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SUMMARY

In Nielsen (1974), the decidability of varicus equivalence problems for
DOL. systems was studied. One of the questions left open in tiiis paper, was'the
decidability of what one might call the growth range equivalence probiem. Two
DOL. systems are said to be growth range equivalent iff the ranges of their growth

functions coincide. This probiem is proved to be decidable in this paper.

NOTATION

Let S be aset, then |S| denotes the cardinality of S . Let X bea
string of symbols from some alphabet, then |x| denotes the iength of x .
‘ N denotes the set of nonnegative integers.

I denotes the letter lexicographically between k and m, and . denctes

the set difference—operator.

DEFINITIONS AND BASIC LEMMAS

Definition 1. A DOL. system is an ordered triple H = <{X, 8, x> where I
is a finite nonempty, ordered set of symbols, £ = {01,02, TRPLIE }, ithe aipha-
¥ }
L

bet of the system), & is a homomoiphism in , and x is a nonempiy siring of

<

" .
symbols from 5, x € Z° , {the axiom of the system).

Definition 2. The growth function associated with a DOL sysiem H as in

£

Definition 1, h, is the function mapping nonnegative integers to nonnegative in-
tegers, defined by
hin) = | 6(x) |, for ail n€ N,

(where Bo(x) = x) . The growth range generaied by H, R(H), is defined as the ran-

geof h, i.e.,
R(H) = {] 6" (x) [ |n=zo0} .
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Definition 3. L.et H and G be two DOL systems with growth functions h

and g respectively. H and G are said to be growth equivalent iff their growth

functions coincide, i.e., iff
hin) = g(n) , for all n€ N.

H and G are said to be growth range equivalent iff R(H) =.R(G) . The growth

(range) equivalence problem is the problem of deciding for any two DOL systems

whether or not they are growth (range) equivalent.

Definition 4. Let H be a DOL system as in Definition 1, and let y be
any string over its alphabet. Then T(y) denotes the Parikh-vector of y , i.e.

the vector
m(y) = (ﬂ1(y),ﬂ2(y), ce ,ﬂizl(y)) )

where ﬂi<y) is the number of occurrences of the iltth element of Z,Gi , In Y.

The growth matrix of H,M is defined as an |Z| x |£] matrix where the

H ?
(i,j)'th element, m; 5 is given by
?

m,. =1.(6(0,)) for 1=i,j=< x| .

Let m denote the !Z]—dimensional coloumn-vector with all entries equal to 1,

then using the notation introduced in Definition 4 you get the following equations:

(1 h(n) = lén(x)[ = 77(x) » M

for all n € N ,

From the representation (1) of the growth function, h , of a DOL system,
and the fact that the growth matrix MH satisfies its characteristic polynomial of
degree less than or equal to [ZI , yYou get that h satisfies a linear, homogenous

. Consider the shortest

recurrence relation of fength less than or equal to [Z

recurrence relation satisfied by h,

Kk
(2) hintk) = & c.-h(n+k=]) forall n€EN, nx1,
=1
where K, C1sCpyeeerCp and | are computable integers. From this and from clas-

sical results on linear recurrence relations it follows that h can be represented

in the form
s
(3) hin) = ¥ p.(n)-a forall n€N, nx=1|,

where the ai's are the distinct roots of the characteristic polynomial of (2), and
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the pi's are polynomials of degree the muitiplicity of the corresponding oci's
minus one. In particular s <k < || .

It is well known that one can distinguish between polynomially bpounded

and exponential growth functions, in the sense that a growth function h is poly-

nomially bounded iff there exists a polynomial p such that

h(n) < p(n) for all n €& N,
and correspondingly h is exponential iff there exist constants o > 1 and Ny €N
such that

h(n) = o" for all n>n, .

0

Note that this property does not follow directly from (3), but is a particular pro-
perty of DOL growth functions (for a detailed discussion, see Berstel (1975)).
A DOL system is called polynomially bounded (exponential) iff its growth function

is polynomially bounded (exponential).

LLemma 1., Let H= <ZH,

tems with growth functions h and g respectively., If there exist constants m

6H,><H> and G = <ZG, 6G,><G> vbe two DOL. sys-

and n, such that m £ n and

h(m+i) = g{n+i) forall i, 0<1< le{+126] ,
then
h(i) = g(n-m+i) forall i, |2 |+ [25] =1 .

Proof. Concider the function f defined by
(i) = h(i) = gln-m+i) for all i € N .

f is represented in the form

f(i) = m! « .mt, forall T€N,

0 MG

where 1! is the (]ZH[ + IZG[)—dimensional row-vector with the first IZH] en-

tries equal to the vector TT(xH) and the last IZG! equal to the vector

n-m . , . . .
TT(XG)- Mg » and n' is the (IZHI + IZGI)——dlmenSIonal coloumn-vector with
all its ]ZH[ first entries equal to 1 and all its [ZGI last entries equal to

-1 . The matrix of the representation of f above satisfies its characteristic po-
lynomial, which implies that f satisfies a linear, homogenous recurrence rela-
tion of lergth less than or equal to the dimension of the matrix, [ZHI + IZG! .

This proves the lemma. B
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Definition 5. A DOL. system H and its growth function h are said to be

growing iff h is strictly increasing, I.e.,iff h(n) < h(n+1) for all n €N .

Definition 6., For any DOL. system H = <3, §,x> and any two nonnegative

integers n and m , the DOL system SUB(H,n,m) is defined by

SUB(H,n, m) = <x,8",8

n is called the period of the SUB-system,

Definition 7. Let p = (m1,. .. ,mk) and v = (n1,. . .,nk) be two k-dimen-
sional vectors with entries from N . The relations =,= and < on Nk are de-

fined as follows:
¢! miﬁni forall i, 1 si=2kj;

=y iff m. = n, forall i, 1=si=sk;

uo< v iff  p<vand ptv;

A
<
=
g

Lemma 2. Let H = <Z,0d,x> be a DOL system, and let R be one of the

relations =<,z or = on N - . If for some n,m &€ N

m(6™x) R m(6™M(x)

then
ﬂ(6m+ni+‘](x)) = ﬂ(6m+n(i+1 )+‘j(x))

forall i, 0<i, andall j, 0s<j<n.

Proof. See Nielsen (1974). B

lL_emma 3. It is decidable for any DOL system H whether R(H) is finite

or infinite, and if R(H) is finite, then ®(H) can be constructed.

Proof. See Nielsen (1974). H

Lemma 4. Let H= <%, 0,x> be a DOL system for which R(H) is infinite.

Then m and n, m,n € N, can be computed such that the DOL systems
SUB(H,n,m+i) , 0=1< n, are all growing.
Proof. Note first that ®(H) is infinite iff {Tr(én(x))[ n = 0} is infinite,

This, the assumption of the lemma and L.emma 2 imply that

(4) if W(éi(x)) = Tr(éj(x)) | then i =] .

So, compute m and n such that w5 (x)) and (6™ (%)) are comparable. It

follows fromKonig(1959) that any infinite sequence of T—-values contains at least
two comparable elements, hence m and n satisfying this requirement can be

+ . . .
m n(><)), this would imply, according to

computed. Assume that ﬂ(ém(x)) > 17{d
(8™ ()

Lemma 2, that R(H) is finite, i.e. a contradiction. Hence (&M (x)) <
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and from (4) above and L.emma 2 you get that
W(6m+m+J(x)) < 1_[(f)m+n(|~l~1)—i—J(x))

for all i, 0<i,andall j, 0=j<n.

This proves the lemma, &

Lemma 5. It is decidable, given any DOL_ system H and any n € N,
whether or not n € R(H) .

Proof. Follows from Lemma 4. B

Definition 8. Two DOL systems H = <ZH, 6H,><H> and G = <ZG, 6G,xG>

with growth functions h and g respectively are said to be ultimately growth

equivalent iff there exist constants m,n € N such that
h(m-+i) = g{n+i) for all i, 0 =i

RESUL TS ON THE EQUIVALENCE PROBLEMS

Theorem 1. The growth equivalence problem for DOL systems is decidab-

le.
Proof. This theorem was proved in Paz and Salomaa (1973). It follows di-

rectly from LLemma 1 that two DOL systems H and G as in l.emma 1 are growth.

equivalent iff

[6:_|(><H)| = l@iG(xG)] forall i, 0=<i< |zH| + |§:Gl .

This proves the theorem., B

Corollary 1. For any two DOL systems H and G as in Definition 8, for
which R(H) and R(G) are both infinite, it is decidable whether or not H and G

are ultimately growth equivalent.

Proof. It follows from Lemma 1 that H and G are ultimately growth

equivalent iff there exists an | € N such that

either h(i) = g(I+i) for all i, iz IZHI + IEGI ,
or h(1+i) = g(i) for all 1, iz [zHl+|zG[.
But the existence of such an | can be decided from LL.emma 4 and Theorem 1.

The purpose of this paper is to prove that also the growth range equiva-
lence problem for DOL systems is decidable.
Solet H = <ZH, 6l—|’

The first step in an algorithm to decide whether or not H is growth range equi-

xH> and <ZG, 6G,xG> be two given DOL. systems.

valent to G, is to apply the finiteness—algorithm of Lemma 3 to H and G . If
one or both of the systems turn out to be finite, then the question of growth range

equivalenceis trivially decidable. In the following we shall therefore assume that

R{H) and R(G) are both infinite.
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Lemma 6. If H is polynomially bounded and G is exponential, then
R(H) + R(G) .

Proof. Since R{H) and R(G) are infinite you may decompose both systems
according to lLemma 4 into growing subsystems, or, in other words, you may com-
pute constants Ny and m. (nG and mas respectively) satisfying the require-
ments of Lemma 4. Let us denote the growth functions of SUB(H, n mH-H)

H’
+i})) by h., 0 <i< n, (gi , 0=i<n.) . Then from the assump-

(SUB(G, ng, Mg o
tions of the lemma there exist constants Ny 3 k=1 and o > 1 such that

(5) hi(J)SJ fOI"a”J,J>l’10,ahda”l,oﬁl<hH,
(6) gi(j)zocJ forall j, j>n,, andall i, 0=i < ng;

‘This follows almost directly from the fact that hi(J') = h(mH+i+jnH) and corres-
pondingly gi(J) = g(mG+|+JnG) .
But (5) and (6) imply

1
(7) [{m € R(H) | m = n}| 2 n< for all r1>r*nok ;

(8) | {m € R(G) | msn}| <n -Ioga(n) +m o
0

for all n > q .

H

Note that it is used here that the constructed SUB-systems are all gro-
wing. (7) and (8) above are obviously contradictions to the assumption that

R(H) = R(G) . This proves the lemma, #

L_.emma 7. For any DOL. system H it is decidable whether H is polyno-

mially bounded or exponential.
Proof. See Salomaa (1973).

From the two previous lemmas you get that the second step in an algorithm
to decide growth range equivalence between two given DOL. systems is to apply
the algorithm of LLemma 7 to both of the given systems. If their growth types turn
out to be different, then you know from LLemma 6 that they are not growth range
equivalent,

So, after having applied the suggested two steps to the given systems,
you have .got your answer to the question of growth range equivalence, except
in two cases: the growth ranges of both systems are infinite, and their growth
types are the same (either both polynomially bounded or both exponential). These
two cases will be treated seperately in the next two sections. The third step in
the algorithm to decide growth range equivalence will, however, almost be the
same in the two cases. Basically, what you get in both cases, is that H and G

are growth range equivalent iff each SUB-system of H with "'sufficiently long!"
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period has an ultimately growth equivalent SUB~system of G , and the other way

round,

POL.YNOMIALLY BOUNDED CASE

Lemma 8. L.et H 'be a DOL. system with polynomially bounded growth
function for which R(H) is infinite. Then m and n, m,n € N, can be computed
such that the growth functions hi of SUB(H,n,m+i), 0=1i< n, are all growing,
and furthermore there exist polynomials P; 0=<i<n, all of the same degree
such that

hi(j)-‘-—pi(j) forall j, 0<j, andall i, 0<i<n.

Proof. It was proved in Ruohonen (1975) that there exist computable
constants m, and ny such that the growth functions of the systems
SUB(H,n1,m1+i) , 0=1<n,,

LLemma 4 1t follows that you can also compute m, and Ny such that the DOL. sys—

are all polynomials of the same degree. From

tems SUB(H,nZ,m2+i) , 01K n,, are all growing. But then obviously

) and n=n,- n

1 5 will satisfy the requirements of the lemma.

m = max(m1 ;M

Lemma 9. Let H and G be two growth range equivalent DOL. systems,
both of them with polynomially bounded growth functions. Furthermore, let
m_ys Ny and Moy N be constants satisfying the conditions of L.emma 8 for sys~
tems H and G respectively. Let k denote the common degree of the polynomial
growths of SUB(H,nH,mHH) R hi , 0=i K< Ny o and let | correspondingly deno-

te the common degree of the polynomial growths of SUB(G, Ng mG+§), g.

’
|

O£i<nG . Then k=1 .
Proof. The proof follows essentially the same lines as the proof of Lem-
ma 6. Assume, e.g., that | < k . Then there exist constants "o EN, a>o0

and b such that

ajk for‘allj,ﬂo<j7anda”i7ogvi<nl~l;

o)
b
Y

A . . . .
b j fora!!J,nO<J,andallx,OS|<nG.

Q

—

P
A

But these relations imply

IA
o)
L )
A
xl=

[{m € R(H) | m nH(n/1a) +m_ forall n,n>an

| 0’
|

(n/b)I for all n,n>bngy .

A

3
R

v

[ {m € R(G) | m

Again the fact that all SUB-systems are growing is used, and again you reach a

contradiction to the assumption that H is growth range equivalent to G . H
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Now, take any two DOL systems H and G and constants m

H? "H Mo
and Ng satisfying the conditions of Lemma 9, and take any of the systems
SuB(H, Ny mH+i1) from LLemma 9. Let us denote the growth function of this sys-
tem by p,

_ k k-1
p(n)—akn +a __,n tootag .

All the values of p occur, from the assumption that H and G are growth ran-
ge equivalent as values of the growth function of G . That is, you may define a

function vy mapping N to the set {0,1,..., nG} satisfying

(9) it y(j)

for some i, 0<1i < ns then p(j) occurs
as a value of the growth function of

SUB(G,nG,mG-H) » 9

it v(j)=n_. then p(j) occurs as one of the first mG-—1
values of the growth function of G, i.e.,
p(ij) = g(n) for some n < mg

Note that Yy is not necessarily unique, but at least one function v satisfies (9),
and when referring to y in the following we shall mean one fixed y satisfying

(9).

Obviously, there exists an n, € N such that for all | > no , Y(j) < ng -

Secondly, applying the theorem of varc‘)n der Waerden as stated in Chintschin (1951)
to Yy, you get that there exists a computable function, W , mapping N to N,
such that for any | € N, any set of W(l) consecutive elements of N contains
an arithmetic progression of length | on which Yy assumes the same value., W

is defined recursively as follows:

w(l) = U(nG, i3

Ulx,y) =if y<2 ‘then X+ 1

otherwise  V(x,y=1) ;

Vix,y) =if x=0 then 1
otherwise 2 U(xV(x—1’ y), yie Vix=1,y) ;

It should be stressed that the theorem of van der Waerden does not give you an in—
finite arithmetic progression on which y assumes the same value. The applica-

tion of the theorem gives you, however, the following lemma.

Lemma 10. There exist an iO , 0= io < Ng s and a constant

r€N, r < W( IZHI + IZG] ~ 1)}, such that for arbitrary big n-values
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ig = v(n) =v(ner) = o= viner([5, | + [25] = 1))

Proof. L.et NJ. denote the set of consecutive elements of N from
i Wzl + lsgl -1 o Genew(s, ] + 55l - 1) =1 foran jeEN . if
you apply the theorem of van der Waerden as stated above for | = [ZHI + |ZG[ -1
to NJ for every j &€ N, you get that every Nj contains an arithmetic progres-—

sion of length IZ IZG] ~ 1 on which Yy assumes the same value. But since

ol
the periods of these arithmetic progressions are obviously bounded by

W({ZH[ + IZG[ - 1)/([ZH| + [ZGl - 1), and since Y assumes only finitely many
values, the lemma follows directly. &

Let us denote the growth function of SUB(G,n ) by g, where

e Mctlo
in satisfies Lemma 10,

et N1 denote the infinite subset of N for which Yy assumes the value i

Define o as the function mapping N

0 *
: to reals, satisfying

(10) plr) = qlla /b, ) /™ +ln)

= glcsn +op(n)) for all n € N1 .

Note that © is unique from the fact that all SUB-systems are growing.

Lemma 11. @(n)/n =0 for n-% in N,

Proof. From (10) you get (dividing by e )

len + ()" b

= ” +oo.t

N n n

a a b

IS R

~lo
xlo

9

The lefthand side of this equation converges on N1 to a for n going to infi-
nity. But since clearly (cn +@(n)) goes to infinity with n, you have that the
quotient between any of the k last termes on the righthand side and the first

term on the righthand side converge to 0 for n going to infinity in N From

1 *
this you get

bk(cn + cp(n))k

nk -+ a for n=+%® in N1
which implies
a 1/k
w(_‘l)' - _.li for N2 in N
g} bk 1

and this proves the lemma.
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Lemma 12.

o(n) - = d for n=+%® in N}.

K . K i . )
¥ an = 3 b;'(z () (en)'™ (Cp(n))J>,
= i=0

which implies

K .. k i . .o .
(11) S (a, -b, c')n' =oln)- b.-(z Yy (en)' ™ (@(m)“}) .
= ' ! i=0 ' \j=11

Observe that the coefficient of the n—term on the lefthand side of (11) is equal to
zero, so if you divide the equation (11) by nk—1 you get that the resuiting left-

-k—-T)

hand side converges to (ak._1 - bk-—1 c for n going to infinity in N1

Furthermore, you get from LLemma 11 that if you divide the sum-expression of

the righthand side of (11) by pe , the resulting sumexpression will converge
to bko k-ck—] for n going to infinity in N1 . This proves the lemma. B
Lemma 13. Let r be the constant of Lemma 10, r € N, then c =-i— ,

for some s € N .,

Proof. L.et N, denote the following subset of N

2 1

Nz = {n € N, [ iy = v(n) = v(n+r)} .

It then follows from LLemma 10 that N, is infinite., Consider the function V

2
mapping N, for N defined by

2

¥ (n) = (c{n+r) + o(n+r)) - (cn +¢(n))

= cr + glnt+r) -opn) forall n&N, .

From L.emma 12 you get

n) »cr+d-d=cr for n+® in NZ'

But since {(n) is an integer-function this means that cr is an integer, and this

proves the lemma.

Lemma 14, d= for some t € N, and there exists a constant No €N

1
such that

o(n) =d for‘alln>no,n€N]
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Proof. It follows from the definition of @ that (cn +@(n)) is an integer-
function, i.e. (Lemma 13) rw(n) is an integer-function converging (Lemma 12)

to rd for n going to infinity in N,. This implies that rd is an integer

(which proves the first part of the Iem:na), and secondly it implies the existence
of Ny € N1 such that r*cp(n) =-rd -for all n> Ng s N € N]’ (which proves the
second part of the lemma).

Combining Lemma 10 and lLemma 14 you get that there exists a constant

>
n;=ngs such that
p(n,+ir) = aleln +jr) +d)  forall j, 0=j< |5 |+ [55]-1.
This implies, however, from Lemma 1 that SUB(H;PnH,mH+il+n1 nH) is growth
equivalent to SUB(G,sn_.,m_+i. + (d+en '

G’ G O 1 G) -
Now take any constant P, € N and any SUB-system, Hi , of the form

n

H, = SUB(H,p1r‘nH, m_+i mH) 0=i< Pyr

for which (n, modulo p1r‘) +i.
If you apply the arguments of this section to this SUB~-system you get that
there exist constants p,,n, € N, p, < W(IZH] + IZGI - 1), such that

SUB(H, pzp1r‘n}__l,ml__l+i1 + inH + n2p1r‘nH) is either

(12) growth equivalent to some SUB-system of
SUB(G, ng, mg+i) for j+io, or

(13) growth equivalent to a SUB-system of

SUB(G,nG,mG+|O) with period PP S -

Note first that (12) and\(13) are not necessarily exclusive, and secondly
that (13) follows from the fact that the leading coefficient of the polynomial growth
of a SUB~-system of Hi with period Py is equal to ak(r‘p1p2)k , whereas the
leading coefficient of the polynomial growth of a SUB-system of
sSuB(G, Ngs mG+io) with period x is equal to bkxk . .So from the assumption that

the two SUR-systems are growth equivalent you get

k _ k
ak(r‘p1p2) = b x

which implies
X =pyPS .

If we denote the growth function of the chosen SUB-system Hi by hi s
and correspondingly the growth-function of SUB(G, SNg» mG-HO + jnG) by gJ. ,

0<j< s, then (13) can be stated in the following form.
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(131) there exist j,1 € N, 0 <] < s, such that the function
f(n) = hi(n+n2) - gj(p1n+l)

assumes an infinite number of zero-values for arguments forming an

arithmetic progression with period Py -

Remember, however, that the function f of (137) satisfies a linear, ho-
mogenous recurrence relation of length less than or equal to ([ZH[ + ]ZGI) )
i.e., you can apply the following lemma, which was proven in Berstel and

Mignotte (1974).

l_emma 15. LLet f be a function mapping N to integers, satisfying a
linear, homogenous recurrence relation of length |, and assuming an infinite
number of zero-values. Then the arguments for which f assumes the value zero,
form, apart from a finite number of them, a finite union of arithmetic progres-
sions for which the least common multiple of the periods is bounded by B{l-1) ,

where

B(x) = exp (4x V10 log x) ,

From this you get the following lemma.

Lemma 16. Define u, =W(|2Hl + ]ZGI - 1), u, = B(IZHl + [ZGI - 1),
1 2
v= (0 #-(0 i), and let H. denote the SUB-system
i=1 =1
SUB(H,nH- v,mH+I) for all 0<1i< nev .
Then the assumption that R(H) = R(G) implies that for each 1, there exists an

n. € N, such that SUB(H,n_,-v,m +i + n.n_v) is growth equivalent to some

H H PH
subsystem of G . Furthermore, if you denote the leading coefficient of the poly-
nomial growth of SUB(H,nH,mH+i) by a., 0= i < n_ , and correspondingly the

leading coefficient of the polynomial growth of SUBI(G, Ngo mG+j) by bj ,
0<j< NG » and define
1

VAT Kk
y=ma><-5j— [O£i<nH,O£j<nG ,
then the period of this subsystem of G is bounded by Ng tVey

Proof. Follows directly from the arguments of this section, and the fact
that you may assume that the period of any arithmetic progression as in (131 is

a divisor in v by LLemma 15. @
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Theorem 2. l.et H and G be two DOL systems both of them with polyno-
mially bounded growth functions, for which R{H) and R(G) are both infinite sets.
It is then decidable whether or not R(H) = R(G) .

Proof. The algorithm to decide whether R(H) = R(G) under the assump-
tions of the theorem, goes as follows:

Compute M Mgy Mgy V and y satisfying lLemma 9 and L.emma 16.

For each i, 0=<i< n_v, you decide whether SUB(H,n +i) is ul-

H H H
timately growth equivalent to some SUB-system of the form SUB(G, kK, mG+j)

v, m

where 0= j<k, and 0< k< NgVY - This can be done by a finite number of
applications of the algorithm of Corollary 1. If this is not the case you know from
Lemma 16 that R(H) is not equal to R(G) ; if it is the case, you get from the app-
lication of the algorithm of Corollary 1 an n. satisfying Lemma 16. If you do

find an ultimately growth equivalent SUB-system of G for all i, 0=<1i< NV,

you know that R(H) € ®(G) iff

{[6}: (xH)] lo<n< m_+  max (ninHv)} c R(G) .
0<i<n v

But this relation can easily be decided by a fi:te number of applications of the
membershipalgorithm of Lemma 5.

Finally, you interchange the roles of systems H and G, and repeat the
steps described above,

Now, obviously ®(H) = R(G) iff the algorithms described above end with

the results R(H) € R(G) and R(G) € R(H) . This proves the theorem. B

Remark. You should note that the algorithm given in the proof of Theorem
2 does not include an algorithm to decide whether R(H) € R(G) in general. The
reason for this is that the first part of the algorithm (the part of finding growth
equivalent SUB-systems) is working with the assumption R(H) = R(G) , i.e. this
part may stop with a negative answer to the question of growth range equivalence
even though R(H) c R(G) . An example of this phenonemon would be H generating
the sequence n4 and G generating n2 . Then R{H) € R(G) , but no SUB-system
of H is growth equivalent to any SUB=-system of G . |

EXPONENTIAL CASE

The proof of the decidability of growth range equivalence in the case
where both systems have exponential growth functions follows essentially the same

lines as the proof is the polynomially bounded case.

Lemma 17. Let H be a DOL. system as in Definition 1 with exponential
growth function h satisfying a linear, homogenous recurrence relation (2).

Then m and n, m,n € N, can be computed such that the growth functions hi
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of SUB(H, n, m+i) , 0<i < n, are all growing, and there exists a real number
£ > 1, such that £ is a root of the characteristic polynomial of the {common)
recurrence relation of all the hi's , and furthermore for any other root o of
this polynomial, one has |a| < € .

Proof. By LLemma 4 integers m and n, can be computed such that the
growth functions hi' of SUB(I-I,n1,m1+i) , 0<i< n,, are all growing, By a
theorem from Berstel (1975), integers m, and n, can be computed such that

,m.+i) , 0<i < n,, satisfy the second.
272 2

condition of the lemma. Putting now m = max(m1, mz) and n = nyen, the growth

the growth functions h." of SUB(H, n

functions hi of SUB(H,n,m+i), 0 <i < n, satisfy both conditions.
Now, take any two growth range equivalent DOL systems H and G,
both of them satisfying the conditions of L.emma 17. You can then compute con-

stants m H €N and € > 1 for system H according to Lemma 17, and

n
H’
correspondingly Mgy N €N and n> 1 for system G.

Consider then any SUB-system of H of the form SUB(H, Ny mH+i1)
where 0 < 11 < Py e The growth function of this SUB~-system can be expressed

as (follows from lLemma 17 and (3))
p(n) =an® M+ p,(n) =p,(n) +p,n
2 1 2 ’

for some constants a > 0, k € N, and a function Py mapping N to reals, for

which

-+ 0 for N+ In N.

Define for this particular SUB-system of H , a function Yy exactly like in the
previous section (9). Applying van der Waerdens theorem you get that there
exist constants iO’ reN, 0= iO < NG satisfying the requirements of Lemma 10,

The growth function of SUB(G, ng» M +i .} can be expressed as

G 0

aln) = b ' 1"+ ayln) = a,(n) +a,n)

for some constants b > 0, €N, and a function d, for which

qz(n)
' - 0 for n=+% in N .

bnlnn

Define as in the previous section N1 as the infinite subset of N for

which Vv assumes the value | and define the unique function ¢© mapping N1

O 7
to reals satisfying

(14) p(n) = alen +¢(n)) for all n €N, ,
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where c¢ is the constant satisfying £ = ﬂc (c = log §/Iog n). L.et A denote the
function defined by

An) = cn + ow(n) for atl nEN1 .

Lemma 18. o(n)/n+ 0 for n-+% in N1 .
Proof. Since the system SUB(H, nH,mH—H) is growing, one has

AMn) » for n-%® in N, . Now, from (14) one has

p,(n) a,(An)) a,((n)
N (o o N (PN N GV
for.all n¢ N1 , and this implies
q, (A n)) !
(15) ! ('n')""" = E (X(kh)) T]Cp(n)"’1 for N2 in N.I .
Py n

Applying the logarithmic function to this convergence you get

log () + 1+ 1og((n) - k-log(n) +p(n) - log 1~ 0

for n=+% in N1 .

Dividing this convergence by cn you get

I+ log(A(n)) + ©(n)-logn 0 for n2+® in N
cn cn 1’
i. Ca s
l- log(A(n)) | AMn)-logm
pae . gn

for n—+ % in N1 .

But now clearly the quotient between the first and the second term of the

lefthand side of this convergence converges to zero, which implies

A
__(ﬂz_i_c_).ﬂﬂq log n for n-—* ™ in N ,
cn 1

and this proves the femma.

Lemma 19. Let N, denote the infinite subset of N1 defined by

2
N, = {n¢€ N, | iO =vy(n) = yv(n+r)} .
Then
Cp(h+r‘) ~o(n) = 0 for n~*® in I\l2 .
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Proof. From {15) you get

—Z (c+*—q2—(nﬁ-)-)l nl—K ﬂcp(n)_)] for nae in N,

but since ©(n)/n converges to zero this implies

nl—k ﬂcp,(n)_’___a__l_ for n=%° in N1
bc

Applying the logarithmic function to this convergence you get

(1=k)-log(n) + w(n)+slog 1~ log( a I)
bc

for n—+% in N, .
From this you get
(I=k)+(tog(n+r) -~ log(n)) + {p(n+r) —p(n))-logn =+ 0

- 00 1
for n -~ mNz.

Clearly the first term of the above lefthand side expression converges toc zero

for n going to infinity in N, , and hence so does the second, and this proves

2

the lemma. E

Consider the function { mapping NZ ro N defined by

§(n) = An+r) = A(n) =

cr + @p{n+r) - o(n) , for all n€N, .

From l_emma 19 you get that

y(n) » cr for nose in N, .

But since U{n) is an integer function you get from this that cr is an integer,

i.e., you get the following lemma corresponding to LLemma 13.

Lemma 20. c¢ = for some s € N .

L]

Lemma 21. Hno EN MnEN, ,

Proof. Notice that Mn) is an integer function, i.e., (from Lemma 20)

n>ng: o{n+r) = o(n) .

©(n) = T(n)/r for some integer function T . The lemma follows now directly
from Lemma 19, &
Since vy satisfies the conditions of LLemma 10, LLemma 21 implies that

there exists an n, €N, ny > Ny such that

p(n,) =cp(n1+r‘) =...=oln, + r‘(lZH[ + [ZGI - 1))
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Applying LLemma 1 this means that SUB(H, ro mH-I-i1 + n1nH) is growth equiva-
lent to SUB(G,snG, G) .

From this point, the proof goes exactly like the proof in the previous

Mgt + (c:n1 + cp(ni))n
section, and finally you end up with the following theorem.

Theorem 3. LLet H and G be two DOL systems both of them with expo-
nential growth functions.. It is then decidable whether or not R(H) = R(G) .
Proof. The proof is identical to the proof of Theorem 2, with the excep~

tions that in the algorithm to decide whether R(H) < R{G)

m pp M are computed according to LLemma 17, and

H "H Mo e

y = C e
All other details are left to the reader. B

Theorem 4. The growth range equivalence probiem for DOL-systems is
decidable.
Proof. Follows from the remarks just after Lemma 7, Theorem 2 and

Theorem 3. B

Corollary 2. For any two DOL. systems H and G it is decidable whether
or not there exist finite sets FH and F‘G , F:!—!’F:G = N, such that
RIHNF = RIGN\Fg .

Proof. Follows from slight modifications of the proof of Theorem 4. The
only interesting thing to notice is that the part of the algorithm corresponding
to the algorithm of Theorem 2, consists simply of the first part of the algotithm
of Theorem 2 (the part of finding growth equivalent SUB-systems) applied to H
and G ! And similarly, for the part corresponding to the aigorithm of Theorem

3. All details are left to the reader.
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