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Abstract

The paper treats the problem of nests of interpreters i.e. multiple levels of
interpretation of programs. The goal of the paper is to expose a control structure
which models the important characteristics of such nests. Using a comparison with
the Burroughs B6700 philosophy, a more general system model is introduced.
There are two major results - a new type of control structure, and the conclusion
that generalized nests perforce require retained environments.
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1.0 introduction

This paper has a twofold aim: an elucidation of the means by which a program is
interpreted by another program, and the implications of this elucidation for
software-system structure. It should be apparent that the mechanisms by which a
program’s semantic content is elaborated lie at the core of everything that takes
place within a computer system. Therefore, it should not be surprising that an
investigation of these mechanisms should yield a clearer insight into many different
aspects of a software complex - compilers, loaders, file systems, encapsulated (i.e.
virtual in the sense of [14,17]) machines - and their interrelationships. As for the
mechanisms themselves, they lie at the edge of our general understanding of
program semantics, and no claim is made for having said the last word on this
subject. Indeed, this paper should be regarded as a stepping stone, in the sense that
the control structure and terminology introduced later, while thought to be basically
correct, represent a new way of looking at systems, and as such are not yet fully
developed.

This paper grew out of an investigation of multi-programmed emulation, i.e. the
co-existence of multiple microprograms in a mutually supportive environment.
However, progress can be made on this problem only after it is realized (1) that the
fact that an interpreter program residing in a special store or executing directly on
the host machine is a special case of a more general problem: (2) that there are in
general /ayers of interpretation in execution at any given time. It is this “"wheels
within wheels™ nature of the problem which makes it confusing, exacerbated by the
more or less general lack of structure in the situations where it occurs.

Indeed, it must be stressed that the discussion of interpretation mechanisms cannot
be held in isolation from the environment in which they exist, i.e. the “operating
system”’, because this is itself involved in the interpretation hierarchy.



1.1 Problem Statement

Although a great deal will be said along the way about compilers, loaders, and
operating systems, the actual problem at hand is the derivation of a control
structure for layers, hierarchies, or nests (as we shall refer to them) of interpreters.
The term interpreter is a shortened form for “interpreter program’, which is a
program‘which defines a sequential machine as we commonly know them. Such a
machine is called a virtual machine (in contrast to encapsulated machines, as
mentioned earlier). There is a unique machine, called the host machine which lies
at the bottom of any interpreter nest and which is not defined by any interpreter.
This is another way of saying that the host machine exists outside of the control
structure which encloses all other machines (interpreters). An emulator is thus an
interpreter which is written in the code of, and executed directly by, the host
machine. Emulators often are kept in a special store called control- or micro-store
and are therefore often referred to as microprograms; these distinctions are
however irrelevant to our discussion, and the more neutral term hostmachine code
will be used instead, when referring to code at this level (or more generally, on the
level of the host machine itself).

In order to help the reader to understand the generality which is desired of the final
control structure, the discussion will refer to the following sample problems in
interpretation:

PO. An interpreter may be written in any ‘machine’ code or language.

P1. A piece of microcode may be invoked as a procedure like any other procedure.
Although there must necessarily be detailed differences, since a different
store is being referenced, this problem ensures that the final control structure
will not presume that such code (and host machine code in general) is
qualitatively different from other codes in the system.

P2. Consider a procedure FRED written in XCODE i.e. running on the X-machine.
This machine might be written in host machine code, but it might also be
written in YCODE (which might be written in ZCODE etc.). This implies that
the execution of FRED implies the nested execution of an arbitrary number of
interpreters (including none) stacked up underneath it. Problem: run FRED on
various XCODE machines (having different nests under them) without
changing FRED or those (running on possibly different machines again) who
call FRED.
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P3. Expand an existing interpreter by adding onfy new operations, and later
shrink it back to its original contents, all at run-time. This problem is a
reflection of the data and operator definition facilities found in languages
such as [7, 8, 9]: upon e.g. block entry, new semantics become available
which disappear upon block exit. if one has a machine for such a language, it
is reasonable to expand and contract this machine to reflect the elaboration
of the program:. -

P4. Write interpreters which require e.g. garbage collection, all of which can
share the same garbage collector. This means that interpreters can
themselves call procedures which possibly run on different machines.

P5. Write an interpreter for a CDC 6400 plus N ppu’s [12]. This implies that
interpreters can be multiprogrammed and can have both shared and private
store.

P6. Determine when the environment pointers (ep’s) of nested interpreters are or
are not successive subsets of each other.

It bears mentioning at this point the more global problem which prompted the
original investigation: in a system which allows user microprogramming, it should
not be necessary to recreate software which already exists on other emulators. This
implies that procedures which run on different machines can invoke each other,
hopefully in ignorance of their “incompatibility’”. Besides the theoretical interest of
the problem, there is a substantial economic one in avoiding reconstructions of
device handlers, file systems, editors, and all the other forms of support software
grouped under the rubric “operating systems”. This means in particular that one
could now construct “language machines” which only need take heed of the
language’s requirements, and not in addition 1/0, synchronization, and other
functions which are system, and not usually language, facilities.

1.2 Interpreter Nests

Figure 1 illustrates more exactly what is meant by an interpreter nest. An algorithm
{or procedure or program, which terms will be used interchangeably hereafter) is
viewed as a sequential stream of instructions. Each individual instruction “is
executed in its entirety by the interpreter (which defines the machine for which
these instructions are intended). In general, the interpreter program itself executes
a number of its own instructions whose cumulative effect usually includes a change
in state of the program'’s data space (we confine ourselves, though without loss of
generality, to non-selfmodifying code), and a change in the interpreter’s state (e.g.
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program counter (PC) update). It is worth noting that the interpreter has no further
knowledge or interest in what the ultimate effect will be of the instruction sequence
it is interpreting. Thus, the interpreter could be interpreting another interpreter, and
itself be being interpreted.

If we look a little more closely, it appears that each instruction of the algorithm
initiates, at each successive level of the nest, a series of procedure calls, i.e. control
is from the "top’ downwards. That this is in fact not true will now be demonstrated:
Consider the situation when an interpreter nest is to be "deadstarted’. Execution
cannot immediately begin with the first instruction in the algorithm on the ‘top’,
since the interpreter is not yet necessarily initialized i.e. the interpreter itself must
in general execute some set-up code which will define its initial conditions. This
initialization process is necessary at each level of the nest, until the host machine is
reached. Since the host machine is already initialized and running (indeed, it is the
one who executed the code which triggered the deadstart of the nest), it is the only
machine which can begin immediate execution of code. The execution of this code,
which is the bottom interpreter in the nest, eventually reaches the point where this
bottom interpreter is initialized. It then begins interpretation of code at the next
level up etc. until finally the topmost interpreter is initialized and begins interpreting
the first instruction of the actual algorithm. Thus it can be seen that the host
machine is the primus motor, and that control emanates upward from the bottom of
the nest.
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2.0 Well-Nested Interpretation Systems

In this section, we will attempt to fit interpreter nests into a very highly structured
environment - that of Algol-60. This attempt ultimately fails due to its lack of
generality, but it is a profitable failure nevertheless. We begin by first sketching the
general environment into which the nests will be inserted.

2.1 The Basic System Model

The analogy drawn between machine instructions and procedures first hinted at in
[16] is often dismissed as an interesting curiosity, but inspired by [1,1 5] and taken
together with problem P1, we arrive at the preliminary control structure: the
extension of the display to include procedures running directly on the host machine.
For those not familiar with the Burroughs architectures and thus the implications of
this extension, we now present a very brief outline which presumes a knowledge of
how Algol-60 is implemented using a stack and a display: if this is insufficient, the
_reader is referred to [1,3].

The pervading philosophy of the Burroughs architectures is that the entire contents
of main store, including the operating system, can be viewed as one huge Algol
program. In the single task (mono-programming) case, the operating system is the
global block and the user program a nested block. Clearly, this nesting can be
represented in the display, which in fact does exist in the hardware, along with the
display update mechanisms. If multiple users {multi-programming) are admitted,
then each user is viewed (in analogy with the previous case) as a nested block
withinthe global block, all these user blocks existing as blocks at the same (parallel)
lexical level. The execution environment of each user (= task) is thus his display plus
program counter. This arrangement, besides automatically separating the name
spaces of the various users, allows the operating system to be invoked via the usual
procedure call mechanism. In addition, each user when initiated is aliocated a stack
which will contain all of his activation records and local storage. Thus all code is
reentrant, and e.g. an operating system call is built upon the user’s stack. The
utilization of Algol's control structures for a multi-programming computer
architecture surprises many, but the result is in fact an elegant, general, and
efficient model for what happens in a multiprogrammed computer system.

With the extension of the display, we arrive at the picture of a computer system
shown in Figure 2 The machine instructions are viewed as the most global
procedures in the system, and can be invoked by any program. Such a system would
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(after Figure 2 1 have the six stack areas as shown in Figure 3 ', one for each of
the tasks in the system, [although the Machine Instruction, System, and User2
stacks are dormant i.e. the activation records which they contain are currently
passive as regards execution]. Using Johnston’s terminology [2], the state of a task
(process) can be represented by the couple (ep.ip), standing respectively for
environment pointer and in struction pointer. Since there are three potentially
active tasks in this system (User1, Subtaskl, Subtask2), each is represented as
having an ep (its static chain) and an ip (its current point of execution). If we further
assume that there is only one physical processor in the system, then the ep of (e.g.)
User1 can be abstracted into the hardware display, and its ip into the PC of the
processor.

Figures2 and 3 yield several observations:

1. Invocation of micro-code as a procedure which is not necessarily a machine
instruction {problem P1) is nothing out of the ordinary because the expanded
ep now establishes a sufficient addressing environment to include this
possibility.

2. There is nothing in the structure which requires only one layer of machine -
instructions i.e. an operating system which runs directly on the host (i.e.
hardware) machine. This situation is found in all micro-programmed cpu’s,
and also in OS6 [18], which runs on an 0-code machine (the target machine
of BCPL[19], which itself runs on the host Modular One machine.

3. This structure helps greatly in the solution of problem P5 by supporting the
necessary parallelism and data sharing. The interpreter aspects are of course
untouched as yet.

2.2 The Boss-Machine Model

The system model just presented presumes that all the code in it runs on the same
machine. This machine is that which is defined by the set of “instruction”
procedures in the outermost block. The object code in this system can be viewed as
a string of [lexical level, displacement] couples [II,d] which reference the instruction
procedures. It is important to distinguish among a reference to a procedure,
specification of a call on a procedure, and the actual call of the procedure. The
object code referred to is the first of these i.e. simply [ll,d] and nothing more. In
particular, it is not the second (or by implication, the third} of these, since this is in
contradiction to the principle of “"bottom up” control mentioned in Section 1.2.
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Returning to our object string of [Il,d] couples, we can see that it is the job of the host
machine to sequentially fetch up an [!l,d] and perform a (block-structured) enter on
the referenced procedure.

Recalling that our basic model at this point is an Algol-60 machine whose entire
“contents” is one large Algol-60 program, we now proceed to include some new or
foreign machines. There are essentially two possibilities: include the new
operations in the global block, or include them in some interior block. The latter can
itself take two forms: exterior or interior to the operating system biock. Figure 4
illustrates.

The first possibility (Figure 4a) has to its advantage being a simple extension of the
instructionset of the original machine, and as such is guaranteed not to introduce
any new worries. If one is interested in merely expanding the given instruction set,
this is the obvious strategy. On the other hand, if one is interested in introducing an
entirely new machine, the fact that both machines reside at the same (and global)
lexical level means that only language convention separates the two.

Possibilities (b) and (c) provide a lexical enclosure for the new machine via the
procedure mechanism. Their differing placements, however, are critical. The new
machine of (b) has the advantage of being visible to all other entities in the system;
the price for this visibility is that its own environment consists only of the original
machine. The environment can be expanded by invoking it from within the
operating system block, passing procedures by name. By this means, access to e.g.
operating system services can be provided. However, there is no way to avoid the
fact that at least part of the machine must be written in the code of the original
machine.

The new machine of (c) has no such problems - its environment automatically
includes what (b} lacks, but at the converse price: lack of global visibility. This means
that the only programs that can run on the new machine of (c) are those for whom
this machine is lexically visible.Of course, this lexical visibility can, as with (b), be
enhanced by an appropriate sequence of procedure calis with procedures as name
parameters. Unfortunately, this approach becomes very unsatisfactory, both for (b)
and (c), if additional new machines are nested within them, etc. The reader is
encouraged to satisfy himself on this point.



In spite of these problems, which arise directly out of Algol-60’s scoping rules, this
model is nevertheless quite usable in specific situations e.g. where the host
machine is very fast and one expects new machines only at this level (i.e. Figure
4b). Its lack of generality, which has a direct connection to problem P8, is in fact its
greatest advantage from an implementation point of view.

we have referred to the “original” machine a number of times in our discussion.
This was partly to avoid confusion with the host machine, on which the “original”
machine runs. It is however more important to realize the role which this “original””
machine plays - its instructions are always globally visible, and it is also the
machine on which the operating system (i.e. resource allocation) executes. Because
newly introduced machines necessarily play a subordinate role with respect to this
“original” machine, we refer to it as the “"boss” machine, and a multi-interpreter
system as described here, which is structured after the precepts of Algol-60, as a
Boss-machine Model of nested interpretation.

2.4 Secret Knowledge and the Boss-Machine System Model

The activity of a compiler in the Boss-machine model is the generation of a string of
instructions from the input text, but because of the ep’s expansion to include the
machine instructions as procedures, the generated code can be viewed as a string,
not of integer opcodes, but of the ep addresses [ll,d] of the instruction procedures.
The job of the host machine is to perform an enter in sequence upon each of the
procedure addresses in the string.

Comparing this interpretation with contemporary reality, one can see two
differences: (1) in reality, the opcode procedures are not globally visible, and (2) as a
consequence the requested invocation must be represented by an ordinal (the
integer opcode) rather than an ep address. The question we now ask is:‘how does
the real compiler know which integers are associated with which instructions? In
the first (idealized) instance, there is of course no problem since the associations
are given in the compiler’s ep and thus are statically known. Because in reality the
instructions are not a part of the ep there is only one answer to the question - that
the compiler obtained the necessary information from outside its ep. Since by
definition the ep incompasses all of a program’s ‘’knowledge’, information such as
the opcede-integer mapping is made available to the compiler as ‘secret
knowledge’ by formally unknown means.
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The deeper implications of secret knowledge are treated in Section 4, but it may be
helpful to point out a few other examples of the use of secret knowledge commonly
found in computing systems. An obvious example is Fortran’s COMMON (both blank
and labelled), which relies on secret knowledge supplied by the programmer to
make the proper data associations. The same is true of BCPL's global vector, which
in addition functions as the linkage area for separately compiled procedures,
another aspect of secret knowledge. This linking problem is partially non-existent
on a B6700 since external (library) routines are a part of the compiler’'s ep and
hence have known addresses; other separately compiled procedures were
historically disallowed, and allowing them clearly requires the use of secret
knowledge to link them in. Another aspect of secret knowledge, which is left
unpursued in this paper, is its relationship to program structure and maintainability
as discussede.g. in[21]. !

We have thus far constituted that in a system which includes the machine
instructions as part of the ep of all programs running on that machine, the object
code may be viewed as a string of ep addresses which can be generated without the
use of secret knowledge. We now ask what happens if a compiler running in this
system is to generate object code for a different machine? There are two
possibilities: incorporate some secret knowledge into the compiler or include the
instructions for the foreign machine in the compiler’s ep. Since the former is a well
known technique, we now explore the implications of the latter.

Figure 5 illustrates a particular instance of the inclusion of foreign or new machines
into the Boss-machine system. With respect to the compilers in this system model,
it is clear that the compiler for the X-machine must utilize secret knowledge,
whereas the compiler for the Y-machine need not. In either case, however, the
object code streams of these subsidiary machines may contain invocations of boss
machine instructions (which might e.g. be 1/0 instructions). Thus the role of the
boss machine is to establish a sort of default or communal operational structure
which the subsidiary machines may obtionally choose to avail themselves of, They
are forced to use this structure only when they desire to communicate with other
parts of the system, since this is the only 'standard’ available. This comment applies
particularly to the invocation of other interpreters.

Of particular interest among the boss machine’s instruction procedures are those
called ’interpreter’ which are the means by which the subsidiary machine’s
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instruction sets are entered into the global ep. This particular instruction is
distinguished from operations such as Add by having a semantically non-trivial
internal structure, because in order to effect this structure it invokes the enter
function of the host machine. An important omission in the illustrated Interpreter
instructions is the list of parameters required for them to carry out their function.
Most obvious is the need for an indication of what object stream the interpreter is to
interpret. In the figure, the X-machine can be supplied with any X-code object
stream, whereas at least in some instances, the Y-machine would expect to receive
a copy of its compiler. The next missing parameter is a procedure (by name) from
within the boss machine’s operating system, which will be the means by which the
emulator can invoke operating system functions (which are otherwise lexically
invisible). This parameter is not essential except insofar as it is desired to avoid
duplication of function, but is probably unavoidable if (as is likely) it is desired to
share the file and mass storage subsystem, support for which is presumably
available only on the Boss machine.

There remains, finally, the question of exactly why the Boss-machine model fails to
satisfy our requirements of generality, as explicitly expressed in problems P2 and
P6. One possible answer is that it is purely the fault of the scoping rules which we
imposed, and there is a great deal of truth in this. Lying beneath this answer, i.e. the
reason behind the reason, is that the lexical structure of a program, and the lexical
structure of the programs which interpret the program are not necessarily the
same. Just as scope and extent are coincident in Algol-80, so are the ep and ip
structures of the Boss-machine model. The explication of these structures and the
demonstration that this analogy is not accidental is the topic of the next section.
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3.0 Interpreter Structure

The purpose of this section is to give more precision to the description of an
interpreter program’s structure and its relationship to other programs in the system.

3.1 The Nature of Interpretation

Up to this point we have assumed an intuitive understanding of what an interpreter
program is. The fact that the problems PO-P6 exist at all suggests that interpreter
programs possess some special properties which are not commonly found in other
types of programs.

Consider the following list of properties of interpreters:

a. Most programs execute (never mind how) and deliver a result of some sort,
whereas an interpreter program by itself is meaningless: it must have
another program on which it is to operate.

b. The "“data” for an interpreter program is a machine code i.e. data which
inherently contains a special type of semantic information.

c. This semantic information is decoded by using a special construct called a
program counter (PC) which contains, it could be said, the entire semantic
future of the “data”s interpretation.

d.In general, interpreter programs can form nests, which implies that the
regime of control is "bottom up” rather than ""top down’ as in a nest of
procedure calis.

Property (a) is the weakest, since it is not difficult to find examples of programs
which are not interpreters which possess the same property (data base managers,
sort/merge routines). Properties (b) and (c) are closely related, both inherently
containing the idea of a “position” in the data and its step-wise “development’.
This position and the extent of the development define what is called the data’s"
state. We can now ask if there exist programs which are not interpreters which also
possess this property?

Consider a sorting program. One could argue that the sorting key corresponds to a



STARTUP: PC := 0;
IFETCH: MAR := PC;
PC:=PC+ 1;

goto OPTABLE (opfield(MDRY));
OPTABLE = (ADD, SUB, --+}

ADD: ++-

goto IFETCH;

SUB: -e

goto IFETCH

Figure 6 Classical Interpreter Struciure

procedure ADD = (+++);
procedure SUB = (s« );

procedure array OPTABL.E = (ADD, SUB, ***);

STARTUR: PC = 0;

IFETCH: do forever
: MAR := PC;
PC = PC + 1;
Readmemory;
OPTABLE (OPFIELD{MDR));
end do;

Figure 7 Improved Interpreter Structure
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PC, and the state of the sort process to the sorting “‘machine’’s state. [A data base
manager can be viewed as a slow-moving sort in this respect.] A counter argument
is that whereas the sort-key exists explicitly within the data set’s space, a PC does
not i.e. it is an abstraction which, while essential, exists external to the data.
However, this is not getting at the heart of the matter.

One usually conceives of a program as consisting of code, and data which this code
manipulates. Thus from the point of view of the interpreter program, the data of the
program it is interpreting is at an additional level of indirectness; any changes made
to this data occur as side-effects of the data (i.e. program) it is interpreting. In the
case of a sorting program as "'interpreter”, the “code”’ it is interpreting is the data to
be sorted, and there exists no further level of data wherein changes are made as a

g

result of this ""code’”’s interpretation.

Therefore one can see that programs such as sorts and data base managers do not
possess properties (b) and (c); it is possible that there exist other types of programs
which do, and yet are not interpreters, but we have been unable to produce any. The
same applies to property (d), which appears to be the strongest. Therefore, it seems
reasonable to conclude (until a counter example can be presented) that the idea of a
program counter and two data spaces (the code, and the data it changes) are
characteristic of interpreters alone.

We now proceed to examine the internal structure of a typical interpreter with the
hope that this examination will lead to a better isolation of those features which are
unique.

Figure 6 illustrates the classical form of an interpreter. Due to its lack of structure
(from the point of view of the structured programming debates [20]) it is not
surprising that this picture does not yield much insight. A first step toward
improvement can be taken by recalling the earlier postulation of viewing the
individual instructions as procedures. With the exception of some messiness
involving PC update in transfer-of-control instructions [perhaps in itself a veiled
commentary on the “traditional” structure of same], Figure 7 can be viewed as an
improvement.

The critical reader might point out that Figure 7 looks a little naked, since one
usually expects to see such a collection of program statements surrounded by some
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procedure ADD = (***);
procedure SuB = (+++);

procedure array OPTABLE (ADD, SUB, * )
pracedure Singlestep (PC, OPTABL.E)
bitstring PC; procedure array OFPTABLE;

begin
MAR := PC;j
Readmemory;

Singlestep := OPTABLE (Opfield(MDRY))
end;

interpreter X (Singlestep, PC, OPTABLE) =

procedure Singlestep; bitstring PC; procedure array OPTABLE;
begin

STARTUPR : PC :=

IFETCH :

do forever Singlestep (PC, OPTABLE);
end; .

Figure 8 General Interpreter Structure
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sort of brackets. In the Boss-machine model, procedure brackets were introduced
for this purpose, but given that model’s lack of generality, it is important to be
carefulon this point. The issue at hand is to arrive at a specification of what the
activation record of an interpreter looks like. Having decided that interpreters are
probably something special, there is no reason to suppose that a standard
procedure activation record is sufficient. On the other hand, when viewed merely as
a program, large parts of an interpreter are indeed ordinary procedures. Thus there
are grounds to expect that the activation record for an interpreter will resemble that
of Algol-60, with additions to account for its special nature.

It is possible to improve further on Figure 7 by reducing the ifetch loop as shown in
Figure 8. Two major changes have been introduced - a procedure called Singlestep
and a new type of bracket “interpreter”” (reflecting the fact we expect a different
type of activation record). The former is introduced to emphasize the fact that the
actual interpretation process can proceed as a series of procedure calls, whereas
the actual startup process involves the creation of a special type of activation
record. That the difference can be isolated to the start-up of the interpreter is
consonant with the earlier discussion of the bottom-up control regime (property (d)).

3.2 The (ep,ip) Structure of Nests

In the preceding section, we discussed the structure of interpreters by examining an
interpreter in isolation. We now broaden our horizons by including the program it is
interpreting and the program which (in general) is interpreting it.

The critical insight is to realize that if (ep,ip) represents the state of some
hypothetical algorithm running on some hypothetical machine, then (ep.(ep,ip))
represents the state of that same algorithm running on an interpreter for that
machine which is running on some other hypothetical machine. Stated in another
way, the first ep is that of the algorithm, the second ep is the ep of the interpreter,
and the ip is the locus of execution within the interpreter as maintained by the
interpreter’s machine. The ip of the algorithm exists somewhere in the ep of its
interpreter and therefore does not appear explicitly. Thus in generalizing to a
situation involving several interpreters in nested execution, the (ep.ip) couple
becomes (ep.(ep.(ep.{...(ep.ip))...). Note that the ep nesting sequence always ends in
‘(ep.ip) which is to say that no matter how many interpreters one piles up, down at
the bottom, churning away, is a rea/ machine executing real instructions whose
address is given by a real PC which is the ip. Note also that this ip is the only ip
which occurs in the expression, which is another way of saying that only one
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machine is really executing, and all the other ‘'machines’ piled on top of it are
‘executing’ only by virtue of the happy coincidence that their program code happens
to represent an interpreter.

Let us now exactly define part of the (ep,ip) structure of Figure 5. It is clear that the
ep’s for the X- and Y-machines are nested within the Boss's. This however implies
nothing about the ip structure, which can be quite disjoint from the ep’s structure.
For example, X-code couid be written in either host-machine code (as is Boss) or in
Boss code: which is the case cannot be extracted from the figure. In the former
case, the (ep.ip) of a program SAM running on the Y-machine is

[Al (ep,,, /P, )= lep, deipy )

whereas the latter case is

Bl (ep,, , P )= lep,,, Aep .ipy )

= (ePsap (€Px (€Py g s 5P o 2 )

Note that in either case the ultimate ip is that of the host machine, in agreement
with the preceding paragraph.

3.3 God-given Operations and Memory

Up to this point in our discussion, we have assumed the presence of certain crucial
operations, of which block (ep,ip) entry is the most obvious, but which also includes
block exit and perhaps inter-task synchronization primitives. One might first be
inclined to say that these operations should be defined as procedures fully
analogous to e.g. the opcode procedures, but the following example iliustrates that
this cannot be the case.

Consider an Algol program running on a pure Algol machine, about to perform a
block entry. Is it possible to write thi$ operation as an Algo! procedure, thereby
logically obviating its need to be supplied as a hardware function? Clearly one runs
into a recursive loop, since one must enter this procedure so it can perform the
"enter’ operation. A little thought should convince the reader that this reasoning
applies even if one postulates an Algol dialect which allows full access to the
Algol-machine’s registers and instructions {except enter). The lesson to be learned
here is that enter is an operation which is presumed by Algol i.e. it operates outside
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(indeed it must) the confines of Algol’'s semantic space. Thus, as far as Algol is
concerned, enter is a 'god-given’ operation.

Although not usually recognized as such, god-given operations occur quite
frequently in computing systems, examples being user supervisor calls in a machine
having user and supervisor hardware states, and coercions in a typed language.

While it is true that the case of enter is particularly clear, the same reasoning
applies to the hardwired operations of the host machine. Thus, the pure block
structure mode! of Section 2 with its scopes expanded (ad infinitum) to encompass
opcodes as procedures is ultimately bounded in its global extent by the wired-in
instructions of the host machine. The various enter’s, exit's, and hard instructions
all (must) exhibit the same property: they may not appear as a part of an activation
record in the space on which they operate. This does not, however, necessarily
mean that e.g. enter must be a hardwired operation (although this might be a
reasonable criterion {o place on a new machine design) - it only means that such
operations should be treated as ones which lie outside of the control structure
herein described. As such, these operations can be executed by any machine code
which executes outside the semantic space on which they are to operate; in our
case, this machine code is the host machine but in an encapsulated machine
[14,17), it would be the ‘real’ machine.

On the basis of the foregoing discussion, it is now easy to categorize the host
machine’s registers: they are god-given memory i.e. memory which exists outside
the scope of the memory which it references; it is here that the final ip resides.
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4.0 Non-Well-Nested Interpretation Systems

Section 2 discussed well-nested interpretation systems and introduced the
Boss-machine model and the concept of secret knowledge. Section 3 treated the
structure of an isolated interpreter, and that of its environment, and introduced the
concepts of god-given operations and memory. In this section, we will weave all
these threads together, and from the resulting fabric see the necessary structure for
generalized nests of interpreters.

4.1 Compile-Time and Run-Time

In Section 2, we were able to ignore the distinction between information available
at compile-time and that available at run-time i.e. the distinction between the
nascent program’s ep’s in these two phases of its life. This was possible because in
a system with no secret knowledge, these two ep’s are necessarily identical. (The
reader is encouraged to convince himself of this) For the same reason, we were
able to ignore the goings-on between the point when the compiler was finished
compiling the program and the program executed its first instruction.

If we relax the ban on secret knowledge, these two simplifications are in general no
longer valid, and we are forced to consider three environments where before there
was only one. More precisely, these environments are (a) the compiler’s (ep,ip), (b)
the running program’s (ep,ip), and therefore (c) the (ep.ip) of the machine which
interprets this program. in the No secret knowledge case, the first of these was
sufficient for all three purposes; in particular, (c) was the same for both the compiler
and the executing compiled program cum run-time environment. See Figure 9.

4.2 Interpreter Nest ep and ip Structure

The implication of Figure 9 is that, as mentioned in passing in Section 3.2, the ep of
the running program need have nothing in common with the ep of its interpreters.
Eurthermore, since the interpreter itself is a program, this statement is recursively
applicable.

Thus in a nest of interpreters, there can be N disjoint ep’s, plus the ep of the
program which is executing at the top of the nest. However, the disjointness of the
interpreter ep’s does not belie the vertical nesting of the bottom-up control regime.
Hence, there are two distinct structures required to describe an interpreter nest,
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one for the ep’s, and one for the ip’s. As regards these two sructures, the ep
structure is that which contains a// forms of data: constants, numeric values,
addresses, and labels; the ip structure contains the relationship between the
various nested interpreters: who is running on whom. The relationship between the
two structures is found by answering the question of who “who’ and "whom’ are
in the preceding sentence: "who’ is the interpreted program ie. its ep, and
“whom'" is the interpreter program i.e. its ep. Figure 10 illustrates.

The ep’s and ip’s shown in the figure should be interpreted as consisting of single
activation records, for the sake of simplicity. Thus the static and dynamic links are
identical in all cases. Clearly, no problem is introduced if each ep consists of
multiple activation records - the static and dynamic linking of them is as usual. In
the case of the ip activation records, within a given nest, the static and dynamic
links are identical, but when a procedure call is made which runs on a different
nest, then the structure of the links is as shown in Figure 11. It should now be
apparent how procedure call-by-name would operate: the actual procedure
parameter must consist of an (ep.ip), which if different nests are involved, consists
of a pointer to the topmost activation record in the ep of the procedure and a pointer
to the topmost activation record in the ip of the procedure, plus a PC value for the
toprnost program. [Theoretically, a PC is necessary for each of the ip activation
records, but this is unnecessary if the convention is established that no interpreter
state is saved which is not on an {fetch boundary.]

We have thus far shown, in a constructive manner, that an ip activation must
consist of a pointer to the ep of the interpreter, a pointer to the ep of the interpreted
program, and static and dynamic links to earlier activation records. In the interests
of problem P3, it seems desirable as well to include OPTABLE in the ip activation
record, but we are unable to produce a more compelling argument than this. Figure
12 shows the final form of an ip activation record.

4.3 The Generalized Emulator System Model

Let us now reconsider the Boss machine model of Figure 5. The procedures
Interpreter X, Interpreter Y, and Interpreter Z may now be placed anywhere within
the structure, since the relaxation of the secret knowledge ban allows the ep’s of
the interpreter compiler, the executable program, and interpreting machine to be
disjoint. A further implication is that the instruction procedures of the Boss machine
itself need no longer be global either. Thus we can return to a system model whose
lexical structure superficially resembles the B6700, with the operating system most
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global, and other entities located arbitrarily within its inner scoping structure.

We now place items (b), (c), and {d) of Figure 9 at arbitrary points within this
structure. If the placement is such that the compiler of the program (d) can find the
interpreter (b} in its ep, then the activation of the program can be arranged via a call
to the interpreter with the compiled procedure as a parameter. Notice however that
this will not work if the run-time environments of the program and interpreter are
non-null and disjoint from the compiler’s ep.

Furthermore, if we assume that the ep’s of eventual interpreter nests are disjoint,
as in general they will be, then the same problem arises. What is needed is a means
to access a program (which might or might not be an interpreter) which is not
lexically visible. This can only be accomplished by assigning the entity, along with
its environment, to a global variable. This is to say that the principal requirement of
a general multi-emulator system (particularly one which supports nesting) is a
retention discipline [2,4,5,6]. Indeed, a general form of retention is required, one
which allows the assignment of functions.

It is interesting to note that the retention requirement falls directly out of the
relaxation of the ban on secret knowledge, which itself is related to the definitions
of scope and extent. While it is perhaps premature to draw a direct causal
relationship, it should nevertheless be apparent that there is at least an indirect
one. In either case, it is worth examining how contemporary systems which allow
secret knowledge manage to either avoid or hide the required retention
mechanisms.

In today’s systems, the most comprehensive source of retentive information is the
file system, and especially various sub-program libraries. These, combined with the
crucial services of a linkage editor, provide the bridge from the compile-time ep to
the {potentially dual) ep of run-time. In light of this discussion, it should be no
surprise to recall that systems with no secret knowledge need no linkage-editor i.e.
the retention function which is supplied by a linkage editor is unnecessary in a
system which, by its nature, generates no need for a retention discipline.

If, on the other hand, attention is directed to the loading function {(as distinct from
linkage editing), the common practice of using the opportunity to achieve
initialization of variables e.g. Fortran’s COMMON, can also be seen as an example
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of a hidden retention discipline. For this reasoning to apply in the strict sense,
howsver, it should be postulated that the e.g. Fortran program be an interpreter
program whose presence is invoked by the loading of a program which it is to
interpret. On a slightly different tack, Algol-60's problems with initialization of own
variables can be seen to stem from it’s lack of a retention discipline.
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5.0 Observations and Conclusions

A model has been presented which supports nests of interpreters in a general
manner. The intentionally theoretical discussion has precluded a number of
observations of a more pracical nature, e.g.:

1. Most systems will have a particular machine on which the “operating
system” runs i.e. all other machines are started up after this one. This first
machine is started up by performing the (god-given) enter function on it. If the
machine is entered again, the result will be to create an encapsulated version
of the same machine, thus illustrating how the model can reflect the reality of
systems such as[17,14].

2. While we have introduced the requirement of a retention model for storage
management, we have not placed any requirements on it besides the ability
to assign procedures. Thus, the models of [4,5,6] are all sufficient for the
implementation of a general interpreter nest system. The latter has in
addition the ability to model LISP-like languages in addition to Algol-like
ones, thus making the primitive functions suggested there in good candidates
for the corresponding god-given operations for the host machine.

3. We have said nothing about how one communicates between the ep’s of
programs running on different nests. Clearly, there is a problem of data
conversion and standards to be soived if cross-machine calls are to become a
viable tool. As regards the addresses themselves, if we logically admit that an
interpreter invocation deserves a full address space in which to work (i.e. a0
to MAX addressing space), then the concepts of interpreter activation and
segmentation can be seen to have a very close relationship. Indeed, one can
easily imagine an entire system built on this principle, thereby uniting
compilation, job startup, execution, procedure linkage, and main and
background storage allocation, all under the same regime.

4. It should be recalled that the retention requirement grew out of the need to
make environments of otherwise disjoint interpreters available to each other.
This need stems primarily from the nesting of interpreters, but also from
problem P2 and the desire to make software running in one environment
generally available to all. in systems where e.g. all interpreters run on the
host machine [10,11,13 and many more], the retention requirement is
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relaxed, since the environment to be retained is trivial. Thus, all that remains
is to model the ip stack.

5. The ep and ip structures which have been presented are the means by which
a collection of interpreters and their program libraries can be knitted
together. It is important, however, to realize that these structures place no
restrictions on the way an individual interpreter is written, i.e. they come into
play only when an interpreter is started or ended, and when a
cross-interpreter call is made.

The title of this section also promises some conclusions, but our feeling is that the
most reasonable thing to conclude is that we have barely scratched the surface of
the question of what is actually happening when a program is interpreted. We, just
as the programming language semanticists, have found the sequential nature of
program execution to be a most deverly tied (Gordian?} knot. We hope we have
added a useful new blade to computing community’s Swiss Army knife.
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