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Abstract.

Top-down tree transducers with regular look—-ahead are intro-
duced. It is shown how these can be decomposed and composed, and
how this leads to closure properties of surface sets and tree trans—
formation languages., Particular attention is paid to deterministic tree

transducers.




Introduction.

The top~down finite state tree transformations discussed in, for
example, [3, 7, 13, 14] fail to have certain nice closure properties
with respect to composition. It was argued in [7] that this is due to the
fact that a top~down tree transducer cannot inspect a subtree before
deleting it (a property possessed by bottom-up tree transducers). In
this paper we add the facility of regular look—~ahead to the usual type
of top-down tree transducer. The transducer is now allowed to inspect
the subtrees of a node before processing it {thus having an arbitrarily
large look-ahead). However, the look-ahead is restricted in that the
information which the transducer extracts from the subtrees should be
finite and even regular (or "'recognizable!, i.,e. computable by a fini-
te tree automaton). We note that the idea of regular look-ahead also oc-
curs in the theory of parsing of context-free languages [4]. It turns out
that the class of tree transformations realized by this type of transducer

£

has all the expected closure properties with respect to composition, for
instance, both the classes of linear and deterministic top-—down tree
transformations are now closed under composition (we note here that
composition results can also be proved for restricted types of top-down
tree transducers, such as total or nondeleting ones, see [13, 141]).
These composition results are proved, as in [7], by first decomposing
the transformations into simpler parts and then showing composition pro-
perties of these simpler transformations. In fact, any top-down lree
transducer with regular look—-ahead can be realized in two phases. The
first phase (which can be accomplished bottom-up and deterministically)
computes all the look-~ahead Iﬁformation and stores it in the labels at the

nodes of the input tree. The second phase is an ordinary top~down tree

transducer which uses this information to imitate the one with regular




look—ahead. This decomposition result is also useful in obtaining re-
sults about top—~down finite state tree transformations without regular
look—ahead, in particular concerning their surface sets.

This paper is a sequel to [’7] and the reader is assumed to be fa-
miliar with the methods and results of [7]. However, we do not assume
any familiarity with section 5 of [7]. We note that the class T -FST ,
defined in that section, is in fact equal to the class of top-down tree

transformations with regular look-ahead (cf. the remarks following

[7, Theorem 5.13]).

In section 1 we list some changes in terminology with respect to
[7], some additional terminology, and some additional lemmas.

In section 2 we define the top—~down tree transducer with regular
look—ahead and show the above mentioned decomposition and composi~
tion results.,

In section 3 we compare the deterministic bottom~up and top~
down tree transformations. The deterministic bottom-up tree trans-
formations are (properly) contained in the deterministic top~down tree
transformations with regular look~ahead.

In section 4 we apply the results of the previous sections to top-—
down surface sets and yields of surface sets. It follows for instance
from the result in section 3 that the deterministic top-down surface
sets are closed under deterministic bottom-up tree transformations.

We finally mention possible applications to L.indenmayer languages,

Te Preliminaries.

The reader is referred to [7] for all unexplained terminology.

That paper will from now on be referred to as [BT] rather than [7].




We recall that we often make no explicit distinction between a trans-
ducer <Z,A,Q,Qd,R> and the transformation from TZ to TA that it
computes. We also recall that by the relational composition R]o Rz we
mean "first R], then Rz” . We finally restate the important phqperties
(B1), (B2) and (T) of [BT].

(B1) Copying of an output tree after nondeterministic processing of
the input tree.

(B2) Deciding whether to delete a tree or not after processing it.

(T) Copying of an input tree and processing the copies differently.

In the rest of this Sectioane list some changes in and additions to
the terminology in [BT]. Some additional facts, to be used in later
sections, are also mentioned.

First we change our use of "deterministic top-down'!" and of "DT"
so as to agree with [13]. A top-down fst <Z,A,Q,Qd,R> will be called

deterministic if (1) Q_, is a singleton and (2) different rules in R have

d

different lefthand sides., It is easy to see that every deterministic top~
down fst is equivalent to one which processes the whole input tree
(except eventually for its leaves) and then decides whether to accept
it or not. The version in [BT ] will be called a total deterministic
t-fst (since it accepts every input tree). Determinism will be denoted
as usual by a D, so trhat DT-FST denotes the class of deterministic
top-~down fst (and not the class of total deterministic top-down fst ,
as was the case in [BT]). The class of linear deterministic top~down
fst will be denoted by LDT-FST . The definition of HOM and L.HOM
is not changed, i.e. homomorphisms are total.

Secondly, we shall write REL rather than RELAB . Thus

QREL denotes the class of (bottom-up or top-down) finite state rela-



belings (cf. Definition 3. 14 of [BT]). The class of deterministic bot-
tom-up finite state relabelings will be denoted by DBQREL (this class
was denoted DQRELAB in [BT]), and the class of deterministic top~
down finite state relabelings by DTQREL .

We shall use the following additional decomposition results, the

detailed proof of which is left to the reader.,

Lemma 1.1,

(1) T-FST &€ HOM = LLT-FST and
DT-FST & HOM « LDT-FST,

(2) LDT-FST ¢ DTQREL. » LLHOM ,

Proof. (1) The first inclusion is shown in [BT, Lemma 3.6 ] and
the second inclusion easily follows from the proof of that lemma.

(2) The proof of this inclusion is similar to that of [BT, Theorems
3.5 and 3.15]. Roughiy, for T in LLDT-FST , one can construct T1
in DTQREL and TZ in LLHOM such that the i-th rule
q(O‘(><1. “Xk)) +t of T is splitinto two rules
q(0(><1. .o xk)) -+ i(q1('><]). .. qk(xk)) of T, and
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of T, and where, for each j (1 < j <k), either qj(xj) occurs in t

or qj = dg {and 9 is a new state which is, for instance, the identity

;{(i(xr..xk)) -+ t[% (x1),,. o, ¥ (xk)] of T, , where % is the only state

on all trees).

We shall also use the following result (cf. [12]).

_emma 1.2. L.et F be the composition of a finite number of

bottom-up fst , i.e, F = ES1 o BZ ©aus © Bn for some n=1 and

B, € B-FST . Then



(1) RECOG is closed under = (i.e. if L. € RECOG ,
then F~ (L) € RECOG) , and

(2) dom(F) € RECOG .

Proof. (1). It obviously suffices to assume that F € B-FST .
Let I be a recognizable tree language and let R be a finite tree
automaton with domain |- . Then F“T(L) = dom(F e R) . By [BT,
Lemma 4.2(1) ] F R € B-FST and hence its domain is recognizable
by [BT, Corollary 3.12]. Statement (2) is immediate from (1) by the

fact that dom(F) = F—1(TA) , where A is the output alphabet of ~ .
]

Note that, since FTA, REL and HOM are included in B~FST ,
the decomposition result for top—-down fst BT, Theorem 3. 9_]' implies
that Lemma 1. 2 also holds with '"bottom-up'' replaced by '"top~down!
(L12].

We finally introduce some more terminology concerning surface

sets and tree transformation languages.

Let £ be a class of tree languages and ¥ a class of tree trans~

formations. Then ©(£) denotes the class of tree languages

{(F(L) | F€ T and L € &£} , which we shall call - (3, 8) surface sets,

If §=RECOG then the (&,8£) surface sets are the I surface sets.
Let e be afixed symbol of rank 0 (which may or may not be an
element of a ranked alphabet). The vield of a tree t, denoted by

yield(t) , is the string defined recursively as follows:

(1) for 0 of rank 0, yield(c) = |0 if o#e
AIf 0T e

where A is the empty string;



(2) for 0 of rank k=1 andtrees t,,...,t ,

yvield{o(t

e tk)) = y|eld(t1),. .yleld(tk) .

Furthermore we define, for a tree ilanguage L.,
vield(L) = {yield(t) | t € L} and, for a family & of tree languages,
vield(£) = {yield(L) | L € £} . Thus yield(L) is a string language and
vield(£) is a family of string languages.

For a class £ of tree languages and a class % of tree trans-—
formations, the class of languages yield($(£)) will be called the class

of (F,8) tree transformation languages. Thus a tree transformation

language is the vield of a surface set.
In the next lemma we show that in many cases we can do without
the special symbol e to denote A . This lemma is in fact a particular

case of Theorem 3.2.10 in [3].

l_emma 1.3. l.et £ be a familly of tree languages and $ afami-
ly of tree transformations such that Z(£) is closed under linear deter-
ministic bottom—up fst . LLet L. be an (&, &) tree transformation lan-
guage (i.e. L € yield(F(£)) ). Then L - (A} = yield(F(M)) for some
M€ & and some F € ¥, such that the output alphabet of F does not

contain e .

Proof. Let L. =yield(G(M,)) for some M, € ¢ and G € T, and

i

let G(M,) be over the ranked alphabet ¥ with e € 5 (otherwise there

1

is hothing to prove). We now construct a linear deterministic bottom~up

fst B which, for any tree t in T, deletes all subtrees t1 of t
2

with yield(t1) = A (and does not accept t if yield(t) =X) . In fact,
B = <Z,£\,Q,Qd,R> where Q= {qe, qf} , Qy = {qf} , & is the ranked

alphabet such that, for each k, 4, =¥~ {e} , and R contains the fol-

Kk

lowing rules. First of all it contains rules ¢ - qf,((J) for each

) where O_ is an arbitrary element

- i o
o€ N, fe} and one rule e—*qe( 0

0




of ¥, - {e} (note that for 5y = {e] the proof is trivial)., Furthermore,

for each k=1, 0¢ Zk and Ayrees g ctQ, R contains the rule

O(q1(x1)¢..qk(xk)) -+ q(O(xi e )) where q =9 =...=q =q
[ n 1 2 n

(1 = o<y <""<|n < k) and all other q; are equal to q_, and

q=d, if and only if n=0 (i.e. d; = q2= cee = QS qe.‘, in this case
the righthand side of the rule is qe(O)) . It is easy to prove that, if
*

N
t, = qe(tz) , then yield(t]) =\, and if t, = qf(tz) , then yield(tz) =
yield(t,) # 1 . Thus L - {A} = yield(B(G(M}))) and, since d(8) is

closed under B, L.~ {A} = yield(F(M)) for some F(M) € (&) , where

FF has output alphabet 4.
-

Note that, when a tree transducer, together with an input tree
fanguage, is viewed as a generating device of a tree transformaltion

language, then l.emma 1.3 tells us that we can get rid of A-pules,

2. Top~-down tree transducers with regular look-ahead;

decomposition and composition.

In this section we add the facility of regular look-ahead to the
top—~down fst , Consequently the top~down fst will be able to inspect a
subtree in order to decide whether to delete it or not (cf. property (B2)).
Thus the difference between bottom~-up fst and top-down fst with re-
gular look—ahead can then be characterized by properties (B1) and (T).

In order to define the top~down fst with regular look~ahead we
have to slightly generalize the notion of a semi~thue system with variab~
les [BT, section 1]. We shall allow the range of the variables to be dif-

ferent for different rules. Formally we redefine a semi~thue system with

variables to be a system G = {A,X,R>, where A is an alphabet,

X = {XPXZ""} and R a finite set of rules of the form <o = {, D>

such that, for some k=0, © and | arein (AU Xk)* and D is




a mapping from X_ into the powerset of A* , For 1 =1 =k, D{(x)

k
is called the range of Xi5o W is called the lefthand side and { the

righthand side of the rule, Whenever D is understood (in particular

when k = 0,D is always empty) or will be specified later, we shall
write @ - | rather thaﬁ <~ §, D> . The relations & énd é are
defined as in [BT], the only difference being that the mapping D now
depends upcn the rule,

We now define a top—~down fst with regular look-ahead to be a

top~down fst in which the ranges of the variables in each rule are

certain recognizable tree languages.

Definition 2. 1. A top~down finite state tree transformation with

regular look-ahead (abbreviated by t"—fst ) is a 5-tuple

T=<5,40,Q, Qd’ R> , where X,A,Q and Q, are as for a top~down

d

fst and R is a finite set of rules of the form <t1 + b, D>, where

4]

t1 - tz is an ordinary top~down fst rule and D is a mapping from

X, into the powerset of T. {(where Xk is the set of variables occur-

K by
ring in t, ) , such that, for 1 <1 =k, D(xi) ERECOG . T is vie~
wed as the semi~thue system with variables <X UAU QU (G X R
and the tree transformation defined by T is as usual
{<t,s>€TZ><TA|q(t)§S for some q in C;ld} . O
The class of all tr\—fst will be denoted by TR-F-“ST R
We note that it will always be assumed in a tr\wfst that the ran-—
ges of the variables are specified in some effective way, for instance

as deterministic bottom—up finite tree automata. Throughout the paper

all constructions will be effective in this sense.

Example 2, 2. There is a t"—fst that is not a t-fst. In fact,

consider the bottom—-up fst B =<2,4,Q, Qd,R> of [BT, Example 2. 6 |

which is not a t-fst . lL.et U be the recognizable tree language TQ s
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where (g = {b}, 0, = {a} and Q, = {0} . Consider now the t —fst
T = <Z,A,Q’,Q(’j,R'> , where Q” = Q('j = {*}] and R’ consists of

the rules

<xlo{xy)) » o(*(x)), D> with D (x) =D, (y) =u,
<x(alx)) =+ al*x(x)), D,> with D (x) = T.

*(‘b)ﬂ b .

Then, obviously, T =B . For instance, x(0(ba(b)))= o(x (b)) = o(b) ,
since both b and a(b) belong to U . But no rule is applicable to

x (o(ba(a))) . Note that D1(x) could as well be TZ since T can
check later that the left subtree is of the required form. The essential

use of the regular look~ahead is in the restriction of the right subtree

to U .

An even more simple example \.as exhibited in [16]. L.et a be of
rank 0 and b of rank 2. Then the tree transformation {<b(aa),a>_}’

is not a t~fst, but it is a t"~fst and also. a b-fst .

We Immediately obtain the following corollary.

=
Corollary 2. 3. T-FSTCT ~-FST .

. - . . r
Proof. Inclusion is trivial: each t-fst is changed into a t —fst

by simply specifying all variables to range over the recognizable tree

language ’Iy R

where ¥ is the input alphabet, Proper inclusion was

shown in Example 2. 2.

We now obtain the following two facts.
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Corollary 2. 4.

(1) The classes of tree transformations B~-FST and TRMFST
are incomparable,

(2) TRMFST is not closed under composition.

Proof. For (1), it should be clear that the b-fst of [BT, Exampie
2 1] is not a tpmfst , while Corollary 2.3 and [BT, Example 2. 2] imply
that there is a t ~-fst that is not a b-fst . For (2), note that [BT,

Example 2. 1] is a composition of two t"-fst,

We now define linearity and determinism.

Definition 2. 5. Let T =<54,Q,Q ,R> bea t ~fst. T is
linear if all righthand sides of rules in R are linear. T is determi~

nistic if the following holds:

(1) Q, is a singleton;

(2)  if <s -t D]> and <s =t D,> are different rules in R

1’ 27
(with the same lefthand side), then DT(xi) ND,{x)=¢ for

some i€ {1,2,...,k} , where k is the number of variables
in s (for k=0 this means that different rules should have

different lefthand sides).

U

Thus, in a deterministic t ~fst , different rules may have the
same lefthand side, but, in that case, the ranges of the variables are
such that the two rules are never applicable in the same situation.
Note that one can effectively determine whether a given t"-fst is de-
terministic (RECOG is closed under intersection and has a solvable

emptiness problem).
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Linearity and determinism will be denoted as usual by L and D
respectively. Note that, for a modifier Z € {L.,D,LD} ,

ZT-FsST C ZTR—-FST (the t"—fst of Example 2. 2 is linear and deter-

ministic).

Since for linear b-fst and linear t' —fst all properties (B1),
(B2) and (T) are now 'eliminated", one would expect that LB-FST =
L.TR—FST . Before proving this we show how to decompose the
tpmfst: the regular look—ahead can be computed in advance by a determi~

nistic bottom-up finite state relabeling.

Theorem 2. 6. TR—-FST < DBQREL. » T-FST , and, for

z e {L,D,LD}, ZTR—-FST c DBQREL e ZT-FST .

Proof. Let T =<L,4,Q, Qd,R> bea t -fst. Consider all "re~
cognizable properties!! which T checks with its regular look~ahead.
A finite state relabeling can be used to check, for a given input tree
t , whether the subtrees of t have these properties or not, and to put
this information at their father nodes. After this, an ordinary t-fst
can be used to simulate T . Formally we proceed as follows,

Let L_1, oo oy L_n be all the recognizable tree languages occurring
as ranges of variables in the rules of T ., Let U denote the set
{0,117, i.e. the set of all sequences of 0O's and 1's of length n .
For u€¢ U, the jth element (1 =j<n) of u will be denoted by u(j) .
Intuitively, an element u of U will be used to indicate membership
of a tree in L.,.. ) . (u(j) = 1 iff the tree belongs to l,_J. ) . Let Q
be the ranked alphabet such that QO = ZO and, for k=1, ‘Qk = Zk X L,ll< .
Thus an element of Qk is of the form <0, <u1,,., ,uk>> with 0 € Zl«(
and Ugyeees U € U . Intuitively, if a node is labeled by <0, <u1 yeeos uk>>,
it means that u; contains all the information about the ith subtree of
the node. The mapping B: T,—’ T. is now defined recursively as foi-

b3 {

lows:




ot )=

(2)  for k=1, o€y and t o €T b(d(tr K

[ k

WJ) o where T =<0, <y, >> and, for 1S i<k,

and 1 <j=n, uflj) =1 iff tiELj'

It is left to the reader to show that B can be realized by a (total)
deterministic bottom-up finite state relabeling (given the deterministic
bottom-up finite tree automata recognizing L_,1 sesey L_n ). Next we defi~

ne the top~-down fst T’ = <(Q,4,Q, Qd,R’> such that

(1)  if glo)»t isin R, thenitisin R";

(2)  if <qg(o(x,eeex ) > i, D> is in R,

1

»

then each rule of the form q(<0,a>(x1. . ,xk)) +t is in R”, where

G=<u1,..,,uk>éuk and, for 1T <isk and 1 =jsn, if D(><i)=l_j

then ui(j) =1,
This completes the construction. It should be clear that T =8 T",
and that, if T is linear, then sois T°, It should also be obvious that,

in the above construction, U may be replaced by the smaller set

) and u(j.,)

fueu | forall j, and j,, if L. N, =¢, then u(j
1 2 1 Jz

are not both 1} (other elements of U do not occur in trees B(t)) .

1 2

After this replacement (which influences T7) one can easily see that

if T is deterministic, thensois T7.

-An immediate consequence of this theorem and previous decompo-
sition results (in [BT]) is that each element of R oEsT s decompo-

sable into elements of REL., FTA and HOM ,

Corollary 2.7. The domain of a t"fst is recognizable.

Proof. lL.emma 1, 2(2)

13
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We now show that the classes of linear b-~fst and linear tr‘wfst

coincide (cf. [BT, Theorem 2.8]).

Theorem 2. 8. LTR—FST = _B-FST .

Proof. First

LTR~FST c DBQREL.  LT-FST by Theorem 2.6

n

DBQREL ¢ LLB-FST by [BT, Theorem 2.8 |

N

LB-FST by [BT, Theorem 4. 5(2) ]

N

(note that finite state relabelings are linear).

Secondly, we show that LB-FST < LTR-F:ST . The construction
is the same as that in the proof of [BT, Theorem 2. 9], but now we can
use look-ahead to handle deletion. Let B = <Z,A,Q,Qd,R> be an ar-
bitrary linear b-fst . L.et, for-each g In @, B(qg) denote the b-fst
<%,A,Q,{q},R> . Then we construct the linear t"—fst
T=<%54,Q, Qd,RT> , where RT is defined by the following two re-

quirements.

(1) [f 0~ qg(t) isin R, then qg(o}»t is in RT

(2) 1t olq (><1)....ql<(><k))'* qlt) is in R, then

1
the rule <q(C7(><T. . .xk)) -+ t[q1(x1), v ,qk(xk)] , D> isin R, whe-
re, for 1 <1<k, D(xi) = dom(B(qi)) . Note that dom(B(qI)) is re—
cognizable by BT, Corollary 3. 12]. Note also that it would suffice to
have D(Xi) = dom(B(qi)) for those x. that do not occur in t, and
D(XI)' = TZ for the other x;

A formal proof that T = B is left to the reader. Intuitively T

simulates B in the top~down direction by transltating each node in the

same piece of tree as B . Whenever B deletes a subtree t after ar-




riving at its top in state q, T checks whether t € dom(B(q)) before
deleting t (t € dom(B(qg)) means that there exists s € T such that

té als) ).
O

In the rest of this section we discuss composition of t"—fst . We
shatl show (cf. property (B1)) that, if either T, is deterministic
or Tz is linear, then T1 ° T2 is in TRwF:ST . Moreover, DTR-F~"ST
and LTR—«FST are.closed under composition., To prove these results
we first consider some simple cases in the following two lemmas (con-

cerning homomorphisms and finite state relabelings respectively).

l_emma 2. 9.

(1) TREsT cLHOM e T-FST
?

(2) DTR»«FST o HOM C DTR-—F’ST .

Proof, Let T = <Z‘,A,Q,Qd,R> be a t ~fst and let H be a

homomorphism from TA into TQ . For both cases, (1) and (2), the con-

struction of a t ~fst T7 defining Te H is similar to that in [BT,
L.emma 4. 1]; look—ahead is used to handle deletion by H . Let H be
extended to T, [@(X) ] by defining, informally, H(a(x)) = g(x) for all
a(x) € Q{X) . Let, for p€ @, T(p) denote the t st <o, 0,0, {p),R>,
Note that, by Corollary 2.7, dom{T{(p)) € RECOG . We now construct

the t~fst T’ = <%, Q,Q,Q ,R"> such that

d’
(1) if glo)+t isin R, then g{o)~» H(t) is in R";

(2)  if <glo(x,eeex ))*t, D> isin R,

1 k

then <q(0‘(><1...xk)) + H(t), D> is in R”, where, for 1 <1<k,

D’(xi) is the intersection of D(xi) and all tree languages dom(T(p))

such that p(xi) occurs in t but not in H(t) |

15




[t is left to the reader to prove that Te H < T” and that, if H is
linear or T is deterministic, then T < Te H also. Note that, if T
is deterministic, then sois T (the D’(xi) are included in the D(xi) ).

This proves the lemma.

l.emma 2, 10.

(1) TRFsTe QRELS T -FST,
(2) DT -FST « DTQREL € DT -FST ,
(3) DTR-FST » DBQREL < DT -FST .

Proof. We first prove (1) and (2). The proof is similar to that of
[BT, Lemma 4.2], Let T=<5,4,Q, Qd,RT> be a t —fst and
L=<A,Q,P, Pd,RL> a top~down finite state relabeling. We extend the

input alphabet of L. to AU X by adding X to A.. We now define a

o
t"~fst K suchthat K= Toe L. Let K= <5%,0,Q X P,Q, x PR >,

where RK is obtained by the following two reguirements.
(i) f rul (o) isin R d plt) =
] =y N
i the rule glo t1 is in T and p t? C t2 , then the rule

{q, p>(o) ~» ty s in R .

(i1) tLeet <q(0(><1.a.><k)) +t, D> bein R. . Obviously t can be

T
)], where s, € TA[Xm] is linear
m .x " ..
o IF p(s]) asz{.p1(x1),.“,pm(x )],
then the rule <q,p>(0'(><1. . .xk)) -+ 52[<q1,p]>(xi1),‘ <oy <a pm>(><im)]

written as t = 51[q1(xi!)””’qm(xi

and nondeleting with respect to X

m m

is in RK with the same D .

Clearly, if T and L. are deterministic, then so is K.

We now prove (3}, which is the essential composition result, Let
T be in DTR-’FS’T and B in DBQREL . We shall construct a trans-~

ducer T in DTP‘«F:ST such that T~ = Te B,

16



]ntuitively, when T’ arrives at a node of the input tree, it first com-
putes the piece of output t that T Would produce at this node, and
then runs B on t . However, to be able to run B on t, T’ should
know the states in which B arrives at this piece of output. But, these
states can be computed by regular look~ahead. The formal construction
is as follows. Let T =<Z,4,Q,Q,,R> with Q= {qd} and let
B = <A,£7:,QB,QBd,RB> . Let as usual, for q€Q, T(g) denote
<5,0,Q,{q},R> and, for q¢€ Qg , B(qg) denote <4,0Q,Q4, {q},F’\B> .
We now construct the T —fst T = <%,Q0,0Q, Q. R’> , where R’is de-
termined as follows.

(i) l.et q{g) =+t bein R, where q€@Q, 0€ % andt&"TA.

0

* yl # - -~
Suppose that té p(t”) for some t” € TQ and some p & QB such that,

if g=q, then p € Qoy - Then the rute q(o) + t7 is in R”.

17




(ii)  Let <q0(0(><1.,‘.><k)) +t, D> bein R, where k=21,
g& 5., te€ TA[Q(xk)] , dg €Q and, for 1=1=k,D(x) ¢ T,
Clearly t can be written as t=s[q1(xi ),...,qm(xi )] for certain
i m
m=0, st TA[Xm] s GQyreess Ay € Q and ><i1,.,..,><l.m € Xk , such

that Xygewe s X all occur in s . Let Prasees Py be a sequence of

¥

m states from Q‘B and suppose that S[pl(x1),...,pm(x ) ] S po(s )

m

for some s’ € TQ[Xm] and some Po € @‘B such that, if dg =

then Po € Q (B is of course extended to trees with variables in

Bd
the usual way). Then the rule qO(O'(><1. . .xk)) + s [q1(><i )y eoe, qm(xi

)]
1 m

is in R” , where the ranges of x,,...,X_ are specifiedby D’ as fol~

1’ k

lows. For 1 =su<k, D'(xu) is the intersection of D(xu) and all tree
languages dom(T(qj) ° B(pj)) such that x, =x . Note that these tree
languages are recognizable by L.emma 1. ZJand the fact that each t ~-fst
can be decomposed into b-fst (Theorem 2.6).

This ends the construction of T7 . It is left to the reader to

check that T’ is deterministic {(using the determinism of T and B )

and to prove that T = Te B .,

We can now prove the composition resulis for " fst .

Theorem 2, 11.

(1) THoEsTe LTR-FsT e T7-F3T , and
LTRFST o LT -FST € LT -FST .

(2) DT -FsT . T -FST<c T -FST, and
pTR-FsT - DTR-FST ¢ DT -FST .

18




Proof.

(1) The second inclusion is immediate by Theorem 2.8 and [BT, Theo-

rem 4, 5(2) ]. The first inclusion can be shown as follows.

TR FsT. LT -FST =

= TRmFST o LB~-FST by Theorem 2.8

TR EST o QREL © LHOM by [BT, Theorem 3. 15(2) ]

in

fou TR-—FST o L.HOM by LLemma 2.\10(1)
c TR~FST by l_emma 2.9(1).
(2) For both inclusions we have that
DTR-FST e (D)T -FST ©

c DT -FST » DBQREL © (D)T-FST

by Theorem 2.6
c DTR-FST o (D)T-FST by L.emma 2. 10(3)
cDTR-EST « HOM » L(D)T-FST

by L.emma 1. 1(1)

in

DTO-FEST « L(D)T-FST by Lemma 2. 9(2).
R R .
Now DT -FSTo LLT-FST < T -FST by (1) of this theorem, and

DTR-F:ST o LDT-FST &

DTR-FST « DTQREL © LHOM

N

by LLemma 1. 1(2)

N

DTR-—F'ST o [_HOM by lL.emma 2. 10(2)

DTR-F-“ST by L.emma 2. 9(2).

in

This proves the theorem,

19




It is left to the reader to show that L_DTR-FST is closed un—

der composition,

Note that it follows from Theorem 2. 11 that the inclusion signs

in Theorem 2,6 may be replaced by equality signs. Thus TRnFST =

DBQREL. ¢ T-FST. We finally mention a result similar to [BT,

Theorem 3.7 ] (see also [BT, Theorem 5.15]).
R _ R -
Theorem 2. 12, T -FST=HOMe LT -FST .

Proof. The inclusion HOM-e L'TR—FST c TR~FST is immediate

from Theorem 2. 11, The inclusion TR—-F’-‘ST & HOM e LTR~FST can
be shown in much the same way as in the proof of T-FST <

HOM e LT-FST [BT, Lemma 3.6 ], The only additional problem is the
regular look-ahead: the image of a recognizable tree language under
a homomorphism need not be recognizable. The solution is to consi-

der a homomorphism H from TZ' to TZ (see the proof of [BT, lem-

ma 3.6 | for notation) such that, for all t in T H(T1(t)) =1t . The
easy definition of H is left to the reader, Now, if in a rule of the
tp~f5t T, the recognizable tree language U occurs as look-ahead,

then we can use H”(U) as look~ahead in the corresponding rule of

T2 . Note that H*T(u) € RECOG (cf. l.emma 1.2(1) )., The details of

the proof are lefl to the reader.

-

Corollary 2.13. T =FST = T-FST * LHOM .

R -
Proof. By Theorems 2.12 and 2.8, T -FST = HOMe LB-FST .

From the proof of (7) in [BT, section 6] it follows that HOM . LB-FST =

T~FSTe LHOM,
[
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3. Comparison of deterministic fst.

The classes of tree transformations DB-FST and DT-FST are
incomparable. In fact there are several reasons for the incomparability
of these classes, We now consider some typical db-fst and di-fst
capabilities respectively. We start by considering advantages of DB~-FST
over DT-FST.

Firstly we note that property (B1) is eliminated, but property (B2)
is not. Thus DB~FST contains elements not even in T-FST (obvious~
ly, the b-fst B in [BT, Example 2.6 ] is in DB~-FST).

Secondly, a db-fst can recognize the "lowest!' accurrence of
some symbol in a tree (since it is the first occurrence), but this can-
not be done by a dt~fst (since it is the last occurrence for him).

Thirdly, it is well known (see for instance [15]) that there are
recognizable tree languages which cannot be recognized by a deter-
ministic top—down finite tree automaton. The next theorem shows that

such languages cannot be the domain of any deterministic t~fst (cf.

[11]).

Theorem 3. 1. A tree language is the domain of a deterministic

t-fst if and only if it is the domain of a deterministic top~down fta .
Proof. The if~direction is trivial, To prove the only~-if direction,

let T = <{5,A,Q, Qd,R> be a di~fst . We may assume that for all

k=1, 0E¢ Zic and g € Q there is a rule with lefthand side

q(O(x]. . .,xk)) in R . We construct the deter‘ministic top~down fta

F=<%,25Q%,Qj,R"> such that Q" is the powerset of Q, Qj = {Qd}

and R’ is defined as follows.

(1) For k=1, AcQ and 0€ L _, the rule Alo(x ,.,><k))~+

1



(x )""An(xn)) is in R”, where A= {p € Q| thereis a rule

171
q(O‘(xr. . .xk)) + 1t .in R such that g€ A and p(xi) occurs in t} .

(2) For AcQ and o€ 2 s Alo) » o isin R’ if and only if for
all q € A there is a rule with lefthand side g(d) in R (note that in
particular ¢(0) » 0 is.in R’) .

It is left to the reader to show that dom(F) = dom(T) . Intuitively,
the state of = at some node contains all states In which T arrives
at copies of this node (made by T when processing higher nodes).
At the leaves, F checks whether all these states are final states of
T .

E'J

Next we consider advantages of DT-FST over DB-FST . First
we note that property (T} is not eliminated: a dt-fst has the ability
to copy an input subtree and to continue translation of these copies in
different states. Thus the di~fst which translates every tree
o(b{b(...bla)...))) into T(b{b(... b(a]). .. ))b(bl... b(az). .. )} is notin

B-FST .
Secondly, a dt-fst can recognize the "highest!' occurrence of

some symbol in a tree, but this cannot be done by a db-~fst .

Thirdly, a dt-fst can distinguish between left and right, but a
db-fst is not able to see this difference, because it starts at the bot~
tome.

This conciudes our comparison of DB»«FST and DT-FST . The
reader might have noticed that the mentioned advantages of DB-FST
over DT-FST can all be handled by the use of regular look-ahead.
Also, those of DT-FST over DB-FST can be eliminated by restric-
ting the number of states of the dt-fst to one. We now show that

this holds in general, L.et ODTR-F—"ST denote the class of dt"—fst
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<o, h,Q, Q‘d’ R> such that Q = Q‘d , i.e. the class of one~-state deter-
N ’
ministic t ~fst.

Theorem 3. 2. O-DTR—FST = DB~FST < DTR-—F:ST .

Proof. Inclusion of DB-FST in DTRWFST is proved as follows.

DB-FST <

DBQREL « HOM by [BT, Theorem 3. 15(3)]

< DTR-—F:ST o DBQREL. ¢ HHOM

N

(since the identity is in DTR——I’:ST)

e

DTi ~FST o HOM by L.emma 2, 10(3)

n

DTR-FsT by Lemma 2.9(2) .

1N

Since the identity can be realized by a one-state dtr‘mfst and since
the constructions in Lemmas 2.9 and 2. 10(3) preserve the number of
states, DB~FST is included in ODTR—-"”ST . The properness of

the inclusion of DB-FST in DTR—FST follows from the discussion
preceding this theorem. Inclusion of ODTR-—FST in DB~-FST

can be proved as follows. By Theorem 2.6, DTRwFST -

DBQREL . DT-FST . Moreover, from the construction in the proof of
that theorem it follows that every one-state dt"~fst is the composition
of an element of DBQREL and a one~state dt-fst. It is left to the rea-
der to show that each one-~state dt-fst is in DB-FST . The required
inclusion now follows from the closure of DB-FST under composition
(BT, Theorem 4,6(2)]).

i
i

Thus the addition of regular look—~ahead to T-FST has made the
deterministic bottom—up fst into a proper subclass of the determinis—

tic top~down fst (with regular look—ahead).




4, Surface sets and tree transformation languages.

In this section we show how the results of the previous sections
can be used to prove properties of surface sets and tree fransforma-

tion languages, in particular closure properties.

Notation 4. 1. Throughout this section, & denotes a fixed family

of tree languages closed under deterministic bottom-up finite state re~
labelings (i.e. elements of DBQREL).

g

Note that DBQREL. is included in both LB-FST and DB-FST.
Note also that for instance RECOG is closed under DBQREL.

We first show that regular look-ahead has no influence on surface
sets: the classes of (T-FST, £) and (TR-FS.T, £) surface sets are

equal.

Theorem 4, 2,

(1) TR—FST($) = T-FST(L) ,
(2) DTR~F5T(£) =DT-FST(E) ,
(3) L_TR-FST'(Jz) = L T-FST(L) = LB-FST(L) .

Proof. Follows immediately from the decomposition result of

Theorem 2.6 (and, for (3), Theorem 2.8).

0

Obviously a similar result for tree transformation languages is
obtained by applying vield to the above eqguations.

From this theorem and the composition results in Theorem 2. 11
we obtain a number of closure properties of surface sets, some of

which are expressed in the next theorem.
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Theorem 4. 3.

(1) T-FST(L) is closed under linear fst .
(2) DT-FST(L) is closed under deterministic bottom~-up and top~

down fst .

Proof. Immediate from Theorem 4,2, Theorem 2. 11 and Theorem

Theorem 4. 3(1) was proved by Baker [3, Theorem 1.2, 5| by gene-~
ralizing Rounds! proof [13] for the special case £ = RECOG . Closure

of DT-FST(RECOG) under dt-fst was proved by Rounds [13].

These theorems can easily be extended to surface sets which are
obtained by repeated application of top~-down fst . In fact, the next
theorem shows that the regular look~ahead can be Mtaken out of" any
sequence of tpwfst . Let, for any class I of tree transformations,

ka be defined by ‘I] = 9 and ﬁkﬂ =‘,Iko 1.

Theorem 4. 4., For each k=1,

Kk

) = DBAREL © (T-FsT)<

(1) (TR-F:ST

(2) (TR—FST)k o DTR-FST = DBQREL. ° (T~FfST)k o DT-FST ,

Proof. (1) We first show that TRmFST a TR-—F’ST =

TRmFST o T-FST . One inclusion is trivial. The other inclusion is

proved as follows:

TR EsT e TR-FsT <

TR-FST o DBQREL. e T-FST by Theorem 2,6

TRMFST o T-FST by L.emma 2. 10(1) .

in

in
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From this, and the fact that TR—-F:ST = DBQREL. o T-FST (see sec~

tion 2), (1) easily follows. The proof of (2) is similar,

tJ

From this theorem it follows for instance that (T~F:5T)k(=53) =
(TQvF'ST)k(S) , and hence (T—-F—'ST)R(S.) is closed under linear fst
([3, Corollary 1.2.7]). Similarly, DT-FSTUT-FSTIN(£) is closed
under deterministic bottom-up and top-down fst .

l_et us now turn to tree transformation languages. Recall that
we have introduced a symbol e such that yield(e) =X . We note first
that it follows from Theorem 4.3 that L.emma 1.3 holds for both
vield(T-FST(L)) and yield(DT-FST(£L)) . We express this informally

in the following corollary.

Corollary 4. 5. Both (T-FST, £ and (DT-FST, £ tree trans-

formation languages can be ''generated without A-rules' (modulo &) .

£

It should be clear that from Theorem 4, 3 other closure proper-
ties for these tree transformation languages can be inferred. Since
the closure properties of yield(T-FST(L)) have been discussed
thoroughly by Baker [3], we restrict ourselves to the following clo~

sure property of deterministic tree transformation languages.

Theorem 4,6, The class of tree transformation languages
yield(DT-FST(L)) is closed under deterministic gsm mappings.

Proof. Let I and A be ranked alphabets with e € 2, and
e€Ay . Let S= <K, Ty - {e}, Ay = {e}, 5,qq, F> be a deterministic

gsm (for notation, see [ 10, sections 9.3 and 12. 3]}, We shall show that

there exists a deterministic top—~down fst T with regular look-ahead
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such that, for every t € T, if yield(t) is not accepted by S, then
t is not accepted by - T, and if yield(t) is accepted by S, then so
is t by T and yield(T(t)) = S{yield(t)) . Consequently, for any tree
language L < T yield(T(L)) = S(yield(L.)} . The theorem then easily
follows from the closure of DTRNFST under composition (Theorem
2. 11(2) ).

T is constructed as follows (the construction being a variation
on a known theme). L.et, for a5 9y €K, R(qi,qz) denote the recog-
nizable tree ’language consisting of all trees t € TZ such that
R (q1 ,vield(t}) = <qz, w> for some output string w € (AO-—{e})* (thus,
when started in state dq s S arrives in state qa, after processing
yvield(t) ). Recognizability of R(qT,qz) follows from a straight for-
ward extensioﬁ, to handle e, of [13, section 3, lemma 2]. L.et now
T = <Z,A,Q,Qd,R> , where Q= (K x K) U {qs} (with qa new) ,

Q‘d = {qs} and the rules of R are defined as follows.

(1) For k=1, 0€3 and qT,qz,...,qk_HEK,ther*ule
<q},qk+1>(6(x}.. axk)) -+ O(<q},q2>(x1)< Ay q3>(><2). e <o, ql<+}>(xk))

) .

is in R, where the range of variable X is D(Xi) = R(qi, ST

(2) For o€ Zg ™ {e} and <@, a,> EK XK, if 6(q1,c) = <{a,, w>
for some w € (AO—-{e})* , then the rule <q1,q2>(0‘) +t isin R,
where t is some tree in T, such that yield(t) = w (note that, if

w=A, onecantake t=e),
(3) For g€ K, therule <g,g>(e) + e isin R .

(4) For kz1,0€5 and q1,o..,qk+1EK,if d, = g, and
dpq € F 5 then the rule qS(G(x1...xk)) ~» 0(<q1,q2>(x1)“. <A Gy

(x ) isin R, where the range of x, s R(qi’qH«]) .



(5 For o€ ZO - {e} , if 6(q0,0) = <{a;, w> for some q. € F and
w € (AO - {e})* , then the rule qS(G) 4+t isin R, where t is a

tree such that yield(t) = w .
(6) If ag € F, then qs(e) +e isin R,

This ends the construction of T . It should be clear that T is

deterministic and that T satisfies the requirements.

Note that it follows from this theorem that yield(DT-FST(L)) is
closed under string homomorphisms and intersection with a regular
language.

We finally mention that these results can directly be applied to
certain classes of Lindenmayer languages (see also [1]).

Let MON be the class of monadic recognizable tree languages

(a tree language is monadic if all symbols appearing in its trees are of
rank 0 or 13 in [8] the number of symbols of rank 0 is restricted

to one, but this is not essential for what follows).

It was shown in [1, 5, 8] that ETOL = yield(T-FST(MON)) and
EDTOL = yield(DT-FST(MON)) , where ETOL and EDTOL are
classes of L.indenmayer languages defined in for instance [9]. Thus,
since MON is obviously closed under DBQREL. , Corollary 4,5 im-
plies the well known fact that {modulo A) ETOL. and EDTOL langua-
ges can be generated without A~rules. From Theorem 4,6 we directly

obtain the following useful result (cf. [6]).

Corollary 4,7, EDTOL. is closed under deterministic gsm

mappings.

J
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For any &£ < MON (with certain closure properties)
yield(T-FST(£)) and yield(DT~-FST(L)) are equal to the S£~controlled
ETOL. languages and the {~controlled EDTOL languages respectively
(see [2], for L € &£, only those sequences of tables which are in L
may be used in the generation of the ETOL language). It follows that
the above results are also applicable to controlled ETOL and EDTOL

languages.
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