

2.6 Bus Masks
Let us now expand the initial MDP structure given in Figure 2.5 by adding the Bus
Masks, BM, as shown in Figure 2.8.

The BM allows one to specify which bits of the SOURCE (i.e., the particular input to
the bus selector which has been selected for bus transport) are actually to be
transported, A mask is a string of 64-bits. If biti (63> i=0) of a mask is a 1, then bit i
of the SOURCE is to be transmitted; if bit i of the mask is a O, then the value O is to
be transmitted. Since the BM is not an input to the bus selector, but effects the
transmission of the SOURCE, they are shown connected to the bus selector with
the symbol —o {which we will interpret to mean “mask”) and not by the symbol
— (which means "input”).

The SOURCE is masked during every MDP transport by the mask which is specified
to be

MA ¥V MB
where

MA = an element of a 64-bit wide, 16 element RG
called the Mask A registers,

MB = an element of a 64-bit wide, 16 element RG
called the Mask B registers,

V =logical “inclusive or”".

MA and MB are shown in Figure 2.9. Again, by convention, the system is such that
the "'no mask”, i.e., 64 1's, is in MA[O] and the "'bus clear mask”, i.e., 64 Q’s, is in
MA[1]. We will assume this to be the case throughout ali of the examples. One can



MAP + 1
MAP - 1
MAPRPC

MBP + 1
MBP - 1
MBPC

MAP:=CM |EX |SB|SG | MBP:=CM|EX [SB|SG

BMSG:=SB

BMP := CM|EX|S1]52
BMP + 1

BMP - 1

BMPC

BMPS 1:= CM| EX| S1| S2
BMPS2:=BMP

Table 2.6

Microoperations for control of the BM
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then look upon the pointer MAP as a switch for the use of the bus mask: if MAP=0
then the BUS is not masked, if MAP=1 then the BUS is masked by the mask
specified by MB. This is not, of course, the only interpretation of the use of the BM.

As an example, assume we are representing floating point numbers in the following
sign magnitude format,

exponent coefficient

63 ’62 48| 47 |46 0

L

sigh of exponent

sign of coefficient

Suppose the following 4 masks are available in the first 4 registers of MB.

MBI0] 110 )
MB[” 0|1 ~——= 10| 4————"—w 0
velz I
MB[3] el it 4n |47 d4s o]

The following code will decompose a floating point number found in the register
WA[WAP] and store the information as follows,

a} sign of the exponent in bit 63 of WBI[0]

b) magnitude of the exponent shifted 1 in WB[1]

¢} sign of coefficient in bit 63 of WB[2]

d) magnitude of the coefficient shifted 16 in WB(3].

;MAP+1, MBPC, WBPC.
WB:=WA ; MBP+1, WBP+1.
WB:=WA, <1 ; MBP+1, WBP+1,
WB:=WA, <16 ; MBP+1, WBP+1.
WB:=WA, <17 ;MAPC|||||

It is suggested by this example that when formatted information is being decomposed
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{e.g., a virtual machine instruction) one may wish to coordinate the use of the BS with
the use of the BM. Let us therefore suppose the shift constants, 0, 63, 48, and 47 to
be stored in the first 4 registers of the BSSG. The above decomposition and storage
could be written as the following microoperations.

; CA:=3, MBPC.
; BSPC, WBPC, BSS:='SG'.

WB:=WA + ; BSP+1, WBP+1, MBP+1, CA-1 ; if—=CA then HERE.
;BSSC

Data 1o be used as a pointer to elements of either MA or MB can be stored in an SG
and then loaded into either MAP or MBP when needed. Since this SG {shown as an
input to the selector going to MAP and MBP on Figure 2.9) is used as a form of
residual control for both MA and MB, it is called the BMSG (Bus Masks SG). The
pointer which selects an element of the BMSG is called the BMP. Table 2.6 lists the
microoperations associated with MA, MB, and BMP.

2.7 Postshift Masks

The Bus Masks, as described in the previous section, are applied to the SOURCE as
it is gated onto the BUS and thus before the SOURCE is shifted in the BS. There is
also a possibility of masking the SOURCE after it has been shifted by using the
postshift masks, as shown in Figure 2.10.

One of the purposes of the postshift masks is to apply a mask to the output of the BS
which will mask off the unwanted “cyclic”” bits and replace them with O's thereby
realizing a logical shift. As an example, if the MDP transport

WB :=WA, ¢« 2

is executed with the postshift mask

1 - 100
63 210

applied to the output of the BS, then we have taken a WA register, shifted it 2 bits
left logical, and stored it in a WB register. Similarly, the MDP transport

WB =WA, - 6
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with the mask

000000 1 =———— |

83 B8 57 o]

appiied to the output of the BS means a WA register is shifted 6 bits right logical and
then stored in a WB register. The output of the BS is masked during every bus
transport by the mask which is specified to be

PA VPG

where,

PA = an element of a 64-bit wide, 16 element RG called the Postshift mask A
register,

PG = a functional unit called the Postshift mask Generator,

V =logical “inclusive or”.

PA and PG are shown in Figure 2.11. This is quite similar to the BM where PG now
takes the place of MB.

The PG is a functional unit which can generate a string of j O's (64=j= 1) starting
from either the least significant bit (by) position or the most significant bit (B5)
position. The remaining k bits, j+k = 64, are set to 1. The PG can generate the 128
masks required to view the BS as both a logical and cyclic shifter. As is seen from
Figure 2.11 the postshift mask generation data can come from one of four sources,
CMIEX|BE|SG. Which particular source is to be used as data for the mask
generation is determined by the contents of a 2-bit Postshift mask Generator
Selection register, PGS, as shown in Figure 2.11.

Table 2.7 shows the relationship between the PG mask generation data as specified
by the selected source (CMIEX!BE]SG) and the actual mask which will enter into the
computation PAV PG.

If, in some previous microinstruction, the PGS has been set to point to the CM as
the data source, then the PG data is specified in the "microoperations and data”
field of the CM in the following symbolic way,



Operations associated with PA

- PA:=BUS
PAP := CM|EX|SB|SG
PAP + 1
PAP - 1
PAPC

Operations associated with PGS

PGS = ICM!'|'EX!| BE!|'SG!|
PGS + 1

PGS - 1

PGSC (= PGS := 'ICM')

Operations associated with PGSG

PGSG = SB
PGP := CM|EX|S1|S2
PGP + 1

PGP - 1

PGPC

PGPS1:= CM| EX| S1]S2
PGPS2:i= PGP

Table 2.8

Microoperations for the control of the PM
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PG ‘arrow” n

where,

n =the number of O’s to be generated and the "arrow”
(1) indicates from which direction they should
be generated; 0<n< 64.

When - is used, the value of n is inserted as the mask specification data directly.
When ¢ is used, the microassembler will insert the value of 128-n as the mask
specification data.

Thus the previous two examples could have been written (assuming PGS points to
the CM as the data source)

WB:=WA + 2; PG+ 2 and
WB:=WA,~ 6, PG 6.

The programming convention is such that the mask of ali 1’s is in PA[O] and the
mask of all O's is in PA[1]. This is identical to the situation in MA. We will assume
this to be the case throughout all of the examples. One can then look upon the
pointer PAP as a switch for the use of the Postshift mask Generator: if PAP = O then
the mask generator is not used, if PAP = 1 then the postshift mask which is to be
applied will be that generated by the mask generator.

Table 2.8 provides a list of the microoperations associated with the postshift masks.
The first half of this table deals with PA, the second half deals with the PG. The
name of the SG associated with the PG control is the Postshift Mask Generator SG,
PGSG. Note, the name of the SG associated with the PA pointer is the Postshift

Mask SG, PMSG, and its pointer is called PMP. It is not discussed here but in
Section 2.25.

When the EX is used as the common source of control for the BS and PG, the bits,
EX(5:0), will specify the amount, n, of the right cyclic shift in the BS. The seventh
bit, EX(6), will specify whether a logical right shift of n places or a logical left shift of
64-n places will be the result. A similar statement can be made for BE as will be
seen in Section 2.16.
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Let us extend the example of Section 2.5 in which we interpret a virtual machine
instruction which performed a register to register transfer combined with shifting
and masking. As shown below, if we use the PG we can execute an instruction
which will take the contents of WB[WB Adr], shift it and mask it as described by the
Shift & Mask Data, and then store it in WA[WA Adr]. If the data for the instruction is
inthe form

WA wB Mask Shift
Adr Adr Data Data

63 29}28 21120 13]12 6 |5 0

X t—— X

a possible code sequence could be,

WB, =21 ;WAP: =SB,

WB ;BSSG: =SB, WBPS:=WBP.
WB, —6 ;PGSG:=SB.

WB, =13 ;WBP:=SB,PAP + 1.

;PGS:="SG’,BSS: ='SG".
WA:=WB, «<:WBP: ="SG’ PAPC.
;BSSC,PGSC.|||||

Note well, there are important assumptions in this example. The first is that PGS is
assumed set to 'CM’ upon entry to this code, i.e., the PG will be controlled by a data
field in the CM, and the second is that PAP = 0 upon entry to this code, i.e., no
postshift masking occurs. Indeed, we will make these assumptions in all examples
which follow (unless stated explicitly otherwise). They can be summarized as
follows: MDP transport normally occurs in an unmasked fashion: if a particular code
segment requires the use of any masking facility, it is responsible for leaving the
system in the state dictated by the established programming conventions.

2.8 The Arithmetical and Logical Unit

We will now add additional capability to the MDP in addition to the shifting and
masking already encountered by introducing the Arithmetical and Logical unit AL.
The AL, shown in figure 2.12, is a functional unit with 2 inputs which, for the
moment we will call A and B.



AL FUNCTION F
ARITHMETIC * LOGICAL.
A —A
AV B -AA-B
AVSB -AAB
minus 1 all 0's
A+(A/\—|B) —A VB
(AvV B)I+HA A=B)| =B
A-B-1 A=B
(A A-B)-1 A ANB
A+ (AAB) —AV B
A+ B A % B
AvVv-B+(AAB) B *) in 2's complement; the arithmetic
(A A B)-1 AAB operations are shown with the carry-
, in set to 0. If the carry-in is to be
A+ A all 1's 1, then the AL Function is specified
(AV B)+ A AV B by writing 'F+1' where F is the spe-
cified arithmetic function. The lo-
(Av-B)+ A AV B gical functions are not affected by
A1 A the carry-in.
Table 2.9

Al Functions

ALF = CM|EX|sB|sc

SET ALF + (i,e., SET TO LR+AS)
SET ALF - (i.e., SET TO LR-AS)
SET ALF B (i.e., SET TO AS)
SET ALF A (i.e., SET TO LR)
SET ALF + 1 (i.e., SET TO LR+1)
SETALFALL0S

SETALFALL 1S
ALP:=CM|EX]|S1|32

ALP + 1

ALP _ 1

ALPC

ALPST = CM| EX! s1|s2
ALPS2 := ALP

Table 2. 10

Microoperations for control of the AL
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6 bits are required to control the AL: 5 bits to select one of the 32 operations listed
in Table 2.9 which this unit can execute on A and B and 1 bit which specifies the
carry-in bit into the AL for any arithmetic operations.

The 6 control bits which specify the current operation for the AL are the contents of
the AL Function specification register, ALF, which can be loaded, ALF :=
CMIEXISBISG, or set to particular arithmetic functions as shown. The SG
associated with the ALF is called the AL Standard Group ALSG. The
microoperations associated with the AL are given in Table 2.10.

If the ALF is to be loaded with an operation specification from the CM, we will note
this symbolically merely by writing the required function in the symbolic form which
appears in Table 2.9 in the ALF assignment statement, i.e.,

ALF :='A+B’
ALF :='AAB'’
etc.

A group of highly used function encodings can be directly loaded into the ALF by use
of the specially provided SET microoperations. For example, ALF = 'A+B’ can
equivalently be specified by writing SET ALF+. The difference between these two
microoperations is that ALF := ‘A+B’ uses a data field of the microinstruction to
specify the encoding of A+B, whereas the SET ALF+ microoperation contains the
encoding within itself and does not require the additional data field. The SET
function potentially allows for more microoperations to be executed in parallel in a
microinstruction as will be seen in Section 3.0.

The AL is always running. If the ALF is changed in a microinstruction, then the
result of the newly computed function is available for MDP transport in the very next
microoperation. Thus the microinstructions

; ALF:="all 1s’, PAP+1.
WA:=AL ; PG 48, PAPC.||]||

will put a string of 16 1's in WA[WAP]. The 1's will be least significant bit, b ,
justified.
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LRIPC
LRIP + 1

LRIP - 1
LRIP := DS(V+1:Vv)
LROPC

LROP + 1
LROP - 1
LROP := DS(V+1:V)
LRPC

LRP + 1

LRP - 1

LRP = DS(V+1:V)

Table 2. 11

Microoperations for control of the LR
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There are many testable conditions concerning the operation of the AL. A few of
these are

Symbolic Condition
notation
AL result of current AL computation is the
bitpattern 11...11.
AL(O) bit O of the result of the AL computation
AL(63) bit 63 of the result of the AL computation
ALQV AL overflow (equivalent to a carry-out
during addition and a borrow-in during subtraction)

Before giving examples of the control of the AL let us first discuss the nature of its
inputs, A and B.

2.9 The Local Registers

The Loca! Registers, LR, serve as the A input to the AL in the context of the AL
Functions shown in Table 2.9. The LR, shown in Figure 2.13, consists of four 64-bit
wide registers which have independent input and output pointers. The input pointer,
LRIP, points to a LR register which can be used as a SBD for the current MDP
transport. The output pointer, LROP, points to a LR register which can be used as
the A input to the AL. The contents of this register can be gated onto the BUS by
setting the ALF to A (i.e., SET ALF A) and then choosing the AL as the source for a
MDP transport.

The LR input to the AL, i.e., LRILROP], will simply be referred to either as A’ or
“LR’". When LR is used as a SBD, i.e., LR[LRIP] is ioaded from the SB, we will also
use the name "LR" as no ambiguity should arise.

Both the LR input pointer, LRIP, and the LR output pointer, LROP, are
incrementable, decrementable, clearable, and loadable with two bits from the
Double Shifter, DS{V+1:V), see Section 2.12. The utility of this last feature will be
demonstrated with examples when the Double Shifter is introduced. Table 2.11
gives the microoperations associated with the control of the LR. The last four
microoperations aliow for the clearing, incrementing, decrementing, and loading of
both the IP and the OP simultaneously.
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2.10 The Accumulator Shifter

The Accumulator Shifter, AS, serves as the B input to the AL in the context of the AL
functions shown in Table 2.9. The reason one is called the Accumulator Shifter is
that not only does it serve as an input to the AL, but also it will serve as the
accumulator required in the realization of the basic arithmetic operations (e.g.
multiplication). The AS can serve as a SBD; but to be read, its contents must be
gated through the AL with the ALF set to B. The AS, shown in Figure 2.14, can shift
left or right one bit position, be loaded, or remain idle during the execution of any
given microinstruction.

There are two interesting features of this shifter: a) its variable width characteristic
and b} its connection to other elements of the system. The features are discussed in
the following:

a) Although the shifter is 64-bits wide it may, in conjunction with either the BM or
PM, be viewed as being m-bits wide (1< m<64). This is accomplished by having
each of the 64 bits of the AS as input to a selector (labelied the bszby selector in
Figure 2.14). The output of this selector (called the variable bit, V) can then be a
possible input into either the left or right end of the shifter, depending upon what
particular type of shift one requires. When the AS is selected as a source for MDP
transport by gating it through the AL, after the desired shift has occurred, the bits
not considered to be a part of the shifter must be masked off. This can be done
either by using the BM or the PM. The width of the shifter is then determined by the
contents of the AS(V) Selection register, AS(V)S, as shown in Figure 2.14 and the
use of an appropriate mask.

The AS(V)S can be loaded by the following microoperation
AS(V)S :=CM|EX|SB|SG.

Thus, for example, if we wish to consider the AS as a 48 bit left cyclic shifter, we
would execute the microoperation

AS(V)S =47

while making sure that AS(V) will be used as the input to bit AS(0) during the shift
operation. Subsequent use of the AS as a source could be accompanied by use of
the PG masking off bits by -b, o, €.g.,

; SETALFB

WA:=AL ;PG 16]||||



AS(0)s := CM|EX|SB|SG
AS(63)S:= CM|EX|SB|SG
AS(V)S :=CM|EX|SB|SG
ASLL

ASLR

AS(V)SC

AS(V)S+1

AS(V)sS-1

Table 2.12

Microoperations for control of the AS
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b} In Figure 2.14 it is seen that bits AS(0) and AS(63) can be filled with 1 of a variety
of sources during a shift operation. Which source is to be used to fill the vacated bit
position is determined by the contents of the AS(0} and AS(63) Source selection
registers, AS(0)S and AS(63)S respectively. As an example, the execution of the
microoperation

AS(63)S :="AS(0)

connects the shifter as shown below

AS

63 [¢]

An examination of the table in Figure 2.14 shows that the AS can be considered a
logical shifter, a 1°s fill shifter, a cyclic shifter, and a right arithmetic shifter. It can
also be connected to another 1 bit shifter, called the variable width shifter, VS, to
yield a long variable width shifter. It can be connected to a 2-bit shifter called the
Double Shifter, DS, so it can be used in the merging of 2 bit streams into 1 or the
diverging of 1 bit stream into 2. It can also be connected to the BUS, SB, and an
entry in a condition register, CR.

Thus to use the AS, one must load the AS(V)S to set the width of the shifter and
must load either the AS(0)S or AS(63)S to point to the source to be used as the input
into the vacated bit position, i.e., one must set what the type of shift is, e.g., logical,
1’s fill, long, etc. It is obvious that both of these operations need not be done each
time the shifter is used, but only when one is “changing” the width or type of
shifter. Table 2.12 lists the microoperations associated with the control of the AS.
Note the AS can be set to a logical left, or logical right shift by use of the special
microoperations ASLL and ASLR.

There are 2 bits in each microinstruction which control the operation of the AS:
shift left, AS+, shift right, AS -, load, i.e., AS := SB(63:0), or be idle. When the AS is
to be shifted, the operation is put in the "< microoperation and data>" field of the
microinstruction; when the AS is to be loaded, it is specified as a DESTINATION in
the "<MDP transport>" field of the microinstruction. As an example, the
microinstruction
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WA:=AL; AS¢+.

stores the output of the AL in @ WA register and then shifts the AS left, while the
microinstruction

LR, AS:=WB; WBP+1.

stores a WB in both the AS and an LR and then increments the WB pointer. The AS
can be used as input to AL {and subsequently as a SOURCE for MDP transport if the
ALF is set to B) and then be either loaded or shifted in the same microinstruction.

Having introduced the AL and its inputs, LR and AS, we now have knowledge of the
expanded MDP as shown in Figure 2.15.

Let us now give a few examples using these resources to demonstrate the use of
their associated microoperations.

Example 1} Let us consider WA as a stack as shown below.

WA

stack pointer ——= e

255 |63 0

We wish to pop two operands, a and b, and an operator,Z}, represented as an AL
function from the stack and push a@b on the new top of stack. The following
microinstruction sequence does this.

WA ; ALF:=6B, WAP+1, LRPC.
LR:=WA  ; WAP+1.
AS:=WA

wA=AL I
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Example 2) Let us again consider WA as a stack.

WA

stack pointer ——» shiftspec

a

255 |63 0

We wish to treat the AS as a left shifter whose characteristics are given by
shiftspec. We wish to shift a n-times and return the result to the new top of stack

after removing shiftspec and a. Let us assume shiftspec to have the following
format:

Q «t—— 0 n pgmsk width type
63 22|21 16|15 918 3|2 0

where

type =encoding found in the table of Figure 2.14 for logical, cyclic, etc. shift,
width =width of shifter-1, 1< width of shifter<64
pgmsk = PG mask specification,
n =number of shifts-1, 1< number of shifts<64

The following microinstructions execute the desired operation.
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VS(0)S := CM|EX|SB|SG

VS(63)S := CM|EX|SB|SG

VS(V)S 1= CM|EX|SB|SG

VsLL

VSLR

vs(v)sc

VS(V)S +1

VS(V)S -1

Table 2.13

Microoperations for control of the VS
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WA ;AS(0)S: =SB.
WA, =3 ;AS(V)S:=SB.
WA, -9 ;PGSG:=8SB.

WA, >16  ;CA:=SB,WAP+1.
AS:=WA  ;PGS:='SG’,PAP+1,SETALFB.

:CA-1,AS « :;if 1 CA then HERE.
WA:=AL  ;PAP-1,PGS:="CM".|||||

2.11 The Variable Width Shifter

The Variable Width Shifter, VS, is a shifter functionaily identical to the AS. The VS
can be used as a SOURCE for MDP transport and then be either loaded or shifted in
the same microinstruction. It is shown in Figure 2.16. The microoperations
associated with the VS are identical to those associated with the AS and are listed
in Table 2.13. One of the important features of the AS and VS, as seen from the
tables in Figures 2.14 and 2.186, is that they can be connected together. This allows,
for example, the AS and VS to be viewed as a “long” shifter when coupled together.
The microinstructions,

; AS(63)S:='VS(VY, VS(63)S:='AS(V)".
; AS(V)SC, VS(V)SC.

connect the AS and VS together so that they can be viewed as a right cyclic 128-bit
shifter as shown below.

AS VS

63 [¢] 63 0

Just as with the AS, there are 2 bits in each microinstruction which control the
operation of the VS: shift left, VS+, shift right, VS+, load, i.e., VS:=SB(63:0), or
remain idle.

Assuming the previous AS/VS connection has been made, subsequent execution of
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the microoperations

& ‘
B Bl AS-, VS
SG ® ' Load/Shift 1{ ¢
: ¢ { ‘
E*Fgce'ss:ez)j DS(63:62) Bouble Shift ] pstro) ”“"‘LDS(hO}iH shifts this 128-bit shifter 1 bit right cyclic. Other “long shifters”, e.g. left logical,
- - or . ouble itter o elector o a . R . . . .
[ S Tsﬁls‘%ﬂj» R N right logical, right arithmetic, etc., result from appropriate set up sequences.
: L+ -1C ranacsr arpaan6?
L UE_J)J_, T
Ds(V)S e v DO
"{" j’ | Selector et 2.12 Double Shifter
: l I' ' The Double Shifter, DS, is a shifter with functional characteristics similar to those
nputs nputs . . . .. - .
Source | DS(63) . DS(62) pst) T ps(o) of the AS and VS, except that it shifts 2 bit positions at a time and not 1. Bits DS{0)
0 0 0 o o and DS(1) require input during a left shift and DS(62) and DS(63) require input
2 Dg:lsé) Bgfgﬁ) ostey) ostea) during a right shift. The DS is shown in Figure 2.17. The DS can be used as a
i | g s8(63) | se(s2) SOURCE for MDP transport and then be either loaded or shifted in the same
s DS+ ) DS(V) DS(Vv+1) DS(V) ) . .
6 AS(V) vs(v) AS(V) vs(v) microinstruction,
7 suUsS(1) B8US(0) VBV BUS(63)
Double Shifter, DS The microoperations which are associated with the DS are directly comparable to
igure 2.17 . . .
Flagure 2.17 those for the AS or VS and are shown in Table 2.14. There are 2 bits in each
microinstruction which control the operation of the DS: shift left, DS+, shift right,
DS+, load, i.e., DS:=SB(63:0), or remain idle.
2.12.1 Two examples using the shifters
The AS, VS, and DS are collectively referred to as the ""Shifters’”” whereas the Bus
Shifters are not included in this term. The expanded MDP is shown in Figure 2.18.
] Example 1)
DS(T:0)S := CM|EX| SB|SG . . . .
(z:0) | | 1 Suppose we wish to count the number of bits which are set to 1 in WA[WAP] and
DS(83:82)S := CM|EX|SB|SG leave this number in the same cell. The following algorithm will do this.

DS(V)S := CM| EX|SB| SG|

a) Load the LR with the following constants

DSLL. LR[O]:=0

LR[1]:=1
bstR LR[2]:=1
DS(V)SC LR[3}=2

b} Clear the AS (considered here as an accumulator)
DS(V)S 1 ¢) Set the AL to addition
DS(V)S -1 d) Transfer the data to the DS
Table 2.14

Microoperations for control of the DS
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€) Do the following 32 times and then do {f)
i) if DS(1:0)=00 then accumulate LR[OFAS in AS

if DS(1:0)=01 then accumulate LR[1F+AS in AS

if DS(1:0)=10 then accumulate LR[2]+AS in AS

if DS(1:0)=11 then accumulate LR[3}+AS in AS

if) shift DS+

f) Store the accumulated result into WA[WAP].
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The following microinstruction sequence accomplishes this. It is assumed the PG

data source is the CM.

DS:= WA ;ALF:="all 0’s’,LRPC

;LRIP +1,SETALF+1
;LRIP+1,VSLL,DS{V)SC
;VS<,LRIP+1,SETALF +
;CA :=30,LROP:=DS
;DS>,CA-1,LROP: =DS

AS,LR := AL
VS,LR:= AL
LR:= AL
LR:= VS
AS:= AL
WA := AL Jilil

’

;if 1 CA then HERE

The subset of the MDP which is used during the counting loop instruction (AS:=AL)
is shown in Figure 2.19. This may help in understanding the algorithm and code.

Example 2)

Consider the contents of the current WA register as a string of 64 bits. It is desired to
pack all of the even numbered bits (b, b,, etc.) in the right 32 bits of the current WB
register and then odd numbered bits (b,, b,, etc.) in the left 32 bits of this register so

that the result appears as

Because the DS, AS, and VS can be connected as shown below

-

DS(V+1)

DS\

]

Vs
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AVDSG := SB

AVDP := CM|EX|S1]|S2
AVDP + 1

AVDP - 1

AVDPC

AVDPS1 := CM|EX|S1]|S2
AVDPS | := AVDP

Table 2. 15
Microoperations for the control
of the AVD SG

Notation

Microoperation

AVDLL
AVDLR
AVD(0)S:=CM| EX| SB[ SG

AVD(63)S:=CM| EX| 5B 56
AVD (V)S:=CM|EX|SB|SG

AVD(V)SC

Set AS, VS, DS to logical left shift
Set AS, VS, DS to logical right shift

Load AS{0), VS(0), and DS(1:0) Source
register from CM‘ EX‘ SB‘ sSG

Load AS(63), VS(63), and DS(63:62)
Source register from CM|EX| SB|SG

Load AS(V), VS{V), and DS(V} Selection
register from CM“ EXE sB ‘ SG

Clear A3(V), VS(V), and DS(V) Selector
register

Table2.16

Parallel AVD Microoperations
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one can accomplish the stated requirement in the following way:

; ALF:='all 0’s’, LRPC.
AS,VS:=AL ; AS(63)S:='DS(V+1)",VS(63)S:='DS(V)’, DS(V)SC.
DS:=WA ; CA:=31.

; CA-1,AS, VS, DS~ ; if =CA then HERE.
LR:=VS,+32 ;ALF=AVB'.
WB:=AL I

2.13 The Accumulator/Variable/Double Shifter Standard Group

The Shifter Control Selector shown in Figures 2.14, 2.16, and 2.17 is the same
selector. This is, perhaps, made a bit clearer in Figure 2.20. The SG which is
associated with this selector is called the Accumulator/Variable/Double Shifter
SG, AVDSG. Shifter control data can be stored in the AVDSG for various shifter
interconnections and then used in environment prologues. The microoperations
associated with the AVDSG are shown in Table 2.15.

In addition there are several microoperations which allow control of the AS, VS,
and DS to be executed in parallel. These are shown in Table 2.16.

2.14 Loading Masks

Associated with WA there is a SG of masks called Loading Masks A, LA. Associated
with WB there is a SG of masks called Loading Masks B, LB. In what follows we will
describe only LA; LB is identical in function. The purpose of LA is to be able to
specify which bit positions in a working register WA will be loaded as the result of
WA being chosen as the DESTINATION of a MDP transport, while leaving the
nonspecified bits unchanged. As an example, if the loading mask

00. .. .. ... 00 111111

63 6 5 0

were contained in LA[LAP]when the bus transport
WA:=AL

is executed, bits SB(5:0) would be gated into WA[WAP] in bit positions b, through
b respectively, while bits b, through b, would not change their value.
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When WA is selected as a SOURCE for MDP transport, the mask LA acts in the
following fashion: if bit i (63=i= 0} of the mask is a 1, then bit i of WA is
transmitted. If biti of the mask is 0, then bit i which is transmitted is indeterminate.
The relationship between the loading masks and the working registers is

represented by the symbol —(®) where the script 4 in the mask notation —®
indicates the special nature of these masks. Figure 2.21 shows the expanded MDP
with the loading masks added.

Figure 2.22 shows a more detailed sketch of LA; LB, not shown, is identical. There
are 7 microoperations shown in Figure 2.22 associated with the use of LA. These

are listed along with the corresponding microoperations for LB in symbolic form in
Table 2.17.

The programming convention is such that the “full load” or “full read out” mask,
i.e., 64 1'sisin LA[O] and LB[O]. We will assume this to be the case throughout all of
the examples which follow. One can then look upon the pointers LAP and LBP as
selection switches for the use of the loading masks. If LAP = 0 then no loading mask
is applied to WA, if LAP+0 then WA is masked by the mask specified by LAP; a
similar statement can be made for LBP. This is, of course, not the only interpretation
of the use of the loading masks.

As an example, suppose we wish to place the high order 48 bits of the output of the
DS into the least 48 bits of WB([0] leaving the high order 16 bits the same. If the
mask

o o 1 1

63 48 47 0

is in LB[9], the following microinstruction sequence accomplishes this:

; LBP:=9, WBPC.
WB:=DS+16 ;LBPC/|||

This mask could have been generated by use of the PG and AL. The code,
; ALF:='all 1s’, LBP:=9.
; PAP+1.

AL ; PG-16, LB:=SB, PAP-1|l|
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generates the mask and stores it in LB[9]. It should be reasonably obvious now how
the loading masks can be used to store the result of various data transformations as
LA :=SB(63:0) LB := SB(63:0) they are Qeterm|ned, e.g., in th.e m_wplementatnoq of S|gned-magr_nt_ude anthme‘tnc,
the magnitude of the exponent, its sign, the magnitude of the coefficient and its sign
can be stored in a given word as they are obtained.

LAP := CM|EX|S1]S2 | LBP := CM|EX|St {52

LAP +1 LBP +1

LAP -1 LBP -1

LAPC LBPC We will henceforth assume in all examples (unless explicitly stated otherwise) that

el ol Lo iles s s i s oo eSS s s

. . u e ing acility it is responsi

LAPSZ2:=LAP LBpPS2:=L8P for leaving the system operating in this fashion. The treatment of trYne loading masks
Table 2.17 then becomes quite identical with that of the bus masks and postshift masks as

Microoperations for control of LA and LB stated in Section 2.7.

2.15 The BUS Parity Generator,

The BUS Parity Generator, BPG, is a circuit which determines the parity of the 64

bits which compose the bus transport. It posts the result of this evaluation as a

testable condition, the bus parity, BP, condition. If BP = 1, the BUS is odd parity; if BP

= 0, the BUS is of even parity. This condition can be used, cbviously, in any

processingwherein parity information is viable, e.g., in communicating with devices
Shifted Bus which transmit words of a particular parity. The parity generator functions during
each bus transport and has no microoperations associated with it. Since its input is

T — the BUS, we show it attached to the bus structure as shown in Figure 2.23. Note,
us asl - - “ LR}
however, no output is shown as its only output is the BP condition.

@
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where k2. If k = there are, of course, no bits between b, andb, ;ifk>j, the k-j-1
bits, denoted by X's, between b, and b; may be any arbitrary string of (k-j-1) O’s

and 1's. If the bit pattern is identically zero then LSB and MSB are defined to be 63,
respectively 0.

There is, on the MATHILDA System, a functional unit called the Bit Encoder, BE,
which, during every MDP transport, encodes the MSB and LSB associated with data
on the BUS. The BE, shown in Figure 2.24, can also manipulate these quantities.
During each bus transport an “LSB encoder” and an "MSB encoder” determines
the LSB and MSB associated with data on the BUS. The result of these encodings
can be loaded into the LSB, and MSB1 registers shown in Figure 2.24. A load of
the LSB; register causes the old contents of the LSB4 register to be moved to the
LSB,, register. Similarly, a load of the MSB,_ register causes the old contents of the
MSB, register to be moved to the MSB, register. The contents of the LSB; and
LSB, registers can be interchanged and the contents of the MSB, and MSBE
registers can be interchanged.

The BE can compute various functions with the variables L.SB, , LSB,2 , MSB1 , and
MSB, . These functions, F and G, are given in Table 2.18 where L, = MSB, -LSB, ,
i=1,2. Which particular function is to be the output of the BE is determined by the
contents of the BE Function Specification register, BEF,

BEF:=CM|EX|SB|SG.

When the BEF is loaded from the CM we will note this symbolically merely by
writing the required function in the symbolic form in Table 2.18, e.g.,

BEF:='LSB1".

The output of the BE can be used to control many devices in the system. It may, for
example, be used to control the BS (see Section 2.5), it may be loaded into Counter
B to control a process (see Section 2.23.1), or it may be used to generate a Postshift
mask using the PG (see Section 2.7). There are only 6 bits of output from the BE.
When it is used to generate a postshift mask using the PG, the direction from which
the mask is to be generated must be specified in advance by use of either of the
microoperations

BEPGL or BEPGM,

The first microoperation will cause a mask to be generated from b (the least
significant end of the SB) whereas the second microoperation will cause a mask to



Notation Microoperation
BEL L OAD LSB;:=LSB, and then LSB, :=(LSB Encoder output)
BEMLOAD MSB,:=MSB, and then MSB, :=(MSB Encoder input)
BELML OAD BEL Load and BEM Load
BEL.I Interchange LSB,; and LSB,
BEMI Interchange MSB, and MSB ,
BELMI BELI and BEMI

BEF := CM|EX|SB|SG

SET BEF LSB1
BEPG L.

BEPG M

Load BE Function Speclification Registers from
cMmlEX|sB|sG
Set BEF to LSB,

Allows the semantics of the « in PG« BE to be realized
when the PG is controlled by the BE

Allows the semantics of the + in PG~ BE to be realized
when the PG is controlied by the BE

BESG := SB
BEP := CM|EX|s1|352

BEP + 1
BEP - 1
BEPC '
BEPST = CM|EX|S1|S52
BEPS2 := BEP

Table 2. 19

Microoperations for conirol of BE
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be generated from b, 5 (the most significant end of the SB).

The microoperations which control the BE are given in Table 2.19. Note the SG
associated with the BEF is called the BESG.

Example 1)
We wish to take the contents of WA[WAP] and shift it left so that its MSB before the

shift is shifted to bit position b 5. The result of this operation is to be placed back in
WA. The contents of WA is shown below.

WA before shift 0 = 01X, X1 0 = O
MSB
WA after shift ) x 1 om
MSB

The following microinstructions accomplish this.
(BEF:="MSB1+ 1’
DS:= WA ;BEMLOAD,BSS:="BE’
WA := DS« ;BSSC.||||]

Note in this example that the DS is merely used as temporary storage.

Example 2)

Consider the example of Section 2.12.1 in which we counted the number of bits
which were set to 1 in a given 64-bit WA register. Instead of doing the counting
2-bits ata time in a loop which is exercised 32 times, we could still count 2-bits at a
time, but only count

{MSB;, 2— LSB, ) + 1

times, provided we shift the data LSB; places to the right before counting. The
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following microoperations accomplish this,

Notation Predicate
LsB1 LSB, =0
MoB Msel s DS=WA ; BELMLOAD, SETBEFLSB1, BSS:='BE’".
ST DS:=DS, » ;BEF:=[L1/21}1", SETALFALLOS, LRPC.
L1 L, =0(i.e., LSB, =MSB,) LR,AS:=AL ;CB:=BE, SETALF+1, LRIP+1 .LR[0]=0 -
L2 L, =0(i.e., LSB; =MSB,) LR:=AL ; CB-1, BSSC, LRIP+1 LR[1E=1
LD L, =L, : LR:=AL ; DS(V)SC, LRP+1 .LR[2]:=1
SGLD sign (L, -L,) v LR:=AL ; SETALF+, LROP:=DS(V+1.V) .LR[3]:=2
LSBD Lse, -LsB, CVSAZOALL ;”(”2[8-1 , DS , LROP:=DS(V+1:V) ;if 71 CB then HERE
SGNLSBD sign (LSB, -LSB, ) ' - \
MSBD MSB, =MSB,
SGNMSBD sign (MSB, -MSB, ) Note that this code is only 1 instruction longer than the code in Section 2.12.1,
example 1. This is caused by one additional MDP transport. Counter B, CB, used in
able 2. 20A this example can be loaded from the BE (see Section 2.23.1).
able 4.

Bit Encoder Conditions

2.16.1 Bit Encoder Conditions

The conditions associated with the BE are listed in Table 2.20A. The important
thing about the conditions is that a// of them are available for testing irrespective of
which particular BE function is specified.

There are two additional conditions which are related to this resource. The LSB and
MSB encoding process yields a testable condition which indicates if bits b, through
bgs of the BUS are all zero. This condition, i.e., BUS(63:0)=0, is denoted by BUS.

Notation Predicate Thus, there is no ambiguity in the example,
BUS BUS(63:0) = 0 ifBUS then A_ else A, .
BE(0} BE(0) = 1
BEPGD [BEPG = !+ ! We can also test if the output of the BE is odd or even. This condition is, of course,
written BE(0). These conditions, along with the ability to test the state of the BEPG
register, are given in Table 2.20B.
Table 2. 208

Conditions Related to BE Usage

Example . . ‘ _ '
Suppose we wish to test if there is exactly one bitsetto 1ina particular bit string, say

the contents of the VS, we could write

VS ; BELM LOAD.
; if L1 then ONEBIT/||||
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4

5

€

7
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9
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}; {  Not yet specified
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where ONEBIT is the address of the microinstruction to execute if one bit is set to 1.

Since the BE has as its input encodings from information on the BUS, we show it
attached to the bus structure as shown in Figure 2.25. Note that the output of the BE
is shown going to various “control ports” in accordance with the prior discussion.

2.17 The Status Port

The Status Port, SP, allows data sources other than those directly connected to the
Bus Selector to be used as a SOURCE in a MDP transport. In this sense, then, it
provides a Bus Selector expansion facility. The outputs of various resources are

connected to a 64 input, 16-bit wide selector called the Status Port Selector, SPS as
shown in Figure 2.26.

The output of the SPS is the particular status port input selected by the contents of
the Status Port Pointer, SPP, and is symbolically written SP, i.e., SP=SPS[SPP.
Table 2.21 shows the correspondence between particular inputs and the input
number of the SPS.

All status port inputs are zero filled in the most significant bit positions. It should be
pointed out that a constant, contained as a literal within a microinstruction, can be

gated onto the BUS when SPP is zero. This is shown in the following code
sequence: )

;SPPC. Comment: This could have been written as SPP:='CM".

< DEST>:=constant

The microassembler will treat this microinstruction sequence in the equivalent way

; SPPC
< DEST>:=SP ; <constant in “mops and data’ field>.
The programming convention for use of the SP will be that SPP=0 so that the first
microinstruction in each of the above sequences need not be there. This convention
will be assumed in all the examples which follow.



SPP := CM|EX|SB
sPPC
SPP +1
SPP -1

Table 2,22

Microoperations for control of SPP
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The MDP transport specification
< DEST >:=SP

is to mean that the Status Port Selector input specified by the SPP contents is to be
the SOURCE for the MDP transport. Except for the CM input, this data is
information which has been set prior to execution of the MDP transport specified in
the current microinstruction {and not data resulting from the execution of the
microoperation specified in the current microinstruction). Table 2.22 lists the
microoperations associated with the use of the SPP.

As an example, suppose we wish to interchange the WA and WB Pointers, i.e.,
WAP« WBP. The following microinstruction sequence will accomplish this,

; SPP:="WAP".
DS:=SP ; SPP+1. Note this effectively executes SPP:="WBP".
SP ; WAP:=SB.
DS ; WBP:=SB, SPPC|lll

As a final example, assume we require the result of a BE computation to be used as
data during a computation. In particular, the LSB encoding of the bit string
contained in the DS is to be put into the AS. A possible microinstruction sequence
is:

DS ; SPP:='BE’, BELML, SET BEF LSB1.
AS:=SP ;SPPC.|I

2.18 Input Facility

There are two input ports through which external devices may be connected to the
bus selector. They are called Input Port A, IA, and Input Port B, 1B. Up to 16 devices
can be connected to each of these input ports in their fully expanded configuration.
The basic input port consists of only a single device buffer and its associated Busy
register and Data Mark buffer, as shown in Figure 2.27.

The particular device which is selected to be read in an expanded input port is
pointed to by a Device Register, as shown in Figure 2.28 .. The contents of IAD
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Notation Microoperation
1AA Activate selected device on 1A
IAD := CM|EX|SB | Load 1A Device Register from
cmlEX|SB
iIADC Clear 1A Device Register
IAD +1 Increment (A Device Register
1AD -1 Decrement 1A Device Register
BA Activate selected device on IB
IBD := CM|EX|SB | Load IB Device Register from
cMmieEX|sB
1BDC Clear iB Device Register
1BD +1 increment 18 Device Register
18D -1 Decrement 1B Device Register
Table 2.23

Microoperations for control of 1A and 1B
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determines at any given time, in an expanded configuration, which device interface
is accessible.

There are two conditions associated with a selected device: a) data available, [ADA,
(identical to the busy condition), and b) data condition , IADM (the contents of the
Data Mark buffer). All devices must be able to set the first condition. When a device
is activated by the IAA microoperation, the condition IADA is reset (i.e., to faise).
The device is assumed to respond when it has data ready by setting of the condition.
This implicitly loads the device buffer {the L-pulse), and the state of the 1ADA
condition will now be true, informing the availability of data.

The second condition can be set by devices which can transmit two different sorts
of information, for example control information and data. The IADM condition is
loaded when data is loaded into a particular device buffer. The microoperations
associated with the control of A and IB are given in Table 2.23.

As an example, if we wish 1o read data from device 9 on IA and store it in AS, we
can write the following wait loop:

JIAD: =9,IAA.
H ;if—1 |ADA then HERE.
AS := 1A ]Il

2.19 Output Facility

There are four output ports through which output to external devices may occur.
They are called Output Ports A, B, C, and D; OA, OB, OC, and OD respectively. They
are identical in operation with the exception that OA and OB are loaded from the SB
and can be selected as SBD’s whereas OC and OD are loaded from the BUS via
microoperations. OA is shown in Figures 2.29 and 2.30; OB, OC, and OD, not
shown, are identical.

Up to 16 devices can be connected to each of these output ports in their fully
expanded configuration. The basic output port, as shown in Figure 2.30, consists
only of a single data buffer, 84 bit wide and its associated condition register (the
busy condition), and a Data Mark buffer (1 bit wide).
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Notation

Microoperation

OAA

OADC
OAD +1
OAD -1
OCA

ocDC
oCD +1
oco -1
ocC = BUS
OAR

OCR

0AD := CM|EX|SB

ocD := CM|EX|SB

Activate Port, i.e., write OA
Load OA Device Register from
cMiEX|SB

Clear OA Device Register
Increment the OA Device Register
Decrement the OA Device Register
Activate Port, i.e., write OC
Load OC Device Register from
cm|EX|sB

Clear OC Device Register
Increment the OC Device Register
Decrement the OC Device Register
Load OC from BUS (63:0)

Deactivate OA, i.e., reset device
cordition flip-flop
Deactivate OC, i.e., reset device

condition flip~flop

Tabie 2. 24

Microoperations for control of the OA and oc

Device
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The particular device which is selected for output in an expanded configuration is
pointed to by a Device register called OAD. It can be loaded from CM|EX|SB, its
contents determine which device is currently seiected as shown in Figure 2.29.
There is a condition associated with a selected device: space available, OASA
whose value is the compiement of the busy condition. The microoperations
associated with the control of OA and OC are shown in Table 2.24. The
microoperations for OB are identical to those for OA and the microoperations for
QD are identical to those for OC. The OA Activate microoperation, OAA, has only
effect when the OASA condition is true, in which case the data buffer and the data
mark buffer for the selected device is loaded, and the busy flag set true. The device
is then assumed to consume the data and reset the busy condition when it is done.

As an example, suppose we wish to write out the output of the AL onto device 13 of
output port C. We could then write,

AL :0C:=BUS,0CD:=13.
; :if tOCSA then HERE.
;OCAL|I

Recall that on the input ports it is possible to test a data condition which is set by a
device. Analogous with this, it is possible on output to write out an extra bit in
addition to the data, the Data Mark bit, which is a data bit from CM. The device can,
for example, treat this extra bit as a data condition. The microoperations for output
port activate are now given by

OAA1 activate with additional bit setto 1
OAAQ activate with additional bit setto O
QAA activate with additional bit set to X (i.e., undefined)

The QAR (OA Reset) microoperation may be used upon deadstart to initialize the
busy condition.

2.20 The MDP Structure i

With the introduction of the output ports in the previous section we have a more
complete MATHILDA MDP, the registers and functional units attached to it, and the
control which can be exercised on these components. The MDP is now shown in
Figure 2.31.

Let us summarize some of the information with respect to bus SOURCEs and
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DESTINATIONs. We have the following SOURCEs and DESTINATIONs for a MDP
transport:
a) SOURCESs for BUS Transport
WA
WB
AL
VS
DS
SP
1A
1B

b) DESTINATIONS for 64-bit L oad of SB with SBD Load

MA
MB
WA
WB
LR

OA
oB

¢) Shifters which can load 64-bit SB via dedicated bits in every microinstruction
AS
VS
DS

Thus in the bus transport specification
<L LIST>:=<SOURCE>,

the LIST can consist of 1 destination from (b) above or any or all of the shifters, i.e.,
sBD, {.As}{.vs}{,Ds} =SOURCE

where the { § indicates the option of inclusion in the LIST.

Recall that the SB can be loaded into LA and LB by execution of appropriate
microoperations and the BUS can be {oaded into PA, PB, OC, and OD by execution
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of appropriate microoperations. Also, a subfield of the SB can be loaded into various
SG’s and control ports throughout the system by executing the appropriate

microoperation. Thus, many parallel loads of both the BUS and the SB may occur in
any given microinstruction.

2.20.1 The Bus Latch and the Shifted Bus Latch

In order to realize the semantics of the microoperations which have been given, it is
required that both the output of the bus selector and the output of the BS after
postshift masking has occurred be “latched” (i.e., held temporarily in a buffer).

Thus, a more correct representation of the MATHILDA MDP is shown in Figure
2.32.

BUS, then, is the name given to the output of the Bus Latch. There is a
microoperation associated with the Bus Latch which sets all the bits of the BUS to
1. This action is completed before the BS and PM are used. This operation of setting
BUS(63:0)=11...11 aborts the use of the selected SOURCE during a MDP transport
and thus can be written in either of the equivalent forms,

<DEST>:=all 1s;

or

<DEST>:=SOURCE; BUS:=all 1s.

In a similar fashion, SB is the name given to the output of the SB Latch. There is a
microoperation associated with the SB Latch which sets all the bits of the SB 10 0.
The operation of setting SB(63:0)=00...00 aborts the use of the BS and the PM
during a MDP transport and can be written in the following equivalent ways:

< DEST>:=all Os;

or

< DEST>:=<SOURCE* ; SB :=all 0s.

Note, however, the BUS is indeed available for use.

The semantics of the following examples should be obvious to the reader:



Notation Interpretation
HERE -1 A-1
HERE A
HERE +1 A+ 1
AL(A,B) A function of A and B as computed
by an arithmetical logical unit
RA + B The contents of the top of a return
jump stack, RA, added to B
RB + B The contents of the top of a return
jump stack, RB, added to B
SA The contents of the Save Address
register, SA
EX The contents of the External re-~
gister, EX
Table 2.25
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{a) WA:=all 0s.]|]|

(b) DS ;SB:=all 0s,PA: = BUS.|||]|

{c) WA: =all 0s;BUS: =all 15,0C:=BUS.|||||

(d) WA :0C:=BUS,SB:=all 0s,DS(1:0)S: = SB.||]||

2.21 The Control Unit

The control unit of the MATHILDA processor, shown in Figure 2.1, consists of (1) a
control store and (2) a microinstruction sequencing capability. The random access
control store consists of up to 4,096 words of 64-bit wide, 80 nanosecond
monolithic storage. The microinstruction sequencing is described below.

.

2.21.1 Microinstruction Sequencing
The microinstruction sequencing hardware is a physical embodiment of the "if ¢
then A; else A; " clause we have been using in the microprogramming examples.
This is accomplished in the following way. The addresses A; and A; are selected
from 8 possible address sources. Let A be the address of the current
microinstruction and let B be data which is specified in the current microinstruction.
The 8 possible address sources, which are explained in more detail shortly, are
listed in Table 2.25. These address sources are realized by providing a
microinstruction address bus which is shown in a limited form in Figure 2.33. One
can see from this figure how the "if, then, else” clause is realized. There are 3-bits
in each microinstruction which specify one of the 8 address sources of Table 2.25 to
be used as the true branch address, denoted A, . There are 3-bits in each
microinstruction which specify one of the 8 address sources of Table 2.25 to be
used as the false branch address, denoted Ar. There are 7 bits in each
microinstruction used to specify 1 of 128 conditions which are testable in the
system; the selected condition is denoted c. The state of the selected condition ¢
determines which source, A, or A;, will be used to select the next
microinstruction address source. If c = 1 then A will be used to select the address
of the next microinstruction; if ¢ = 0, then A; . will be used for this purpose. When a
microinstruction address is selected, it is loaded into the Control Store Address
Buffer so it can be used to fetch the microinstruction, and it is also loaded into the
Current Address register so that it can be used in the next address computation, if
required. The contents of the Current Address register has been used in previous
examples under the symbolic name HERE. The "“Force O Address” capability, the
Interrupt Recovery Address register shown in Figure 2.33 will be discussed in later
sections. Let us now discuss the address sources in detail.

The address sources A-1, A, and A+1 are straightforward and need not be dealt
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with. It should be mentioned, however, that Control Store addresses are interpreted
modulo the size of the Control Store.

2.21.2 The Control Unit Arithmetical Logical Unit

The Control Unit Arithmetical Logical Unit, CUAL, is functionally identical to the
arithmetical logical unit which is connected to the MATHILDA bus structure except
that it is 12-bits wide and not 64-bits wide. The CUAL functions are identical to
those of the AL and are given in Table 2.9. The “A input” to these computations is
the address of the CM and the ”B input” is data specified by CM. The CUAL is
shown as in Figure 2.34.

First, note that the CUAL Function register can only be loaded from the CM, i.e.,
CUALF:=CM. One can set the CUALF to add A and B, i.e., SET CUALF + and also to
the logical function B, i.e., SET CUALF B. These are the only three microoperations
associated with the CUAL. Only 5 bits are used to specify the function; the carry-in
when required, is specified in another way. Let ¢ denote the selected condition used
to control the address selection and let € be its negation. There is a bit in each
microinstruction, called the Carry-Input Selection Bit, CISB, which is used to
determine if the carry-inistobecorT.

Example 1
Suppose the CUALF is set to A+B. Its output can be used to realize a relative jump
when the CUAL is chosen as the selected address mode. If CISB=C, the
specification

if c then CUAL else HERE.
can be interpreted to mean:

if c then HERE + B else HERE.

Whereas, if CISB="c’, the specification can be interpreted to mean:

if c then HERE + B + 1 else HERE.[||||
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Example 2

Suppose the CUALF is set to B. its output can then be used to realize an absolute
jump when the CUAL is chosen as the selected address mode. This is a logical
function and not affected by the carry-in.

if ¢ then CUAL else CUAL.
can be interpreted to mean:
if ¢ then B else Bifl]

The specification of the CISB will be given implicitly. If one chooses the CUAL
output as microinstruction address source, we write

CUAL + Carry-in.
Choice of this specification as either an A, or Ar will dictate the setting of the
CISB.
For the first interpretation of Example 1 to be valid the specification would have to
be written

if ¢ then CUAL else HERE.
whereas if we meant the second interpretation we would have to write

if ¢ then CUAL+1 else HERE.
It should be obvious that the specification

if ¢ then CUAL+1 else CUAL+1.
is an example of a microinstruction sequencing specification which is incompatible
with the specification capability described above. Indeed if one wished to choose
the address specification CUAL+1 irrespective of condition, one merely need write

CUALA1.

in the microinstruction sequencing field of the microinstruction. This would have
the same effect as writing, for example,
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if TRUE then CUAL+1.

where TRUE is a manifest system constant set to 1. There is also a manifest system
constant, FALSE, which always has the value O.

In order to complete the discussion of the CUAL we must discuss the specification
of the data B. There are two 6-bit fields in the microinstruction which we shall call T
and t. T and t are input into a selector along with O and SA(5:0) as shown in Figure
2.35, the output of which are shown in Table 2.26. There are 2 bits in every
microinstruction, called the B-Input Selection Bits, BiSB, which determine which of
these computations will be used as the B data, if required, in the current address
computation.

The notation t’ means the 12 address bits are given by

e Elahizl t,

i.e., in "sign extended’’ form. With the CUALF set to A+B and BISB="t" we then have
a relative addressing capability of -31 to +32. The notations T« t and O - SA(5:0)
denote concatenation.

The specification of the BISB will be given implicitly. One specifies the B value
explicitly as a number, or as SA, in the address specification and this will dictate the
setting of the BISB.

We can henceforth write the CUAL specifications as

CUAL (A,B) + Carry-in.

Both CU and A is redundant information since this is written in the microinstruction
sequencing field of the microinstruction and we will use the shorter form

AL(B) + Carry-in
where B is a signed integer, -2048<B< 2047, when combined in an arithmetic

function with A, but may obviously lie in the interval 0<B<4095 when used for
absolute jumps.
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Example 1
If the CUALF is set to A+B, then the specification

if c then AL(-18).
can be interpreted to mean
if c then HERE-18 else HERE+1.
where BISB is set to 't” and CISB is set to €.
Example 2
If the CUALF is set to A+B, then the specification
if c then AL(12)+1 else AL{12)
can be interpreted to mean
if c then HERE+13 else HERE+12
where BISB is set to 't and CISB is set to ¢, thus giving a conditional branch to one
of two sequentially located microinstructions.
Example 3
If the CUAL is set to A+B, then the specification
if c then AL(SA) else SA
can be interpreted to mean
if ¢ then HERE + SA(5:0) else SA(11:0)
where BISB is setto '0 - SA(5:0) and CISB is set to C.
Example 4
if the CUAL is set to B, then the specification

if c then AL(1975) else HERE-1
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can be interpreted to mean
if ¢ then 1975 else HERE-1

where the BISB is setto 'T » t" and the carry-in is not used since B is a logical CUAL
function.

2.21.3 Return Jump Stack Facilities A and B

There are two return jump stack facilities associated with the microinstruction
addressing facility. Each consists of

(1) a 12-bit wide, 16 element RG,
(2) a 4-bit wide RGP, and
(3) a 12-bit wide adder.

Figure 2.36 shows the return jump stack facility RA; RB, not shown, is identical. The
microoperations associated with RA are shown in Table 2.27. The instructions for
RB are identical.

Whenever the output of the RA adder is being used as the resulting address mode,
the microoperation RA 1 is executed. That is, the stack pointer is automatically
maintained any time an address is added to the stack or whenever the RA adder is
selected as the address mode. The use of RA is specified by writing

RA +B +carry-in.

This is seen immediately from Figure 2.36. The B data and the carry-in selection are
exactly the same as those specified for the CUAL. The specification RA+1 or RB+1
will be interpreted to mean BISB="0" and the carry-in=1.

Example 1

Suppose we are in a routine at location n and wish to jump to a routine at location
n+m. At location j of the second routine we wish to return to n+1, Assuming the
CUALF:=B we could write
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CS[n]  ;RA; Al(sub).

CS[sub]

CSIi] ; ; RA+1,

For the microinstruction at Location n, CISB="¢" and BISB="t" if -32<n< 31 or
BISB="T« t’ otherwise. For the microinstruction at location j, CISB="c’ and BISB="0".

Example 2
It should be noted that the availability of 2 return jump stacks may facilitate the
implementation of coroutines. For example, the microinstruction

CS[n] :RA |; RB+1.

stores the current address, n, in one stack while simultaneously using RB as the
selected address mode. RB is, of course, equal to RB+B+C=RB+0+1, i.e., BISB="0’
and CISB="¢".

Example 3
A conditional return entry point can be obtained by using the specification

if ¢ then RA+n else RA+n+1.

Here, CISB='C’ and BISB="t"" if -32<n< 31 or BISB="T « ' otherwise.

Example 4

Let us assume that a branch to a subroutine is required from a program segment
and after completion a variable entry point return is required. In the example
microcode following, the subroutine DECODE must place the displacement, d, in SA
so that the computation RA+SA is in effect r+d.
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SA:=5SB
SA + 1
SA -~ 1
SAC

Table 2. 28

Microoperations for control of SA

L -4
— ‘ ‘ > Microinstruction
External
‘ | Selector
Device 15 ) EX 0 Address
The External Register, EX
Figure 2. 38
Notation Microoperations

EX Load |Load the External register
EX + 4 Shift the External register 4 bits right cyclic

Table 2.29

Microoperations for control of EX
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CS[n] PROG SEG:

CS[: RAV  :AL(sub)

CS[sub] DECODE:

; ; SA:=SB ; RA+SA

Here, CISB="C’ and BISB="0+SA(5.0y’.

2.21.4 The Save Address Register

The Save Address register, SA, is shown in Figure 2.37. The microoperations
associated with this register are shown in Table 2.28. SA provides a data path
between the bus structure of MATHILDA and the control unit which controls the
transactions on this structure. It can be used, for example, during the loading of
control store, recovering from an interrupt, and in the B data computations.

2.21.5 The External Register

The External Register, EX, is a 16-bit wide right cyclic shifter which shifts 4 bit
positions at a time. EX is loaded from an external device. If, for example, MATHILDA
is to be connected as an input/output device to another processor, then the EX
register provides one form of communications area for data sent to MATHILDA. EX

is shown in Figure 2.38, the microoperations associated with EX are shown in Table
2.29.

EX can notonly be used as a possible source for the address of the next instruction,
but it can also be used as data for many of the control registers in the system, e.g.,
CA. When EX is to be used as the source of a microinstruction address, bits EX(11:0)
are used. In fact, in all circumstances the data from the EX is always considered to
be a contiguous string of bits of the required width starting with b, .
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Force 0 Address Conditions

SA:=SB

SA + 1

SA -1

SAC
CUALF:=CM

RA t

RA |
RAPRPC
RB t

RB |
RBPC
EX LOAD
EX = 4
INTON
INTOFF
CYL
CcYs

CS LLOAD

SET CUALF B
SET CUAL.F +

Tablie 2. 31

Microoperations associated with the Control Unit
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2.21.6 The Force 0 Address Capability

There are several conditions which if they occur during the execution of any
microinstruction will disregard the address computation specified in the
microinstruction sequencing portion of the microinstruction and fetch the next
microinstruction from Control Store address O. These conditions are listed in Table
2.30.

-

An external device may be connected to the External Signal condition to interrupt
the operation of MATHILDA. If either RA or RB overflow, i.e., we have stacked more
than 16 addresses, we will also force the address to O. Finally the snoopers
described in Section 2.23.2 can interrupt MATHILDA. This capability is shown in
Figure 2.39.

Whenever a Force O Address Condition arises the following occurs: both the Control
Store Address Buffer and the Current Address register are cleared, i.e., set to zero;
the selected address is loaded into the Interrupt Recovery Address register, IRA;
and the interrupt facility is turned off. The IRA contains the address of the
microinstruction which would have been executed had the interrupt not occurred.
The contents of the IRA can be gated onto the BUS through the Status Port
explained in Section 2.17. . The IRA can then be used in conjunction with the SA
facility previously described to restore the continuation address. The interrupt
capability can be turned off and on by executing the microoperations INTOFF and
INTON respectively.

2.21.7 The Microinstruction Address Bus

Having gained insight into the nature of the various address modes which can be
used during microinstruction sequencing, we can now present a8 more detailed
picture of the microinstruction address bus; it is shown as Figure 2.40. Because the
number of control elements is small, they are also shown on this figure.

The microoperations associated with the control unit are brought together, for
convenience, in Table 2.31. All but the last microoperations have been explained in
previous sections. The CS L.oad operation is discussed next.

2.21.8 Control Store Loading

Control Store has, of course, both an address buffer and a data buffer, as shown in
Figure 2.41. The CS Data Buffer is actuaily the OC register and as the CS Data
Buffer is the only device no device selector is required. The CS Address Buffer is
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loaded from the output of the Microinstruction address selector as shown in Figure
2.40, which is, of course the address chosen as a result of the 'if cthen A, else A’
evaluation. Let n be the address of the current microinstruction. The microoperation
CS LOAD, if executed in the current microinstruction, can be interpreted as follows:

CS LOAD ::= Load the contents of the CS Data Buffer into the CS storage
location pointed to by the CS Address Buffer and then choose n+1
as the address of the next microinstruction.

Example 1
The following microinstruction sequence might have been written to load
CS[WA[O](11:0)] with WA[1]:

; WAPC, OCD:=8.
WA ; SA:=SB, WAP+1.

WA ;0C:=BUS ; if 7OCSA then HERE.
; OCA.
: CS LOAD SAJ

However, the code which actually would be used to do this is as follows:

; WAPC.
WA ; SA:=SB, WAP+1.
WA ; OC:=BUS, CS LOAD ;SAJN
This is because (1) the CS is the only device on OC so no device selection is
necessary, (2) OC actually is the CS Data Buffer and space is always available thus
eliminating the wait loop and (3) the CS writing is synchronized with the execution
of the CS Load microoperation and thus no OCA is required to accomplish the
normal synchronization, or load a device data buffer.

Example 2

The following example consists of microcode which will act as a loader, getting its
information from a paper tape reader. The format of the tape is shown in the
following diagram:



Symbolic
Unit Notation Condition
AL AL(63:0)=1...... 1
ALOV AL. carry-out and borrow-in bit
AL(0) bit 0 of AL input to bus selector
AL AL (63) bit 63 of AL input to bus selector
ONEOV 1's complement overflow
TWOOoV 2's complement overflow
AS(0) bit 0 of the AS
AS AS(V) the variable bit of the AS
AS(63) bit 63 of the AS
LSB1 LS8, =0
MSB 1 MSB, = 63
L1 L, =0 (i.e., MSB, =LSB, )
L2 L, =0 (i.e., MSB,=LSB,)
LD L, =L,
BE SGNLD sign (Lp -L, )
LSBD LsSB, = LSB,
SGNLSBD sign (LSB, -L.SB, )
MSBD MSB, = MSB,
SGNMSBD sign (MSB, -MSB, )
BE(0) BE(0) = 1
BEPGD BEPG = !« !
BP BP BUS parity, BP=1= odd parity
BUS BUS BUS(63:0) = 0
CA CA zero
CA(0) bit 0 of CA
CA(3) bit 3 of CA
CA CA(4) bit 4 of CA
CA(5) bit 5 of CA
CA(6) bit 6 of CA
CASPOV CAP = 1111 (CAP overflow)
cB CB zero
CB(0) bit 0 of CB
cB(3) bit 3 of CB
cB cB(4) bit 4 of CB
CB(5) bit 5 of CB
CB(6) bit 6 of CB
CBSPOV CBP = 1111 (CBP overflow)
CR CR output of condition save registers

(continued)

Table 2.32

Partial Listing of System Conditions
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beginning
execution
address

last first
word c T word

*

word start
count address

data to be read intc CS

* each rectangle is symbolic notatjon for eight 8-bit bytes.

Eight 8-bit bytes are read in and packed together to form a 64-bit word each time
the subroutine labelled READ is called. The address where the first datum is to be
written into CS is given as “'start address’. How many words are to be written into
CS is given by word count, and the CS address at which execution is to begin after
CS is loaded is given by “beginning execution address”. The entry point for the
loader is PTRLDR and it is assumed for the sake of this example that the reader is
Device No. 4 on IB.

PRTLDR:

LOOP: .

READ:
FETCH:

AL
AL
AL

AL

AS,LR:=ALLOS

LR:=1B
AS:=AL>8

;IBD:=4, SET CUALFB
;RA

:SA:=SB,RA }

; CB:=SB, RA |

; OC:=BUS, CS LOAD

; SA+1,RA |

; CB-1

; SA:=SB

:CA:=7

;IBA
;ALF:="AV B’
;CA-1,SETALFB

Anitialization

;AL(READ). Read start address
;AL{READ). Read Word Count
;AL(READ). Read 1st Word

SA.

;AL(READ)

;if =1 CB then AL(LOOP)

;SA. Read execution address and jump

.Initializations

.Request next 8-bit byte.

:if —1BDA then HERE.

:if —1CA then AL(FETCH).||||
RA+1

Asmall aside related to the notation in our previous examples: In Section 2.4.1 we
had the following microinstruction sequences:

WAP:=7.
if WA(63) then BITON.

Because at that time we did not wish to complicate the discussion with the details
of the microinstruction sequencing unit we did not write:



(Continued)

Symbolic
Unit Notation Condition

EXDA data available on EX
RAPOV RAP = 1111 (RAP overflow)
RAPUN RAP = 0000 (RAP underflow)

cu RBPOV RBP = 1111 (RBP overflow)
RBPUN RBP = 0000 (RBP underflow)
INT INT = 1= INTON, INT = 0= INTOFF
CUAL OV CUAL overflow
CvyL processor in '"long Cycle'! mode

oS Ds(i), i=0,...,15|the indicated bit of the DS
Ds(j), =V, V+1 the variable bits of the DS
IADA data available on 1A
IADM data condition on |A (Data Mark)
1IBDA data available on IB

|/o IBDM data condition on IB (Data Mark)
OASA space available on OA
OBsSA space available on OB
OCSA space available on OC
oD sA space available on OD

Eg ig state of console switches

KC C

KD ?D state of programmable switches

L= LR(0) bit 0 of LLR input to bus selector
LR(63) bit 63 of LR input to bus selector
sB(0) bit 0 of the shifted bus

sg sB(1) bit 1 of the shifted bus
sB(62) bit 62 of the shifted bus
SB(63) bit 63 of the shifted bus
TRUE a binary one

Syst
ystem FALSE a binary zero

Vs(0) bit 0 of the VS

VS VS(V) the variable bit of the'Vs
VS(63) bit 63 of the VS
WA (0) bit 0 of WA input to bus selector

wA* | WA(63) bit 63 of WA input to bus selector
WAPOV WAP = 11111111 (WAP overfiow)
wgB(0) bit 0 of WB input to bus selector

wB* | wB(63) bit 63 of WB input to bus selector
WBPOV WBP = 11111111 (WBP overflow)

Table 2.32

Partial [ isting of System Conditions

* See also Table 2. 38.
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: WAP:=7.
; if WA(63) then AL(BITON).

Wherever such labels were used, we had actually meant them to be shorthand for
AlL(label). It is now seen that we had assumed the microcoder had set the CUAL
function to either A+B or B prior to the execution of the instruction containing the
label in the <instruction sequencing> port. If the CUAL had been set to B, then the
address of the CS location labelled BITON would have been used as the B-data
resulting in an absolute jump. Whereas, if the CUAL had been set to A+B then the
value of (BITON-HERE) would have been used as the B-data resulting in a relative
jump. Actually, our examples have been given assuming that the CUAL has been set
to B.

2.22 The Conditions, Condition Selector, and Condition Registers

There is the possibility of testing 128 conditions in the system. At this writing
approximately 100 have been specified, leaving a reasonable amount of
expandability in the system. The conditions and their symbolic notation are given in
Table 2.32. The conditions in this table are grouped according to the functional unit
with which they are associated. For convenience, the units are listed in alphabetical
order.

All 128 conditions are input into a condition selector. There are 7 bits in each
microinstruction, called the Condition Selection Bits, CSB, which select a particular
condition. The selected condition is input into

a)the A, -A; address selector (Section 2.21.1)
b) the carry-in selector (Section 2.21.2), and
c¢)a SG called the Condition Save Registers, CR.
d) two programmable switches, KC and KD.

This is shown in Figure 2.42. It can be seen from this figure that we can save the

state of any condition as it arises and use it later when required. The
microoperations associated with CR, KC and KD are given in Table 2.33.

Switches exist in two variants: KA and KB are console-switches, KC and KD are
programmable switches that also can be loaded with the selected condition.

In the loading microoperation CR:=<SC>, Selected Condition, we can, instead of
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CR:=<{SC>

CRP:=CM|EX|S1|S2

CRP + 1

CRP -1

CRPC

CRPS 1:=CM|EX|S1|S2

CRPS2:=CRP

KCi=<{SC>

SET KC

CL.EAR KC

KD:=<{SC>

SET KD

CLEAR KD

Table 2,33

Microoperations for control of CR, KC and KD

Fligure 2. 42
Notation Microoperation
CYL Set cycle to long cycle
CcYs Set cycle to short cycle

Microoperations

Table 2.34

to control the length of cycie

58

using the notation SC, use the symbolic notation given in Table 2.32. Thus, for
example, if we wished to save the state of the ALOV condition in an instruction we
would write:

CR:=ALOV

It should be obvious that since the SC goes to both the CR and the Ay -A ¢ selector
one cannot specify a condition in the microinstruction sequencing field different
from the SC in the CR:=<SC> microoperation within the same instruction. Thus

WA:=WB; WAP+1, CR:=BUS; if CA then RA+1.
is not allowed. It would have to be written as 2 microinstructions:

WA:=WB ; WAP+1, CR:=BUS.
; if CA then RA+1.

Microinstructions of the following type are obviously allowed:

WB:=DS; PG -3, AS -, CR:=BP; if BP then HERE-1.

2.22.1 Short and Long Cycle
It is obviously important to know when one can test a condition. The system can
execute microinstructions in two different cycle times: a "'short” cycle time and a
“long” cycle time. The difference in these two cycles as it relates to the testing of
conditions can be easily stated:

long cycle
When the machine is operating in long cycle mode a/f conditions which arise
as a result of bus transport and microoperation execution are testable in the
same microinstruction in which they arise,

short cycle
When the machine is operating in short cycle mode a// conditions which arise

as a result of bus transport and microoperation execution are testable in the
next microinstruction to be executed.

Thus, if we are in long cycle and we write

WA:=WB; WAP+1; if BUS then RA+1.
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we are testing whether or not if the current bus transport (WA:=WB} is such that
BUS=0. Whereas, in short cycle, this microinstruction would mean we are testing
the previous bus transport’s condition. in order to test WA:=WB we would have to
write 2 microinstructions,

WA:=WB ; WAP+1.
; if BUS then RA+1.

Thus, a microinstruction can be thought of being executed in the following
sequential way:

Long cycle:
a) execute bus transport
b) execute microoperations
c) execute microinstruction sequencing based on the current conditions.

Short cycle:
a) delay the conditions of the previous microinstruction
b) execute bus transport
¢) execute microoperations
d) execute microinstruction sequencing based on the delayed conditions from
the previous microinstruction.

It is obvious that all of the examples given previously have been executed in the
“short cycle” mode {see the discussion in Section 2.4.1). This is, of course, the more
difficult of two concepts; however, a reader who has started the document from the
beginning should now be intuitively familiar with this concept.

There are two microoperations which allow the setting of the machine cycle as
shownin Table 2.34. If either microoperation is executed in microinstruction M, it
means that

a) the length of the cycle for instruction M does not change,
b) all subsequent microinstructions will be executed in the cycle length specified
in microinstruction M until a change of cycle is initiated.

The condition CYL can be used to determine the length of the current cycle. If
CYL=1, i.e., TRUE, this means the machine is currently operating in long cycle,
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otherwise, it is operating in short cycle.

2.23 Aucxiliary Control Facilities
The auxiliary control facilities associated with the MATHILDA processor as shown
in Figure 2.1, i.e., the system counters and snooper facilities, will now be discussed.

Selector

cBsG 2.23.1 Counter B
The system has 2 counters associated with it: Counter A, CA, has been introduced
s © in Section 2.2, Counter B, CB, introduced here, is shown in Figure 2.43. A

comparison of this figure with Figure 2.3 which shows CA shows that CB is
identical with CA except that CA can be loaded from the EX register whereas CB
can be loaded from the output of the BE, i.e., we have

Sel.

Selector

CA:=CM|EX|SB|SG, and CB:=CM|BE|SB|SG.

Note, the output of the BE is 6 bits, whereas CB is 16 bits wide. Whenever BE is

Counter B, B selected as input CB the high order 10 bits of CB are set to 0. The microoperations
Figure 2.43 associated with CB, CBSG, and CBP are given in Table 2.35. These are, of course,

apart from the above difference, identical to those associated with CA and merely
shown here for convenience. An example of the use of CB has been given as
example 2 in Section 2.16. It should be quite obvious that CA and CB may be used
independently of one another. One may count up in CA while counting down in CB,

for example,
CB:=CM|BE|SB|S6 CA+1,CB-1..
cB + 1
B - 1 2.23.2 The Snooper Facility
The Snooper Facility consists of a) a Snooper Control Store and b) Snooper

CBC Resources (e.g. 2 groups of 16-registers, counter, and comparators). The Snooper
CBSG:=CB unit works in the following way: when the address of the next microinstruction to be

) executed is sent to the MATHILDA Control Store address buffer, it is also gated into
CBP:=CM|sB|S1|S52 the Snooper Control Store address buffer. At the same time the microinstruction is

fetched so that it can be executed, the contents of its associated Snooper Control
Store location is fetched; in parallel with the microinstruction being executed, the
CBPS2:=CBP contents of its associated Snooper Control Store just fetched is used to control the
operation of the Snooper Resources. Snooper Control Store (80 nanosecond
storage) is 16-bit wide and has the same number of words as the MATHILDA
cBP -1 Contro! Store. A snooper word can specify, for example, any two registers which
can be counted up (or down). The Snooper Facilities can be written through the

cBPSh=CM|sB|S1|S2

cBpP + 1

CcBPC

Table 2. 35
Microoperations for control of CB, CBP, and CBSG
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normal ports of the system, and be read through the Status Facility. Snooper
Control Store is writable so that different data gathering routines can be associated
with the same segment of microcode without changing the microcode. The user is
allowed to establish the correspondence between any particular snooper resource
and the routine upon which it is snooping. A more complete description of the
Snoopers is given in [9].

2.24 An Alternative View of the Working Registers

The description of WA which was given in Section 2.4 introduced WA as a 256
element RG. In Figure 2.6 the address pointer, WAP, was shown to be 8-bits wide
so that the WA registers could be addressed as 256 contiguous registers. in fact, the
address pointer actually consists of two 4-bit pointers which had been “coupled”
together to give the 8-bit wide pointer described in Section 2.4.. Figure 2.44 shows
WA with its two 4-bit pointers called the Group and Unit pointer; WB, not shown, is
identical.

When the microoperation WAP COUPLE is executed, the Group and Unit pointers
are connected together to give the 8-bit wide pointer, WAP. After the
microoperation WAP UNCOUPLE is executed, the Group and Unit pointers function
as independent pointers. The low order 4-bits of the 8-bit address required to
specify a particular register are given by the WA Unit pointer, WAU; the high order
4-bits of the address are given by the WA Group pointer, WAG. Thus, WA can be
considered to be 16 RG's, each RG having 16 registers.

The microoperations associated with the WAU and WAG pointers are given in Table
2.36. (The similar microoperations for WB are not shown.)

If we wanted to point to the 9th unit of group 3 and then transfer its contents to the
DS, we could write, assuming the pointers are uncoupled,

; WAG:=3, WAU:=9.
DS:=WA |l

The microoperations associated with WAP in Table 2.4 can now be given their
appropriate meaning in terms of the microoperations in Table 2.36. Assuming WAU
and WAG are coupled, we have
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WAP+1 = WAU+1

—om|Ex|SB|S6 WAL WAP-1 :=WAU-1

WALL:=C WAUS:= WAPC ::=WAUC and WAGC

WAU + 1 WAUSP + 1 , WAP:=CM|EX|SB|SG :=WAU:=CMJEX|SB|SG and WAG:=CM|EX|SB|SG
WAU - 1 WALISP - 1

Let us now turn our attention to the pointer save capability shown in Figure 2.44.
WAUC WAUSPC When WA is considered as 16 groups of 16 registers, the WAQ and WAG pointers
may be saved independently of one another. The microoperations associated with
this facility are given in Table 2.37. As an example, suppose we are in group 3 and
WAUSPS1:=CM|SB|S1]S2 WIS.h to work m_gr.oup. 8. Before wc_>rk.|ng in group 8 we want to save the unit to
which we are pointing in group 3. This is done by executing

WAG:=CM|EX|SB[SG WAUSP:=CM|SB |S1|S2
WAG + 1

WAG -1 WAUSPS2:=WAUSP
WAGE VAGS —WAG WAUS:=WAU, WAG:=8. .
WAPCOUPLE WAGSP + 1 | The microoperations associated with WAPS in Table 2.4 can now be given their
WAPUNCOUPLE WAGSP - 1 appropriate meaning in terms of the microoperations in Table 2.39. Thus we have,
WAGSPC WAPS:=WAP ::== WAUS:=WAU and WAGS:=WAG
Table 2.36 WAPSP+1 ::=WAUSP+1 and WAGSP+1

WAGSP:=CM |SB|S1|S2

Microoperations for control WAPSP-1 ::= WAUSP-1 and WAGSP-1
of the WAU and WAG pointers WAGSPS1:=CM|SB|S1|S2 WAPSPC ::= WAUSPC and WAGSPC.
WAGSPS2:=WAGSP Let psource=CM|SB|S1|SZ then
WAPSP:= psource :=WAUSP:= psource and WAGSP:= psource
Table 2, 37

‘ WAPSPS1:= psource :=WAPSPS1:= psource and WAGSP1:= psource
Microoperations for control of WAUS and WAGS WAPSPS2:=WAPSP  :=WAUSPS2:=WAUSP and WAGSPS2:=WAGSP

There are a few additional conditions which can now be added to Table 2.32, the
partial listing of symbol conditions. These are given in Table 2.38.

Thus we can deal with WA or WB as either 256 contiguous registers or 16 groups of
Unit Symbolic Condition 16 registers. We can switch back and forth between either interpretation in a
n notation relatively straightforward way.

WAUIOV WAU = 1111 (WAU overflow)
= 1111 (WAG overflow) ) ] .
A WAGV wAe \ A led 2.25 An Alternative View of the Postshift Masks
- e lte - . ' - -

WACS WACS = 1 7 WAU and WAS are coup The description of the Postshift Masks which was given in Section 2.7 was

wBUOV WBU = 1111 (WBU overflow) structured to make the Postshift Masks look as much like the Bus Masks as possible,
wB WBGOV WBG = 1111 (WBG overflow) to enhance the understanding of this unit. In fact, the output of the BS is masked

wBCS WBCS = 1 » WBU and WBG are coupled

Table 2,38

Additional WA and WB Conditions
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In Section 2.7 we had introduced the mask to be PAY PG; here we had merely
assumed all elements of PB to contain all O’s, implying that PM=PA. The actual

cm _‘%- [ oot o Generaror. PO I =) situatio_n is_shown more clearly in Figure 2.45._ T.he most important thing to note
ex 22 from this diagram is that the PA/PB structure is indeed the same as the MA/MB

c - - . - . -
BE g‘é’ Postshift Masks, PA, P8, and PG structure (see Figure 2.9). The microoperations associated with PB are shown in
sG O‘é Figure 2.45 Table 2.39.

The name of the common SG associated with the PA pointer and the PB pointer is
the Postshift Mask Standard Group, PMG. The microoperations associated with this
SG are given in Table 2.40. We will assume that all elements of PB contain all O’s so

that the effective mask is PAV PG and all of our previous standardizations for the
use of this facility are still valid.

PMSG:=SB
.= xX|s1|s2 .

PMP:=CM|EX|S1 2.26 Wide Store Address

PB:=BUS PMP + 1 Mathilda is connected to a memory system called the Wide Store (WS). It is a 64 bit
’ wide core memory (at present 32K words), which is also connected to other processors
PBP:=CM|EX|SB|SG PMP - 1 {e.g. RIKKE-1). Wide Store is operated as an i/o device, connected through the |A
PBRP + 1 PMPC and OA data ports as the only device on these ports. Hence IAD and OAD have no
interpretation, as no device selection is needed.
PBP - 1 PMPS1:=CM|EX|S1|S2
PBPC PMPS2:=PMP
Table 2.39 Table 2. 40

Microoperations for control of PB Microoperations for control of PMSG
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Wide Store Address, WSA

Figure 2. 46

WSA

WSA = CM|EX|SB|SG
WSA +1

WSA -1
WSAC

Symbolic Conditio

. ition
WSASG notation

WSAB Wide Store Address busy

WSASG 1= WSA WSAOR WSA out of range
LWSASPO\/ WSAP = 1111 {WSAP overflow)

WSAP 1= CM|EX|S 1|52
WSAP +1 Table 2, 42

WSAP -1
WSAPC

WSAPS1 := CM|EX|S1]|S2
WSAPS2 1= WSAP

Table 2.41

Microoperations for control of WSA

NSA Conditions
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IA thus acts as a memory buffer register on reading WS, and OA acts as the buffer
register for writing WS. As memory address register there is a 16 bit register called
WSA (Fig. 2.46) which looks very much like Counter A. WSA has an associated
register group WSASG which can be used to save the contents of WSA for a possible
later rewriting. WSA can also be loaded from CM, SB, and EX, and its contents can be
incremented, decremented and cleared.

There is a condition (WSAOR) available to test whether the actual contents of WSA
correspond to an address outside the physical address space. Also, since WSA
interacts with an asynchronous device, there is a special condition WSAB available to
test whether Wide Store has "used” the address in WSA.

WSAB acts as a "busy-flag” for WSA, and will be true from the moment a memory
transfer has been requested and until WS has read the contents of WSA. Thus
changing the contents of WSA while WSAB is true may result in strange effects.

Since it is not the purpose of this description to explain the details of the operation of
Wide Store, we will refer the reader to other documentation on the memory system.
Since WS is a resource which is shared with other processors, and erroneous
operation may interfere with these, access to WS has to be done with extreme
caution. It is advised to use available “system routines” for such purposes.
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BSE sSBD SOURCE
22 oy 1ehs 18
F1 S %’1 F2 % 3 S3 F4
53 57 |58 s5|Dzlss 47| Das| s 38 37 35
mop Sel. M’ mop ‘MY mop Sel. mop
h_, \
D data D dataBS data
BISB | CISB csB Ay | oA,
=3 14, 13 12, als 3 fal
AS Vs DS E_J
=4 27 5 4 3

Subfields of Microinstruction

Figure 3.1

Symbolic Notation for SOURCE!s and SBD's

SOURCE sSBD

Symbolic Symbolic

Notation Notation
se no

destination
AL MA
Vs MB
Ds LR
WA WA
wB wB
1A OA
1B oB
Table 3.1
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3.0 Microinstruction Specification and Execution
We will in this section discuss the microinstruction format, the manner in which the
instruction is executed, and then give a comprehensive table of all microoperations.

3.1 Microinstruction Format
Microinstructions are 64-bits wide. There are 4 major fields in a microinstruction.
These fields specify

a) MDP transport (7 bits)

b) microoperations (mops) and data (35 bits)
¢) microinstruction sequencing {16 bits)

d) control of AS, VS, and DS (6 bits)

These fields are shown in Figure 3.1 with their sub-fields named and their
actual bit location in the microinstruction. Let us discuss each of them in more
detail.

(A) The MDP Transport Field

Table 3.1 summarizes the symbolic notation for SOURCE’s and SBD's. If the BS
Enable bit="NBS’, no bus shift occurs; if the BS Enable bit="BS’ a bus shift occurs. As
an example, the MDP transport specification WB:=DS will be shown symbolically as

BSE

sBD

SOURCE

~Nss!

wat

Ds!

(B) The microoperations and Data Field
The microoperations and data field can be considered to be made up of the
following fields:

F,.5, . M/Dy . Fg ,M/D; ,F,,S3,M/Dy , Fy

as shown in Figure 3.1.

The following commenits should assist in understanding this diagram.
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(B.1) Field F1 always specifies a microoperation activation (1 of 128 mops)

if M/D2 ="M’ thenk, specifies a microoperation activation (1 of 128 mops).

if M/D5 =M’ then F specifies a microoperation activation (1 of 128 mops).
if M/D, =M’ thenF, specifies a microoperation activation (1 of 128 mops).

Therefore up to 4 microoperations may be specified in this field; for example,

; BSP+1, WBP+1, MBP+1, CA-1;
{B.2) We have seen that many microoperations concern the loading of a register
from various sources, e.g.,

MAP:=CM|EX|SB|SG.
Such a mop must be placed either in field F; orFz . If itis placed in Fy , then the 2
selection bits S1 specify which source will be used. if the source specified is the CM
then M/D, is setto ‘D’ and F; is used as data (similarly M/Dg and F, are used
with F4 ). For example

MAP:=7

could be symbolically represented

= s

M =
1 1 [»)

2

MAR:=! oMt \LD' 17

Thus one sees that there can be at most 2 microoperations of this type in a
microinstruction.

(B.3) Figure 3.1 also shows that if the BS control data is to be taken from the CM
then F; is used as data. If the BS has been enabled, the control source is selected
via field S5 . Thus the specification
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Ar oand A

Svymbolic
Notation

EX

: AL

} RB |
3 RA
o

SA

Table 3.2

mbolic Notations for A, and Ar
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WA:=AL, 3

could be symbolically represented

M
T, Fa BS| s8D SOURCE

D! 131 BY N TAL!

(B.4) All of the possible microoperations are not available in each field Fi.Fs  Fg,
and F, . The microoperations which can be specified in each field are given in

Section 3.3, the Comprehensive Tables of Microoperations for Individual Functional
Units.

(C) The Microinstruction Sequencing Field

Table 3.2 summarizes the symbolic notation for A, and A; . Table 2.26 presents
this information for the BISB (B-input selection bits).

Example 1) If BUS then HERE. could be represented

B1SB CISB csB A A

19! ‘BUS! A+ 1! AL

Example 2) if ALOV then RA+12. could be represented

ciss cs8 Af A
t ’
"t ‘ ! IALOV! AT 'RAT

However, this is incomplete and immediately raises the question where do T and t

BISB




Symbolic Shift/Load Control
Notation
v Do Nothing
- Shift Right
-« Shift Left
= L.oad
Table 3.3

Shift/Load Control Bits
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come from? T is always the least significant 6 bits of F; and t is aIwaYs the least

significant O hitg of £ 5 - BISB tells us, of course, how we will combine T, 1, SA5:0)

and to yield the B-data. Thus the compiete specification would be

’

M
D, F BISB | CISB cse A
D, 4

f 1

D! 12! 1t et IALOV! [ 1A+TT [ IRA!

(D) AS, VS, and DS Contro! Field. .
The dedicated bits for shifter control are interpreted as shown in Table 3.3. Thus,
the specification AS , VS4 , DS+ could be represented symbolically as

AS VS DS

The specification AS, LR:=AL; DS* . would be given by

Ds BS {sSBD | SOURCE [BiSg

|

I

cisB csB Af .

'TRUE! | 'A+T 1A+ ]!

} '€t INBS | 'LR!

3.2 Microinstruction Execution

As introduced in Section 2.4.1 and then explained in more detail in Section 2221,
the machine has both a long cycle and a short cycle. The result of that discussion,

which is repeated here for convenience is that microinstructions can be thought of
being executed in the following sequential way:

long cycle:
A) microinstruction fetch
B) MDP transport
C) execute microoperations
D) microinstruction sequencing based on current conditions
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short cycle:
A) microinstruction fetch
B) MDP transport
C) execute microoperations
D} microinstruction sequencing based on delayed conditions.

Let us now examine each of the sequential steps in more detail.

A) Microinstruction fetch

1:
2:

Fetch the content of the CS [CS Address Buffer].
In short cycle save the value of all testabie conditions.

B) MDP Transport

NOObhWN=

: Selection of source

: Masking by MA V MB

: Buffering in the BUS-latch

: Shifting by BS if enabled

: Masking by PA VPB V PG

: Buffering in the SB-latch

: Loading into a seiected MDP destination

C) Microoperation Execution

-—

o1 H W

. Gate the data from S-fields and from F2, F3, F4 fields to their destinations

irrespective of their expected or non-expected use.

: Decode the E-fields (if enabled by M-fields).

: Activate (clock) the specified clock 1-mops. (See Section 3.2.1.)
: Activate the specified load/shift actions in AS, VS, and DS.

: Activate (clock) the specified clock 2-mops. (See Section 3.2.1.)

D) Microinstruction Sequencing

1

: Choosethe selected condition, c. [In short cycle ¢ is the vaiue of the selected

condition prior to MDP transport, in long cycie use the new value of the
condition.]

: Select the carry-in and B-input into the return jump stack adders and the

CUAL.

: Compute the results of the return jump stacks’ additions and the CUAL

function.

: Select the new address, using A, if c=1 or A; if ¢c=0 as the microinstruction

address bus selection, and load the address-buffers.

: if RA and RB have been selected then pop the appropriate stack(s).
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8: if a force-zero situation has occurred then load the IRA, and clear the
address-buffers.

3.2.1 Clock Pulse 1 and Clock Pulse 2

Recall that the RG is a basic building element used in the system. A very common
operation is to load an RG and then change its pointer {e.g. this was done quite
frequently in our examples). Often, one also wished to save the address of the
current element pointed to before the pointer is changed. It was decided that this
capability should be allowed in one microinstruction and, furthermore, every RG in
the system should be treated in the same uniform way.

The microinstruction
AS:=WA; WAPS:=WAP, WAP+1

means: take the contents of WA[WAP] and store it in the AS; then store the WAP in
the WAPS registers and then increment WAP by 1. It means this because the BD
load occurs in step B.7 and the microoperation WAPS:=WAP occurs at clock 1 and
the microoperation WAP+1 occurs at clock 2 during step C. Thus, every RG in the
system can be looked at in the following way:

a) it canbe loaded or used as a source
b} its current pointer can be saved, if it has a save capability
¢} its pointer can be changed after a) and b);

all with one microoperation.

An additional example is
WB:=AL, -; SET ALF+, WBU:=9, BSSC.||l||
which means, assuming the BSS:='BE’": store the output of AL in WB[WBP] after

shifting it the amount specified by the BE, change the ALF to A+B and change the
WBU to 9, reset the BSS to 'CM’ and then go to the next microinstruction.
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3.3 Comprehensive Tables of Microoperations for Individual Functional Units
The following tables {represented in alphabetical order based on the abbreviations
associated with the functional unit) show which microoperations can appear in
which fields and at which clock pulse these microoperations are initiated. in these
tables we use the following notation:

XX=EX|SB|SG
VV=BE|SB|SG
YY =S8B|S1|S2
ZZ=EX|S1|82
EE=EX|SB
Some particular points perhaps should be recalled and emphasized here;

a) use of these tables will show what space and time conflicts arise in the
construction of a microinstruction. The reader is encouraged to review some
of the examples of the earlier sections by constructing symbolic
microinstructions similar to those presented in Section 3.1.

b} t comes from field F , so if t is being used, for example in relative addressing,
a microoperation should not be specified inF .

¢c)T comes from field F5, so if T is being used, for example in absolute
addressing, a microoperation should not be specified in F5 .

d) data for the BS, if the CM is the control source, comes from Fq .

e) data for the PG, if the CM is the control source, comes from Fy .

Inside the table, ® means, that the microoperation is not yet implemented in that
field.

Outside the table, G} means, that the microoperation is not yet implemented.
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MICRODPERA [ IONS FOR Arithmetic Logical Unit, Al

| e ] 7 N 7 T2 1] 7 1

e F 51 B4 Fz Fi s3 % 4 MICROOPERATION
o
2z
2 MIALP ;= cmlp dd.ddlload the AL_SG Pointer from cm| EX|S1|S2
T
Lz MALP +1 Increment AL SG Pointer
2 o IMlALe 1 Decrement AL SG Pointer
2 MIAL PC Clear AL $G Pointer
2z Load the AL SG Savel register from
2 M]ALPSI:= MIALPS 1= (3N (s] daddlcmiEx| 51|52
Load the AL SG SaveZ register from
1 [ALPSZ:=ALP L the AL $G Pointer
MALSO:=sE a Load the AL. SG with S8iS:0)
XX ! Load the AL Function register from
cm o] dddddd| cM| EX| 58] 50
MISET ALF + Set AL Function to A+B iz LR+AS)
M{SET ALF - 1 : Sot AL Function to A-8 (= LR-AS)
M{SET ALF A MISETALE A ISct AL Eunction o A (= LR
MISETALE +1 Set AL Function to A+1 (= LR+1)
MISETALF B | | I Sct AL Function to B {z AS)
SETALF _‘
MIALLOS . Set AL Function to generate 00....0 e
SETALF J SETALF K
MALL 1S MiALLLS Set AL Function to yenerate 11.... 1 °
MICROORE RATIONS [TOR lator Shifter, AS
I N 2 o1 7 =TT 7
M M p
c, F1 sty F2 3 532 =4 MICROOPERA TION
x| 1 ] Load the AS(0) Source register from
2 [AS(0)S [SYAE __.ddd MAS(0):= CMIEXSBISG
XX ‘ Load the AS(63) Source register from ]
2 |AS(63)S:= CM o ddd MIAS(63)S:=  CMEX]SB|SG
i XX | ‘ _oad the AS(V) Selection register from
2 |As(vIS cMlp] ddcddd Mlasivis:= CMIEX|sBISG
L mlast Sct the AS 10 a logical feft shift

MIAS(VIS +1

FEFE

Increment the AS(V) Selection register

\

Decrement the AS{V) Selection register

©

MlASLR St the AS to a logical right shift
M| AS(VISC Clear the AS(V) Seiection register

——MiASIVIS -




MICROOPERATIONS FOR  AVD (AS, VS,DS) Standard Group and paralle) mops

L 7 T2 Tl 7 Iof 7 T2 i 7]
c 1 s1 % F2 lM 3 s3 5] 4 MICROOPERATION
f
zz Load the AVD SG Pointer from
2 M| AVDP:= cM D dddd|CMIEX|ST|S2
2 M| AVDR +1 Increment the AVD SG_Pointer.
2 M| AvoR -1 Decrement the AVD_SG Painter
2 M| AVDRC Clear the AVD SG Pointer
ZZ Load the AVDP Savel register from
2 MIAVDPSTi=  [M|AVDPST:=  [CM(D dddd|cMlEX[SI]|S2
*lavoPsai= AVDPS2:= Load the AVDP Save2 register from the
1 VDR M|AVDP €S Pointer
1 MiavDSG: =SB Load the AVD SG from SB(5:0}
2 M| AvoLL Set AS, VS and DS to logical left shift
2 M| AVDLR Set AS, VS, and DS to logical right shift
Clear AS, VS, and DS Variable Bit Selection
2 M|AVD(V)SC register
XX Load AS(0), vS(0), and DS( 1:0) Source
2 _{AVD(0)S:= CM D ddd register from CM|EX|SB |SG
N X Load AS(63), VS(€3), and DS(63:62) Source
2 |AVD(63)S:= CM [ ddd register from CM|EX|SBISG
XX Load AS{V}, VS(V),and DS(V) Selection
2 |AVD(V)S:= CM[D] dddddd register from CM|EX|SB[SG
MICROOPERATIONS FOR __Bit Encoder, BE.
L 7 T2 I 7 T 7 [=2Ti] 7
c 1 st l% F2 i F3 s 4 MICROOPERATION
2 |BEM LOAD Load results of MSB enceding into MSB,
1 7 AuaisEmt MSB,; and MSE, are interchanged
2 M|SEL LOAD |l oad results of LSB encoding into LS.
1 MiBELL LSB, and L.SB, are interchanged
Load results of MSB encoding into MSB, AND
2 |BELMLOAD MIBELM LOAD load results of LSB encading into LSE;
MSB, and MSB, arc interchanged AND
! M BELMI M [zELMI LSB,; and LSB; are interchanged
XX Load BE Function register from
2 |BEF:= CcM D dddd cMEXISE |SG
SET BEF Set the BEF to LSB, (clear the BEF
2 M[Lsg1 FFunction register}
Seis PG to generate from LSB If BE
' M{BEPGL is control Input
Sets BG to generate from MSB if BE,
1 M{BEPGM is control input
27
2 M|BEP:= <MD d ddd [toad BESG Pointer from CMIEX|S 1|52
2 M| SEP +1 Increment BESG Pointer
z M|BEP -1 Decrement BESG Pointer
2 M {BEPC Clear BESG Pointer
2 M[BEPS1im M IBEPST:= CM (D d.dddlt oad BEP Savel register from CMIEX|S1]S2
BEPS2:~BEP L oad BEP Save2 register from BE Pointer
1 —_IM|BESG:=SE Load BE SG from SB(3:0)

72



MICROOPERATIONS FOR

Bus Shifler, 85

73

I PR K 1 7 120 7
Al
[cn F1 s1 !-\é Fz }M F3 53 F4 MICROOPERATION
Load the BS Selection register with dd,
2 |BSS:i= MiBSS:= MBSS:= dd dd='CM!| 'EXY IBEY 'SG!
Lz V| BSS +1 Ingrement _the BS Solection reqisser _j®
b Ml BSS -1 Decrement the BS Selection register ©
I
H
2 m| Bssc Clear the 85 Selection register
{THIS DATA 1S REQUIRED WHENEVER THE
D| dddada BUS SHIF TER CONTROL IS USING CMASDATA)
2_|Bsp:i= IcM 1D dddd Load B SG pointer_from CM}EX|S1]|
2 {BSP +1 Increment 8S SG Pointer
2 issp 1 Decrement 8S SG Pointer
2 B8SPC Clear BS SG Pointer
2 |BSPSI:= dddd Load BSP Savel register from CM| EX|S1]S3
Load BSP Save2 register from
L M | BSPS2: ~BSH) BS SG Pointer
!
i1 . Load BS SG from SB(5:0)
MICROOPERATIONS FOR ounzer
7 T2 T4 7 T 7 2 1l 7 ]
t; F st & F2 M F3 s3 1 4 MICROOPERAT ION
i
XX Load CA from CM {16 bits), S8 (16 bits),
2 | ca= CM [P|ddddddd|D|ddddddd] dd M| Ca= EX (16 bits), or CASG (16 bits)
2 | CA+1 M|CA +1 Ml CA +1 fncrament CA
2 lea MiGA -1 M ca -1 Decrement CA
2_| CAC ML:AC M| cac Clear CA
2 [ CAP:= cM o dddd T i Load the CA $GPainter from CM\SE‘S_‘J:EZ_‘ €]
©
2 | CAP +1 m[cAP +1 l Increment CA SG_Pointer
2 jcAap -1 mlcae -1 i Decrement CA SG Pointer
2 | capc M| carc j Clear CA SG Pointer
o
! M|case:=ca | M| CaSG:=Ca” |Load CA SG from CA
YY 1 B
2 | cAPS 1= cm D ddcd { Load CAP Savel register from cM|sB|S 1|52 |©
®
! M|CAPSZ:=CAR Load CAP Save2 register from CA $G Pointe]
L
MICROOPERATIONS FOR Counter 8, C8
- 7 T2 1] 7 T 7 [z 11 7 ]
c =1 s (4 F2 H F3 ss o MICROOPERATION
S [=Y O
A% oag CB from CM {16 bits), 8 (16 bits),
ca: eMIpldddddddDldddddddidd Ml Cai= BeT (6 bits), or CBSG (16 bits)
2 lca+1 Mmlca 41 CH 1 Increment CB
b cg -1 M| cs -1 M| cB -1 Decrement CB
2 |cec M| cac Clear CB
L2 dddd|load the CB $G Pointer from CM|SB[S1] e
2 [nerement CB SG Pojnter
2 [ _|oserement 8 56 Pointer
2 Clear GB SG Pointer
: ©
]_ 1_lcgsai=cn 1.020.CB_SG from CB
T
! XY, Load CBP Savel register from ®
2_| CMm D ddgdcMmlsalsTS2
] Load CBF Save 2 register from ®
LW CB SG Pointer
i +) when BE is selected as the source, the
! ‘ high order 10 bits of CiB a~e set to 0




MICROOPERATIONS FOR _Condilion Save Register; CR and_switches K, KD

[ 7 2 [1] 7 Tal 7 211 7 ]
<, Fi s1 [ F2 M. F3a s3 [ Fa4 MICROOPERATION
zz
2 M| CRP:= CcM [O dddd|Load CR RG Pointer from CMIEX|S1|S2 ]
2 M| CRP +1 Increment CR RS Pointer @
2 M| cre -1 Decrement CR RG Pointer °
2 M| crRPC Clear CR RG Polnter e
I ZZ
2 M| CRPS 1:= M| CRPS 1= cM (D d d d d |Load CR RG Savelbuffer from CMIEX|S1|S2 |©
1_|cRPS2:=CRP Load CR RG Savezbuffer from CR RG Pointer| ®
Load CR RG with the current Selected
SHCR:=<SC> M| CR:=<SC MICR:=<SC> | Condition ]
1 M{ SETKC KCi= true
1 M| KCC KC:= false
Load KC with the current Selected
SH KCi=<SC> M| KC:=<SCx Condition
1
1
Load KD with the current Solected
LS" KD:=<SC> Cordition

\ S* = special depending on short or long ycle 1o give the value of the condition used in sequencing.

MICROOPERATIONS FOR

Control Unit, CU

[ 7 = 10 7 4] 7 =TT z ]
M M
1 s1 5] F2 [ 3 S35 4 MICROOPERATION
1 M| SA:=S8 Load Save Address register from S8(11:0)
i M| SA +1 Increment Save Address
1 M sA -1 Decrement Save Address
1 M sac lCIear Save Address
1 M| CUALF:= =) d ddddiload CU AL Function register withd ddd d |
SET cu
1 M| ALF + Set CU AL Function register to A+3
1 |SETCUALF B Set CU AL Function register to B
1 M| RA Decrement RA Pointer
LAl MiRA 4 MRA § increment RA Pointer and then Load RA
1 M| RAPC Clear RA Pointer
~ Decrement RB Pointer
M| RE MI RB | Increment RB Pointer and then Losd RS
] Clear RB Pointer
M| EX LOAD [ Load the External register
= Shift the External register 4 bits right cyclic
Losd control store and then choase A+1 ag
M| cs LOAD the address of the next migralnstruction
M| INTON M| INTON Enable intercupt conditions to force 0 addresd
Disable interrupt conditions 1o
M| INTOFF M| INTOFE force 0 address
M| sTOP A M STOP A i the corresponding console swilch A or B
Is wrned on then stop execution elge do
mlsTor B nothing
Ml oyl Sets the mode of the processor (o be in
Long resp. Short cycle, starting with the
vl cve execution of the next instruction.
( 1_|Noop1 M| NoOP2 M| NOOP3 M| NOOP4 \No Operation (dummy)
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MICROOPERATICNS FOR

Double Shifter, DS

75

= 7 [ 211 7 T 7 IR 7
M Ml
C, Ft S [,3 F2 By F3 s3 4 MICROOPERATION
XX Load DS(1:0) Source register from
2 | DsS(1:0)8 := cM[D ddd CM|EX |SB|SG
XX Load DS(63:62) Source register from
2 | £S(63:62)S := | CMID ddd CM|EX|SBlSG
XX Load DS{V]} Selection register from
2 | DS(VIS := CM[B] ddadad CcM|EX|SB|S6
2 M| DSLL Set the DS to logical left shift
2 M| DSLR Sel the DS to logical right shift
M| DS(VISC Clear DS(V) Selectlon register
2 Ml DS(V)S +1 Increment DS{V) Selection register
2 M} DS(V)S =1 Decrement DS{V) Selection register
MICROOPERAT IONS FOR _tnput Port A, and
[ 7 L2 T z {1 7 L[ 7 ]
M M
c E1 SIS F2 F3 53 (oo Fa MICROOPERATION
I3
EE
1 | 1AD:= CM D dddd Load IA Device register from CM|EX|SS
2 | 1AA M| 1A4 M| 1AA Activate device, i.e. initiate read
1 M| LADC Clear 1A Device register
1 M| 1AD +1 Increment 1A Device register
1 M| 1AD -1 Decrement IA Device register
3
1180 cMm D dddd Load B Device register from CM|EX|SB
2 IBA M| IBA M| 1BA Activate device, i.e. Initiate read
1 M| 1BOC Clear I8 Device register
1 M} 18D +1 increment I8 Device register
t M} gD -1 Docrement 1B Device register
MICROOPERATIONS FOR __Loading Mask Registers A, LA
[ ? [2 T 7 I'T 7 [z T 7
< F1 st |§ F2 &l F3 safd a4 c
> )] oy MICROORPERAT ION
22|
2 | LAP := CMID dddd Load LASG Pointer from CM| EX|S1]S2
2 [ LAP +1 Mi LAP +1 M| LAP +1 Increment LASG Pointer.
2 LAP 1 M| LAP -1 M{ AP -1 Decrement LASG Pointer
2 | LARC LAPC Clear LASG Pointer
22|
2 | LAPS! t= cM|O dddd LAPS1:m Load LAP Savel register from CM|EX[$1|S2
1 M| L APS2:=i AR Load L.AP Save2 register fram LA Pointer
1 LA :=SB | Load LA from SB(63:0)
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MICROOPERATIONS FOR _IL oading Mask B, LB
T 7 Z 171 7 il 7 2T 7 ]
M ™ .
c F1 st s F2 ol F3 s3 Fa MICROOPERATION
2]
zz
M) B o= SR = dddd]|load LBSG Pointer from CM|EX|S1|S2
2 M [ Lap L8P +1 LBP + Increment LBSG Pointer
2 LeP -1 MiLee o1 Lee -1 Decrement LBSG Pointer.
lz M| LBPC LBPC Clear LBSG Poinler
zz
2 Ml LBPSI:=> M| LBPST:=  [CM |O dddd]lLoad LBP Savelregister from CMIEX]S1]52
1_|LBpsz=-1BP Load LBP Save 2register from L8 Pointer
' Ml LB =SB Load L8 from SB{63:0)
2 miLPC Clear LASG and LBSG pointer
MICROOPERATIONS FOR Local Registers, LR
| I 1271 7 [ 7 [z 17 7 )
M|
<, F1 F2 al F3 s3 Fa MICROOPERAT ION
zZ | mipi=D Load LR Input Peinter with DS(V+1:V)
2 LRIP +I tncrement LR Input Pointer
2 | LRIP -1 Decrement LR Input Pointer
LRIPC Clear LR nput Pointer
M| Lo := DS | Load LR Output Pointer with DS{v+ 1:V)
2 M| LROP 1 Increment LR Output Pointer
2 M} LROP -1 Oeccrement LR Output Pointer
2 M| LROPC Ciear LR Output Pointer
2 M|LRP =DS [M|LRP :=DS Load both LRIP and LROP with DS{\+1:v)
2 M} LRPC M| LRPC Clear_both LRIP and LROP
2| M| LRP 41 M LRP +1 increment both LRIP and LROP
2 M| LRP 1 M| LRP -1 Decrement both LRIP and LROP
MICROOPERATIONS FOR __gus Mask Reajsters, MA and MB
[ 7 [=z '] 7 Ll 7 [ 2177 7
M M
F1 st F2 3l F3 s3E a4 MICROOPERATION
XX
2 | MAP := CMD| d dodl M| MAP 1= Load MA Pointer from CM|EX| SB|SG
MAP +1 M| MAP +1 MAP +1 Increment MA Pointer
2 [map 1 M| MAP - MAP -1 Decrement MA Pointer
2 [{maPC M| MAPC M) MaPC Clear MA Pointer
AX
MEP ;= cM D] ddddl MBP = Load MB Pointer from CM|EX|SB|SG
2 | Map + M| MBP +1 MiMBP +1 increment MB Pointer
2 {mgP 1 Ml MBE 1 il MBI -1 Decroment M8 Pointer
MBEC M| MBPC M| MBPC Clear M8 Pointer
2z
M| Bme .= CM D] dd dd|Load 8M SG Pointer from CM|Ex|S1!52
BMP +1 increment BM SG Pointer
2 = Decrement BM SG Pointer
2 M| BMPC Clear 8M SG Pointer
Zz
2 BMPS) = |M| BmMPs) = [CMD dddd]l.oad BMP Savel register from CM|EX|S!|S2
BMPS2 1=
Load BMP Savel register from the BMPP
! M, Load BM S¢ with S8(3:0)




MICROOPERATIONS FOR

C

I

MICROOPERATION

THIS DATA 1S REQUIRED WHENEVER SP
IS CHOSENAS SOURCE AND SPP=/CM!(=0)

THIS DATA IS REQUIRED WHENEVER BUS
SHIFTER IS ENABLED AND BSS='CM'(=0)

THIS DATA IS REQUIRED WHENEVER MASK
GENERATOR IS ENABLED AND PGS=!CMI=0’

o

BUS:=ALL 1S

d by ble
Forces BUS=11....1 [ ooy oy assembler

waenever 4
“SOURCE>ZALL 15 ony
Forces 58<00.,..0 OURCE>ZALL 0S5

C* and C** are special clocks.

MICROOPERATIONS FOR _Qutput Ports A, B,C, and D, OA,08,0C, and 0D

L

&

MICROOPERATION

Load OA Device register from CM|IEX] S8

Activate device I. e.
initiate write with DM i= o

Deagtivate device (Reset)

z

Increment OA Device register

ES

Decrement OA Device register

Clear OA Device register

L-oad OB Device register from CM|EX S8

Activate device i.e.
initiate wrrite with DM, :=d

Deactivate device (Reset)

E

Increment OB Device regjster

Decrement OB Device register

Clear OB Device register

z

Load OC Device register from CM|EX|SE

K

Activate device i. e.
initiate write with DM, = ¢

Deagctivate device {Reset)

Ed

increment OC Device register

Decrement OC Device register

Clear OC Device register

1 [oc:=sus

Load OC from BUS(63:0}

Load OC Device register from CMIEX|SE

2_|ODA

Activate device i.e.,
inftiate write with OMy:=d

Deactivate device {Reset)

Increment OD Device register

Decrement OD Device register

Clear OD Device register

Load OO from BUS(63:0)




MICROOPERAT IONS FOR

Postghift Magks (P,

EB) and PMSG

[ [ 7~ T 7 “T2T] = |
< 1 51 % F2 ]— F3 53 % F4 MICROOPERATION
)
XX i

2| PAR:S cm | D) dddd| L.oad PA Pointer from CMIEX|SB|SG
2 | PAP +1 | PAP+1 M| PAP +1 Increment PA Pointer
2 |PAP -1 M| PAP-1 M| PAP -1 Decrement PA Pointer
2 | PAPC M{ PAPC Clcar PA Pointer

2
1 M| PA:=BUS L.oad PA RG from BUS(63:0)

XX
2] PaP:i= cm 1D dddd ‘7 L.oad PB Pointer from CMIEX|SB|SG
2| PBP +1 M PaP +1 Increment PE Pointer
2] pBP -1 M Decrement PE Pointer
2| pBPC M| PBRC Clear PB Pointer
1 M| PB:=BUS Load PB RG from BUS(63:0)
Z2

2 M| PMP:= CM [ D d'dddjload PM SG Pointer from CM|EX|S1|S2

|2 M| PME +1 Increment PM SG Pointer
2 M| PMP 1 Decrement PM SG Pointer
2 M| PMPC Clear BM SG Bointer

zz

2 M| PMPS 1:= M PMPS1:= CM D] ddddll oad PMP Savel register from CMIEX|S|Si2
1 |PMPSZ=PME Load PMP_Save2 reqister from PMSG Pointer
1 M| PMSGi=58 Logd PMSG from Sg(3:0)
2 M| PaBc Clear PA and PB Pointer

MICROOPERATIONS FOR

Postshift Mask Generalor, PG

7 2T 7 Tl 7 [z T 7
M j M -
1 st 2 3 s3] Fa MICROOPERATION
Mask Generator Control Source Selection re-|
M| PGS:i= dd gister is set 1o dd, ddmlCMm!| EX!IBE!|'SGT
2 Ml PGS +1 M PGS +1 increment PG Selection register
2 M Pes -1 M| PGS -1 Decrement PG Selection register
2 M| PESC M PGSC Clear PG Selection register
THIS DATA 1S REQUIRED WHENEVER THE
Dlddddddd MASK GENERATOR CONTROL 1S USING
CM AS DATA_ "~
2 M| PGP:= cm D dd ddtoad PG SG Pointer from CMEX|S1|S2
2 M} PGP +1 increment PG SG Pointer
2 M PGP -1 Decrement PG S6 Painter
Lz M| PGPC Clear PG SG Pointer
ZZ
2 M| PGPS T:= M| PGPS [i= <M D) ¢ ddd|Load PG Savel registec from CMl EX|S1]S2
1_|PGPS2i=pGR Load PG Save2 register from PGP
! M PGSG=SB Load PG SG from SB(6:0)

78
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MICROOPERAT IONS FOR Status Port, SP
7 [z i ? [l z 2 o] 7
< F1 s1 ’EV\L F2 =8 F3 s3 4 Fa L MICROOPERATION

THIS DATA 1S REQUIRED WHENEVER
Dldddadddloldodddaal gg THE STATUS PORT IS BEING USED AS
SOURCE AND SPP= 0 (= ICM!'}

EE
1 | sPpi= CMID| dddddd MISPP = Load Status Port Pointer from CM|EX|SH
1 M| SPP +1 {nerement the Status Port Pointer
1 I M| SPP -1 Decrement the Status Port Pointer

1 T Ml spec J_Vclear the Status Port Pointer

MICROOPERATIONS FOR _\Variable Width Shifter, VS

7 [ 2T 7 | 7 T2l "7 |
M M .
<, =1 st g £2 5{ F3 s3f 4 MICROOPERAT ION
XX Load the VS(0) Source rogister from
2 | vsios < (3] ddd M) vs(o)s ;= [CMIEX|SB|SG
. Load the VS(63) Source register from
2 | vsieas e ddd v vs(e3ls ;= |cMm|EX|38]S6
XX Load the VS{V) Se ection register from
2 | vstvis CM[Dl dddddd M VSIVIS cMm|EX] SBlSG
2 M| VSLL Set the VS to a logical left shift
2 M| vsLR Set the VS to a logical right shift

2 | vs(v)sc Cloar the VSIV) Selection register

2 | vsivis +1 increment the vS(\V) Selection register

2| vsivis Qccrement the VS(V} Selection register




MICROOPERATIONS FOR _Working Registers, WA

80

7 Tz 11T 7 i 7 [z 7 1
c 1 s1 lg F2 % F3 S3 5 i MICROOPERATION
o )
2 | wau cr;( = dddd _oad WA Unit pointer from CM| EX|S8|S6G
2 | wau+ Ml WAG 41 tncrement WA Unit painter
2 | wau 11 M| wau 2 Decrement WA Unit pointer
2 | wauc M| wauc Clear WA Unit pointer
XX
2 MIWAG := S E d dd d| Load WA Group pointer from CM|EX|S8|SG
2 MWAG +1 Increment WA Group pointer
2 MWAG -1 Decrement WA Group pointer
2 mwace Clear WA Group pointer
% XX oad WA Unit pointer from GM| EX| SB| 56 AN
2 | WAP = iCM D dddd CTM{ D) ddddl| load WA Group pointer from Cm| EX| SB[ SG
2 | wapC Clear WA Unit pointer and WA Group pointer *)
Couple WA Unit and Group pointers to form an
1 MWAPCOURLE| 8 bit counter
WAP- Uncouple WA Unit and Group pointers to form two
! MIUNCOUPLE | independent & bit counters ol
*} WAP +1 is cquivalent to WAU +1, and WAP -1 to WAU -1, assuming that the unit and group pointers are coupled.
MICROOPERATIONS FOR WA Unit and Grouo Standard Groups, WAUS and WAGS
[ — T2 i 7 1 2N P ) I 2|
M 1
c F1 F£2 3 s3 3] Fa MICROOPERATION
1
®
1 |waus:=wau L.oad WA Unit SG with WAU
Yy )
2 Mlwause:= oM [ dd ddltoad WAUS Peinter from CM[SAIS1 ]
2 MIWAUSE +1__ | Inceemens WA Unit SG Pointer.
2 MIWAUSP -1 |Decrement WA Linit SG Pointor
2 M IWAUSPC Clear WA Unit SG Pointer
L.oad WAUISP Save 1 register from e
2 ddddlCM|sBlSI|S2
WAUSPS2:= =l
) | wause Load WAUSP Save2 register from WAUSP.
o
1 _IWAGS:=WAG M [WAGS:=WAG | Load WA Group SG with WAG
YY. ]
2 |WAGSP:= cM D dddd Load WAGSP from CM|S8iS1|S52
WAGSP +1 Increment WA Group SG Pointer,
2 JWAGSP -1 Decrement WA Group SG Polnter
2 |WAGSPC Clear WA Group SG Pointen
Yy, Load WAGSP Savel register from ]
2 |WAGSPS1:= CM |D: dddad CMISB|S 1|52
WAGSPS2im [}
1 M|WAGSE Load WAGSP Save 2 register from WAGSPE
Load WA Unit and WA Group SG with
1 mlwaps:=wap MIWAPS:=WAP | WAU and WAG respectivel
had hiid Load WAUPSP and WAGSP fram a
2 WAPSP:= [SYR) dddd cm]ol ddddlcMmisalsiisz
2 MIWAPSP +1_ | Increment WA _Unit and WA Group SG Pointers
2 MIWAPSP -1 _[Decrement WA Unit and WA _Group SG Pointerd
M{WAPSPC Clear WA Unit and WA Group SG Pointer.
had ha'd Load WAUSP and WAGSP Savel registers | ©
2 WAPSPST:= CM D dddd CM (D dd d difrom CMiSB|SI|S2
WAPSPS2i= [Load WALISP and WAGSP Save2 registers | ©
m|waPsE from WAUSP and WAGSP respectivel




MICROOPERATIONS FOR Working Registers, B, WB
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[ 7 L2 I 7 0| 7 [z 7
M M
c Ft st |5 F2 &l =3 sifE Fa MICROOPERATION
A = =
2 M| WBU := cMp d ddd] Load WB Unit pointer from CM| EX|SB|SG
2 wa +) M| wau 41 Increment WB Unit pointer
2 WU 1 M| weu -1 Decrement WB Unit poiater.
2 wauC M| wauc Clear WB Unit pointer
= Mo dddd Load WB Group pointer from CM|EX|SB|SG
2 M| WBG +1 Ingrement WB Group pointer.
2 WEG ~1 Decrement WB Group pointer
2 M| WBGC Clear WB Group pointer
XX, XX Load WB Unit pointer from CM] EX|SBISG AND
2| wep := cM |5 dddd (o] [5] d ddd| load WB Group pointer from CM|EX| SB|SG
2 M| wepe Clear WB Unit pointer and WB Group pointer *)
Couple WB Unit pointer and Group pointers to
t MWBPCOURLE form an 8 bit counter
wep- Uncouple W8 URIt pointer and Group pointer 1o
! MUNCOURLEv form two independent 4 bit counters
*) WBP +1 is equivalent to WBU +1, and WBP -1 to WBU -1, assum'ng that the unit and group pointers are coupled.

MICROOPERATIONS FOR WS Unit and Group Standard Groups, WRUS and WBGS

z [z T4l 7 o] 7 2 T 7
c F1 5l % F2 M F3 s3ml Fu MICROOPERATION
p
o
1] MwBUS:=wBU M| wBUS:=waU Load W3 Unit SG from WEU
Nad
2 |wBUSP:= cMm D dddd Load WBUS Pointer from CM|SBISI|S2
1 M| WBUSP +1 increment WB Unit SG Pointer
2 M{WBUSP -1 Decrement WEB Unit SG Pointer
2 M|wBUSPC Clear WB Unit SG Pointer
Yy L.oad WBUSP Savel register from
2 _|WBUSPS1:=  [CM D dddd cvm|sB|StS2
WBUSPS2:=
1 miwsuse Load WBUSP Save2 register from WBUSP
)
1 MIMBGS:=WBG |M|WBGES: -wBG Load WB Group SG from WBG
vY
2 Mlwaese:= __[em|p| dddd|Load WBGS Pointer from CM|SB|S1|S2
2 M|WBGSP +1 Inerement W8 Group SG Pointer
L2 | mlwsese -1 Decrement WEB Group SG Pointer
2 mlwsespPc Clear W8 Group SG Pointer
XY Load WBGSP Savel register from
2 MlwBGSPS 1= [CM D) ddddlcmselsiis2
WBGSPS2i=
1_|weesP Load WBGSP Save2 register from WBGSP
Load W8 Unit and WS Group SG with
] M WEPS: =WBP IM|WEBPS: =wap, WBU and WBG respectivel
A had toad WBUS and WBGS Pointers from
2_|wWBPSP:= CM | D] dddd CM D ddddlcMsaist|ss
2 MIWBPSE +1 Increment W8 Unit and WB Group SG Pointers|
2 M|WBPSE -1 [Decrement We Unit and W8 Group SG Pointers
2 M iwBPSPC Clear WB Unit and WB Group $G Pointers
YY cad WBUSP and WBGSP Savel registers
2 |wgpsPsi:=_ [EM|D dddd from CM|SBIS 1|52
Load WBUSP and WBGSP Save? registers
1 |werse from WBUSP and WBGSP respective




MICROOPERATIONS FOR

Wide Store Address, WSA

82

7 2 1] 7 T 7 2 [l 7
F1 s1 g F2 M £5 M 4 MICROOPERATION
XX
WSA = CM|Dlddddddd IDlddddddd |ud L.oad WSA from CM|EX|SBISG
WSA + 1 M| WSA + 1 M| wsa + 1 Increment WSA
WSA - 1 M| WA - 1 M| wsA - 1 Decrement WSA
WSAC M WSAC M| WSAC Clear WSA
zz
WSAP e CM D dddd Load WSA SG Polnter from CM|EX|S1|S2
WSAP + 1 Increment WSA SG Pointer,
WSAP ~ 1 Decrement WSA SG Pointer
WSAPC Clear WSA SG Pointer.
M s, A M IWSASGI=WSA L oad WSA SG from WSA
2z Load WSAP Save 1 register from
WSAPST := CM P dddd MWSAPST := | CM|EX|SI1|S2
WSAPS2 Load WSAP Save 2 register from
M| wSAP WSA SG Pointer L




Conditions

ALCD)
AL(63)
AL
ALovV
AS(OD
AS(63)
As (V)
BEPGD
BECDD
BP
BUS
BUSPAR
CA(D)
CA(3)
CACL)
CA(5)
CA(6)
CA
CASPOV
¢8O
CB(3)
cB(4)
CB(5>
cB(6)
CB
CBSPOV
cYL

CR KD
DS L1
DS(1) L2
DS(2) LD
DS(3) LRCO)
DS(& LR(63)
DS(5) LsB1
DS(6) LSBD
DS(7) MsB1
DS(8) MSBD
DS(D OASA
DSC10) 0BSA
DS 0CSA
DS(12) ODSA
DS(13> ONE
DS(14) RAPOV
DS(15) RAPUN
DSCV) RBPOV
DSCVH1) RBPUN
FALSE SB(OY
IADA sB(1)
IADM SB(62)
IBDA SB(63)
IBDM SGNLD
KA SGNLSBD
KB SGNMSBD
KC

TRUE
Vs
VS(63)
VS(V)
WACD)
WA(63)
WACS
WAGOV
WAGSPOV
WAPOV
WAPSPOV
WAUOV
WAUSPOV
wB(O>
WB(63)
WBCS
WBGOV
WBGSPOV
WBPOV
WBPSPOV
WBUOV
WBUSPOV
WSAB
WSAOR
WSASPOV
ZERO
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3.4 Assembler Notation

The notation used in this book forms the basis of the assembly language for Mathilda
described in [3]. However the character representation differs somewhat, due to the
DEC-10 character set.

Below we give the equivalent ASCll-characters, accepted by [3] for the symbols used
here.

Symbol ASCli-representation

I <>>«t
TR > - AV

For convenience, we also give a complete list of recognizable conditions, AL- and
BE-functions.

AL ~-functions
ARITHMETIC LOGICAL
BE-~functions
carry—-in =0 carry-in =1
A A+1 |A LSB1
AdB AB+1 |A&|B LsB1-1
AR |B A8 B+ | ASB MsB1
MINUSI MINUST+1 ALLOS MSB1+1
A+(AG|B) A+(A&[B)Y 1 [ad|8 L1
(ABB)+(A&|B) (AGB)+(A&|BY+1 | |B L2-L1
A-B-1 A-B AEQVB LSB2-LSB1
(A&[B)-1 (A&B) A&|B MSB2-MsB1
A+CARB) A+(AEB) +1 | AQB [LsB1/231+1
A+B A+B+1 ANEQVB CLSB1-1/21+1
AR [B+( A&B) (AR[B)+(ARBY+1 | B [MSB1/21+1
(A%BY-1 A&B A&B CmsBt +1/21+
A+A A+A+ ALL1S [L1/23+1
CAGB) +A AQB+A+] AD|B CL2-L1/2341
(AQ[B) +A (AQ|B) +A+1 AaB [L.SB2-LSB1/21+1
A-1 A A LMSB2-MSB1/21+]
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LSB A Bit Pointer {available through BE)...........ccoovvveveeeneen...
MA Mask A Register........ccoumieiiieiinicee s,
MB Mask B ReGISter.........coomiiiiiieieei e
MDP Main Data Path.........coccoeoiiiiiiece e
MSB A Bit Pointer (available through BE)..........cccocvovvevveerenn...
OA OUIPUL POTt A oo,
OB OULPUL POt B...oeoiieiieeeeceeceee et
ocC OUPUL POIt Coeiviieiiee e e
(0]5) OUPUL POIt D .o
PA Postshift Mask A Registers...........c.covvveeevoeeoecoeeeeeeenn.
PB Postshift Mask B RegiSters..........ccoceeeveeeeeeecieeeeeeevenn,
PG Postshift Mask Generator ...............ocoocovvevrveecreeeseen.
PM Postshift Masks (PAVPB)...........ooeeveeeeeeeeeeeeeeeeeeeree s
RA Return Jump S1ack A......ccoooooimeioeeeee e,
RB Return Jump Stack B .........ccooviieeeieieeee e
RG RegiISter GrOUP......ccviiiiiiiicciieciee e
SA Save Address RegiSter ............ocooooivoeeeoeoooeeeoe,
SB Shifted BUS .......ccomiiiiiiei e,
SBD Shifted Bus Destination............cccceeevieveeriveceeeciieeerenn,
SBD Load SB Destination Load......c.ccoooviuiieoceiieieceeeee e

41
54
57
57
57
57

34
34
26
36
19
19
10
36
42
42
42
42
22
63
22
63
51
51

53
10
10
12
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SC Selected CONAItioN .............o.ooovveceeceiriree e 57
Sel Selection by dedicated bits in the microinstruction ....... 7
SG Standard GroUP ........oooveeeueeeiimiei e rernn 7
SOURCE the input to the BUS ..o 10
SP STAUS POIT...oiiiiiiiiieieee et ee e 40
\% Variable Bif ... e 27
VS Variable Shifter ... 31
WA Working Registers A..........coocivieiiieieceeeeeee e 11,61
WB Working Registers B...........ccoooioiieeceieceneineneeeoeeeen 11,61
WSA Wide Store Address ......cceveveeverenceirarcacrencnninrnannns 63
— C,C Logical “negation” of condition C........cccoeeeveeieiviireenen. 14,47
= Logical “equivalence” ..............cccoooovemieoveeeee e 25
E3 Logical “nonequivalence”.............cooeoeeoeeeoroereeeree. 25
-+ RIGNT SHIFL. v 18
d Postshift Mask Generation Direction............c..coccoovvvenn..... 23
“ Left Shift.....oo e, 18
« Postshift Mask Generation Direction............ccocoeevvn..... 23
{ } "Meta” parenthesis (used for grouping)......cccccovcevennnn.... 11
[ Possible Alternate Sources............cccoocovvevevovceeerseennn 7
———pan LT 1T SO RSSO 6
ﬁ—O Mask ApPHCATION........cviiieieee oo 19
——@ Loading Mask Application................cccooueevveveecoereen 35
<> “"Meta” brackets enclosing meta symbols .................... 9
1 PUSH oo et 51
i) POP .o 51
Resource Name Encoding ..........c.coovoeveoeeoreeeeoeee 16

[i] Indexing Operator ..........c..cooivicrieeeeee e

{i:j) Contiguous bit string specification................c.oocoooovvii .

+1 Increment of counter or pointer.........c.ococovevevvovvevee
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-1 Decrement of counter or pointer .............cc.ccccovvveveennn., 7

Il indication of the end of an example.......o..coccoervveerevnn... 15

= Equivalent to L or SBD Load..........ccveoveuevvireeieeaen, 7

n= is defined 10 be ... 62

o Coneatenation ... ..o 49
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