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1. Introduction.

In [5, 12] theorems of the following kind have been shown: for eve-
ry language L., if L, = {wHw | w € L} isin 9-'1 , then L, and L are

in 9-2 , where J. is a class of '"mondeterministic! languages and

1

52 = .'1’1 is the corresponding class of ""deterministic!' languages, for in-

stance 3'1 = ETOL and g-z = EDTOL (for these two classes of Linden-
mayer languages, see [1 1, 12]). Such a ""copying theorem!" shows that
the copying power of ‘;1"1 is fully contained in 52 , 1. e. languages not in

1 - In this note we discuss some further

fIz cannot be copied within
theorems of this nature, in particular two results which generalize the
case of ETOL. and EDTOL. The first of these results concerns the in~-
dexed languages and was proved by Fischer [10]. Using this result to~
gether with the incomparability of EDTOL with the class of context-free
languages (recently proved in [4]) and a copying theorem concerning
bottom—-up tree transformation languages, we show correctness of an in-
clusion diagram for ETOL, EDTOL., the context-free languages, the
indexed languages and the top—-down and bottom-up tree transformation
languages. (However, the problem whether the indexed languages are
contained in the top~down tree transformation languages remains open).
The second of these results concerns top-down tree transformation lan-

guages in general (the connection between such languages and Lindenmay-

er languages is shown in [3, 7).

2, Three properties of Ianguages..

Consider the following ""deterministic! properties P1, P2, P3 of

a language L over alphabet Y.

(P1) For all x,x”,u,u’,y,y” € 5% | if xuy, xu’y, x“uy’, and x‘u’y’




arein L, then u=u’ orboth x=x" and y=y’ .
(P2) For all x,u,u’,y,v,v;z € 5% , if xuyvz, xu’yvz, xuyv’z and
xu’yv’z arein L, then u=u’ or v=v’ ,

(P3) For all x,u,y,v,z € 5% , if xuyvz, xuyuz, xvyuz and Xxvyvz

arein L, then u=v .,

Roughly speaking, (P1) says that, in the generation of L. by some re-
writing system, there cannot be any '"nested nondeterminism', (P2) says
that there cannot be two nondeterministic symbols (or substrings) in one
sentential form, and (P3) says that there cannot be two occurrences of
the same nondeterministic symbol (or substring) in one sentential form.
Thus these properties of languages force their grammars to be deter-
ministic in a certain sense.

It can easily be seen that (P1) implies (P2) and (P2) implies (P3).

We note that (P2) is equivalent to the following property (P2°).

(P27)For all x,x%,y,y” € 2* , if xy, x"y, xy"and x’y’ are in L,

then x=x" or y=y’ .

We now give some examples. The languages {w#f1(w)#f2(w) | w € K}
and {wg1(w)gz(w) | w€ K} have (P1), where K is a langauge over Sy
f, and f, are 1-1 functions K+ Z? P isa 1-1 function Kﬁi—b.}j;,
g, isa 1-1 function K- Zg , and ¥, %, and I, are disjoint alpha-
bets. For instance, for any K, {wiwfiw | w € K} has (P1). |

The languages {wH#f(w) | w € K} and {wg(w) | w € K} have (P2),
where K is a language over 21 , T a 1-1 function K- ZT and g a
1-1 function K - Zé with 2, N5, =¢ . Note that languages of this
form do not necessarily have (P1), for instance {w#wR | we 2'1*} ,

where WR is the reverse of w , does not have (P1).

Note that the language {akﬁbmﬁcnl k,mynz1, and k=m=n or




=m=n-1 or k=m-1=n or k=m-1=n-1} has (P3) but not (P2).

3. Copving theorems and an Inclusion diagrams

In [12] several results concerning ETOL and EDTOL are proved

which can be summarized as follows.

Theorem 1 ([12]). If L has (P3) and L € ETOL , then L € EDTOL.
If, in particular, L is of the form {wif(w) | w € K} or {wglw) | w€ K}
(as in 2), then also K € EDTOL .

a

We now want to recall a generalization of this result to the indexed
languages, proved in [10]. L.et Ol denote the class of outside-in macro
languages, i.e. the class of indexed languages, and let LB denote the
class of linear basic languages (see [10]). Note that LB = EDTOL

and ETOL. < Ol (see [2]).

Theorem 2 ([10]). If L has (P1) and L € Ol , then
L € LB(= EDTOL) . If, in particular, L = {wHwHw | w € K}, then also
K &€ EDTOL .

Proof. By the proof of Lemma 4.3.6 in [10], which is part of the
proof that the language {am(bam)n | m=1, n= Zm-—l} , which has pro-
perty (P1), is not in Ol. Property (P1) ensures that there is no nesting
in the Ol macro grammar, and that there cannot be more than one '"non-
deterministic!! nonterminal in each sentential form. It is easy to see that
if LL € EDTOL then K &€ EDTOL by an argument similar to that in the
proof of Theorem 2 (1) in [12].

D

Consider the following diagram (cf. [3]), where CF denotes the




class of context-free languages, and yL,I1 and yD1 denote the classes
of bottom-up and top-down tree transformation languages respectively
(i.e. each L in yu1‘ is of the form yield(B(R}), where B is a bottom-
up finite state tree transformation and R € RECOG , the class of recog-

nizable tree languages, and similarly for yD1 ; see [1 ). The inclusion

ETOL < yD, s shown in [3, 7]. Note that CF = yield(RECOG) .

SN

ETOL

NN

EDTOL

Open problem: is Ol < yD1 ?

Apart from this open problem we now show that all inclusions in the dia-
gram are proper and that unrelated classes are incomparable. We need

the following result, which solves a conjecture in [10].

Theorem 3 ([4]). There is a context-free language which is not

in EDTOL.,

U

Note that this implies incomparability of CF and EDTOL. , since
n
for instance {az | nz0} isin EDTOL - CF .

Let L, bein CF ~EDTOL . Then ([5])

(*) {WﬁwR | we 1_0} is in Ol — ETOL

where wR is the reverse of w (Proof: Obviously, if LL € CF then
fwiw | we L} €0l . By Theorem 1, if L ¢ EDTOL then
{W#WR | we L} ¢ ETOL) . We note that {w1=_}wR | we LO} is also in

yD1 .




Next we obtain that

(**) {whHwHw | w € LO} is in yu, - Ol

(Proof: Obviously, if L € CF then {wiwfiw | w€ L]} ¢ yu1 . By Theo-
rem 2, if L ¢ EDTOL then {wiiwhw | we L} ¢ OI) .

It now suffices to have an EDTOL language which is not in yu1
(in [3] {an#bnﬁcn [ n = 0} is mentioned as such a language). To obtain

such languages we show a "copying theorem!! for yu1 .

Theorem 4. Let Z], 2, be disjoint alphabets and K < Z*f . Let

2
f bea 1-1 function K - z; and let L = {wf(w) | weK} . If L€ yd,
then L € CF .

Er;ggf.‘ We only sketch the proof., Let L € yu1 . Then
L. = yield(h(R)) where R is a recognizable tree language and h is a
tree homomorphism (see [1, 6]). We may assume that h is nondeleting
and nonerasing and that its target alphabet does not contain symbols of
rank 1. Consider now all subtrees t of trees of R such that
yield(h(t)) € ZT U Z; . Suppose that there are infinitely many of such
subtrees. Then they are arbitrarily high. Hence, by the pumping lemma
for recognizable tree languages (Lemma 4 in [13]), there is such a sub-
tree t which can be pumped up. The above assumptions on h then en-
sure that yield(h(t)) is changed. This contradicts the form of L . Hen-
ce there are only a finite number of subtrees t such that
yield(h(t)) € Z? U 23 . Then we can change R into a recognizable tree
language R’ by a linear (bottom-up) tree transducer which removes the—
se subtrees and puts them as (coded) information at their father nodes,
and we can change h into a tree homomorphism h’ which uses this in-

formation to simulate h, sothat h*(R”) = h(R) . It follows that for each

subtree t of a tree of R” vyield(h’(t)) contains symbols from both 21




and 22 . Hence h’ cannot copy (is linear). Since the recognizable tree
languages are closed under linear tree homomorphisms, h’(R’) is re-
cognizable, and thus L = yield(h’(R’)) is context-free.

O

We note that by (the proof of) Theorem 6 of [12] L. is even a linear
language and K is regular. Now we have that

2n 2n n.n n
(***) {a® b | n=20} and {abc | n=1} arein

EDTOL - yL.l1

(Proof: Clearly both languages are in EDTOL. It follows from Theorem
4 that they are not in yL,I1 , since they are not context-free).

From (*), (¥**) and (* **) correctness of the diagram follows. We
finally mention that one could add the class 10 of inside-out macro lan-
guages by drawing lines from yU, and EDTOL towards 10

1

(EDTOL < 10 because EDTOL =LB [2], and yU, €10 because the IO

tree languages are closed under tree homomorphisms [9]). It was shown
in [10] that the language {w € {a,b}* | the number of als in w is a
power of 2} , which is in ETOL., is not in 10 (and hence not in yu1 and
not in EDTOL). It then follows from (**) and (* **) that the extended :
diagram is correct, except that it is open whether 10 & yD

1 .

4, A copying theorem for top—down tree transformation languages.

In this section we show that Theorem 1 can be generalized to top~
down tree transformation languages. Let, for any family I of tree
languages, T(%) denote the class of tree languages of the form F(L)
where F is a (nondeterministic) top~down tree transformation and

L € . Similarly for DT($) , with F a deterministic top~down tree




transformation. Let y'I denote the class of languages vyield(L) with
Leq A (nondeterministic) relabeling is a tree transformation which
relabels nondeterministically the nodes of a tree by other symbols
(depending on the symbol on that node; of course, different occurrences
of the same symbol may be relabeled by different symbols).v A finite
state relabeling is a (nondeterministic) bottom~up or top~down finite
state tree transformation which does not change the shape of the input
tree. Thus each relabeling is a finite state relabeling. (In [6] the clas-
ses of relabelings and finite state relabelings are denoted by REL.AB

and QRELAB respectively).

Theorem 5. Let € be a class of tree languages closed under (non-
deterministic) relabelings. If L has (P3) and L € yT(¥) , then
LeyDT@® . If § is closed under (nondeterministic) finite state rela-
belings and L is of the form {whf(w) | w € K} or {wglw) | w€ K}

(as in 2), then also K € yDT(3) .

Proof. The idea is essentially the same as that in the proof of
Theorem 1. Let L = yield(F(M)), where F is a (nondeterministic) top-
down tree transducer and M € ¥. We want to simulate F (at least with
respect to yields) by a relabeling R, which "guesses! the rules applied
by F at each symbol of the input tree (for each state), followed by a
deterministic top—~down tree transducer F’° which then applies these
rules. In general this simulation does not work because ~ can copy an
input subtree and process the copies nondeterministically, sothat diffe—
rent rules may be applied at corresponding nodes (in the same state),
but F’ copies the input subtree "with the guesses" and is thereby
forced to apply the same rule. However, from property (P3) it follows
that, whenever F arrives at two different occurrences (copies) of the

same input subtree in the same state, then all corresponding output sub-




trees have the same yield. Therefore, without changing yields, we may
assume that F applies the same rule and gives the same output in such a
situation. ltfollows that, in this case, the above simulation works. The
construction is as follows. LLet R be the (nondeterministic) relabeling
such that the symbol a in the alphabet of M can be relabeled by any

set S of rules of F (coded, of course, as symbols) such that all rules
in S concern the symbol a and for every state q of F there is at
most one rule in S 'for q at a" ., Let F° be the deterministic top-
down tree transducer with the same states as F , which, when arriving
at symbol S in state d , applies the rulefor g in S (if there is none,
then the transducer does not accept). It is left to the reader to be convin-
ced that yield(F (R(M))) = yvield(F(M)) . Hence, since ¥ is closed under
relabelings, L € yDT(¥) . Suppose now that L is of one of the indicated
forms. Then K can obviously be obtained from L (on the tree level) by
way of a deterministic bottom-up tree transducer, which removes # and
everything to the right of # (all elements of the alphabet of g{w) , re-
spectively). It can be shown that, if € is closed under finite state re-
labelings, DT(J) is closed under deterministic bottom-up tree transfor-
mations (see [8]). Hence K € yDT(¥) .

O

As shown in [3, 7], ETOL = yT(§) and EDTOL = yDT(¥) , where
T is the class of recognizable monadic tree Ianguages.' Since this class
is clearly closed under finite state relabelings, Theorem 1 is indeed a
special case of Theorem 5,

Let Dn be the class Tn(RECOG); n is closed under finite state
relabelings ([ 1]). Consequently, for every language K, if
K €yD,_ - yDT(Dn_1), then {wiw | w € K} € yDT(D ) - yD (Proof: it is

easy to see that if K € yD_ then {wiw | we K} € yDT(Dn) , taking




= Dn-—-1 in Theorem 5 proves the rest of the statement). This gives a
Hpartial yield hierarchy result! in the spirit of that of Baker [1] for the
tree hierarchy.

As a final example of the use of Theorem 5 we show that Ol cannot
be of the form yT(¥) for any class § of tree languages closed under
finite state relabelings (this shows that Theorem 2 cannot be obtained
as a special case of Theorem 5). In fact, suppose that Ol = yT(¥) .

Let L, € CF-EDTOL (Theorem 3). Then {wiw™ | we L } €Ol . Con-
sequently, by Theorem 5, L.O € yDTE) . Hence {whwiiw | w € Lo} €
yDT(DT(F)) . It can be shown ([8]) that, if T is closed under finite sta-
te relabelings, DT(¥) is closed under deterministic top~down tree trans-
formations. Hence {wHwhw | w € I_O} € yDTE) cyTE) =01 . This con-

tradicts (* *). Note that Ol is neither of the form yDT(¥) .

5. Conclusion.

Copying theorems exist for the indexed languages and for several

classes of tree transformation languages. In general it would be interes-

ting to have theorems of the form: "if m(L) isin & then (L) (or L)

-I 2

is in ‘Iz "t where (J'z - T1 and T is an operation other than copying,

for instance an inverse homomorphism or a top-down tree transformation.
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