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Abstract.

A fixed point characterization of the inside-out (IO) and outside-in
(Ol) context~free tree languages is given. This characterization is used
to obtain a theory of nondeterministic systems of context<free equations
with parameters. Several "Mezei and Wright like'' results are obtained
which relate the context~free tree languages to recognizable iree lan-
guages and to nondeterministic recursive program(scheme)s (called by
value and called by name). Closure properties of the context-free tree
languages are discussed. Hierarchies of higher level equational subseis

of an algebra are considered,




1. Introduction.

In theoretical computer science there are two basic ways of descri-
bing the meaning of a syntactical object: operational and equational.
Operational semantics is defined by some effective (eventually nondeter-
ministic) stepwise process which, from the syntactical object, generates
its meaning. Equational semantics is defiﬁed by interpreting the syntac-
tical object as a system of equations to be solved in some space of mea-
nings. Usually the solution of the system of equations is obtained as the
minimal fixed point of a continuous mapping between partially ordered
sets, and therefore equational semantics is also referred to as fixed
point semantics. An equation is of the form A=T, where ‘A is an un-
known and T is a term (or tree) build up from the unknowns by symbols
denoting the basic operations on the objects in the space of meanings.
Together with the basic operations, this space can be considered as an
algebra, and, to allow for solutions of equations, it should also be a
partially ordered set such that the basic operations are continuous.

A well-known example of such a syntactical object is a context-
free grammar which has a language as meaning. The operational seman-

tics of the grammar is obtained by defining the notion of derivation,




whereas the equational semantics is obtained by viewing the grammar as
a set of BNF (or ALGOL -like) equations in the intuitively obvious way,
and solving this set of equations in the (partially ordered) algebra of
languages (with concatenation and union as basic operations). It was
shown by Ginsburg and Rice [14 ] that these two semantics for a context-
free grammar coincide. This resultmightbe called a fixed point charac-
terization of the context-free languages.

Another example of a syntactical object is a recursive program
(hote however that a context-free grammar may also be viewed as a
nondeterministic recursive program with parameterless procedures).
The operational semantics of a program is obtained by indicating a real
or imaginary machine (or "computation rule") on which the program can
be executed. The equational or fixed point semantics is obtained by
viewing the recursive program as a set of equations (with the names of
the recursive procedures as unknowns), to be solved in an appropriate
partially ordered space of functions or relations (with composition and
"if-then-else!' as basic operations). The fixed point semantics for pro-
grams was first investigated for parameterless procedures (the ""mona-

dic case') and then for procedures with parameters (the ""polyadic case').




It has been shown for certain classes of recursive programs that the
operational semantics and the fixed point semantics coincide (cf. [ 18]).
Polyadic procedures were introduced in formal language theory by
Fischer [12] who defined macro grammars, which are basically con-
text—free grammars in which the nonterminals are allowed to have para-
meters. His "inside-out (I0)!" and "outside~in (Ol)" modes of derivation
are two different operational semantics for macro grammars correspon-
ding to the two computation rules for recursive programs, Ycall by value!
and "call by name!' respectively. A fixed point characterization of the
Ol macro languages was given by Downey [ 8 | and Nivat [23], whereas
one for the 10 macro languages can be found in this paper. See also [43].
It might now be asked what one needs in fact equational semantics
for, Firstly, equational semantics facilitates the task of proving cor-
reciness of programs or grammars, since it leads to useful and intuitively
clear proof rules. Secondly it provides a unification and simplification
of several results in formal language theory and the theory of programs,
like closure results, decidability results and normal form lemmas.
Thirdly it follows from the equational point of view (the fixed point of

view) that a given system of equations can be solved in several different




algebras. If there is a "meaning preserving' relationship (i.e. a homo-
morphism) between an algebra A and an algebra B, then the solution
of the system in B is the homomorphic image of the solution in A ., It
follows from this simple fact that problems concerning equationally defi~
ned elements of B can be lifted to A, solved there, and projected down
again., We shall give two examples. By Mezel and Wright [21] and
Thatcher and Wright [36] a general theory of equational subsets of an
arbitrary aléebr‘a was developed (for systems of '"regular!' equations), It
was shown that the solutions in the algebra of terms are the regular
(recognizable) tree languages. Moreover, they showed that the solution
of a system of regular equations in any algebra is the interpretation (i. e.
homomorphic image) of its solution in the term algebra. Viewing a con-
text-free grammar as a set of regular equations it then follows that eve-
ry context-free language is the homomorphic image (yield) of a recogni-
zable tree language. This result can be used to give "tree-oriented"!
proofs for context-free language results by lifting the problem to the
tree level and applying the theory of recognizable tree languages (cf.
(30, 35:[). The theory of equational subsets of an algebra (in particular

the algebra of strings) was developed further in [ 3,5 ,41]. As a se~




cond example, it was shown in [1 1] that a context-free grammar may be
viewed as a nondeterministic monadic (i. e. parameteriess) recursive
program and vice versa. As a set of equations the grammar may then

be solved in any space of relations over some domain (using composi-
tion of these relations as basic operations). Since there is a homomorp-
hism from the algebra of string languages into the algebra of relations
over a domain, it follows that the fixed point semantics of any monadic
recursive program is the homomorphic image of a context-free language
and hence, by the result of Mezei and Wright, ultimately the homomorphic
image of a recognizable tree language. This fact can be used to solve
problems in the theory of program(scheme)s by lifting them to the theory
of context-free languages (see for instance [ 1,11, 13]).

Thus the existence of homomorphisms between algebras gives rise
to "lifting of theories!, We shall call such a result a '"Mezei and Wright
like! result.

In this paper we investigate the equational approach to the (nonde-
terministic) polyadic case, that is we investigate fixed point semantics
of 10 and Ol macro grammars, and call by value and call by name (non-

deterministic) recursive procedures with parameters. In ouropinion




deterministic recuréive programs with tests fit also nicely into the fra-~
mework of nondeterministic ones without tests, essentially because the
Hif-then-else construction is a choice mechanism. In fact we shall con-
sider context-free tree grammars (10 and OI) which are generalizations
of macro grammars in exactly the same way as recognizable tree lan-
guages are a generalization of context-free languages (see above). We
shall give an equational semantics for the 10 and Ol tree grammars and
we shall use this fixed point characterization of context-free tree lan-
guages for the goals of equational semantics mentioned above, trying

to achieve results similar to those for the context-free languages in the
monadic case (in particular Mezei and Wright like results). Several re-
sults in this area already exist. As mentioned before, Downey [ 8 | and
Nivat [ 23] have given a fixed point characterization for the Ol tree lan-
guages. Nivat [23] and Goguene.a. [15, 16] show that the semantics of
a deterministic program can be obtained as the homomorphic image of a
'Ischematic Ol tree language! or an "infinite context-free tree!" respec—
tively. This result can also be applied to the nondeterministic call by
name programs by viewing the choice of an alternative as an operation

(denoted by, say,+) in the algebra., The + then appears as a symbol on




the tree(s). Maibaum [17 ] shows that a context-free tree grammar can
be viewed as a system of regular equations (with substitution of trees as
basic operation). Unfortunately all results in sections 9-12 of [17] are
wrong, apparently because IO and Ol are confused. We hope that this
paper contains correct versions of Maibaums results. Wand [ 42 ] shows,
similarly to Downey | 8 ], that systems of regular equations solved in
the space of functions of languages (with composition and join of func-
tions and concatenation of languages as basic operations) give precisely
the Ol string languages. Moreover he shows that in general this process
can be iterated, leading to functions of functions of languages, etc. By
solving these higher level regular equations in function spaces over lan-
guages (using left concatenation with one symbol, and all types of com-
position of functions, as basic operations) this leads to a hierarchy of
language classes starting with the regular languages, the context-free
languages and the Ol string languages.

We shall obtain results for the IO and Ol cases which are essen~
tially different in nature, showing the basic differences between these
two concepts. On the other hand a certain symmetry in the results can
be detected due to the symmetry in their definition: in the 10 case one

first chooses and then computes, whereas in the Ol case one




first computes and then chooses. The main differences between IO and
Ol are caused by the combination of nondeterminism (choosing) with the
computational facilities of copying and deletion (cf. [ 9 ). These diffe-
rences are also reflected in the formal properties of the algebraic ope~
tions involved In the description of 1O and Ol. In the case of Ol one has
the nice property of associativity, leading to nice algebraic proofs
(which could eventually be formulated in categorical terms); in the case
of 10 one has the nice property of "complete distributivity" (continuity),
leading to straight forward generalizations of techniques concerning

subset algebras.

The paper is divided into two parts and seven sections. Part 1 contains
sections 1-4; Part 2 contains sections 5-7 and a conclusion. To each of the
parts the list of references is added. In Part 1 we give the fixed point cha-
racterization of both the O and Ol itree languages. We show that a context-
free tree grammar can be viewed as a sysiem of regular equations to be
solved in an algebra of tree languages. Part 1 can be read independently
from Part 2. In Fart 2 the results of Part 1 are applied and generalized.

The contents of sections 2-7 will now be described.
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Section 2 is concerned with terminology and basic facts. Continuous

algebras are defined. Several properties of "completely continuous!" alge-

bras are shown. The latter type of algebra will be a major tool in the paper.

Two kinds of substitution of tree languages are defined: the OI {or usual)

substitution and the 10 substitution (in which one has to substitute the same

tree for all occurrences of one symbol). Ol substitution is associative; 10

substitution is only associative under certain restrictions.

In section 3 (which can be read with the terminology of 2. 1 only, to-

gether with some facts from 2. 4) we present the fixed point characteriza-

tion of 10 and Ol tree languages. It turns out that one can use the algebra

of tree languages (with variables) in both cases, with O substitution as a ba-

sic operation in the IO case and Ol substitution as basic operation in the Ol

case. Thus a simple change in basic operation of the underlying algebra

explains in equational terms the difference beitween IO and Ol operational

semantics.

In section 4 it Is shown that both 1O and Ol tree grammars can be

viewed as systems of regular equations in the tree language substitution al-

gebras, and vice versa. 1t follows from this that the 10 tree languages are

the homomorphic images (!"VIELDs!') of recognizable tree languages {over the
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alphabet containing substitution operators: the so-called derived al-
phabet). For the Ol case such a result cannot be obtained.

Section 5 is concerned with nondeterministic call by value and call
by name recursive programs. They can be viewed as context-free tree

grammars which on their run can be viewed as systems of equations

to be solved in the algebra of relations over a domain in the 10 case and
the algebra of functions of subsets of a domain in the Ol case. We show
the following Mezei and Wright like results (lifting the fixed point se~
mantics to tree languages). In the IO case, the call by value relation
computed by a program (i. e. 10 tree grammar) over some domain is the
homomorphic image of the 10 tree language generated by the grammar,
but only in case the basic oper*aﬁons over the domain are total (this ex-—
cludes the use of tests). However this relation can always (i.e. even if
the basic operations are relations) be expressed as the homomorphic
image of a recognizable tree language over the derived alphabet (the
reader is asked to Cbmpare this with the monadic case discussed above),
In the Ol case, the call by name relation computed by the program
(grammar) can always (except in the presence of "monnaturally extended!

basic operations) be expressed in terms of the homomorphic image of the
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Ol tree language generated by the grammar (however no result relating

this relation to a recognizable !"'second level!' tree language exists). We

finally mention that both the call by value and the call by name relation

can be cobtained as homomorphic image of an infinite recognizable tree

(with union as a symbol on the tree), and we fit all these results into a dia-

gram which neatly expresses the difference between 10 and Ol.

In section 6 we apply the fixed point characterization of sections 3

and 4 to prove a closure result of the 10 tree languages: they are closed

under deterministic bottom-up tree transducer mappings. Two examples

are given which show the nonclosure of the 10 tree languages under (nonde-~

terministic) relabeling and the nonclosure of the Ol tree languages under

tree homomorphisms.

In section 7 we show' how to obtain higher level equational hierar-

chies. We discuss an IO and on Ol hierarchy, obtained by iterating the

ideas of the previous sections (solving regular equations in algebras of

higher level functions over domains). Mezei and Wright like results simi-

lar to the simple case are shown. It is proved, using the result of section 6,

that, when starting with the monadic algebra of strings, the 10 hierarchy

starts with the regular languages, the context-free languages and the [O

languages. An analogous result is indicated for Ol.
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This paper might have been shorter. The length of the paper was m
motivated by our wish to be as precise as possible in order to avoid as
many mistakes as possible. We hope that the reader will find it reason-

ably easy to read only the parts in which he is inierested.
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2. Terminology, definitions and basic facts.

The reader is assumed to be familiar with the basic concepts of
tree language theory (see for instance [15, 17, 21, 36]) and lattice theo—
ry (see fqr‘ instance [ 31, 32]). For completeness sake we recall a num-
ber of them in this section. Moreover we prove some basic properties
of a few, perhaps less well known, concepts. In particular we call the
readers attention to the notion of a derived alphabet in 2.2, of a com-
pletely continuous algebra in 2.3 and the two different notions of tree

language substitution in 2. 1 and 2. 4,

2. 1. Ranked alphabet, tree substitution, context-free tree grammar.

For any set A, P(A) denotes the set of all subsets of A . When—
ever no confusion arises we shall identify a singleton {a} with the ele-
ment a . In this sense, Ac Pa) .

For any set S, S* is the set of all strings over S . A is the
empty string, Ig(w) is the length of w .

N denotes the set {0,1,2,...} of nonnegative integers.

A ranked alphabet (or ranked operator demain) ¥ is an indexed

family <Zn>n€lN of disjoint sets. A symbol f in Zn is called an
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operator of rank n (the intention being that f denotes an operation of

n arguments, see 2.2). If n=0, then f is also called a constant.
A ranked alphabet ¥ =<3 > . is said to be finite if U 2
n” nCN —_— - n
neMN
is a finite set.
If © and %° are ranked alphabets, then their union, denoted by

sU%’, is defined by (ZUZ')n=ZnUZr" for all n€MN .

For a ranked alphabet ¥, the set of irees over © (or JI-trees or

terms over %), denoted by TZ , is defined to be the smallest set of

strings over U {(,)} such that £oS Ty and, for nz1, if fex and

t1,...,tn€T , then f(t1...tn)€TZ .

A subset of TZ is called a Y-tree language or a tree language

over I .
If Y is a set (of symbols) disjoint with ¥, then TZ(Y) denotes

the set of trees Ts. ) o where Z(Y) is the ranked alphabet with

(¥

Z(Y)0= ZOUY and Z(Y)n= %, for nz1 . Thus the elements of Y are

added as constants. We shall only be interested in the case that Y con-

sists of !'variables!,
Let X = {x1 P Xy Xy e e .} be a fixed denumerable set of variables.

Let XO=¢ and, for kz1, X = {x1,...,><k} (note that X is not
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meant to be a ranked alphabet, the elements of X are meant to be con-
stants). For k=0, m=0, t€ TZ(xk) and to,...,t € TZ(Xm) , we de-
note by t[tl”"’tk] the result of substituting t, for x, in t . Note
that t[t1, cen, tk] is in TZ(Xm) . Note also that for k=0 t[tl’ cees tk] =
tf J=1t.

We now define substitution of tree langu;ges. In general, when-
ever there are more than one possible objects to substitute for a given
symbol, the probiem arises whether to substitute the same object for
all occurrences of the symbol or to allow different objects to be substi-
tuted for different occurrences of the symbol. Although the latter kind
of substitution is the usual one in language theory, the former kind has
also been studied, in particular in fixpoint characterizations of classes
of languages (see for instance the extended definable languages in [27]
and the bottom-up tree transductions in [ 9 ]). In [41] the two notions
of substitution are called ''call by value! and ''call by name' substitu~
tion respectively, Here we shall call them inside-out (10) and outside~
in (Ol) substitution respectively.

(2. 1. 1) Definition., L.et k20, m=0, LE{P(TZ(xk)) and

Lyseessly € @(TZ(Xm)) .
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The IC substitution of |_1, ese,L, into L, denoted by

k

L5 (L_1,... ,l_k) , is defined to be the tree language {t[tl"" ,tk:[ [ teL

and t. €L, for 1<i<k} .

The Ol substitution of |_1, eesy L, into L , denoted by

k

L &, (L1, e, I_k) , is defined inductively as follows.

(i)  For fex,, f& (Ly,... )= {f} .

(i) For 1<isk, (Lyyeee, b =L, .

*—
*i o1 Y-

(iii) For n=z=1, feL, and t1,...,tn€Tz(><k) ,
ftgeeety) & (Lpyeeesb) = {fls euus) [for 1si=n,
s. €t & (L_1,e..,|_k)} .

(iv) For L&T.(X

Zk)’

L s, (:_1,...,x_k)=tL€{ b (Lppeeesly)

Substitution will be further treated in 2. 4. Here we note the
obvious fact that, for trees t stiseeesfy s T (t1,.. . tk) =
t &) (Eppeeesty) = t[t1,...,tk] . We also note that for k=0
LS (I_1,.o.,L_k) = Léﬁl (L‘1”"’Lk) =L . For k=1 we shall write

- T imi
L 5 L_1 rather than L o (l_1) , and similarly for Ol .
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Next we define the notion of a context-free tree grammar. It is an
obvious generalization (but also a special case!l) of the notion of a macro
grammar in [12]. Note that we do not specify an initial nonterminal.

A context-free tree grammar is a triple G = (3,%,P) where

Z is a finite ranked alphabet of terminals,
g is a finite ranked alphabet of honterminals or function sym-

bols, disjoint with %, and
P is a finite set of productions (or rules) of the form

(X

F(x ...xk)ﬂ T, where k20, F€S_ and TE T,

1 K ug k)'

We shall use the convention that for k =0 an expression of the

form F(T.... Tk) stands for F . In particular, for Féfo , aruleis

1

of the form F~-+ T with Te¢ TZUT'

For I'—‘Efk , the set of right hand sides of rules for F , denoted

by rhs(F), is defined to be {TET

ZU.‘I(XK) IF(xl...xk) + T isin P} .

For a contexi-free tree grammar G = (£,%,P) we now define three
direct derivation relations: the unrestricted, the inside~out and the

outside-in one. Let n=0 andlet 0,,0,€ TZUS(xn) . We define

9 wir %2 if and only if there are a production F(XI' . 'xk) + T, a tree
ne TZ Ui(xnﬂ) containing exactly ohe occurrence of xn+1 and trees
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g] IR ) ‘ik € TZUi(xn) such that

o =ﬂ[x1,...,><

: F(g,...£ )] and

n ?
Gz=n[x1’...,xn, T[§1,oo',§k]]o
In other words, 62 is obtained from 6‘1 by replacing a (occur-

rence of a) subtree F—'(@I...§k) by the tree T[§1,... ,§k] .

s o, o
The definition of 51 o CJZ is the same as that for 61 u?w 5

except that the E!s are required to be terminal trees (§1, ceny §k€ TZ(xn)) .

. . o
The definition of 01 81 62 Is the same as that for i u;}r Qz except

that 7 is required to be such that X does not occur in a subtree

of M of the form G(Tl'” Tm) , Tee€, X1 does not occur in the argument

list of a function symbol.
Let m stand for unr, 10 or Ol . As usual, ::}‘ denotes the
transitive-reflexive closure of = . For kz0 and GETzui(xk) we de~

fine Lm(G,G) = {t€ TZ(xk) | 6:?. t} . l_m(G, 0) is called the contexi-free

tree language m~generated by G from ¢ , It is well known from [12], and

we shall give an alternative proof in section 3, that LOi(G’ g) =L (G,0) .

unp

A tree language L over % is called an 10 (Ol) tree language if there

is a context-free tree grammar G = (3,%, P) such that L = LIO(G’S)

(L = LOl(G’S)) for some S € fo . For k21 (and eventually for k = 0)
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a tree language ]_gTZ(xk) is called an 10 (Ol) tree language with va-

riables if there is a context-free tree grammar G = (3,9, P) such that
= = = a ¢

L LIO(G’F(X1"'XI<)) (- LOI(G,F(x1.,.xk))) for some | €& ot

can easily be shown that L& TZ(Xk) is an 10 (Ol) tree language with

variables if and only if it is an 10 (Ol) tree language over the alpha-

bet (X, ) . Note also that, for any 0¢€ TZU‘I(XK) , I‘IO(G’O) is an 10

tree language with variables (and similarly for OI).

Whenever we want to consider a context-free tree grammar G to-

gether with the mode of derivation l:>O , we say that G is an 10 tree

grammar. Similarly, if we intend 81 , we say that G is an Ol tree gram-

2. 2. Many-sorted alphabet, derived alphabet, S~algebra, yield, derived

operation.

In the rest of this section we present the algebraic tools needed
in the sequel. For motivation and examples, see [ 4, 15].

Since we want to make use of many-sorted operator domains, of
which the ranked operator domain is a special case, we shall give most
of our definitions for the many-sorted case, leaving to the reader the

specialization of these definitions to the ranked case.
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Let S be a set (of sorts). An S-sorted alphabet (or many-sorted

alphabet or S-sorted operator domain) ¥ is an indexed family

<Zw,s><w,s>ES*XS of disjoint sets, A symbol T in ZW s Is called

H

an operator of type <w,s>, arity w, sort s and rank Ig{w) . If

w=2Xx, then f is also called a constant of sort s .

A ranked alphabet ¥ will be considered to be the same as an S-
sorted alphabet where S is a singleton, say S = {s} . The set Zs”,s
is then identified with Zn .

We shall in fact mostly be interested in [N-sorted alphabets obtai-

ned from ranked alphabets as follows.

(2. 2. 1) Definition. Let ¥ be a ranked alphabet. The derived IN-

sorted alphabet of ¥, denoted by D(}) or simply D whenever ¥ is

understood, is defined as follows. Let, for each n=0, Z;\ = {f’ IfE Zn}
be a new set of symbols; let for each nz1 and each i, 1si<n, T,

be a new symbol (the ith projection symbol of sort n); and let, for

each n=0 and kz0, c¢_ beanew symbol (the (n,k)th composition
?

symbol). Then




TZ, s

22

.. I Ny
(i1) for n=1, D?\,n ZnU{Wi |1<i=n},

(iif) for n,kz0, D, Kook, ko {Cn,k}
n times

(in particular, Do,k = {Co,k}) , and

(iv) Dw, <= ¢ otherwise,

Intuitively, whenever the elements of I are interpreted as ope-

rations, the c's will be interpreted as composition of these operations
(they might therefore be called ""'second level™" operators) and the Ti's

as projections. Another interpretation of the c's will be as substitution
of trees or tree languages (the T!'s are then interpreted as variables).
We note that the primes on the elements of X in D(X) are not needed

but used to stress the difference between ¥ and D(X) . The symbol

is superfluous, but added for notational convenience.

the family

For an S-sorted operator domain Y we denote by TZ
>s€S , where the TZ, g are sets of trees defined inductively as

follows:

(i) for s€S, Z)\,SQTZ,S’
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(ii) for n=1 and $;Syse0+,8 €S, if fEZSV“Sn’S and,

for 1<i<n, tiETZ,Si, then f(t1...tn)ETz’S .

TZ S is called the set of trees of sort s over > . For a family
?

Y = <YS>S of disjoint sets, the family TZ(Y) is defined to be TZ(Y)

€S

where Y(Y) is the S-sorted alphabet with Z}(Y)>¥ s

H

= ZK UY_ and, for
, S s
wZA , (V) = I, g+ Note that for S=IN, Y is a ranked alphabet.
We now turn to interpretations of operator domains: >-algebras.

A z-algebra (or many-sorted algebra) A consists of a family <As>s€S

of (not necessarily disjoint) sets (AS is called the carrier or domain of
sort s of the Y-algebra A ) and for each <w,s>€S* XS and each

i n AT .
fEZW,S an operation fA of type <w,s> i, i.e., fA'As1XAszx“‘

,' L = L = i
...XAS As where s.s S, =W If n=0, then fA is a constant,

n 172

i.e., fAGAS . Whenever A is understood, we shall denote fA simply

by f .

(2.2.2) Example. Let D be the derived alphabet of the ranked al-
phabet X . We shall denote by DTZ(X) the D-algebra which is defined

as follows. The domain of sort n is Tz(xn) . For f€X f’ is the tree

f(><1...><n) (for €Y, f’=f) . For n21 and 1<is<n, ﬂ?=xi .
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= =
For n,k=0, tETZ(Xn) and t]”"’tnETZ(Xk)’ Cn,k(t’tP""tn)

t[t1,...,tn] (in particular, CO,k(t) =1t) . We shall call DTZ(X') the

tree substitution D-algebra.

(2. 2.3) Example. Let ¥ be a ranked alphabet. ZS can be made
into a Y~algebra A by defining for f¢ ZO , fA =f, and, for nz=1,
fe€x and w1,...,wn623 , fA(WI""’Wn) = Wj...w_ . Thus, every
operator in Zn is interpreted as the (n-ary) operation of concatenation.

O

A nondeterministic Y—algebra A differs from an ordinary Y-alge-

bra in that its operations are "many-valued!, i.e. fA A XA Xees
1 S2

o XAS 49(/\5) . In other words, the fA are relations rather than
n

total functions (and for n =0 fa isa set).
Any Y—algebra is also a nondeterministic Y—algebra in the obvious
way (recall that we identify singletons with their elements). A nondeter-

ministic Z—-algebra for which all operations are partial functions is some-

times called a partial Y—algebra. Nondeterministic Y—algebras will only

be used to construct ordinary y~algebras from: the subset algebra (De-
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finition 2. 3. 2) and the algebra of relations (Definition 5. 3).

If A and B are (ordinary) y-algebras, then B is a sub algebra
of A if (1) for all s€S, B_SA, , and (2) for every operator f
of %, f equals fA restricted to B (in particular, if f is a con=-

B

stant, then fg =fA) .

If A and B are I-algebras, a I-homomorphism h:A-+B is a

family <hs>s€S of mappings hS:AS—PBS such that (1) if f¢& Zk,s ,

then hs(fA) =f and (2), if fEI, o and a;€A_ , then

B’ eesS
1 n? i

hs(i’A(a1 yeoesy an)) = fB(hS1 (a1), cees hsn(an)) . Whenever s is under-

stood we shall write h rather than hs .
For a family Y = <Ys>s€S of disjoint sets, TZ(Y) is a Y-algebra

in the obvious way: TZ(Y),S is the domain of sort s and fTZ(Y)(tV cee tn) =

f(t,‘...tn) . It is well known (see for instance [ 4 ) that TZ(Y) is the

free y—algebra with generators Y , i.e. given a Y-algebra A and

mappings hs : stbAS , there is a unique X—homomorphism h: TZ(Y)—>A
extending the h_ (that 1s, Fs(y) = hs(y) for all yEYS) . In particular,
for each y—algebra A , there is a unique homomorphism from TZ to A,

denoted by hA .
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(2. 2.4) Example. l_et ¥ be a ranked alphabet. Consider the Y-al-
gebra Zg defined in Example 2. 2. 3. The unique Y-homomorphism from

TZ to Zé is obviously the mapping which associates with each tree in

s, its vield (or frontier) in Zg .

(2. 2. 5) Example. l.et D be the derived alphabet of ¥ . Consider

the tree substitution D-algebra DTZ(X) of Example 2.2.2. The unique

homomorphism from Ty to DTZ(X) will also be called YIELD (see

[17]). Thus YIELD : LIS DTZ(X) associates with each "second level

- _ . . . »
tree! in TD,n a Y—-tree with variables in TZ(Xn) .

Let ¥ be a finite S-sorted alphabet (that is, U ZW s is finite;
W, s ’

note that S might be infinite). A tree language I_QTZ s is recognizable
2

if there exist a finite Yy—~algebra A (i.e. As is finite for all s ) and a

1 _ .
subset F of AS such that l_—hS (F) where hA <hs>s€S is the

unique Y-homomorphism TZﬂA .

For an infinite S-sorted alphabet %, we say that LST. S is re-

cognizable if there is a finite sub alphabet O of ¥ (i.e. Q DX

for all <w,s>€S* XS) such that L.< TQ S and L is recognizable as
’
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a subset of TQ .
s

’

Now consider, for a finite S-sorted X, the ranked alphabet 5

such that »_ = H {Zw,s | lg(w) = n} . Obviously Z,SQT-E , and

moreover it can easily be seen from the definition of TZ < that it is a
7

recognizable subset of T-Z— . We leave the proof of the following state~

ment as an easy exercise to the reader: a tree language L. cT. is
?

recognizable if and only if it is recognizable as a subset of T—Z- . Clear-
ly the same is true for infinite Y . From this fact it follows that most of
the theory of recognizable tree languages can be carried over directly
from the ranked case to the many-sorted case.

Let, for simplicity, ¥ be a ranked alphabet. Any tree t in

DTZ(X) is also called a derived operator. Given a Y-algebra A and

k=0, each tETZ(Xk) can be interpreted as a function Ak—*A , called

a derived operation, denoted by th or der‘opA(t) , and defined as fol-

lows: for a1,...,ak€A, tA(a1,...,ak)=a(t) where E:TZ(Xk)aA is

the unique F—-homomorphism such that E(xi) = a; for 1si=k . Note that

for k=0 t, = hA(t) , where h, is the unique homomorphism Tz—'A .

In the S-sorted case one has to associate a sort S; with X, for 1=isk,

and consider T_(Y) where Y, = {x.

5 : ]si = s} . Each tree t€T, ()

z
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gives then rise to a derived operation L AS X eas XAS —*AS in the
1 n

same way as above.

Let X be a ranked alphabet with derived alphabet D and let A

be a Y-algebra. Then the D-algebra of functions over A , denoted by

«

(A) , is defined as follows. For nz0, SC(A)n is the set of all total
- n - n . .th . .
functions A 4 A ; for f€ Zn , T = fA 3 T s the i projection

An"'A; and ¢ is composition of functions: c, k(f,f1,... ,F ) =
’

n, k n

f°'(f1,...,fn) , where (fo (f1,...,f ) (aT,...,ak) =f(f1(a1,...,ak),...

n
...,fn(a1,...,ak)) (for n=0, °o,k(f) (a1,...,ak) =f, i.e. co’k(f)
is the constant function f of k arguments; for k=0, c. (f)=1) .
It is well known ([ 15, Proposition 2.4], [ 6, lll.3 Exercise 4])
that (t[tl’ ceey tk])A =ty (t1A’ ceey tkA) . From this it easily follows
that the mapping der‘opA , which associates the derived operation tA
with each tree t, is a D~homomorphism from DTZ(X) into ¥(A) (in

fact the unique one). By restricting <.Zf(A)n to derived operations one ob-

tains therefore a sub D-algebra of € (A) : the D-algebra of derived ope-

rations over A , denoted by der%(A) . Note that derT(A) is in fact the

D-homomorphic image of TD ; thus it is the smallest sub algebra of

T(A) , i.e., the smallest class of functions containing the operations of
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A and the projections, and closed under composition.

Let D be the IN—éorted alphabet consisting of the projection sym-
bols and the composition symbols. In [ 6 , Chapter 111.3] a sub B—alge—
bra of J(A) is called a clone, and der$(A) is called the ""clone of
action of ¥ on A " . The relevance of clones to formal language theory
has been shown by Blikle ([ 5 ], where clones are called inductive fami-
lies of functions) and Wand [ 40 ].

We finally note that the D-algebras DT_(X) and der‘ﬁ_(TZ) are

x

isomorphic.

2. 3. Continuous algebra, subset algebra.

In[3,15,39,40] s~algebras are investigated which are at the sa-
me time posets such that the Y—-operations are continuous. Here we shall
consider in particular "completely continuous!' >-algebras.

Let A be a partially ordered set (poset) with partial orderingl
and minimal element L. A nonempty subset A1 of A s called directed
if any two elements of A1 have an upper bound in A1 . A is called

L_l—complete (A-—complete, u~complete) if every subset (every directed

subset, every finite nonempty subset) A1 of A has a least upper bound

(or join) UA1 in A (for al,aZEA ,U'{aI,az} is denoted by a,u az) .
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A |_]-complete poset is usually called a complete lattice. If B is anot-

her poset and f: A+B, then f is called U—continuous (A-continuous)

if HUAl) =Uf(A1) for all subsets (all directed subsets) A, of A,

1
whenever L_lA1 exists., Note in particular that l__]gzﬁ = | and hence

f(_L) = _L for every U—continuous f (some authors exclude this case).

We now define continuous algebras.

(2.3.1) Definition. Let & be an S~sorted alphabet, and let A be
a Y—algebra such that each carrier AS is a poset with minimal element.

Let Z stand for A or*l.__l . Then A iscalled a Z~continuous Y-algebra

if its carriers are Z-complete and each of its operations is Z-continuous
in each of its arguments, i.e. if fA PA_ XesoXA_ A and a.€A
S, s, s i s;

(for i1#k) , then the function Xx.fA(aV...,ak_1,x,ak+1,...,an).

A_ A is Z-continuous.
Sic S

Note that in any U—continuous Y-algebra A fA(aP ceer 1,
ak+1""’an) =1 .

Note that the notion of A-continuous Y-algebra coincides with the
one in [15]. In statements about A-continuous r~algebras we shall most-

ly assume that they have U—complete carriers (and the particular algebras
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we shall consider, have L} -complete carriers). Actually it would suffi-
ce for our purposes to assume y—completeness. Observe that if a A~com—~
plete poset A (with minimal element) has a countable basis (i. e. there
is a countable subset of A such that every element of A is the join of
elements from that subset, see [32]), then it is U—complete if and only
if it is w-complete (we leave the straightforward proof to the reader).
By the same argument, we shall often consider |_|-continuous homomor-
phisms rather than A-continuous, L —preserving and pj—-preserving ones,

The definition of "sub algebra of a continuous algebra' is left to
the reader,

We now take a closer look at l__]-continuous (or: completely conti-

nuous) Y-algebras. The most common type of l_l—continuous y—algebra

is the ""subset algebrall.

(2. 3. 2) Definition. Let A be a nondeterministic S-algebra. The

subset algebra of A, denoted by F(A) , is the (deterministic) s~aige-

bra with $(A_) as carrier of sort s and, for €73 and
s Si+e+S ;S

AiEQ’(ASi) , f{P(A)(Al”"’An) =U{fA(a1""’an)lai€Ai for 1<isn}.

O
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It was noticed in [21], in the case that A is an ordinary Y—-algebra,
that the operations fS’(A) are '"completely distributive' (i. e, [_,J—conti—
nuous in each of its arguments). The easy generalization of this fact to

the nondeterministic (and many-sorted) case is left to the reader.

(2. 3.3) Lemma. For each nondeterministic S-algebra A, ®(A)

is a U-—continuous v-algebra (where LJ is set-union).

In [1 1:| the notion of a "csim! is defined (to be used in program
scheme theory). A csim is in fact a U—continuous r-algebra A,
where I is the ranked alphabet with o = {e} and T, = {x}1, such
that A is a monoid with respect to en and *A . It was shown in [11]
that free cslim!s exist.

We now prove a lemma which enables us to show the existence of

free U-—continuous s-algebras. A Y-homomorphism h = <{h >

s'scs 'S

called U—continuous if all hS are U—continuous functions.

(2.3.4) Lemma. Let A be a S-algebra and B a |_J-continuous
>—algebra. Let h be a Z-homomorphism from A to B. Then h is
uniquely extendable to a U—continuous S~homomorphism from Q(A) to

B .
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Proof. Obviously, the only way to extend h is by defining, for

A SA (ses), F(A1)=]__f{h(a) |a6A1} . Then, clearly, h is L]-

continuous. It remains to show that h is a Y—homomorphism:

(i) for f of rank 0,
hifga) = h({fAD) = h(fr) = g 3
(i) for f of rark n andsets Aj,...,A
F(fg)(A)(AP...,An)) =
=F({fA(a1,...,an) |a;€Ad)
=U{h(fA(a1,...,an)) |2, €A]
=Llfgthta,), .. in(a ) [ a €A}
and this is, by Ll continuity of f in each of its
arguments, equal to
faldin(a) a,ead, ., L@ ) [a e A )

= fB(F(Ai), - ,F(An)) .

(2. 3.5) Theorem. Q(TZ) is free in the class of u—continuous
2—algebras with u-continuous Y~homomorphisms (i.e., for each U—
continuous Y-algebra A there is a unique u—continuous >=homomorp-

hism from Q(TZ) to A).
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Proof. By the previous lemma, the unique Z-homomorphism
hA:T +A is uniquely extendable to a L.i-—continuous >~homomorphism

2

FA: 9(TZ)-;A . Since the restriction to TZ of any Z-homomorphism

Q(Ty)ﬁA is a T~homomorphism, h, is unique.

For simplicity we restrict ourselves now again to the case of a
ranked alphabet Y and leave the many-sorted case to the reader. From

the previous theorem we immediately obtain the following one.

(2.3.6) Theorem. For k=1, 3’(TZ(><k)) is the free |_]-continuous
y~algebra with generators ><k .

Proof. Analogous to [15, Proposition 2.2 ].

From this theorem it follows that any tree language with variables
can, in a natural way, be considered as a derived operator for U—con—

tinuous }-algebras.

(2..3.7) Definition. Let k=0 . Any tree language L_ETZ(XK) will

also be called a derived operator. Given a U—continuous z—algebra A,

L. can be interpreted as a function Ak-bA , called a derived operation,
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denoted by L., or der‘opA(L) , and defined as follows: for a_ ,..., a €A,

1
L.A(a1 yewas ak) = a(L), where a: Q(TZ(XK))-iA is the unique Ll-conti-
nuous S—homomorphism such that E(xi) =a. .

i

O

It is obvious that LA(al”"’ak) =‘ l tA(a1"'°’ak) , where
tel
ta is the derived operation of t in the }-algebra A as defined in 2. 2.

With respect to continuity the "language derived operations'' behave

as follows.

(2. 3.8) Theorem. For each tree language L and L_l—continuous
Y—algebra A, the derived operation L_A is A-continuous.
Proof. Completely analogous to the proof of [16, Proposition 4. 13].

O

2. 4. Substitution, associativity.

We now characterize tree language substitution (defined in 2. 1)

algebraically.

Let Y be a ranked alphabet and D its derived alphabet. Recall

that DTZ(X) is the tree substitution D~algebra.

The tree language 10 substitution algebra, denoted by EP(TZ(X))IO ,
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is defined to be the subset D-algebra Q(DTZ(X)) .

Obviously, for LQTZ(Xn) and L,...,L € TZ(Xk) ,

cn’k(l_,l_I,...,Ln) =L 5 (L;,...,L ) 5 moreover, ﬁ? = {x;} and,
for f€3_, 7= {f(><1...><n)} .

Note that, by Lemma 2. 3. 3, Q(TZ(X))lO is a L_l—continuous D-al-
gebra. The unique Ll-continuous D-homomorphism from 5"(TD) to

f}’(‘l‘z(x))I will also be called YIELD (it is the extension of YIELD :

O

TD*DTZ(X) , see Example 2.2.5; for LST, (heEMN) , YIELD(L) =

H

{YIELD(t) | t€L}) .

The tree language Ol substitution algebra, denoted by f}’(TZ(X))OI ,

is defined to be the D-algebra such that

(i) the domain of sort n is c(J)(TZ(X ))

N

(i) for fE€%_, £ = {flx;...x )} (if n=0, then f = {f});

1

(iii) for n=1 and 1<i=n, ﬂ?={><;} ; and

(iv) for n,k=0, I_ET(Xn) and L

5 seees b = T(X)

1
Cn, k(L’LV cee ,L.n) = L.A(L_1, coe ,Ln) , where A is the sub-
set Y—-algebra Q(TZ(XK)) and L., is the derived operation

corresponding to L in this u—continuous ’—algebra A

(as defined in Definition 2. 3.7).
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It should be clear from the definitions that Ch, k(l_, Liseen, l_n) =
L& (Lyeeer )

Note that it would be appropriate to denote £$>(TZ(><))Ol by
DS’(TZ(X)) since its elements are derived operators. This would also
nicely indicate the difference between 10 (Q(DTZ(X)) ) and Ol
(DQ’(TZ(X)) ) . For notational reasons we prefer the chosen denotations.

The D-algebra S)(TZ(X))O] is A-continuous (Proof: since
cn, k(l_, L1 yee ey l_n) is defined as a derived operation it follows from
Theorem 2. 3. 8 that Cn, K is A-continuous in the last n arguments; it
follows from the very definition of derived operation that Cn, K is even
|} ~continuous in its first argument). It is easy to see that i?(TZ(x))Ol
is in general not U—continuous {(for instance, 1°(x1><1)6l {g,h} #
(F(x;%;) & DU x,) & h) and f(x,) & (x;,8)7#8) .

We now consider the question of associativity of substitution. It
was shown in [ 15, Proposition 2.3 ] that tree substitution is associative,
i.e., for tGTZ(Xn) , t1”"’tn€TZ(xk) and s,;...,s, € TZ(xm) ,
(t[tgseeert Dsyyeeess ]= t[ti[31,...,sk],..‘.,tn[sv...,sk]] . This

result was a special case of the fact that, for any Y-algebra A ,

(t[tP o tn:[)A =tye (t1A’ cees tnA) . For Ol substitution of tree langua-
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ges we can prove exactly the same results in the same way. Associativity

of Ol substitution was proved originally in [33, Lemma 7. 8].

(2. 4.1) Theorem. LLet A be a u-continuous Z—algebra. Let

LgTZ(xn) and L ,...,LnQT(X

> l<). Then (LS‘ (L'i""’Ln))A=

1

L, o (L

A 1A,ooc,LnA)o

Proof. The proof is completely analogous to that of [15, Proposi-
tion 2. 4], using U-—continuous Z—-homomorphisms and the free U—con-—
tinuous Y-algebra Q(TZ(Xn)) rather than Y~homomorphisms and the free

y~algebra TZ(Xn) respectively.

(2. 4. 2) Corollary. Ol tree language substitution is associative, i.e.,

for QC_:TZ(xn) R L‘T""’LngTZ(xk) and M,,...,M

KETeX)

(Q‘_ (L1’."’L

S N & (MI""’Mk)=Q5| (L & Mpseee M5

n 1 Ol

ceesly § Mpsee M)

Proof. By the previous theorem, using A = S’(TZ(XD)) .

10 tree language substitution is not associative in general, For in-
stance (f(xlxz) o (><1,><1)) 5 {a,b} = f(x1><1) o {a,b} = {f(aa), f(bb)} .

But f(><1><2) o (x] 5 {a,b} , X1 16 {a,b}) = f(x1x2) 5 ({a, b}, {a,b})
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= {f(aa), f(ab), f(ba), f(bb)} . Problems arise in (Q r (LI”"’Ln)) {5

(MI’ e ’Mk) if a variable X, occurs in two different L!'s and Mi con-
tains at least two elements. If this does not happen, then IO substitution

is associative as shown next.

(2. 4.3) Lemma. Let Qc TZ(xn) y o bqreee, S TZ(XK) and

Moo, M ET(Xp) . Suppose that for all i, 1<i<k, x. occurs at

k

most in the trees of one of the l_1,.. . ’Ln or Mi is a singleton.

Then (Q & (L 1,...,l_)) (M 12 ee e M )=Q < (L

S (MyyeeesM

10 llO k)'

Y B Myseee,M) .

Proof. L.et t be in the left hand side of the above equation. Then
= (q[l1,...,ln]) [m1,...,ka with g€Q, liELi and miéMi . Hence,

by associativity of tree substitution, t= q[l1 [m1, cees mk], cees In[m1, ceos mk]]

and thus t is in the right hand side of the equation. Now let t be in the

right hand side. Then t = q[l1 [m:, cees mlL], cees In[m?, cee m;:]] for

qeQ, IiEL'i and m}EMj . Define ijMj as follows: if Mj is a sing-

leton then m; is its element, else if x; occurs in I (for some i) then

mJ. = mj. , else mJ. is taken to be an arbitrary element of Mj , say m} .

From the hypothesis in the lemma one can see that then

t= q[ll[ml,...,mk],... , ln[ml"" ,mk]] . Hence by associativity of tree




40

substitution it follows that t is In the left hand side of the equation.

D

Apart from the 'associativity law" discussed above, one can con-

n

sider the ""projection laws!. Is it true that c_ k(ﬂi I I I_n) =L.?
b

1
In the D~algebra Q(TZ(X))OI this law holds by the definition of &, .
In the D-algebra Q)(TZ(X))IO the law does not hold, for instance
cz’k({x1}, L, ¢)= {><1} o (L,¢) =¢ forall L . The law

R, . ‘
Ch, n(L’WI’ . ,ﬂn) = L. holds in both algebras.

AB-algebr‘a (where D=D-3") is called an abstract clone in

[ 6, 1ll.3 Exercise 3] if it satisfies the associativity and projection
laws. Thus ff(TZ(X))Ol is an abstract clone, whereas Q(Tz(x))lo is
not. In general one can say that the Ol-case leads to A-continuous (ab-
stract) clones, whereas the IO-case leads to subset algebras of abstract

clones, which are not abstract clones themselves.
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3. Fixed point characterization of context~free iree languages.

In this section we characterize contexi~free tree languages as mi-
nimal fixed points of A-continuous mappings from tree languages to tree
languages. More precisely, we view a context~free tree grammar as a
system of equations, where the unknowns (i. e. the nonterminals) range
over tree languages with variables. As the basic operation to build up
these equations we use either 10 or Ol tree language substitution. In
the former case the solution of the system of equations is shown to be
the 1O tree language generated by the grammar, whereas in the latter
case it is the Ol tree language generated by the grammar. Thus the dif-
ference between the IO and Ol tree language is characterized as the dif-
ference between 10 and Ol substitution as a basic operation in the con-
text—-free system of equations., We note that for Ol tree languages the
fixed point characterization of this section can also be found in [23 ],

Let G= (Z,g, P) be a contexi-free tree grammar where
9= {F1,... ,Fq} for some g=1 andlet r; be the rank of F; for
1<i<q. The grammar G will be fixed throughout this section.

With G we associate two mappings MG, 10 and MG,OI both

having as domain and range the set
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B
It
I =0

Q(TZ(XP.)

i=1 I

where Il is Cartesian product. Note that ® is a L_J—complete poset.
The ordering is usual set inclusion (componentwise) and the minimal
element is Q= (4,...,8) . Now let m stand for 10 or Ol . For all

kz0 andall 0 in T

ZUﬁ(xk) the mapping Mm(Cf) 9 Q(TZ(XK)) is de-

fined recursively as follows:

for d=(d;,...,dJ)€8,

in X

(i) for o ; Ko Mo

Il
X

(o)(d) = {x:} 3

Il

(i) for @ f(Gl...Oh) where fGZn for nz0

M (O)(d) = {fxgenex )} £ M_(0)(d), .0, M_(0)(d) 5
(iii) for o = Fi(01...ﬁri)
Men(©)) = ¢ & (M (0 ) -0, Mpfo, ) ()
A
Let M _ be the extension of M tosets of terms L, i.e. forall d€®
0 U
M (L = U M_0)(a) .
geL
The mapping from 8 to & associated with G, denoted by MG m
?

is defined as follows:

for d€S: M. (d) = (;\‘Am(rhs(a))(g),...,Khm(phs(Fq))(g)) .

G, m

(3. 1) Lemma. MG is A-continuous,
—_— , m

H
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Proof. In section 2.4 it was shown that l?) is L.I—-continuous and

that Si is. A-continuous, and since A-continuity is preserved by com-

position, join and 'target tupling', the lemma follows.

The properties of 8§ and the A<«continuity of M make i1t pos~

G, m

sible to use the fixed point theorem. We shall denote the minimal fixed

point of M by |6 | .

G, m

(3. 2) Lemma. IGm | =U Mé m Q) .

The rest of this section is devoted to proving that for any k=0

and O€T.

sug i)

M) (e =L (c,0) .

mt
Recall that Lm(G,O‘) is the language m—-generated from 0 , Before we
prove this result we state the following useful lemma, which shows the

behaviour of Mm with respect to tree substitution. The Ol-part of the

lemma is analogous to Lemma 8.2 in [33 .

(3.3) Lemma. Let for n,k=0, GETzug(Xn) and Tyaeee

ooo,TnET (X

SUg k) .




Then

(1)

(2)
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for all d€8, My (o[T,.cc, 7 1) (d)
= Mg, (0) (d) &1 Mg, (1)) (g),...,MOl(Tn) (d) ;
if forall i, 1=i=n,

X, occurs exactly once in ©
or T, is terminal (i.e. TiGTZ(Xk)) , then
for all de€®, MIO(O‘[TT,...,Tn]) (d)

= My (0) (d) {5 (M1 ) (@), een, Mo (T ) () .

Proof. The proof is by straightforward induction on 0 usinhg the

associativity results in section 2. 4 (Corollary 2.4, 2 and Lemma 2. 4. 3).

Note that in the 10 case one uses the fact that if T is terminal

then for all d€® Mlo(fr} (d) = {7} .

Now we can prove the fixed point characterization of context-free

tree languages.

(3. 4) Theorem. For all k=0 andall o€ TZUSI(xk)

Lm(G,o) =M, () ( le ).
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In particular, for 1=j=q,
L.(c, F—'j(xr..xpj) = |6, IJ. .
Proof. The proof is in two steps (a) and (b).
(a) First we show that L _(G,0)sM_(0) (le [) . This inclusion
can be obtained, by Lemma 3. 2, from the following statement:
P p
for all p=z0 andfor all t€ TZ(Xk) if 0=t then t€M (Cf) (M (Q))

p
where n:; means derivation in p steps. We prove this by induction

on p .

Basis of induction.

if 0%te TZ(xk) then 0=t , but since t is terminal t) ()= {t} .

Induction step.

p+1
Assume that 0 = t, then there exists 0’ such that

p p
0= 0°=t . By the induction hypothesis tEMm(O ) (MG, m(Q)) and we have

p+1

G m(Q)) . Therefore it suffices to show that
?

to prove that tGMm(G) (M

(*) M%) (M2

&, m(@) =M_(0) (MZ"L (@)

Assume that the derivation step 0 n:; 0 is obtained by application of the

production Fj(x cee X )+ T where TET Ug(x ) Then there exists
J

neéT. U{,f(xk+1) with exactly one occurrence of x and there exist

k+1

Oysees, 0. in TZUA-(X) such that

J
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o =n[x1,...,><k , FJ(GV"OPJ)] and

o= n[x],..'.,xk , 7[01,...,0Pj]] .

b

G, m(Q) , we use L.emma 3.3 to get

Now, writing —Mﬁq for M
’ P =
M (07) (M])

Mm('r][x1,...,><k , T[GT’.'.’GPJ:H) (ma) =

M () (MP) (Xgseees X s Mm(T[LT],...,OPj]) (MP))

and
M (0) T =
Mm(n[x1 seees X Fj(cr1. .. opj)]) (H&H) _
M RTT) ey

, —p+1
Mp(F (04000 ) (ME1 ) .

]

k? m(

Note that for m =10 we really use that x occurs exactly once in

k+1

M . Since KA—& E—Mﬁﬂ the inclusion (*) will follow from proving that

Mm(T[Ol"'Ur‘j]) ('I\_Af;]) < Mm(Fj(G1°"GPj)) (ME1+1) .

Another application of L.emma 3. 3 gives
Mm(T[GP...,GPj]) MP) =
AP P ‘ AP
Min() FR0) (5 4, (04) BI0), M (0 ) (00

(observethatfor m =10 all O!s are terminal by the definition of an 10

derivation). Now by the definition of M
G, m

Me(T) (MP) = W (rhs(= ) (W2) =
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M
so we finally have

Mm(T[oV...‘,cPJD (M>) <

— p+1
®>*),

37

(M (o) (M), ... ,Mm(o-r,j) (M) =
@ P (o) (‘M"fn’“‘),...,mm(cr,J) MP)) =
M (F(0,...0 )) (@PFY

m J j

Hence (*) is proved and the induction step is completed.

(b) Secondly we show that Mm(G) ( IGm ) ELm(G,G) . It suffices
to prove the following statement by induction on p :
for all p=0, k=0 and 0E T, (%), M_(0) (Mg,m(g)) =L (G,0) .

Basis of induction.

If 0 is terminal then Mm(CT) Q) = {o} = L.m(G,O’) and if 0 is not
terminal then Mm(G) Q) =¢ .

Induction step.

Again we shall use Mﬁq as shorthand for M% m(Q) . We shall
?

—p+1

prove by induction on ¢ that Mm(G) (Mm )QLm(G,U) .

(i) O=xj€><k .

Mn(@) [T = (x) =L (G,0) .
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(i) U=f(01...6j) , fEZj for some J=0 .

=p+l _ “ i p+1 —p-+1
i otem (o) (M ") {f(x1...><j)} © M (o) (Mm ),...,Mm(Oj) M),
then there exist t.€M_(0.) ('Mp“) for 1<i<j such that t = f(t ...‘t.) .

[ m* i m 1 J
By the O~induction hypothesis Mm(ci) (—I\Z&H) c Lm(G’di) for 1<i<j .
% = H(07.0.0)) 2 fltpeaat) =t and tois i

Hence i b and so 0—f(@1.o.‘0j = t1...tj =t and t is in
L. (G,0) .

- ma = K

(ii1) © FJ(GV"QP) , I'—'J.E g .

J

' —p+1 . e
Lett € Mm(Fj(gV”Or‘j)) (Mm ) . From the definition of Mm and MG,m

. . , : Vi
it follows that there is TE€ r‘hs(Fj) such that t€ Mm(T) (Mm) &

(Mm(C71) (Mﬁq”) yeooe ,Mm(op ) (—I\ZZH)) . From the p-induction hypothesis
J
we have
—p
M (1) (P) L (G, )

and from the 0-induction hypothesis

it <<
Mm(Gi) (Mm )SLm(G,Gi) for 1=1i Py .

From the definition of n‘jl it follows that there exists u € l_m(G, T) such

that t€ {u} o (I_m(G,UI),...,Lm(G,cr\_))' .
J

Now we consider the two cases separately.
m = 10.

By the definition of l‘(‘) (section 2. 1) there exist t. GLIO(G’GE)




49

]

for ‘ISiSr'j such that t=u[t1,...,t

r.
J
* *
But then 0 = FJ(OV"OrJ.) S F:j(t1"'tr‘j) e T[t1,...,tpj] .
u[t17...,tr‘.]=t *
J
m = Ol.
We want to show that
*
(+) u[cl,...,cpj] &1t
% * .
because then 0 = FJ(GI"'OPJ) 8] T[OT"”’OPJJ C:)>l u[Cf',..._,GPj:[ 8! t .

Following the definition of &, we prove (+) by induction on u .

(i) u=actc ZO .
Then t=u=a and (+) follows.
(ii) u= ; ka .

Then u[CTI,...,GPj] =xi[61"°"or‘.] =0,

and {x;} & (LOI(G,C’J]),...,LOI(G,OPJ)) =L,(G,0) ,

*

hence Gi 8[ t .

(iii) u‘=f(u1...un),f‘ézh for some n=1 .

In this case t = f(s1...s where s. € {ui.} Y (LOI(G’GT) ,

n)
cee ,LOI(G,GP )) and by the u-induction hypothesis
J

*
ui[61,...,ﬁpj]5>l s; for 1=i<n., Now u[61,...,0r\j]=

f(u]oooun) [Q1,‘..,Gr‘j] = f(u.l[01’0007dpj]-ooun[01,oo-,opj:l)
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*
8‘ f(S1...Sn) e t .
This completes the p-induction step and the second inclusion is

proved. The exact statement of the theorem is a direct consequence of

the two inclusions.

If we consider the first half of the proof of the theorem we notice
that we in fact proved that Lunr(G’G) S Mg, (o) ( l Goy |) (in the Ol-case

we did not use the resirictions on M and 01, coe ’Gr' ) . Since obvious-

J

ly LOI(G’Q) gLunr(G’g) the theorem gives an alternative proof of the
well-known fact [ 12] that Lunr(G’ o) = L‘OI(G’ 0) . Intuitively Lemma
3.3 plays the role of the !""parallel derivation lemma'' which is the key

to the proof in [12].
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4, Context-free Y—tree grammars and systems of regular

D(y)-equations.

In this section we show that context—free }—iree languages can be
characterized as solutions of systems of regular D(I)-equations in tree
language substitution algebras.

First we define systems of regular equations over many-sorted
alphabets and their solutions in A-continuous algebras. Then we show
that the class of context—-free I-tree languages is contained in the class
of languages obtained as solutions to systems of regular D(I)-equations
in {?(TZ(X)) . Using a slight generalization of a normal form lemma in
[21] we can show that these two classes are in fact equal. From this
correspondence and the main result in [21 ] it follows that in the 10 case
the class of context—-free Y—-tree languages is exactly the class of YIELDs
of recognizable D(Z)~tree languages.

We now define systems of regular equations over many-sorted al-

phabets (the reader is referred to section 2 for notions and definitions).
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(4. 1) Definition. Let ¥ be an S-sorted alphabet (possibly infinite)

and let =<¢ > _ be a family of disjoint sets such that U I , also
s’ sES ots S

denoted by g, is finite. Assume that ¢ = {F‘1,...,Fn} where Fiéis
i

for 1<i<n . The elements of & are called nonterminals.

A system of regular Y—equations (in T ) is a finite set of equations

n

{Fi = Rdin

where R is a finite subset of Tz(g)s .
i

We want to define solutions to systems of regular equations in
A~continuous T-algebras with u-complete carriers and the approach
we take is exactly the same as the one leading to I Gm I in section 3.

A . . F
Let E = {Fi = Riji=1 be a system of regular Z-equations in &
and let B be a A-continuous T-algebra with U—complete carriers. lL_et
n
furthermore l‘—‘i be of sort Si” and let B = i-I=11 BS . With E we asso-
i

ciate a mapping ME:LB—HB defined in the following way. For 0¢€ Tz(g)S

we define M(0):B+B_ such that for all b=(b,,.s.,b ) in B

(i) for 0=a in =y < M(o) (b) = ag »

(i) for 0=F, M(o) (B) = b, ,
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(i17) for 0 =f(0,...0) M(@) () = fg(M(o,) (), ..., M(0,) (b)) .

k
A
M(0) is extended to sets R by M(R) (b) = ‘ I M(0) (b) and finally M=
OER
is defined such that for all b€®
A A
M (b) = (M(R,) (B),...,M(R_) (b)) .
It should be clear that B is u—complete and that ME is A=continuous.

Hence the solution of E can be defined as the minimal fixed point of

ME'

(4. 2) Definition. L.et ¥ be an S~sorted alphabet, E a system of
regular Y-equations in {F1, ceny Fn} and B a A-continuous F-algebra

with U—-complete carriers. The solution of E in B, denoted by |EB |

=(|EB ]1,..0, |EB !n) » is the minimal fixed point of M_ .

Now the notion of equational element can be defined.

(4. 3) Definition. Let 3 be an S-sorted alphabet and B a A-con-
tinuous r~algebra with U—complete carriers. For s€S an element
bEBS is equational in B if there exists a system of regular Y—-equations
(in say n variables) such that b = IEB Ii for some 1 with 1<isn .,

D
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Generalizing the notion of recognizability to the many~sorted case
it follows from [21:] that if B is the subset algebra of the free Y-alge~

bra T_ then the equational subsets of T.

> 5 are exactly the recognizable

subsets of T, (cf. [17] and [37]).

Now we show how to transform a contextfree tree grammar into a
system of regular equations. First we define a set of mappings
BZ— % % . ]
coMB™ = <COMBk>k>O where COMBI< maps a >-tree with k wvariables

into a D(Y)-tree of sort k (wher‘e D(Y) is the derived alphabet of ¥ ,

see Definition 2. 2. 1).

(4. 4) Definition. l_et Y be a ranked alphabet. For k=0 COMBE:
TZ(Xk) - TD(Z),k is the mapping defined by
(i)  coMBL (x;) ='ﬁ‘.li< ,

(ii) for f€ ZO:COMBE(f) =c. (),

0,k

(iii) for féZm (m=1):

by _ . by 5
COoMB,/ (f(t1. .o tm)) = cm, k(f- COMB, (t1). .. COMB/ (tn)) .

COMBE is extended to sets L=T. (X ) by COMBE(L) = {COMBE(t) [teL)

and COMBZ is the family of mappings <COMBE >I<20 mapping the family

<§"(TZ(><k))>kZO to the family <@(TD(Z))I<>I<20 . Whenever Y is under-
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stood we write COMB In stead of COMBZ .

Using COMB we define the system of r*e‘gular‘ equations GD as-—

sociated with a context-free tree-grammar G ,

(4. 5) Definition. Let G = (%,§,P) be a context-free Y-tree gram-
mar where ¢ = {Fl""’Fn} and let §* = {F;,..O,F—';‘} . Then G° ,

the system of regular D(I)=equations (in &° ) associated with G , is

SUg n
k. i=1

P = {F/=comB (rhs(F,))}

where ki is the rank of Fi for 1=i=n .

(37), where

Note that, since TD K

is the same as TD(

(UF), K 5)

F'i’é f&é for 1=i=n, cP is in fact a system of regular D(3)-equations.
i

(4. 6) Example. Consider the grammar G = (2,%,P) where Zo =
{a, b}, £, = {f}, gO = {F1,F3} , (ll = {Fz} and P is the set of pro-
ductions

F _”:2“:3) , Fo(x

1 )2 %)

21

F3—ba, F3~ib .
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Then GP is the system of regular D(J )-equations

Fyo=ley,0Fy 0 Fa N,
F., ={c (F* m TF1)}
2 2,1 1 Ml

F3' = {CO,O (a) , S, O(b)} .

Let m stand for 1O or Ol. Recall that Lm(G,G) is the language
m-generated from 0 by G, and that Q(TZ(X))m is the tree language

m substitution algebra.

(4.7) Theorem. Let G = (T , {Fl’ cees Fn} , P) be a context-free
Y~tree grammar and let ki be the rank of Fi for 1=i=n . Then, for
1=i=n,

L (6, Filx ...xki)) = | &g oM | -

1

Proof. It is easy to check that the function MGD (defined with

B = Q(TZ(X))m) is identical to M of section 3, so the theorem fol-

G, m

lows by an application of Theorem 3. 4.

Now we want to show that the above theorem holds in the other direc-

tion as well. More precisely we want to show that for any system E of
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regular D(J)-equations we can construct a contexi-free Y~tree grammar
generating languages, which are equal to the solution of E in the tree
language substitution algebras. Since not all systems of regular D(y)-
equatiors "come!' from context-free S-tree grammars (a D(32)-tree of the
form Ch, k(cn', k’(' ee)ee.) cannot be the COMB-image of any Y-tree), the
first step of the construction is to transform the system E to a system

in so called normal form, from which it is easy to obtain one with the

property , that it is the image of a context-free tree grammar via COMB.

(4.8) l.emma. Let Y be a ranked alphabet and B a A-continuous
D(%)-algebra with U-complete carriers such that for all kz0 and

all b€Bk:

k k
(*) ck’k(b,ﬁ1,...,1‘rk)=b .

To each system E of regular D(I)-equations one can associate a con-
text-free tree grammar G such that |EB | is a subvector of | B | .

Proof. By a straightforward generalization of Lemma 3.1 in [21]
(cf. Theorem Il in [ 3 ]) it follows that there is effectively a (normal form)
system of equations E, such that I EB | is a subvector of ] EIB l ,
and such that all inclusions of E, (we call _A’Q T an inclusion iff

TEC Rl. where A7 = Ri is an equation) are of one of the forms
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(1) Afgc.n K (B’Dl""Dn’) for n, k=0,
b
(2) A'QTTlI< for 1<isk,
(3) A’=2f for f€ %, and k=0,

where primed symbols are nonterminals of F-_'1 . Because of the assump-

tion (*) there is a system E. , where the inclusions of type (1) and (3)

2

are replaced by

. . . kK . ko ok
(1a) A" = Sk, K (B K, K (D1 Tr1"'ﬂk)"°ck,k (Dn W1...‘ﬂk))
o sk Kk
(38) A _ck,k(f W]”‘”k) 3
such that ]E1B | = | E,B | . The desired grammar is G = (2, &, P)

where & is the set of nonterminals of E. without primes and the set

2

P of productions contains

A(xr..xk)»B(D1(x1...><k)...D (><1...><k)) ,

N

A(><1.°.><k)—b X:

A(X, .. .xk)ﬂf(xr ..xk)

1

corresponding to (1a), (2) and (3a) respectively. Since P is obviously

identical to E2 the lemma is proved. Note that G is in Ol normal form

[12].

Let again m stand for 10 or Ol. We have the following theorem.
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(4.9) Theorem. Let 3 be a ranked alphabet and E a system of re-
gular D(3)~equations. If G is the grammar constructed in Lemma 4. 8
with & = {F—'1, cers Fn} then each component of | E?(TZ(X))m | is
equal to l_m(G, FE(XI"'xk.)) for some i with 1=<i<n where k; is

i
the rank of Fi .
Proof. Since both .(P(TZ(X))IO and ﬂ’(TZ(X))Ol satisfy the

condition (*) in Lemma 4.8, the result follows from that lemma and the

previous theorem (4. 7).

Using the notion of a set being equational we can present the re-

sult of Theorems 4.7 and 4.9 in the following corollary.

(4.10) Corollary. Let L be a S-tree language with variables, i. e.
I_QTZ(XK) for some k=0 . L is equational in the D(Z)~algebra
{P(TZ(X))m if and only if L is an m tree language with variables.

t

The normal form construction presented above is not needed in the
Ol case, since we could have defined a grammar G’ by associating

with every D(%)-inclusion F'2 T of E the production F(x)=*VYIELD(T) .
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We leave it to the reader to verify that | E.CP(TZ(X))Ol | = | G’

»

This approach does not work in the 10-case as is shown by the following

example,

(4.11) Example. Let % be the ranked alphabet with g = {a, b}

and I, = {f} , and let ﬁ-‘o': {F-'1', F3'} . Consider the system of re—

gular D(Z)-equations E :
Fo={c, ~lc, (F°m nh)yFN
1,0 72,1 11 3 ?

F, = {a", b’} .
The YIELD-transformation of the equations gives the grammar G! with
productions

Fi»fF5Fs)

Fiy+a, F37b .

Clearly [ER(T.(X) g |, = {f(aa) , f(bb)} but L, (6", F )=

1

{f(aa), f(ab), f(ba), f(bb)} . Note that E is equivalent to the system

=
Fro=dey o (Fy FIL,

, L1
F _{CZ,T (f my ﬁ])},

1
.
|

{a%, b7},

where Fz' is a new nonterminal of sort 1. E] corresponds to the
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grammar G in Example 4.6 and LG, F1) = {f(aa), f(bb)} .

ol

The last. result in this section follows from an application of
Theorem 5.5 in [21] generalized to the many sorted case (see the com-~
ment following Definition 4, 3). Since S)(TZ(X))IO is a subset algebra,
the theorem states that the equational subsets of TZ(X) are the homo-
morphic images of the recognizable subsets of the free D(Z)-algebra
TD(Z) . Since YIELD is the unique homomorphism from TD(Z) to

DT:(X) , we obtain the following corollary.

(4.12) Corollary. Let L be a s~tree language with variables,
i. e. LETZ(Xk) for some k=0 . L is an IO tree language if and only
if L is the YIELD of a recognizable D(Z)~tree language (of sort k).

O
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In Part 1 of this paper (this Journal, .........) we presented

a fixed point characterization of the (10 and Ol) context-free tree lan-

guages. We showed that a contexi-free tree grammer can be viewed as

a system of regular equations over a tfree language substitution algebra.

In this part we shall use these results to obtain a theory of systems of

context~free equations over arbitrary continuous algebras. We refer to

the introduction of Part 1 for a description of the contents of this part.



5. Systems of context-free equations over arbitrary Y—algebras {or:

nondeterministic recursive program schemes).

In this section we shall view a context-~free tree grammar as a
computational device to define subsets and relations over an arbitrary
(possibly nondeterministic) S-algebra, in other words, as a nondeter-
ministic recursive program scheme with the Z-algebra playing the role
of an interpretation of the program scheme. One can think of these pro-
gram schemes as similar to the usual ones (see for instance [18, 20, 25,
28]), but without tests and with expressions like T, er T, tobe evalua-

tedas 'r1 or as T, nondeterministically. Thus, nondeterministic recur-

2
sive program schemes compute relations rather thanfunctions. As an ex~
ample, let I, = {a} , 5y = {f} and let G be the contexi~-free tree
grammar (I, {S,F}, P) where P consists of the productions F(x)* x ,
F(x)» F(f(x)) and S- F(a) . Then F can be considered as the recur~
sive program scheme F(x) = x or F(f(x)) , and S as a call of F with
some input a . In the Y-algebra with domain N and fN(x.) =x+1,

F computes the relation {(x,y) |y=x} and S computes a set depen—

ding on the input any *

However, rather than defining the computation of a context~free



tree grammar in a Y-algebra (using a specific computation rule) and
characterizing the computed relation as the solution of a system of
equations (as we did in section 3), we take the shortcut of just con-
sidering the context-free tree grammar as a system of !lcontext~freet!
equations, leaving it to the reader to be convinced of the computational
naturalness of this definition (thus we rely on fixed point semantics for
our nondeterministic recursive program schemes).,

The aim of this section is to find '"Mezei-and-Wright-like' (abbre~
viated by MW-like) results for context-free tree grammars, i.e., we
want to find a "tree algebra", preferably some S’(TZ(X)) , such that the
solution of a system of context-free equations over any S-algebra is
the homomorphic image of its solution in that tree algebra. Intuitively such
an MW-like result means that, instead of computing in the X-algebra,
one may as well do the computation 'symbolically", i.e. on trees, and
afterwards interpret the result in the Y-algebra. (The "Herbrand theorem!
in program scheme theory is a result in this direction).

There are two well known modes of computation for (nondetermi-
nistic) recursive programs: call by value and call by name (see [19 ).

In a call by value computation the actual parameters of a function call




have to be values from the domain of computation.‘ Hence, to obtain
the relation computed in the call by value mode by a context-free

tree grammar in a I-algebra, it is natural to consider the grammar
as a system of equations to be solved in the algebra of relations over
the Y~algebra, and to use composition of relations as the basic opera-

tion in these equations (see [25]). In a call by name computation the

actual parameters of a function call are formal expressions which stand
for (possibly empty) sets of values from the domain of computation (each
element of such a set being a possible value of the actual parameter).
Hence, to model the call by name computation of a context~free tree
grammar in a I-algebra, it seems natural to solve the grammar in the
algebra of functions of subsets of the Y~algebra, and to use composition
of these functions as the basic operation (cf. [ 8 ]}). The relation com-
puted by the grammar is then obtained by restricting the subset-function
to singletons. Note that for deterministic program schemes the set of
possiblé values of an actual parameter is always a singleton or empty.'
In this case it suffices to add an element w (standing for '"undefined",
or the empty set) to the domain and to consider functions over the so

extended domain (see [18, 28]).




To define the solution of a context~free tree grammar G as a
system of context-free equations in an algebra of relations or functions
(over some T-algebra) we could proceed along the same lines as in sec-
tion 3 for tree languages, using composition of relations or functions
rather than substitution of tree languages. Then, clearly, the solution
of G would equal the solution of the corresponding system GD of re-
gular D(Z)-equations (cf. section 4). Therefore we shall just define the
proper (A-continuous) D(X)~algebras of relations or functions and con-~

sider solutions of regular D(3)-equations in these algebras.

(5. 1) Definition. A context-free tree grammar G with terminal

alphabet . will be called a system of context—free Z—-equations.‘ The

solution of G in a A~continuous D(%)-algebra A (with U-—complete
carriers) is defined to be the solution of the system GD of regular

D(%)=equations in A (see section 4).

Now Lemma 4, 8 shows that we may even, without increase of ge~-
nerality, consider arbitrary systems of regular D(5)-equations rather
than just those obtained from context-free tree grammars (provided (*)

of the lemma holds).




Thus, for a given I-algebra A and a system of regular D(X)-equa-
tions, depending on whether we solve the system in the algebra of rela-
tions over A or the algebra of functions over subsets of A, we obtain
a call by value solution and a call by name solution over A respectively.
Our MW-~like results will relate the call by value solution to an 10O tree
language (in fact, the solution in 9)(TZ(><))lO) or a recognizable tree
language (the solution in 9(TD(Z)) ), and the call by name solution to an
Ol tree language (in fact, the solution in Q(TZ(X))Ol) . To obtain these
results it suffices to show the existence of a ( L-continuous) D(%)-ho-
momorphism from the tree language algebra into the algebra of relations
or functions, as shown by the following lemma of which the easy proof is

left to the reader (cf. LLemma 5.3 of [21 ]).

(5.2) Lemma. L.et ¥ be an S~sorted alphabet. Let A and B be
A=continuous Y-algebras with U—complete car‘r‘ier‘s.' Let h bea l_]—con—
tinuous I~homomorphism A-+B . Then h preserves solutions of regular
y—equations (i.e., if E is a system of regular Y—equations, then
h(|EA[)=]EB], forall i).

O

We note here that we will in general be interested in nondeterminis—




tic ¥-algebras, i.e. domains of computation in which the basic operations
are possibly partial or many~-valued.

The rest of this section is organized as follows.' First we discuss
the 10 case. Then the Ol case is treated. Finally we look at some con~
nections with the literature, in particular deterministic program schemes
with tests (cf. [ 18]) and the MW~like results for infinite trees in [15]

and [ 23].

Let us start by considering the inside—~out or call by value case,

Let ¥ be a fixed ranked alphabet and D its derived alphabet.-
We first define the algebra of relations over a (nondeterministic)

r—al gebr‘a.v

(5. 3) Definition. Let A be a nondeterministic r—-algebra. We define

®.(A) , the D-algebra of relations over A, as follows:

+
n1)’

(i) for nz0, @(A)n = §(A
(i1) for n=0 and fex f'=fA (more precisely
f = {(a1,...,an,a) laéfA(a1,.q.,an)} )3

(iii) for n=1 and 1=<i=n,

n -
'{T.i = {(317°'°:an9ai)Ia17‘e'7anEA} y 1o €




TT? is the ith projection An—'A;

n+1

(iv) for n,k=20, RcA and R1,...,Rn§Ak+1 ,

Cn,k(R’ R1,...,Rn)=R°(R1,...,Rn) , i.e.

c is composition of relations (in fact, R-(R,,...,R ) =
n, k 1 n
{(al,...,ak,a) | there are b,ye..,b €A such that

(a1,...,ak,bi)<§F2i and (b1,...,bn,a)€R};c (R) =

0, k

{(a1,...,ak,a) | a€R}) .

Note that Q?,(A)O = @A) .

The easy proof of the following lemma is left to the reader.

(5. 4) Lemma. For every nondeterministic T-algebra A, R(A) is

a U—continuous D-algebra (with set inclusion as ordering).

Observe that ®R(A) is in fact the subset algebra of the nondetermi-

nistic D-algebra with An-H

as domain of sort n and the obvious (parti-
al) c operations on tuples.
n,k

In accordance with the discussion at the beginning of this section

we now define (context-free) equational relations over a Y-algebra.




(5. 5) Definition. Let A be a nondeterministic Y-algebra. For

n=0, a relation RQAH-H is said to be 10 _equational if it is equational

as an element of the U—continuous D-algebra R(A) (i.e. iff there is

a system E of regular D-equations such that R = | ERA) li for some i).

td

Note that in particular (n=0) subsets of A may be IO equational,

The following MW-~like result is now immediate.

(5.6) Theorem. LLet A be a nondeterministic z-algebra and E a
system of regular D-equations. Then any component of the solution of E
in R(A) is the D-homomorphic image of the corresponding component of
the solution of E in Q(TD) .

Proof. Since there is a (unique) U—continuous D~homomorphism
from Q(TD) into R(A) (see Theorem 2. 3.5), the theorem follows from

Lemma 5. 2.

(5.7) Corollary. Let A be a nondeterministic S=~algebra. An ele-
ment of R(A) is 10 equational iff it is the D~homomorphic image of a re-

cognizable tree language in TD .
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Proof. Immediate from the previous theorem and the fact that in
{P(TD) the equational elements are the recognizable tree languages (see

section 4).
D

Given a system of context-free Z-equations G = (3,¥,P) and
FE;In , the component corresponding to F in the solution of G in

@.(A)n might be called the call by value relation computed by (G, F)

over A . Thus, by Theorem 5.6, the call by value relation computed by
(G,F) is the D-homomorphic image of the recognizable tree language
generated by nonterminal F in TD (viewing GD as a regular tree
grammar in the obvious way). From the computational point of view this
means that, instead of computing in A with some input (aT, cess an) ,
one can, nondeterministically, generate a tree in TD , interpret it as
a relation and find an element (a1, ceesd@, a) in this relation. Then the
element a Is one of the possible outputs.

We now ask whether an 10 equational relation can be obtained from
the context-free tree grammar by first computing formally with Y~trees,

i. e. generating an 10 tree language with variables (where intuitively the

variables stand for the input values), and then interpreting the tree lan-

guage with variables as a relation. The obvious way to interpret such a
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tree language as a relation is defined as follows.

(5.8) Definition. l.et A be a nondeterministic Y—-algebra. Let

n=0 and LQTZ(Xn) . The derived relation of L over A, denoted by

LA or derrelA(L) , is the relation in AN defined by LA =

{(a1,... ,an,b) |bea(L) , where a is the unique U-—continuous S-ho-

momorphism Q)(TZ(Xn)) + P(A) such that —a-l(xi)= {ai} } .

It is easy to see that in the case that A is an ordinary (determinis—
tic) Z-algebra, L.A = {(a1, ceera, a) | tA(a1, oo, an) = a for some t in
L.

We now show that in the case of an ordinary Z-algebra an MW-like

result, as indicated above, can be obtained.

(5.9) Theorem. L.et A be a r-algebra. The mapping derrel ,

is the unique |J-continuous D~homomorphism Q(TZ(X))IO“’ R(A) .

Proof.
TD
YIELDl
Q
DTZ(X) c S (T, o
der‘opAl ldem‘elA

T(A) < RAA)
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Consider first the mapping der‘opA:DTZ(X)—éfP.(A) , Where we iden-
tify a function A"+ A with its graph in Q(An“) . This mapping is a
D-homomorphism (see the end of section 2. 2). Moreover, since the
(unique) D~homomorphism YIELD: TD—*DTZ(X) is onto (in fact, for

t€ T,

Z(><) , t = YIELD(COMB(t)) , where COMB: T. (X)—bTD is defined in

%

Definition 4. 4), derop is the unique D-homomorphism DTZ(X)->Q,(A) .

Hence by (the proof of) lLLemma 2. 3. 4 and the fact that, for LQTZ(X) ,

I_A = U tA , dePPeIA is the unique U—continuous D-homomorphism
el

extending derop , (recall that Q(TZ(X))lO is the subset algebra of

DTZ(X)) . Since the restriction to DT_{X) of any D-homomorphism

z

EP(TZ(X))lO—*(R(A) is a D-homomorphism, derrel, is unique.

From this theorem and l.emma 5. 2 we directly obtain the following

MW-like result for 10O contexi—-free tree grammars.

(5. 10) Theorem. L.et A be a S-algebra and E a system of regular
D-equations. Then any component of the solution of E in R(A) is the
derived relation of the corresponding component of the solution of E in
§(TZ(>~())lo (in formula: |[ER(A) !i' = derrel , ( | EfP(TZ(X))IO |i) for all i).

O
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Using Corollary 4. 10 we have the following corollary.

(5.11) Corollary. Let A be a I-algebra. An element of R(A) is
IO equational if and only if it is the derived relation of an 10 tree lan-

guage with variables.

Note in particular that a subset of A is 10 equational iff it is the
s—homomorphic image of an 10O tree Iﬁanguage over ¥ (thus a subset of
TZ is 10 equational iff it is an 10 J-tree language).

Corollary 5. 11 may be stated more precisely as follows. Let
G = (%,&,P) be a system of context-free S~equations and F € an . Then
the call by value relation computed by (G,F) over A is the derived re~
lation of the 10 tree language with variables LIO(G’ F-‘(xl. . .xn)) .

Clearly, when solving D-equations in R(A) , we may restrict

attention to derived relations,

(5. 12) Definition. L.et A be a r-algebra. We define the D~algebra

of derived relations over A, denoted by derR(A), to be the image of

Q’(TZ(X))lo in R(A) under the mapping derrel , .
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Thus, for n=0, der®A) = {LAIL_ETZ(Xn)} )

Obviously derR(A) is a L_]—continuous sub D-algebra of R(A)
(in fact the smallest one), and therefore the solution of any system of
regular D-equations in R(A) is equal to its solution in der®R(A) .

As a special case, let us consider the Z-algebra TZ . Clearly

the mapping derrel_. :P(T(X)), ~+ derR(T.) is the identity for sort 0
TZ by 10 M)

(i. e. for elements of fP(TZ)) . Hence, given an IO tree grammar
G=(35%P) andan S ed , the component corresponding to S is the

same in the solutions in SP(TZ(X)) and der*.rR(TZ) . Thus we have ob-

10

tained a fixed point characterization of 10 tree languages in the space

der{R(TZ) . For FE@-:] (hn=1) it follows from previous remarks that its

solution in der@.(TZ) is der‘r‘eITZ(L.lo(G, F(x1...xn))) which is (using
*
=

To) t .

an obvious property of

*
) equal to {(tT""’tn’t)]F(tf"tn) T

Note that, in contrast to the case of trees (see the end of section
2. 2), the algebras @(TZ(X))IO and der‘Q(TZ) are not isomorphic. As an

example, in Q(TZ(X])) , der‘r‘eITZ(TZ) = der‘r‘eITZ(TZU {><1"}) = TeX Ty o

Consider now the free Z-algebra TZ(X) with generators X . Re-~

marks analogous to those for TZ also hold for TZ(X) . Moreover the

algebras fP(TZ(X))lO and der‘Q(TZ(X)) are isomorphic. Thus, by
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Theorem 5.9, TZ(X) is a "universal interpretation!': two 10 tree gram-
mars G] and GZ’ with nonterminals I:1 and Fz , compute the same
call by value relation over all I-algebras iff they do so over TZ(X)
(this was brought to the attention of the authors by M. Nivat).

For a nondeterministic Y—algebra A both Theorems 5.9 and 5.10
break down in general: there is no homomorphism Q(TZ(X))IO_)Q(A) .
As a first example, let TC ZZ and bt ZO , and suppose that bA = {a1, az}

and f is a total function Az—bA . Consider the 10 tree grammar G

A
with productions S- F(b) and F(x1)->f(><1x1) . Then the S-homomorphic
image of the language {f(bb)} generated by G from S Iis in general

not equal to the solution of S in R(A) . In fact, {f(bb)}A

= {falag,ay),
fA(a1,a2) , fA(az,aI) , fA(az, az)} , but the solution of S in R(A) is
{fA(a1, a1) , fA(az, az)} . The reason for this failure is obviously that
during call by value computation of F(b) in A we have to fix a value

a, or a, of b before copying it. This process cannot be mirrored in
the derivation of the tree grammar. Thus we cannot compute symbolically
on trees, but we have to !'"consult the interpretation' during computation.

As a second example, let d¢€ ZO and p¢& 21 and suppose that dA = {a}

and pA:A—#A is a partial function such that pA(a) is undefined. Con-
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sider the IO tree grammar with productions S-F(d p(d)) and
l:(><1’><2)—+><1' . Then the language generated is {d} , but the solution
of S in R(A) is ¢ . Again we cannot just compute with trees becau-
se we have to tesi whether pA(dA) has a value before deleting the
tree p(d) . Thus, in a nondeterministic -algebra, the only way to do

a symbolic computation seems to be computing with trees in T. (see

D
Theorem 5.6), which keep all information about the copying and dele~-
tion (which have to be done after the symbolic computation).

One should observe that the above two examples are essentially
the same as the failure of the associativity law and the projection laws
in @(TZ(X))IO (see section 2. 4). For the first example,

(Fxyxg) o (Bs D)) 5 Lay, ay) 710 x,) 5 (0 g {agsap) s b 5 lag,ayl),
where b is used to denote X, . For the ;econd example, X i‘E) (d, ¢) #

d -

et us now turn to the outside~in or call by name case. Let I again

be a fixed ranked alphabet and D its derived alphabet. Instead of con-
sidering the subset Y~algebra @ (A) corresponding to some nondetermi-
nistic x-algebra A, we shall prove our results for the slightly more

general case of a U-—continuous 2—algebra. For later use the first few
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definitions will be given for a A-continuous Z-algebra with U—complete

carrier.

(5. 13) Definition. Let B be a A~continuous ZI-algebra with -

complete carrier. We define .(L'A(B) , the D—algebra of A~continuous

functions over B, as follows:

(iy for nz=o0, gA(B)n is the set of all A—continuous total

functions B"+B (for n=0, $A(B)o =B) ;

(i) for nz0 and fEZ f7=fg 3
(iii) for n=1, 1<isn and bise..,b €B,

n

ir (b1’°"’bn) =b;, i.e. TT? is the ith projection

BB ;

(iv) for n,kz0, f€ :;A(B)n and gy;ee.,9 € gA(B)k’
Cn,k(f’ 91,...,gn)=f0(g1,...,gn) , feee ey IS
composition of functions (co k(a) is the constant.
?
a'BkﬂB i.e. ¢ (a) (b b )=a
. ’ L] » o,k . 1’.'.’ k
for all b1,...,bk€B) .

Moreover, each carrier gA(B)n is ordered in the usual way: fe g if and

only if f(bl’""bn)Eg(bl""’bn) for all b1,...,bnEB .
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It is left to the reader to verify the correctness of the definition
(the projections are A-continuous and composition preserves A-continuity).

The straightforward proof of the next lemma is also left to the reader,

(5. 14) Lemma. For every A-continuous Y-algebra B with L_]—
complete carrier, SA(B) is a A~continuous D-algebra with L —-complete

carriers.

Note that SEA(B) is a sub D-algebra of &£(B), and hence a "sub
clone! of &(B) (cf. the end of section 2.2). Thus KA(B) , and each of
its A-complete sub D-algebras, might be called a "A~cont inuous clone'.
Every A-continuous clone is then a pu-clone in the sense of [40], but not
vice versa. In fact the smallest u~clone in XA(B) , denoted by uCI(B)
in [40], is equal to {I_B ] L is a recognizable tree language with va-
riables} (see Definition 2. 3. 7).

Wé now define (context—-free) equational functions over a A-con—

tinuous Y~algebra (cf. the discussion in the beginning of this section).

(5.‘15) Definition.. Let B be a A-continuous Y-algebra with |_1—

complete carrier. For n=0, a (A-continuous) function f:8"+B is said
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to be Ol equational if it is equational as an element of the A-continuous

D-algebra Q:A(B) .

Note that in particular (n = 0) elements of B may be Ol equatio-
nal.

We now turn to an MW-like result for U—continuous r~algebras,
in particular subset algebras of nondeterministic Y—algebras. 1t will
turn out that an Ol equational function can be obtained by interpreting
an Ol tree language with variables as a function. The obvious way to do
this is by taking its derived operation in the u—continuous Y—algebra

(see Definition 2. 3. 7).

(5. 16) Theorem. Let B be a | J-continuous T~algebra. The map-
ping der‘opB is the unique | J-continuous D~homomorphism QP(TZ(X))Ol—b
7,8 .

Proof. Obviously der‘opB(f(x1...xn)) =fg and der‘opB(xi) is
the ith projection. 1t now follows from Theorem 2.‘4..‘1 that der*opB is
a D—homomor‘phism.v Moreover der‘opB is clearly U—continuous. It is

easy to see that there can at most be one U-continuous D~-homomorphism
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from fP(TZ(X))Ol into any continuous algebra.

From this theorem and LLemma 5; 2 we immediately obtain the

following MW-like result for systems of Ol contexi~free equations.

(5.17) Theorem. LLet B be a Ll -continuous y~algebra and E a
system of regular D—-equations. Then any component of the solution of
E in iA(B) is the derived operation of the corresponding component
of the solution of E in Q’(TZ(X))Ol (in formula: | E@A(B) li =

deropg( | E(J’(TZ(X))Ol li') forall i) .

Using Corollary 4, 10 we have the following corrollary.

(5.18) Corollary. Let B be a U-—continuous Z—algebr‘a.‘ An ele~
ment of @A(B) is Ol equational iff it is the derived operation of an Ol

tree language with variables.

Note in particular that an element of B is Ol equational iff it is

the Z-homomorphic image of an Ol tree language over 2 (thus a subset
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of TZ is Ol equational iff it is an Ol I-tree language).

Note also that, analogous to the IO case, one may restrict atten—

tion to dere'fA(B) , the D-algebra of derived operations over B.

Note finally that in the case of a A-continuous I-algebra B , both
Theorems 5. 16 and 5'-717 fail to hold in general: there is ho homomorphism
S’(TZ(X))O]—> SCA(B) . As an example, let B have domain ®(A) for some
set A. Let act ZO and or EZZ . Let ag be some nonempty subset of
A and let 938:82-98 be union of sets, i.e. Q—PB(APAZ) = A, UA2 .
Note that or, is A=-continuous, but not U—continuous in its arguments
(it fails on LJ $) . Consider the Ol tree grammar G with productions
S+ F(Q) , F(x1)—>_<_)_g(a x,) and Q=»Q . Then the solution of S in
9(TZ(X))01 is ¢, but its solution in (’;A(B) is ag .

For a given system of contexi-free Z-equations G = (3, ﬁ-', P)
with F &€ ':Tn and a nondeterministic J-algebra A, one is often not inter-
ested in the solution of F in QTA(@(A)) as a function P(A)"+P(A) , but

in the restriction of this function to singletons.

(5. 19) Definition. Let G = (3,%, P) be an Ol tree grammar, FE‘J—'n

and A a nondeterministic Y~algebra. The call by name relation computed

by (G,F) over A is defined to be the relation {(a1, ceesa, a) |
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aEf({a1}, e, {an})} , where f is the component corresponding to F

in the solution of G in gA(@(A)) .

It follows easily from the definitions of derived operation and
derived relation that, for any nondeterministic I-algebra A and any
Lec TZ(X) , the restriction of L{P(A) to singletons is I_A . Hence, by
Theorem 5, 17, the call by name relation computed by (G,F) over A
equals the derived relation of LOl(G’ F(xr. .xn)) over A .

As a special case, let us consider the I~algebra TZ . Clearly the
mapping der‘opg(_rz) : Q’(TZ(X))Ol-b (‘IA((‘P(TZ)) is the identity for elements
of Q(TZ) . Hence, given an Ol tree grammar G = (3,3, P) , the compo-
nent corresponding to S is the same for the solutions in 9’(TZ(><))Ol
and IA(@(TZ)) . Thus we obtain an alternative fixed point characteriza-
tion of the Ol tree languages, which is due to Downey | 8 ]. For Fég—n
(h=1) it follows from previous remarks that the call by name relation
computed by (G,F) over 5, is der‘r‘eITZ(I_OI(G, F:(x1. . .xn))) which is
(using an obvious property of gl ) equal to {(t1 seeest, t) | F(t1. .o tn)
gl t} . Note that, by the same example as in the 10 case, the algebras

(f’(TZ(X))Ol and der‘fCA(S’(TZ)) are not isomorphic. Consider now the
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Y—algebra TZ(X) . Remarks analogous to those for TZ also hold for

: TZ(X) . The algebras @(TZ(X))O] and der‘rfA(?(TZ))) are isomorphic.
Moreover it is easy to see that TZ(X) is a "universal interpretation!!:
two Ol tree grammars (51 and Gz , with nonterminals F1 and Fz ,

computie the same call by name relation over all (nondeterministic) ¥~

algebras iff they do so over TZ(X) .

In the rest of this section we look at some connections with the

literature. We shall first show how ordinary recursive program(scheme)s

(see [18,5.2]) fit into our formalism in both the call by value and the call
by name case (the difference being that ordinary recursive program
schemes have tests whereas ours have nondeterminism). The main prob-
fem is the representation of the if-then-else construction. We shall use
the well known "trick!! of representing a conditional expression like if

p(x)then f(x) else g(x) by the nondeterministic expression

(if p(x) then f(x) else w) or (if p(x) then w else g(x)) ,

where ® stands for "undefined!'. Moreover, to be able to represent the
components of this expression, we introduce firstly a basic function pr,
which stands for the second projection, and secondly, to replace p(x) ,

two partial functions w(x) and pN(x) , which are defined iff p(x) is
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true and false respectively, and, if defined, deliver some arbitrary value
(for instance x ). Our expression is now representable as prz(pY(x),
f(x)) or prz(pN(x), g(x)). The recursive program F(x,y) = if x = 0 then
1 else F(x = 1, F(x,y)) will for instance be represented as follows: let
z(x) stand for x =0, f(x) for x =1 and a for 1, then the represen-
tation is F(x,y) = pr‘z(zY(x),a) or pr‘z(zN(x), F(f(x), F(x,v))) .

We shall now state this more formally. Let a recursive program
scheme S consist of afinite rankedalphabet & of function symbols, a
finite ranked alphabet X of operators or basic function symbols, a finite
ranked alphabet (1 of predicate symbols and a finite set of equations of
the form

(*) Flxgeeex ) =i p(r,...7 ) thena else B,

1 k
exactly one equation for each FE€J. In (¥*), F is in gn (h=0), p in
O (k=0) and Tipeees T s @ B arein Tzug(xn) . An Yinterpretation"
A consists of a set A, for each f¢ Zk a partial function fA:Ak—'A s
and for each p¢€ Qk a partial function pA:Ak—b {true, false} . For such
an interpretation one can, in the usual way (see [ 18]), associate with

each F’Egn two partial functions A" 4 A which are the functions compu-

ted by (S,F) in A in a call by value or call by name mode.
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We now associate with each recursive program scheme S a con-
. Y N
text—-free tree grammar GS . Define new ranked alphabets (0 and Q
such that, for each k aYf = {po |PEQ ]} and o = {py | PEQ ] , and
? N Y k k N k? ?

let pr, be a new symbol of rank 2. GS is defined to be (ZU QYU QNU

2
{pr*z},gf, R) , where,corresponding to each equation F(><1...><n) = if
p(T1. o Tk) then o else B, the set R contains the two rules

l':(><1. .o xn)—b prz(pY(T1. .o Tk)a) and

F(><1. .. xn)—* pr‘z(pN(T1. .. Tk)B) .

Finally we associate with each interpretation A a partial

U QYUQNU {pr‘z} ~ algebra A’ with the same carrier, for f¢€ Zk fA,= fA

)
for pEQk
PyA” = {(a1,... ,ak,a1) | pA(aP...,ak) = true} and
PNA - = {(a1, ...,ak,a1) | pA(al""’ak) = false} ,
and pr,,. = {(a1,a2,az) | a1,a2€A} .
We now state without proof the validness of these translations.
For any recursive program scheme S, function symbol F and interpre-

tation A,

(1}  the partial function computed by (S,F) in A in a call by value

mode is equal to the component of F in the solution of GS in
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R(A) (i.e. the call by value relation computed by (GS, F) over

A’ ; see the comment following Corollary 5.7) ;

(2) the partial function computed by (S,F) in A in a call by name
mode is equal to the restriction to singletons of the component of
F in the solution of Gg in $A(3)(A')) (i. e. the call by name re-

lation computed by (GS,F) over A’ ; see Definition 5.19).

In [18], to obtain the call by name function computed by a recursi-
ve program scheme for an interpretation A , the domain A is extended
to AU {w} , where ® is a new element standing for "undefined!". It is
then shown that a recursive program scheme defines a total function
(AU {w})n—bAU {w} , which is the least fixed point of a suitable mapping.
In our formalism, the call by name relation is obtained via a total func~-
tion (P(A)"-+3(A) . Obviously, in ®PA) , the empty set plays the role

of w. We state without proof:

(3)  the total function computed by (S,F) , in a call by name mode, in
AU {w} is equal to the restriction to singletons and ¢ (where ¢

stands for ) of the F-component of the solution of GS in

o (@A) .

A
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From correspondences (1) and (2), and Theorems 5.6 and 5. 17 respecti-

vely, we obtain the following MW-like results for recursive program

schemes. For any recursive program scheme S, function symbol

F and

interpretation A,

(1)

(2)

the call by value function computed by (S, F) in A Is the D=ho-
momorphic image in R(A”) of a recognizable tree language over

o~ = Y , N .
D=D(x), where _ =3UQ UQ U {prz} ; (note that we may delete

pry from Y since its homomorphic image is equal to that of T’rg);

the call by name function computed by (S,F) in A is the derived
relation over A’ of an Ol tree language with variables over the
Y

alphabet »UQ U QNU {pr‘z} (see the comment following Definition

5.19).

What can we say about recursive program schemes more general

than the ones discussed above? Obviously, we can also handle nondeter-

minism. Consider for instance the following program (taken from [38]):

F(x)

= if prime(x) then (x or F(x + 1)) else F(x + 1) . This nondeterminis-

tic program computes (both in the call by value and call by name case)

the relation {(x,y) |y is prime and y=x} over IN . Let f(x) stand
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for x+ 1 and m(x) for prime(x) . Then a context-free tree grammar
computing the same relation has rules

F(x)~pr,(m_(x) x) ,

F(x) =+ pr,(m_(x) F(f(x))) and

F(x) —bpr‘z(mN(x) F(f(x))
or equivalently

F(x)—vpr‘z(mY(x) x) and

F(x)»F(f(x)) .

What about the basic operations? In the presence of tests it does
not seem to make much sense to make them multivalued. However in the
call by name case it makes some sense to consider basic operations
(AU {w})"+» AU {w} , or in other words P(A)" -+ P(A) , which are A-con-
tinuous but not l__l—-continuous in their arguments (i. e. they cannot be ob-
tained from A by the subset construction, or in the words of [18:[ they
are not '"natural extensions!' of partial functions An*A) . We have
seen previously that our MW-like result breaks down for non-—]__]-—conti—
nous algebr‘as; It is however not clear whether such operations are nee-—
ded in the presence of nondeterminism. In [18 ] the main such operation

is if-then-else: (AU {w})s—*' AU {w} . We have seen how to handle if-then-
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else with the use of nondeterminism. Another example in [18] is the

socalled '"parallel multiplication' *:(INU {w})z + INU {w} where

*(x,y) =0 if x=0 or y=0

w or y=w (and x#0, y#0)

I
=
=
X

]

= xy otherwise (where xy is the ordinary product

of natural numbers x and y ).

But, using nondeterminism, parallel multiplication can actually be pro-

grammed, as follows

*(xy) = (if x = 0 then 0 else xy)
or (if y = 0 then 0 else xy) ,

where the call by name solution is of course intended. Thus it seems

that, if such functions are needed, they can as well be programmed rat-

her than considered to be basic.

We conclude this section by connecting our MW-like results to MW-

like results obtained in the literature in connection with infinite trees

(see [15,22, 23]).
In [15] it is shown that a system of regular »-equations in which,
for each nonterminal, the right hand side of its equation is a singleton

(let us call this a '"deterministic! system), can be solved in the algebra
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CTZ of infinite trees over 3 (we shall call its solution a "recognizable
infinite tree'). Let | be a new symbol of rank 0 . Then CTZ can be
viewed as consisting of all U {l}-labeled finite or infinite trees such
that a node labeled with a symbol of rank n has exactly n successors.

The finite trees in CT. are there fore those of T.(l) . A natural order,

% )X
with minimal element 1, is defined on CTZ , and it is shown that CTZ
is free in the class of all A-continuous Y—-algebras with A~continuous
l-preserving S~homomorphisms. Moreover, the solution of a determinis-
tic system of regular Y=-equations in any A-continuous ¥-algebra is the
homomorphic image of its solution in CTZ . A deterministic system of
context—free Y-equations (i.e. a context—~free tree grammar with one rule
for each nonterminal) can be solved in CTZ(X) (we shall call its solution
a "context-free infinite tree!).In fact, CTZ(X) is a {A-continuous) D(Z)-
algebra in the obvious way (with Cn, K being substitution of infinite
trees). For any A-continuous Y-algebra B such a system of contéxt-—fr‘ee
2—equations can be solved in @A(B) and the solution is the derived opera-
tion of the solution in CTZ(X) (where ""derived operation'! is the unique
A-continuous |~preserving D(J }-homomorphism from CTZ(X) into. Q»—A’(B)).

For more details we refer to [15 |. In a different setting these MW-like
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results have been shown by Nivat [ 23], who represents an infinite tree
by a A-complete subset of TZ(’L) .

Obviously, these results can also be applied to '"nondeterministic!
systems of equations by the introduction of an operator + to represent
union. For -context—-free equations there are two (equivalent) ways of
doing this, depending on whether + is viewed as an operator on the %
level or on the D(Z) level. We shall consider the latter alternative,
leaving the former to the reader.

L et, for any S-sorted alphabet (, oF denote the S~sorted alpha-
bet consisting of QU {+s | s€ S}, where +g is a new symbol of type
{ss, s> . Whenever s is understood we write + rather than +g o
With each system E of regular (Q-equations we now associate a detepr-
ministic system E+ of regular Q+—equations as follows.

If F= {T1,..., Tn} is an equation of E (with n=1), then
F = {T1 + Ty teest Tn} (in some arbitrary order) is the equation for F

)

. + ’ : )
in E, where T,+...+T_ of course stands for + (T, + (T e+ (T ., T
1 n s 1 s 2 s’ n=1n

eel)) , s being the sort of F L F = ¢ 1s an equation of E , then

F = {F} is the equation for F in E+ . It should be obvious that, for any

A-continuous (l-algebra A with U—complete carriers, the solutions of
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E and E+ are equal,if, for each s in S, +S is Interpreted as the
u—-operation in As . However, E+ can also be solved in A-continuous
Q+—algebr‘as in which + is not interpreted as u , for example in CTQ_,_
Let now Y be a ranked alphabet and D its derived alphabet. Note

+_ . + + _ . +
that 3" = U {+} with +€3%, and D =DU{+_ [n&MN} with + €D .

’

For a given system E of regular D-equations, we can solve E+ in the

D+—algebr‘as @(TZ(X 9(T R(A) and @—_A(B) (where A is a

10’7 Ol’

nondeterministic Y-algebra and B a A-continuous j-algebra with 'U—com—-
plete carrier) as before, but also in the A~continuous D+valgebr‘as CTZ+(X)

and CTy+ (where, for t, , t, €CT +(>< ), +n(t1’t2) = +(t1t2)) .

We now obtain the following diagram.

(1) CTh+ (5)
D@ 6) _ =
PN o PT(X)

4 (®)
| @ (?) l
R(A) 3,.(B)
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In this diagram, if two algebras P and Q are connected by arrows, it
means that there is a unique A-continuous l-preserving (and whenever
possible U—continuous) D+—homomor‘phism from P to Q (details are
left to the reader). Furthermore, for any deterministic system of regu-
lar D+—equations, its solution in @ is the homomorphic image of its
solution in P . We note that one can easily associate with each deter-
ministic system E1 of regular D+—equations a system E of regular
D-equations such that the solution of E+ in any A~continuous D+-—al-
gebra is a subvector of the solution of E1 . Hence, as an example, the
IO tree languages over ¥ are precisely the images under the homomorp-
hism (2) (1) of the recognizable infinite trees in CTH+ - Thus the dia-
gram surveys all MW-like results for systems of regular D-equations
discussed up til now,

Although the diagram is meant to be transitive, (4) and (8) are
drawn separately because (3) and (7) do not always exist. In fact, as
shown previously, (3) only exists if A is a (deterministic) Y-algebra,
whereas (7) only exists if B is a U—continuous y—algebra,

l.et us recall some of the names of the homomorphisms in the

diagram and give names to the new ones. (2) is YIELD, (3) is der*r‘elA
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and (7) is der‘opB . For any many-sorted alphabet () we shall denote
by SET the unique A-continuous _|~-preserving Q+-homomorphism CTQ+
~>€P(TQ) . Thus (1) in the diagram is SET. It is also appropriate to de-
note (6) by SET. For obvious reasons we shall denote by YIELD the
homomorphism (5): CT4 CTZ-;.(X) . Note that the homomorphism from
CTh+ into @(TZ(X))lO is YIELD*SET , whereas the homomorphism

from CT into SP(TZ(X))O] is SEToVYIELD. This expresses in a ni-

D+
ce way the basic difference between 10 and Ol,

Consider a domain of computation A and let B =P(A) . For non-
deterministic recursive program schemes we now indicate the "best MW~
like result!, i.e, the lowest tree algebra in the diagram in which the
computation can be done symbolically. There are 6 possibilities, de-
pending on whether the computation is call by value (IO) or call by name

(O1) and depending on whether A is an ordinary S-algebra, a nondeter-

ministic X~algebra or has even nonnaturally extended basic operations.

I0  y-algebra Q’(TZ(X))IO
nondet. S~algebra Q’(TD)

nonnat, ext. meaningless




35

Ol y—algebra Q(TZ(X))OI
nondet. Z~algebra Q(TZ(X))O]
nonnat. ext. CTZ"'(X)

We finally observe that, instead of 4 , one can also consider a
ternary operation if-then-else. This would give a similar diagram for

deterministic recursive program schemes.
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6. A closure property of the 10 tree languages

In section 4 (Corollary 4, 12) we have shown that every 10 tree
language over X is the YIELD of a recognizable tree language over
D(x) and vice verca. This result can be used to prove properties of
IC tree languages by applying well known facts from the theory of re-
cognizable tree languages, in the same way as was done for context-free
string languages in [30,35]. Even, since each IO string language ([12:[)
is obviously the yield of an 10 tree language, one can obtain properties
of 10 string languages from those of recognizable tree languages (cf.
section 4),

To illustrate the fruitfulness of the algebraic fixed point approach
to language theory we shall in this section use Corollary 4. 12 to give
an algebraic proof of the intuitively obvious fact that the 10 tree lan—
guages are closed under deterministic bottom-up tree transducer map-
pings. Before doing so we shall look at two special cases: closure under
intersection with a recognizable tree language and closure under '"iree
homomor‘phisms”.‘ At the end of the section two examples are given which
show the nonclosure of the 10 tree languages under (nondeterministic)

relabeling and the nonclosure of the Ol tree languages under tree homo-
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morphisms respectively.

L.et us first recall from section 2.‘2 that, for any many-sorted al-
phabet ¥, a tree language over I is recognizable iff it is recognizable
over a finite subalphabet of ¥ . We shall also use, without mentioning,

the fact that, if LS TZ 57 then 1t is recognizable in TZ iff it is recog-
’

s |

nizable in T:‘i-’ where 3 is the ranked alphabet with fn = U {ZW
W, S ?

Igw) = n} . We shall refer to % as "3, viewed as a ranked alphabet!.

In order to obtain closure of the 10 tree languages under intersec-
tion with a recognizable tree language, we prove the next lemma, which
is a straightforward generalization of one of Rounds [30] for regular

languages.

(6.1) LLemma. Let ¥ be a finite ranked alphabet.A If R is a re-
cognizable tree language over %, then, for any finite subalphabet D°

of D(T), YIELD—1(R)0TD,O is recognizable.
?

-1

Q (F) for

Proof. Let Q be the finite S-algebra such that R = h

is the Y~homomorphism T_—»Q . Consider now

some FcQ , where h 5

Q
the finite D(z)-algebra F(Q) (this algebra, or rather der%(Q) , might

be called "the algebra of state transition functions of the finite tree au-

tomaton Q "). By section 2.2 the mapping der‘opQ is a D{X)-homomorp~
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hism DTZ(X)—MJC(Q) . Therefore derop,°YIELD is the unique D(%)~ho-
momorphism from TD(Z) into J(Q) . Denote this homomorphism by g .
Note that, for a tree t of sort 0, der‘opQ(t) = hQ(t) . Hence, for sort
0, gy (F) = YIELD™ ' (deropy (F)) = vieLd™ (hg (F) = viELDT(R) .
Finally, the restriction of g to TD’ is the unique D’~homomorphism
from T,. into 3(Q) , and the inverse image of F under this mapping
is YIELD_1(R) ﬂTD, o + Consequently, this set is recognizable.

’

tJ

(6.2) Corollary. The class of 10 tree languages is closed under in-
tersection with a recognizable tree language.

Proof. L.et LL be an IO tree language over ¥ and R a recogni-
zable tree language over I . By Corollary 4,12, L = YIELD(RO) for
some recognizable tree language RO in TD', 0° where D’ is a finite
subalphabet of D(X) . Now LLNR = YIELD(ROﬂYlELD_1(R)) . By the

previous lemma YlEL.D_1(R) ﬂTD, is recognizable, and so, since the

, 0
class of recognizable tree languages is closed under intersection,

ROOYIELD_I(R) is recognizable. Hence, by Corollary 4. 12,

YIELD(ROHYIELD_1(R)) is an 10 tree language.
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Note that it follows easily from this corollary and the lemma in
[30 s Po 110] that the class of 10 siring languages is closed under inter-
section with a regular string Ianguage.:

Next we shall show that the class of 10 i{ree languages is closed
under 'tree homomorphisms'", Let ¥ and 0 be possibly infinite ranked
alphabets. Consider a family h = <hn>n€rN of mappings h_: P TQ(Xn) .

Such a family determines a mapping h: TZ-D TQ , called a tree homomorp-

hism, by the requirements

(i) for €3, h(f) = holf) 3

(i) for fE%_, H(F(t,...t)) = hn(f)[ﬁ(g),..‘.',ﬁ(tn)] .

Moreover, together with the requirement that F(xi) =x; forall i, h is
a mapping from TZ(Xn) into TQ(Xn) for each n=0 . Thus h may be
viewed as a mapping DTZ(X)%DTQ(X) . Let D be the IN-sorted alphabet
D(3) - £° (thus D = D(Q) ~ Q’; D consists of all projection symbols and
composition symbols). It can easily be shown, and in fact it is a special
case of Lemma 3. 3(1), that h is a D-homomorphism from DTZ(X) into
DTQ(X) , both viewed as D-algebras.

A tree homomorphism h called linear if no hn(f) contains two

occurrences of the same variable. In the next lemma we show that each
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tree homomorphism from TZ into TQ can be simulated "on the second
1n{; o i —
level® (i.e. on the level of TD(Z) and TD(Q)) by a linear tree homo

morphism.

(6. 3) Lemma. Let > and (1 be ranked alphabets, and h a tree

homomorphism from T2 into TQ . Then there is a linear tree homomorp-

hism E:TD(Z)_’ TD(Q) (i.e. D(Z) and D(Q) are viewed as ranked alpha-
bets), such that YIELDo§= he YIELD . Moreover, 5 is sort-preser-
ving (for every t, g(t) has the samesortas t) .

Proof. Intuitively, in order to simulate h , 5 only has to change

the frontiers of the D(%)-trees. Formally g is defined as follows (note

that D(XZ) and D(Q) are viewed as ranked alphabets):

. " 0
(i) for n=0 and f€ . go(f ) = COMBn(hn(f))

(for the definition of COMB, see Definition 4. 4) ;
(i) for 1=i=n, g (m)=n;

- _
(iii) for n,k=0, gn_’_](cn’k) cn,k(xr..xn_!_]) .

Clearly, 5 may be viewed as a B—homomorphism from TD(Z) into
To(q) ? both considered as D~algebras (where D = D(3) -~ ‘) . Now we

have the following diagram
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Tb(x) —g Tb(a)
YIEL.D YIELD
e cm————

DTZ(X) DTQ(X)

where all sets are 5—a|gebr‘as and all mappings B—-homor‘phisms.v Since
TD(Z) is obviously the free B—algebra generated by the elements of %7,
the diagram commutes if it does for the generators. For n=0 and f¢€ Zn ,
YIELD(g(f*)) = YIELD(COMB_(h _(f))) = h_(f) = R(F(x,.. .’xn)) = h(YIELD(f*)) .

lence YIELDeg=hsYIELD .

(6. 4) Corollary. The class of 10 tree languages is closed under
tree homomorphisms.

Proof. Let L be an IO tree language over the finite ranked alpha-
bet ¥ . Thus L = YIELD(R) for some recognizable tree language R
over some finite subalphabet of D(Z) . By the previous lemma, for any

tree homomorphism h: T, > To h(L) = h(YIELD(R)) = YIELD(g(R)) ,

z
where g is a linear tree homomorphism TD(Z)_’ TD(Q) , which may be

restricted to the above mentioned finite subalphabet of D(Y) . Therefore

the closure of the recognizable tree languages under linear tree homo-—
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morphisms [34] implies that g(R) is recognizable over D(Q) . Hence

YIELD(g(R)) is an 10 tree language.

We now turn to the slightly more complicated case of a determinis-
tic bottom-up tree transducer, which may be treated by combining the
previous two lemmas. We shall show that such a tree transducer may
be simulated '"on the second level! by a linear {(nondeterministic) bottom=
up tree transducer. Using the closure of the recognizable tree languages
under linear tree transducers, we obtain the desired closure result as
in the two previous cases. For background on bottom-up tree transducers,
see [ 2,9 ].

lLet > and Q be finite ranked alphabets. A bottom-up tree trans-—

ducer B from 3 to Q) (called a "bottom-up finite state transformation' in

[ 9 ]) consists of a finite set Q of "states!!, a subset F of Q (of "final"
states) and a family <Bn>n€n\i of mappings B, : Zn—)fP(QnXQX TQ(xn)) ,
such that, for each f¢ . Bn(f) is finite,

Intuitively a tuple (q1, ceer 05 s) in Bn(f) corresponds to a rule
f(q1(><1). qn(xn))ﬂq(s) , see [ 9 ]. We shall be careless with parentheses,

thus (a, (b, c)) = ((a,b),c) = (a, b, c), etc.
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B is called deterministic if, for all n=0 and f¢ Zn s Bn(f) is in

fact a mapping Q" »QX TQ(Xn) (in particular, Bo(f) is a single element).
B is called linear if all trees from TQ(X) used in <Bn>n€fl\l are linear
(i.e. each variable occurs at most once in the tree).

B determines a family B = <B > of mappings é-n : TZ(Xn)-*
P@" xax TQ(Xn)) as follows (intuitively, (q1 e+ 0y Qs s) G—B-n(t) iff

* - -
t[q1(x1),...,qn(xn)] = q(s) , i.e., when started on t in state q; at

each occurrence of X: B can arrive in state g with output s , see

[2,9 1)

(i) for 1=iz<n, Bn(xi) = {(q1,...,qn,qi,xi)[q1,...,qn€Q} 3

(ii) for fET, §n(f) = {(ql,...,qn,q,s)lqiEQ and
(9,s) €B,(f)} ;

(iii) for fE€T_ and t,...,t ETLX ), §n(f(t1...tk)) =
{(q1,...,qn,q,s)lthere exist p,,...,p in Q and
UpseoesUpsU in TQ(Xn) such that, for 1<i<k,

(q1,...,qn,pi,ui)6§n(ti) , (p1,...,pk,q,u)€Bk(f) and

s=u[u1,...,uk]} .

In particular, BO is a mapping from TZ into P(@x TQ) .
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B realizes a mapping from TZ into Q(TQ) , also denoted by B,

defined by B(t) = {s | (q,s)€§o(t) for some q in F} . Moreover, for

Lc TZ , we define B(L) = U B(t) . Note that, for deterministic trans-
tel.

ducers, B is a partial function TZ—* TQ .

We now show that every deterministic bottom-up tree transducer

can be 'lifted to the second level',

(6.5) Lemma. Let ¥ and Q be finite ranked alphabets, and B a
deterministic bottom-up tree transducer from ¥ into () . For every fi-
nite subalphabet D’ of D(3) there is a linear bottom-up tree transdu-
cer U’ from D’ into D(Q) (both viewed as ranked alphabets) such that

+P(T.) (in fact they are par-

Q

YIELD<U’=B-+VYIELD as mappings TD'O
H

. . a .
tial functions TD,’O TQ)
Proof. We shall construct an infinite linear bottom-up tree trans-

ducer U from D(Z) into D(Q) such that YIELDeU =Be<VYIELD as

(T . U “will have an infinite number of states and

i -+
mappings TD(Z),O Q

an infinite number of "input symbols! (the elements of D(3)) , but other-
wise all previously given definitions also apply to U . 1f will be left to
the reader to see that, for any finite subalphabet D* of D(Z) , U can

be restricted in an obvious way to an ordinary bottom-up tree transducer
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U’ with the required property.

Intuitively, U will be constructed in such a way that, if YIELD(s)
=t, then U simulates on s the behavior of B on t by guessing for
each occurrence of an ‘€ er‘ at the frontier of s what the rule applied
by B at each of the corresponding occurrences of f in t will be, and
then checking the consistency of these guesses (note that, since B is
deterministic, it will apply the same rule at two occurrences of f in t
which correspond to the same occurrence of f° in s ). The states of U
will therefore be the state transitions of B . U changes the D(I)-trees
only at their frontier.

Formally U is defined as follows. Let B have states Q, final
states F and mappings <Bn>n€[N . Then the set of states of U is
Q= U (@"xQ) , and the set of final states of U is F . The map-

nEN
pings <un>nETN are defined by

(i)  for fEX (nz0),

UglF) = {{(aysene,a,,a), cOMBD) | (ay,...,a,a,t)€B_(A] 5

(i) for 1<isn, Uym) ={({a;..2,9,9),M )| d,...,q €Q);

(iii) for n,k=0, un+1(

) =

c
n, k

{‘((q17"°:qk,p1)7°°-a (q1:"°aqkapn)'a (~p17"'apn7p)7
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v
{aqsecesqPl, Cn,k(x1°'°xn+1)) !qi,pj,pEQ} -

. . i D .

Consider the mapping U+ TD(Z)—’ J(QUX TD(Q)) . It is easy to see

that,  for each nz=z0, GO maps TD(Z) n into Q’(angx TD(Q) n) . Thus
2 ?

one can draw the following diagram

Tb(z) ——-———————bao @ " xaxT )
21N D(Q), n
YIELD h
n
T (%) —_——b Pl@ " xax 7,(x )
n

where h transforms each element of TD(fQ), n into its YIELD in TQ(Xn)
(and perhaps "removes some parentheses't), Clearly, to prove our lem-
ma, it suffices to show the commutativity of the above diagram for all n
(in particular n=0) . We shall do this, analogously to the case of tree
homomorphisms, by finding four B—algebr‘as such that the sets in the
above diagram are their carriers of sort n, and such that the mappings
in the diagram become D-homomorphisms (where, as before, D =D(x)
- 27=D(Q) - Q) . For the left side of the diagram we can choose the

and DT.

Z(X) . For the right side of the diagram, let

D-algebras TD(Z)
TUP(Q) denote the (partial) D-algebra such that Q" xQ is the domain

n B
of sort n, m'= {(q,,...,qn,qi)]qi,...,qnGQ} , and

cn’k((q1,—-.,qk,m),---,(q,,---,qk,pn), (PyseeespaP) =(ar,.c0,q,p)
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and undefined otherwise. Then the D-algebras P(TUP(Q) X TD(Q)) and
P(TUuP(Q) X DTQ(X)) have the proper domains (here, X denotes the ob-
vious product of algebras, and P the subset algebra operation). Our

diagram is now transformed into

u
0
b)) T F{TUPQ) X Ty ()
YIELD l lh
DT.X) ———* F(TUP(Q) XDT,(X))
B

Obviously, YIELD and h are both B-—homomor‘phisms. It follows easi-

ly from the definition of U that U, isa B—homomor‘phism. Finally, it

0
can be shown that B is also a B—homomor‘phism (here the determinism
of B is essential; the proof is similar to that of L.emma 3. 3(2)). We
leave it to the reader to check the details. Now, TD(Z) is the free D-
algebra generated by %’. But, for f€ Zn , h(Uo(f’)) = h(uo(f’)) =

{(yse -5 YIELD(COMB) ) | (ay,.. 0,0, €B ()} =B_(f) =
§n(f(x1. .+x ) = B_(YIELD(f’)) . Hence hoUo =BeVYIELD , and the lem-

ma is proved. L]
As a corollary we obtain the main theorem of this section.

(6.6) Theorem. The class of 10 tree languages is closed under de-

terministic bottom-up tree transducer mappings.
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Proof. LLet L. be an IO tree language over % . Thus L = VYIELD(R)
for some recognizable R over a finite subalphabet D’ of D(Z) . By the
previous lemma, for any deterministic bottom-up tree transducer B,

B(L) = B(YIELD(R)) = YIELD(U’(R)) where U’ is a linear bottom-up
tree transducer from D’ to D(Q) . Since the class of recognizable tree
languages is closed under linear tree transducer mappings ([ 9, 34]),
U’(R) is recognizable over D(Q) , and hence its YIELD is an IO tree

language.

Rounds [29, 30 | has shown that the class of Ol tree languages is
closed under linear top-down tree transducer mappings (and hence under
linear bottom-up tree transducer mappings, see | 9 ]). This closure re-
sult and that of Theorem 6.6 are optimal in the sense that the Ol tree
languages are not closed under copying (more precisely, under tree ho-
momorphisms), whereas the 10 tree languages are not closed under non-
determinism (more precisely, under nondeterministic r‘elabeling).' This
can easily be shown from the examples given by Fischer to show the in-
comparability of the classes of 10 and Ol string languages (for a defini-

tion of these string languages, see Definition 7.8 or [12]).
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(6..>7) Example. (The Ol tree languages are not closed under tree
homomorphisms).
The string language L = {bm(abm)n—1 |m=1, n= 2™ is not an
Ol string language ([12]). Let G = (5,%,P) be the Ol tree grammar with
Ty = {a,b]} , 5y = {al, Yy = {c}, ¥ = {s}, g = {F} and P consists
of the rules
S-F(b) ,
F:(x1)~vg(F:(c(><1 b))) and
F(x1)-*g(><1) .
Let h be the tree homomorphism with h1(g) = c(x1 c(axl)) and the iden-

tity on the other symbols (i.e. ho(a) =a, h,(b) =b and hz(c) = c(><1><2)) .

0
Then yiel‘d(h(LOl(G,S))) =L . Hence h(LOI(G,S)) is not an Ol tree

language.

(6.8) Example. (The IO tree languages are not closed under nonde-
terministic relabeling).

The string language L = {w€ {a,b}* I the number of symbols b
in w is 2" for some n=0} is not an IO string language ([121).‘ Consi-

der the IO tree grammar G = (5,&, P) with %0 = {a,b, e} , Sy = {c},
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Sfo = {S,A}, $1 = {F} and P consists of the rules

S c(A F(c(bA))) ,

A-c(aA) , Are,

F:(x1)**F(C(><1><1)) » Flxg)
(G is obtained from the macro grammar with rules S-+ AF(bA) , A~+aA ,
AL, F(x1)~>F(x1x1) " F'(><1)-*><1 by replacing A by e and writing
c for concatenation). It is easy to see that yield(LlO(G,S)) =
= {am(bz—_\k)zn I m, k, n20} (note that yield(e) = A ) . Let h be the
nondeterministic relabeling which relabels a by a or e, and leaves
the other symbols (b, e and c) the same. Then yield(h(I_lO(G,S))) =1 .,
Hence h(LIO(G’S)) is not an 10 tree language.
We note that the same argument shows that the class of 10 string

languages is not closed under nondeterministic relabeling: let h’ re-
label a by a or f, then h’(yield(LlO(G,S))) is not an 10 string lan-

guage (the 10 string languages are closed under string homomorphisms,

in particular the one which sends f into A ) .
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7.> Hier‘archies..

We have seen in sections 3, 4 and 5 that any system of context-
free I—-equations over some X-algebra A may be replaced by a system of
regular D(Z)-equations over some appropriate D(Z)-algebra connected
to A . Several authors [17,37,42 | have suggested that this process
may be iterated, i.€.one may consider systems of context~free D(3)~
equations which may then be replaced by regular D(D(%))-equations (no-
te that this requires the generalization of ""derived alphabet! and other
notions to the many-sorted case). In general one may consider systems
of regular D"(5)-equations over an appropriate Dn(z)-—algebra An cor-
responding to A ., Roughly speaking, An consists of ""nondeterministic!
functions of functions of ....... of functions (up to level n) over A . In
particular each An contains the subsets of A . Thus, for growing n,
one obtains more and more (at least not less) subsets of A which are
solutions of systems of equations, i.e. a hierarchy of higher level
equational subsets of A .

In this section we shall show that in fact two such hierarchies can
be defined over every y-algebra: an 10 hierarchy and an Ol hierarchy.

For both hierarchies an MW-like result can be proved, which, approxi-
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mately, says that the 'level n'' equational sets can be obtained by apply~
ing the mapping YIELD" to the recognizable tree languages over Dn(Z)
(in the 10 case), or the recognizable infinite trees over Dn(2)+ (in the
Ol case). In the particular case of a '"monadic string algebra!' the first
three steps in the hierarchy are, in the 10 case: the regular, context—
free and IO string languages, and in the Ol case: the regular, context-
free and Ol string languages. We conjecture that the Ol hierarchy is the
same as that in [42]. The 10 hierarchy is the one suggested in [ 17].
This section is organized as follows. Firstly we generalize a num-
ber of notions to the manysorted case. We state a theorem saying that,
as for recognizable tree languages, no new 10 and Ol tree languages
result from this generalization. Secondly we define the level n 10
equational and level n Ol equational subsets of an algebra. We then
prove the above mentioned MW-like result for the 10 case, and con-

sider the 10 string hierarchy. Finally we briefly treat the Ol case.

The reader is now asked to generalize most of the concepts and
facts treated sofar to the case of a many-sorted alphabet. In order to
assist him, we shall define a number of these generalized concepts and

leave it to the reader to check their properties (note that in section 2




53

and 4 several many-sorted concepts have already been defined; see also
L17])
Let S be a set of sorts. For wWéS* and 1=i<lg(w), we shall
.th _
denote by Wi the i symbol of w, thus w = W1W2. e W s where

n=lg(w) and w ,.o.,wnES . Let Z=<ZW o> be an S-sorted alpha-

1 )
bet (<w,s>€S* X3) . First of all we need the generalized notion of

derived alphabet.

The derived (S* X S)-sorted alphabet of &, denoted by D(X) , is

obtained as follows. Let, for each <w,s>€S* XS and each f¢ Zw s
?

f’ be a new symbol; let for each wWES™® (w#A) andeach 1, 1<i<ig(w),

TT;N be a newsymbol; and let for each w,v €S*¥ and s€S, Cw.ov. s be
2 ?

a new symbol. Then D()) consists of these new symbols with their ty-

pes (elements of (S* xS)* x (S* xS)) specified as follows:

(i) for fEZ‘W f has type <A, <w,s>>;

?
y S

(ii) TT\i/V has type <A, <w,w.>>; and

(iii) C,. \.g hastype <<W,s><v,wl>."..‘<v,wn>, <v,sd>

J ?

(in particular, S s has type <<i,s>, <v,s>>).
v 2

In the ranked case (S = {s}), to remain consistent with Definition

. . wooglw) i
2.2.1, one has to identify m" with T, , and w,v,s with “lg(w), Ig(v) *
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The derived alphabet of order n , denoted by Dn(Z) , is defined

by D%s) =5 and D" (z) =DDO"(2)) .
In the place of X , we shall use the set of (sorted) variables

Xe = {x. | i=z1 and s€S} . The symbol x. is meant to be a con-
S i,s i,s

stant of sort s . Let X)L = ¢ and, for every w&sS* (w#)l), ><W=
[ W | 1<i<igw)} . For wes* X,, Will also be used to denote
, W,
i

|w., =s} .

the family of disjoint seis Y = <YS> ;

where Y_ = {x
s

s€S i, W,

Thus TZ(XW) denotes TZ(Y) as defined in section 2. 2. Note that in the
ranked case these concepts are the usual ones,

The tree substitution D(X)-algebra , denoted by DTZ(XS) , or

DTZ(X) if S is understood, is defined analogously to the ranked case.

The domain of sort <w,s> is TZ(XW)S ; for f¢€ Zw,s , 7 is the tree

f(x1,W1...xn’Wn); V= «. | and CW,V,S(t’tV"”tn)=t[t1?"'7tn:|7

the result of substituting i:i for i w in t . The unique D(X)~homomorp-
, W,
i

hism TD(Z)~>DTZ(X) is called VYIELD.

Let now A be a $-algebra. The D(3)-algebraof functions over A ,

denoted by $(A) , has the set of all functions Al X XA, A, as
1 n

. . . q — .
domain of sort <51...sn,s> (in particular, "L(A)<l,s> = AS) 5

.S

"Tn o, .th . . . ‘s
TT.I is the i projection and Cy.v.s 18 the usual composition of
? J
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functions. Every t€ TZ(xw)s gives rise to a derived operation tA in

g

<w, s> (see section 2. 2). Note that for w =}, th = hA(t), where

h, is the ¥ -homomorphism TZ + A, We also denote ta by der‘OpA(t)',

A
del"OpAv is the unique D(Z )-homomorphism DTZ(X) + F(A). fcan be

iterated and fn(A) is clearly a Dn(Z)-algebra (n= 0). For a A-continuous

>~algebra B with U-complete carriers, the D(Z)_—alge’br‘a of A—continuous

functions over B, denoted by Q_A(B) , is defined in the obvious way. By

Lemma 5. 14, EA can be iterated and gZ(B) is a A~continuous D" (% )-

algebra with U—complete carriers.

Finally we define an S-sorted context—free tree grammar to be a

triple G = (5,%,P), where ¥ and & are disjoint finite S-sorted alp-

)
k

habets and P is a finite set of productions of the form F(x eeeX

1,w1

k, w

+7, where k=20, F€Z and TET, (X ) for w=w_...w,_ and
w 4

»S sU w's 1 k
some s in S . The definitions of derivation and generated language
are completely analogous to the ranked case,.

This ends our list of gener‘alizations.'

We shall first show that in the many-sorted case no new |O and Ol

tree languages are obtained. As before, for any S—sorted alphabet I,




56

we shall denote by Y the ranked alphabet associated to ¥ in a natural
way: for nz0 3= VLVJS {Zw,s [1g(w) = n} , that is, Z, consists of all
2

symbols of 5 of rank n .

(7.1) Theorem. Let 5 be a finite S-sorted alphabet and 3. its
associated (finite) ranked alphabet. L.et L be a tree language contai-
ned in TZ,S for some s€S . Then L is an 10 (Ol) tree language over
% if and only if it is an 10 (Ol) tree language over I .

Proof. L_et us note first of all that S may be assumed to be finite.'
The only-if part of the statement is easy. One simply changes a given
many-sorted context-free tree grammar G = (2,%,P) into the ordinary
context-free tree grammar G, = =, %, P1) where P, is obtained from
P by "dropping the sorts of the variables! (i.e. replacing each xi,s
by x; in all rules). It is easy to see that L(GI,A) = L(G,A) for any
A€, in both the 10 and Ol mode of der‘ivation‘.‘

0

For the if-part, let L. be an arbitrary 10 (Ol) tree language over

Y. (not necessarily contained in TZ S) . It suffices to show that
’
NT. is an 10 (Ol) tree language over X Clearily T. is a
Z, S Z,s

recognizable tree language over S (use the set of sorts together with

one "'rejecting state! as the elements of the obvious finite Y-algebra
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recognizing TZ, S) . Now the 10 (Ol) tree languages are closed under
intersecti on with a recognizable treelanguage (for 10,see Corollary 6. 2;
for Ol, see [29, 30]). Thus, in particular, LnTZ,s is an 10 (Ol) tree
language over Y . However, by inspecting the constructions involved

in the above mentioned proofs, it can be seen that one ends up with a
grammar for L0 TZ,s which can easily be changed into a many~sorted
grammar by associating types with nonterminals, In fact the only prob-
lem is deletion: a nonterminal might produce a "non-sorted" sub tree,
which is deleted later in the derivation. In the 10 case this is solved by

starting with a nondeleting grammar for L (see [12]), and in the OI

case by simply not deriving the wrong sub tree.

We now turn to the definition of the hierarchies of higher level
equational subsetis of a Y~algebra A . First we note that the 10 equatio-
nal subsets of A (see section 5) can also be characterized as the solu-
tions of systems of regular D(£)-equations in the D(X)-algebra F(T(A))
rather than in R(A) (there is a |_J-continuous D(5)~homomorphism
h: PE(A))+ RA) 3 in fact, for Q<T(A), h(@Q) =|_Ja , where F(A)

is considered as sub algebra of R(A) in the obvious way; hence, since
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h is the identity on P(A) , the D(r)-equational elements of P(A) are the
same in P(T(A)) and R(A)). Moreover, from an intuitive point of view,
it is perhaps more natural to solve D(X)-equations in P(T(A)) , where

a set of derived operators (i. e. LQTZ(X)) is interpreted as a set of de-
rived operations, rather than a derived relation.

Consider a derived alphabet D'(X) of order n . Intuitively, the
composition symbols in Dn(Z) should be interpreted as composition of
functions of level n over some domain. Two natural choices of a D" (5)-
algebra connected to a s-algebra A are ¢ (£™A)) in the 1O case and

n

(;A(?(A)) in the Ol case (obtained by iterating the ¥ in ®(¥(A)) and

QA(T(A)) respectively).

(7. 2) Definition. Let ¥ be an S~sorted alphabet and A a Y-alge~

bra, Let n=20 and s¢S .,

(i) A subset of As is 10(n) equational if it is equational as

an element of the| J~continuous D" (x)-algebra P(T"(A)) .

(it A subset of AS is Ol{n) equational if it is equational as

an element of the A—continuous D' (g )-algebra 52(@(/\)) .

More generally, for a A-continuous J-algebra B with
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LJ —complete carriers, an element of Bs is Ol(n) equational
if it is equational as an element of the p"(r)-algebra ZZ(B) .

O

The sort of the elements of P(E"(A)) and ZZ(.(P(A)) in which we
are interested (i. e, for every s€S , the subsets of AS ) will be deno~
ted by tn(s) . Thus

to(s) =s and tn+1(s) = <A, t (s)> .

n

B_ .

Note that F(A) PA) = PA) and §,(B) y =B

AL,s> - As

(7.3) Example. Let ¥ be the S-sorted alphabet with S = {s} ,

Z?\,s = {a} and Zss,s= {g} (thus % is a ranked alphabet with a con-

stant a and a binary operator g for the sake of the example we shall

use the many-sorted notation). Consider the S* X S—sorted context~free

= (. r, =
tree grammar G = (D(2),¥, P) , where "L?x,<>x,s> {@}, g<s,s>,<s,s>

= {F} and the productions are

Q- c ( ,,<S,S> T_|_1<S,S>))a;)

g

s (F(Css,s,s 1

S, A,

F(x ) - F(Cs, )) , and

1,{s,s> s,s(x1,<s,s> ><1,<s,s>

l:(x1,<s,s>) ” ><1,<s,s> *

Then GD is a system of regular DZ(Z)—equations (cf. Definition 4. 5).
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Thus, for any yY-algebra A, the solution of Q in the DZ(Z)—algebr‘a

?(EZ(A)) (ii(@(/\)) ) is an 10(2) equational (OI(2) equational) subset

of A . Note that the sort of this solution is tz(s) = <A, <A,s>> . Without
all the confusing sub and super scripts the grammar G looks like this:
Q-+ c(F(d)a’) , where d = c(g'Tr1 ﬁl) ,
F(x) -+ F(c(xx)) and
F(x)+x .
Consider the Y~algebra A with domain a* (all strings of symbols a)

a, =a and IA is concatenation. We shall now solve the above equa-

tions in the algebras @(ﬁ:z(A)) and Zi(?(A)) , using informal but in-

tuitively clear notation. Firstly, in 9(§Z(A)) , F = {Fn | n=0} where

Fn E‘,IZ(A) denotes the function such that, for any f:A- A, F-'n(f) = fz

Since d:A-+A and for every WE€A d(w) = ww , F(d) is the set of func—

N 2

n
tions {dz |n=0} and c(F(d)a’) = {dz (a) | n=0} = {a |n=0} .

Secondly, in gi(ﬁ’(A)) , F =‘ lF , where F égi((})(A)) denotes the
=5 N n
N
function such that, for any f:P(A)»P(A) , F—‘n(f) ={“ . Since d:P(A)-

n
2
®(A) and for every BcA d(B) = BB, F(d) =LJ F"n(d) =| id and
nz0 n=0
n
, 2" 22 22
cF(d)a) = d” ({a})= {a} = {a | n=0} . Hence the langua-
nz0 n=0
N
ge {az | =0} is both an 10(2) equational and O1(2) equational subset
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of a*.

Some elementary facts are stated briefly in the following lemma.

(7. 4) Lemma.

(1)  10(0) equational = OI{0) equational = equational ;

(2) 10(1) equational = 10 equational ,

Ol(1) equational = Ol equational ;

(3) for tree languages,

10(0) equational = O1(0) equational = recognizable;

10(1) equational = 10 tree language ,

|

OlI(1) equational = Ol tree language (where, for an infinite
alphabet, only tree languages over finite sub alphabets are
considered);

(4) for all nz0, 10(n) equational implies 10(n+1) equational, and

Ol(n) equational implies Ol{n+1) equational;

In the next theorem we shall prove an MW-like result for 1CG(n)

equational subsets, which shows that the 10 hierarchy is the one intended
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in [17].' From [ 21] we know that, for a I-algebra A and s€S, a sub-
set of AS is equational iff it is the J~homomorphic image of a recognizab-
le Y-tree language. From sections 4 and 5 we know that a subset of AS

is 10 equational iff it is the Y-homomorphic image of the YIELD of a
recognizable D(Z)-tree language (of sort <), s>) . The general result

will be that a subset of AS is 10(n) equational iff it is the Y~homomorphic
image of the YIELD" of a recognizable D' (5)~tree language (of sort tn(s)) .

Notethat YIELD maps T

D(x), <A, s> to TZ,S . Hence, by induction,
n
VIELDT maps Tpng) ¢ (s) © Tys -

(7.5) Theorem. L.et 3 be an S—sorted alphabet, A a S-algebra

the s~homomorphism T+ A . For any s¢S and nz0, a

and h >

A
subset of AS is 10(n) equational if and only if it is the image under

n . . .
hAoYlEL_D of a recognizable tree language in TD"‘(Z), tn(s) . In parti-

cular, a tree language over ¥ is lO(n) equational iff it is YIELD™(L) for

some recognizable tree language L over DN(Z) (of appropriate sort).

O

Proof. If h_ denotes the unique D"(£)-homomorphism
TD”(Z) -» fn(A), then the solution of any system of regular Dh(Z)-equations

in ff)(g"“(A)) is the hn image of its solution in f(TD”(Z))’ which is a
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recognizable D(¥)-tree language (see LLemma 5.2 and section 2. 3).
Thus it suffices to show that hn = hA” YIELD" on any sort tn(s). We
show this by induction on n. For n =0 there is nothing to prove. For
n=1 itis clear that h] = hf(A) = der‘opA ¢ YIELD. Moreover
deropA(t) = hA(t) for each t of sort <A ,s>. Hence h1 = hA" YIELD.
Suppose that the statement is true for n. We now apply the case n = 1

to the case n+1 by taking D'(Z) instead of 5 and FYNA) instead of

A, as follows (note that h, =h ffn(A)):

hn+1 = derop fn(A) ° YIELD

= hn o YIELD on tn_H(s)

= hy* YIELD" ¢ YIELD = h, vieLp™ 1,

This proves the statement and the theorem.

O
We note that originally the proof of this theorem was much longer.

The present short proof is due to Damm [44].

As an immediate consequence of Theorem 7.5 we state the following

MW-~like corollary.
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(7.6) Corollary. Let ¥ be an S-sorted alphabet, A a ZI-algebra,
nz0 and s&€S . A subset of As is 10(n) equational iff it is the Y~homo-

morphic image of an 10(n) equational tree language over Y (of sort s ).

O

(7.7) Example. Consider Example 7.3. It is left to the reader to

zn

show that the 10(2) equational subset {az |n=0} is hA(YlEL.D(L_)) ,
where L is the IO DXX)~tree language generated by the nonterminal Q
of grammar G . For instance, without sub and super scripts,

Q3 clclddla’) and h, (YIELD(c(c(dd)a’))) = h,(glg(aa)glaa))) = a* .

Al
il

As an example we now consider the 1O hierarchy of string langua-
ges.

Let ) be an ordinary (finite) alphabet. There are two well known
ways of considering O* as a y-algebra. Firstly, let 0° be the ranked
alphabet determined by Qg= QU {e} and Qg = {c} , where e and c are
new symbols. Q% is viewed as an Qc—algebr‘a, denoted by Qz , by de-

fining e to be the empty string A , every symbol in Q to be itself, and




65

c to be string concatenation. The unique Qc—homomor‘phism TQC—* Qi is
called yield (cf. Example 2. 2. 3; note that "yield" differs from the usual
one by the fact that yield(e) = ). Secondly, let 0" be the (monadic)
ranked alphabet determined by Qg] = {e} and QT =Q .
* m

Q0 is viewed as an (0 -algebra, denoted by Q:; , by defining e = A and,
for we€Q* and a€Q , a(w)=aw (thus aGQT is interpreted as left
concatenation with a) . Since the unique Qm—homomor‘phism TQm"’ Q;:
is clearly an isomorphism, we shall not distinguish between TQm and
Q:‘: as Qm—algebras.

Thus an 10 hierarchy of string languages over (1 can be build up
in two ways: by viewing Q¥ either as an Qc-—algebr‘a or as an Qm-algebr‘a.
It is well known that the equational subsets of Qg are the context-free
languages over (O ([21]; e causes no problem).

Let us now define 10 (and Ol) string languages. It should be clear

to the reader that our definition is equivalent to the usual one in [12].

(7. 8) Definition. Let () be an alphabet. A language over (Q is

called an 10 string language (Ol string language) over  if it is the

yield of an 1O tree language (Ol tree language) over ac .
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It follows directly from this definition and Corollaries 5.11 and
5. 18 that the 10 (Ol) equational subsets of Qé are the 10 (Ol) string
languages over () . Thus the hierarchy of 10(n) equational languages
in Qé starts with the context-free and the 10 string languages. We now

. *
nsider Q7 .
co m

(7.9 ) Theorem. Let Q be an alphabet. For n = 0, 1 and 2 the
10(n) equational subsets of Q:; are the regular, context-free and 10O string
languages respectively.

Proof. For n =0 the statement should be clear from the isomorp-
hism between Q:; and TQm . For n=1, 2 weknow from Theorem 7.5
that an 10(n) equational subset of Tom is the YIELD of an 10(n~1) equa-
tional subset of TD(Qm),O . Hence the 10(1) equational subsets of Q:;

are the YIELDs of recognizable tree languages in TD(Qm) 0’ and the
?

10(2) equational subset of Q:; are the YIEI.Ds of 10 iree languages in

o™, o .

Consider, informally, some tree in TD( Then one notices

am),o °
that it contains in general many superfluous subtrees (W.'r‘.‘t.b YIEL.D),

. m .
due to the fact that, since all elements of O have rank 1 or 0, trees in

TQm(X) can contain at most one variable, In fact, one may see that any
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tree t, in TQ is YIELD of a tree t, in T D(Q™M), 0 in which only the

symbols from QU {e, Ci1.17 S O} are used. Moreover, for such a tree
H ?

ty when c¢ and c¢ are identified with ¢, YIELD(t

1,1 1,0 = yield(t,)

o)

= t1 N
Formally we shall show the existence of two mappings

B, :TD(Qm), 04 0c and B, TQC DaM), 0 such that yneld(B,(t)) =

YIELD(t) and YIELD(BZ(t)) = yield(t) . Thus

B1

Qm) OQ—-—-—-—- 0c

YiELD \ / vield

Moreover we shall show that B1 and B2 preserve the properties of
being a recognizable tree language and being an 10 tree language. From
this the theorem can be proved as follows. For n=1, 2, if L is an
10(n) equational subset of Q:q , then L = YIELD(R) for some 10(n-1)
equational tree language R in T D), 0 Hence L = yieid(B1(R)) and
B1(R) is an 10(n-1) equational tree language in Tc . Therefore, L is

an 10(n~-1) equational subset of Qz , i.e. for n=1 a context~free lan—-

guage and for n =2 an IO string language; Conversely, for n=1, 2,
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if L is an 10(n-1) equational subset of Qi , the L. = yield(R) for some
10(n~-1) equational tree language R over QC . Hence L = YlEl_D(BZ(R))
and BZ(R) is an 10(h-1) equational tree language over D(0M) . There-
fore L is an 10(n) equational subset of Q:; .

We now show the existence of B1 and Bz . B1 will be realized

as a linear deterministic bottom-up tree transducer mapping from D(Qm)

to OF (in fact from D(Q™) to Q) . It then follows from section 6 and

Theorem 7.1 that B, preserves the recognizable and the 10 tree lan-

1
guages., More precisely, B1 only exists for each finite subalphabet of
D(Q™ and this clearly suffices for our purpose. We shall however (as
we did in section 6) construct an infinite B, for D(Q™) and leave it to
the reader to restrict B1 to a finite transducer for each finite sub~
alphabet of D(Qm) . For notation, see section 6.

B, has states Q=[N and final states F =Q . The family of

1

mappings <Bn>n€n\! is specified as follows:

(1) for 1<is<n, Bo(ﬁ'i") = (i,e) ;
(i) Byle’) = (0, ;
(it)) for feQ, B,(f") =(1,f);

is a mapping Q! PQX Toe(X_ )

i >
(iv) for n,kz0, Bn+1(cn,|<) DICA
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such that, for j,i1,...,in€N ,

B

n+1(cn,k) (j,i":'-',in):(j,x-l) if J=0

(i., c(x1xj+1)) if 1<j<n

J

arbitrary otherwise,

We note that the elements of TQm(X) can be identified with the strings

in Q*UQ*X . We leave it to the reader to check that (with this identi-

fication) for tETD(Qm) , TEN and t"€ Tc , if Bo(t) = (i,t") then

either i =0 and YIELD(t) = yield(t’) , or i=1 and YIELD(t) =

yield(t’). x, . Hence, for all t%TD(Qm),O , yleld(B1(t)) = YIELD(t) .
The mapping BZ: TQc"‘ TD(Qm), 0 is easy to describe: for s¢ TQC ,

Bz(s) =c, 0(te') , where t is obtained from s by relabeling ¢ as Cy 1

? H
. 1 .

each f€(Q as f°, and e as ’rr1 . It is easy to see that ’cETD(Qm),1

and YIELD(t) = yield(s). Xy « Hence BZ(S)ETD(Qm),O and YIELD(BZ(S))

= yield(s) . It should be obvious that B, preserves the recognizable

and 10 tree languages (cf. Theorem 7. 1). This concludes the proof of

the theorem.

Note that, if, as we conjecture, the 10(n) equational tree langua-

ges are closed under deterministic bottom~up tree transducer mappings,
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then the proof of the previous theorem shows that, for all n, the 10(n)
equational subsets of Qlf; equal the 1O(n-1) equational subsets of Qé .

We conclude this section by considering the Ol case. This case can
be treated completely analogous to the 10 case, using infinite trees (with +)
rather than tree languages. Since infinite trees are more or less outside
the scope of this paper, no detailed proofs will be given. For notation
and some properties of infinite trees we refer to the last part of section
5. The generalization to the many-sorted case is understood (cf. [15]).
Recall that, for any S-sorted alphabet %, Z+ = 7 U {+S l s€s} , SET
denotes the homomorphism CT_ CP(TZ) , and YIELD denotes the ho-

Z

momorphism CTpy s+ * CToy(Xg) . Note that YIELD maps CTo(s)+,

X <A, s>

. n .
into CTZ+,S . Hence YIELLD maps CTD”(Z)"‘, tn(s) into CTZ+,S .

Recall also that the solution of a system of regular (context-free) Z+-equa-
tions in CTZ"' is called a recognizable (context-free) infinite tree.

The following MW-like result for QIl{n) equational elements is the

analogue of Theorem 7.5,

(7.10) Theorem. Let ¥ be an S-sorted alphabet, B a A-continuous
y—algebra with U—complete carriers and hB the unique A~continuous

J-preserving 2+—homomorphism CTZ+”B . Forany s€S and nz0,



71

an element of Bs is Ol{n) equational if and only if it is the image under

n . s er s .
hB YIELD ' of a recognizable infinite tree in CTDn(Z)+, tn(

s)
Proof. The proof is completely analogous to the proof of Theorem
: T . Nyt
7.5, using "LA rather than £ , A-continuous D (%) ~algebras rather
than Dn(Z)-—algebr‘as, A-continuous J—preserving Dn(2)+-homomorphisms
n .
rather than D (X)~homomorphisms, CTD”(Z)"' rather than TDH(Z) ,

and extending all Dn(Z)-aIgebr‘as with L_J-complete carriers to

Dn(Z)+-—algebr‘as by defining + to be w.

As a particular case of this theorem we obtain the following re-

sult for Ol(n) equational subsets of a Z—algebr‘a.‘

(7.11) Theorem. Let ¥ be an S-sorted alphabet, A a 2~algebra

and hA the Z-homomorphism Tz—bA . For s€S and n=0 , a subset

of A, is OI(n) equational if and only if it is the image under

n . e .
hA° SETeYIELD of a recognizable infinite tree in CTD“(Z)“', tn(s) .
In particular, a tree language over I is Ol(n) equational iff it is

SET(YIELD" (1)) for some recognizable infinite tree over Dn(2)+ (of

appropriate sort).
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Proof. Immediate from Theorem 7. 10 by the fact that, for B = ®(A) ,

h, = h

B A° SET .

An immediate consequence of this theorem is the following MW-like

corollary.

(7. 12) Corollary. Let T be an S-sorted alphabet, A a S-algebra,
nz0 and s€S . A subset of AS is Ol(n) equational iff it is the Y—homo-

morphic image of an Ol(n) equational tree language over ¥ (of sort s ).

O

(7. 13) Example. Consider Example 7. 3. It is left to the reader to

Zn

show that the OI(2) equational subset {az |nz0} is ha(SET(YIELD(t))),

where t is the infinite contexi-free D(Z)+-tr‘ee determined by the non-

terminal Q of G . For instance

hA(SET(YlELD(c(+(+(. ..cldd))d)a’ N =

h \(SET(+(+(. .. g(g(aa) glaa)))g(aa)))) =

h,({glaa), glglaa)glaa)),...}) = {az, a4,--.} .
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To contrast again the 1O and Ol cases we state the next IO result,

to be compared with Theorem 7. 11,

(7.'14) Theorem. Let X be an S-sorted alphabet, A a Y-algebra
and h,:T.#A . Forany nz=0 and s¢S, a subset of A s 10(n)
equational iff it is the image under hA° YIELD "« SET of a recognizable
infinite tree over D™Z)Y (of sort tn(s)) .

Proof. Immediate from Theorem 7.5 and the fact that SET is a

A~continuous _L-preserving Dn(2)+—homomorphism from CTD”(Z)"‘ into

9(TDH(2)) .

Thus 10(n) equational tree languages are obtained from the re~
cognizable infinite trees in CTD“(Z)"‘ by application of YIELD e SET ,
and the OI(n) equational tree languages by application of SET - YIELD"
(this generalizes the diagram at the end of section 5).>

Next we consider the Ol hierarchies of string Ianguages.. As in the
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IO case, consider a string alphabet (Q and the two possible algebras

Qé and Q:; . Clearly, the hierarchy of Ol(n) equational languages in
Qé starts with the contexi~free and the Ol siring languages (see Defini~
tion 7. 8.). We now show that the hierarchy of Ol{n) equational subsets of
Q:; starts with the regular, the context-free and the Ol siring languages

(cf. [42]).

(7. 15) Theorem. Let O be an alphabet.. For n=0, 1, 2 the Ol(n)
equational subsets of Q:; are the regular, context-free and Ol string
languages respectively.

Proof. For n =0 the statement is clear. For n = 1, 2 we shall
only sketch a possible pr‘oof.' From Theorem 7. 10 it can be seen that the
OI(1) equational subsets of Q:; are the SET - YIELDs of recognizable
infinite trees over D(Qm)+ (of sort 0) , whereas the OI(2) equational
subsets of Q:]: are the SET- YIELDs of context-free infinite trees
over D(Qm)+ (of sort 0) . Analogously to the proof of Theorem 7.9 it
would suffice to have mappings T, and T2 such that the following dia-

1

gram commutes
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L
Cloiamt o < CTiaeyt
T
2
YIELD SET
CT(Qm)+ EP(TQc)
SET yield

P(Tom) P(ar)

and such that T1 and T2 preserve recognizability and context—-free—
ness of infinite trees. As in the 10 case, the existence of T2 is ob-
vious. For T1 , think of a deterministic top-down tree transducer (see
[29:[) working on an infinite tree. Taking the join of all initial pieces

of output, one obtains an infinite tree as output of the transducer.

Using arguments similar to the language case, one can prove that,

in general, the classes of recognizable and context~free infinite trees
are closed under deterministic top~down tree transducers (note that co-
pying and deletion are no problem since the infinite tree is '"generated by
a deterministic gr‘ammar‘“).‘ It should be clear that a deterministic top~-
down transducer R, realizing T1 , can be constructed (for any finite

sub alphabetof D(Q™)). R has the set of states IN and, denoting the

output of R started in state i on input t by Ri(t) , It has the property




76

that, for any tree t in CT, D(aM)+ +, SET(YIELD(t)) =yie|d(SET(R0(t)))

U [ J (yield(SET(R. (t))) .- For instance, the rule of R for the symbol

i=1

c and state 0 might look like
2,k

Ro(cz,k(t t, tz)) =
R1(t) on(t1

.
AN
\ R, (1) \R\(t)

The detailed construction of R is left to the reader.

Finally we consider the Ol hierarchy for an arbitrary nondetermi-
nistic monadic algebra, i, e. a domain with a finite number of nondeter-
ministic unary operations. Let (O be an alphabet, let D be a set and
let, for each f€Q, f, be a mapping D~ $(D) , or equivalently a sub-

setof D x D, Consider first the L,.J—continuous QC—algebra A with do-

main $(D xD) , such that for f€Q fa=T e, Is the identity mapping,

D ?

oe. e, = {(d,d) | d€D} , and c, is composition of binary relations.

Since there is a (unique) U—continuous (€~homomorphism Q(Qi)—b (D xD)
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(see [11]), the equational (Ol equational) elements of D XD) are the
Qc—homomor'phic images of the context-free languages (Ol string langua-
ges) over Q . It was shown in [11 , sections 4 and 5] that these are
the relations computed by the nondeterministic recursive monadic pro-
gramschemes in D (the relations computed by the socalled nondetermi-
nistic procedure parameter schemes in D respectively). Consider now
the nondeterministic Qm—algebr‘a D with domain D, nondeterministic
monadic operations fD and some "input element!! eDED . It follows
from Theorem 7. 15 and Corollary 7. 12 (adapted in the obvious way to
the case of a nondeterministic algebra) that, for n=0, 1 and 2, the
Ol(n) equational subsets of D are the Qm-homomorphic images of the
regular, context-~free and Ol string languages in Q::] , respectively.
From a comparison of the O"'—=homomorphism @(Q:})% PD) with the Q°-
homomorphism S’(Qé)* P(D XD) it easily follows that these equational

subsets are the images of e under the Qc—homomOPphic images of

D
the regular, context-free and Ol string languages, i, e. they are the
sets computed from the input en by the nondeterministic lanov schemes,

the nondeterministic recursive schemes and the nondeterministic pro-

cedure parameter schemes respectively (see [ 11, sections 3, 4 and
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5]). This shows that these thiree classes of program schemes correspond
in a natural algebraic way to the hierarchy of regular, context-free and

Ol string languages.
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Conclusion.

We have shown that the fixed point approach to formal language
theory and the theory of programs can be used to explain the differen~
ces between 10 (call by value) and Ol (call by name) computation. More-
over, in the framework of continuous algebras, we gained a better in-
sight into the various more or less well known Mezei and Wright like
results in this area.

The fixed point characterization of context-free tree languages
implied that 10 tree languages are YIELDs of recognizable second level
tree languages, and that Ol tree languages are SET . YIELDs of recog-
nizable second level infinite trees (with + ). It might be interesting to
prove more results about 10 and Ol tree languages using either the
fixed point characterization itself (see for instance section 4 and [ 8 ])
or its implications (see for instance section 6). To treat the Ol case it
might be advantageous to develop a theory of infinite trees (see [7 , 10,

15]).

Not much is known about the hierarchies defined in section 7. We

conjecture that all the IO tree language classes in the hierarchy are

closed under deterministic bottom—-up tree transducers and that all the
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Ol tree language classes are closed under linear (top-down or bottom-up)
tree transducers. For Ol, together with the obvious closure under Ol
substitution, a result in [ 2, Theorem 3. 2. 12] would then imply that all
the Ol string language classes are (substitution-closed) full AFLs, Other
questions concerning the hierarchies are: what is the relationship to the
tree transducer hierarchy ([ 2, 24]) ? what '""nondeterministic power! is
present in the 10 hierarchy, and what ""copying power!t in the Ol hierar—
chy?

As regards programscheme theory, the remarks in section 5, to-
gether with the incomparability of the classes of 10 and Ol iree langua-
ges, show that our classes of nondeterministic 10 (call by value) and Ol
(call by name) recursive program schemes (without tests) are incomparab-
le with respect to program scheme equivalence. About deterministic
recursive program schemes with tests not very much is known. It is
easy to see that every deterministic call by value scheme is equivalent to
a deterministiccall by name scheme, which is forced to evaluate its argu-
ments by some trivial test provided these are present). It can also be
proved (see [26]) that every deterministic call by name scheme is equi~

valent to a nondeterministic call by value scheme (which guesses which
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of its arguments it actually will need). The precise relationship between

the classes of deterministic call by value and call by name schemes re-

mains open, lf is also an open question whether a useful "universal in-

terpretation!' exists for deterministic schemes with tests.

Hopefully this paper will be of some help in the solution of these

problems.
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