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Absiract

The surface tree languages obtained by top~down finite state
transformation of monadic trees are exactly the frontier-preserving
homomorphic images of sets of derivation trees of ETOL systems.
The corresponding class of tree transformation languages is there—-

fore equal to the class of ETOL languages.




1. Introduction

The theory of formal languages, in particular regular languages,
has been generalized to a large extent to a theory of tree languages
(see for instance [7, 14, 15])- Regular tree languages (or, as they are
called, recognizable tree languages) are of interest, among other
reasons, because they are closely related to sets of derivation trees
of context-free grammars. In fact, as shown in [12], each recogni-
zable tree language is a projection (that is, node relabeling) of the
set of derivation trees of some contexi-free grammar, and vice
versa. It immediately follows that the class of frontiers of recogni-
zable tree languages equals the class of context-free languages.

The notion of generalized sequential machine mapping has been
generalized to that of finite state tree transformation [1,3,7,13].
These tree transformations are studied because, when restricted to
recognizable tree languages, they model the process of syntax-directed
translation of context—free languages. The image of a recognizable
tree language under a finite state tree transformation is called a
surface tree language. Thus the class of frontiers of surface tree
languages may be considered as the class of languages that can be
obtained from the context—free languages by (generalized) syntax-direc-
ted translation.

In this paper we shall show that the notion of top-down finite
state tree transformation is closely related to the notion of parallel
rewriting in grammars, in particular the parallel rewriting which is

the subject of the theory of Lindenmayer systems (see, for instance,

[4,9]).




The largest family of 'context-free!! Lindenmayer languages
is that generated by so called ETOL systems. An ETOL. system is
like a context—free grammar except that, at each step in the deri-
vation, each symbol in the intermediate string should be rewritten
according to some production of the system (that is, all symbols in
the string are rewritten in parallel). Moreover, the set of produc—
tions is divided into a number of (not necessarily disjoint) sets,
called tables. At each step of the derivation only productions coming
from one of these tables may be used. Finally one should note that
for both terminals and nonterminals productions should be present
in each table.

To show that tree transformation is related to parallel rewri-
ting we shall consider the very special case that the trees given
as input to the tree transducer are all monadic, i.e. they are
""vertical strings!'. It will turn out that, in that case, the class of
frontiers of surface languages is the class of ETOL. languages.
Moreover, as in the case of recognizable tree languages and
context-free languages, there is a simple relationship between the
surface tree languages and the sets of derivation trees of ETOL.
systems: each surface tree language is a homomorphic image of the
set of derivation trees of an ETOL system and vice versa, where
the tree homomorphism involved is restricted to a very simple type:
a socalled frontier-preserving tree homomorphism.

In section 2 we recall some of the terminology used in connection
with tree transformations and ETOL. languages, and we introduce a

few new concepts.




In section 3 we first derive our main result concerning surface
tree languages and derivation tree languages of ETOL systems. Then
we consider the deterministic case and the case that the !vertical
input strings! to the tree transducer are over a one-letter alphabet.
Finally we briefly consider the ETOL tree languages introduced in
[2], and show that they are equal to the monadic surface tree lan—
guages.

Hopefully the results in this paper will throw some new light
on both the field of tree transformations and that of parallel re-

writing.

2. Terminology

In this section we recall some of the well known definitions
concerning tree transformations and ETOL systems. The tree trans-—
formation model discussed is the usual top-~down finite state tree
transformation introduced in [7]. The definition of an ETOL. deriva-
tion tree will be an obvious formalization of the informal notion

occurring in [4]

Trees

2. 1. Definition. An alphabet I is ranked if for each k=0,

a set Zk§ 2. is specified such that
M ==z
k=0

(ii) there is an integer N such that for k=N Zk =¢,

If aGZk , then k Is a rank of a. Note that each symbol in 2 may

have several ranks.




2. 2. Terminology. We shall use the letter e to denote a

fixed symbo!l of rank 0 and of no other rank. This symbol e will

be used on nodes of trees to l'stand for! the empty string A .

2.3. Definition. Let X be a ranked alphabet. The set of

trees over L, denoted by TZ , Is the language over the alphabet

SU{[, ]} defined recursively as follows.

(i) for each k=1, aGZk and t €T

et €T,

altye..t J€Tys.

2. 4. Definition. LLet 2 be a ranked alphabet and let S be a

set of trees. The set of trees over % indexed by S, denoted by

TZ(S) , is defined recursively as follows.

(i) suU ZOQT (),

%

(ii) for each k=1, aEZk and t b €T

k€ Ts(S)

oo
a[t1...tk]ETZ(S) .

2. 5. Definition. Let X be a ranked alphabet. We define a

mapping fr: Ty ZO* recursively as follows.

(i) For aéZo, fr(a) =4a if a#e
A if a=e
(i1) For k=1, aéik and twtz"“’tkET}:’

fr‘(a[tr ..tk]) = fr(t ).fr‘(tz). Lol ) .

1 K

For t€Ty:, fr(t) is called the frontier of t .




Here we distinguish the symbol e from all other symbols:
when taking the frontier of a tree, e is erased.

We now define "vertical strings!''.

2. 6. Definition. L.et A be an alphabet. The monadic ranked

alphabet corresponding to A, denoted by m(4) , is defined by

(m(a)) g = {e} , (m(a)), =4 and (m(a)), =g for kz2.

1

The trees in Tm(A) will be called monadic trees.

For each string w€A* we define the corresponding monadic

tree wg Tm(A) recursively as follows.
() T=e,

(ii) for each a€a and wegAa¥* |

aw = a[w] .

For example, if w=abc then w=a[b[c[e]]]. Obviously the

mapping w - w is a bijection between A* and Tm( Note that

A) -
if ¥ is a ranked alphabet such that ZO = {e} and L o=¢ for all

k=2, then Z=m(Z,).

1

2.7. Definition. Let ¥ and A be ranked alphabets. A tree

language is a subset of TZ . A tree transformation is a subset of
TZ X TA . However, in this paper, the term ""tree transformation!
will refer exclusively to those tree transformations that can be

realized by the tree transducer defined in the next definition.

Let X = {x1,x2, ...} be afixed infinite set of symbols and
let ><k = {><1,x2, . .,xk} . All symbols in X , when used as labels
on trees, are of rank 0 (only}. We shall often use x to denote

><1.



2.8. Definition. A tree transducer is a 5-tuple M = (3,4, Q, Qs R)

where 2 is a ranked input alphabet, A is a ranked output alphabet,

Q is a finite set of states (of rank 1), QmQQ is a set of initial states

and R is a finite set of rules of the form (i) or (ii):

(i) q[a[x1><2. .. xk]] -+t

with g€Q, k=1, a€x  and t€T (Q[x_])

K
(where Q[Xk] is the set of trees {q[xijlqEQ , 1=i=sk})

or
(i) qgla]-t
with geQ, aEZO and tETA.

The operation of M is modeled by a relation ,\7 between trees

in TA(Q[T,S]) , where Q[TZ] is the set of trees {q[t]lqéQ ’ tETZ} )

The relation I\:A> is defined as follows.

For u,vE& TA(Q[TZ]) » UGGV if and only if either there is a rule

of the form (i) in R and there are strings «,B and trees

t .,tkéTZ such that u=aq[a[t1...tk]]5 and v =atB, where t

e
is the result of substituting ti for each occurrence of X in t

(for all i ,\ 1<i<k),

or there is a rule of the form (ii) in R and there are strings a and
B such that u=oaql[alp and v =atp .

As usual %4 denotes the transitive~reflexive closure of VIR

The tree transformation realized by M, denoted by T(M) , is

T(M) = {(s,t)ETZXTAlq[S] r%;t for some q in Qin} .

We shall use range(M) to denote the range of T(M), thus

range(M) = {t€T, |(s,t) € T(M) for some s€ Ty} .

Some specific types of tree transducer are defined next.




2. 9. Definition. Let M= (Z,4,Q, Qin’R) be a tree transducer.

M is called monadic if its input alphabet is monadic, thatis,
2 =m(Q) for some alphabet Q. If, moreover, (0 is a singleton, then
M is called unary.

M is called e=free if the symbol e is not in A .

M is called (partial) deterministic if (1) Qin is a singleton,

(2) no two different rules in R have the same left hand side.

M is called a finite tree automaton if all its rules are of the

form q[a[x1...xk]]—>a[q1[x1]...qk[xkﬂ or gla] = a. In that

case the domain (= range) of T(M) is called a recognizable iree

language.

We now define the languages obtained by tree transformation

of recognizable tree languages.

2. 10. Definition. Let M= (%,4,Q, Q. R) be a tree transducer

and let UQT2 be a recognhizable tree language. Then the set

M(U) = {’céTA |(s,t) € T(M) for some s€U} is called a surface tree

language. (Note that, since Ty is recognizable, range(M) is a

surface tree language.) Moreover, the set
fr(M(U)) = {WGAS |w = fr(t) for some teM(U)}

is called a tree transformation language.

2.11. Terminology. If M is an X iree transducer, where

X € {monadic, unary, e-free, deter‘ministic}+ , then T(M) is called an
X tree transformation and, for every recognizable tree language U,
M(U) is called an X surface tree language and fr(M(U)) is called

an X tree transformation language. (Note that, for instance, a monadic
surface tree language is not a surface language consisting of mohnadic

trees).



We finally need the notion of tree homomorphism.

2.12. Definition. Let X and A be ranked alphabets, and

assume that each element of L has exactly one rank. L.et lk\u be a
mapping from % into TA(X) such that, for all k=1 and aEZK ,
N ~

h(a) ETA(Xk) , and, for all a€Z h(a) €T, . Then a mapping h,

called a tree homomorphism , from TZ into TA is determined

from ’l'\1 as follows.
A
(i) For ae€ ZO , h(a) = h(a) .

(i) For k=21, aEZk and t ..,tKET ,

17"

h(a[ti. .. tk]) is the result of substituting h(ti)
A

for each occurrence of x: in h(a)

(for each i, 1<isk).

The assumption that the elements of 2 have unique ranks is
not essential but notationally more convenient (moreover we shall

not need the general case).

The simplest possible generalization of the notion of string
homomorphism to the tree case is the frontier-preserving tree

homomorphism defined next.

2.13. Definition. A tree homomorphism h from TZ into TA

is called frontier—-preserving if

A
(i) 2.4 and, for each at€X h(a) = a;

O ?

(ii) for each k=1 and a€n ,

rB(a) = Xy Xy oo Xy s




It is easy to see that, for any frontier-preserving tree homo-

and any tree tETZ , Tr(h(t)) = fr(t) .

morphism h from TZ into TA

Note that a frontier-preserving homomorphism can erase
symbols of rank 1 (only). This happens if, for some ac€ 21 , ’i\w(a) =X, -
Thus, monadic pieces of tree can be cut from a tree by a frontier-
preserving homomorphism.

The following lemma, relating tree transformations and frontier-
preserving homomorphisms, will be used in the sequel. Since its

proof uses standard techniques, it is left to the reader.

2. 14. Lemma. The class of tree transformations is closed

under composition with frontier-preserving tree homomorphisms
(formally: for each tree transducer M and each frontier-preserving
tree homomorphism h , we can find a tree transducer N such that
T(N) = {(s,h(t)) |[(s,t) € T(M)} ). Moreover the same statement is true
for the class of deterministic tree transformations. And, obviously,
the same holds when the tree transformations are restricted to be

e—free, monadic or unary.

ETOL systems

The ETOL system to be used differs slightly from the usual
one in that we take a set of initial symbols instead of one initial
word. It is well known that this does not influence the class of langua-
ges generated. Moreover, the sets of derivation trees are obviously

changed in a trivial way only.
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2. 15. Definition. An ETOL. system is a 4-tuple G = (I, @,S,A),

where 2 is the alphabet, ASY is the target alphabet, S<¥ is the

set of axioms, and @ is a finite set of tables, each table P in 2
being a finite subset of X %* such that for each a€ ¥ there is a
weé X* with (a,w)€P . An element (a,w) of atable will be written
as a~ w and will be called a production.

For u€X* , veZ* and PE€ 9, we write UBv if there exist

..,u_€X and v ..,v_€X¥ suchthat u=u_ ...u_,
N n

17" 1 n

V= VeV and, for each 1=<i=<n, u.”*vi isin P.

1
*

We write u=>v if u gv for some P in ,(j” As usual = de-

notes the transitive-reflixive closure of = . The language generated

*
by G, denoted by L(G), is defined to be {wé&€A* |a=w for some

a in S} . L(G) iscalled an ETOL language.

2. 16. Terminology. Given an ETOL system G = (3,%,s,4) ,

we shall often use the set # as an alphabet (formally one should intro-
duce a new set of symbols in one-~to—-one.correspondence with the ele-
ments of & ). Thus a sequence of tables is an element of ¥*  and will

be called a control word. It is often convenient to have a relation O

for each control word T as follows: if 1= P1P2. .. Pn (h=0) , then
us v if and only if there are u,,u,,...,u such that u, =u,
P 1772 n+1 1
i *
u =v and u, = u, for 1<i<n . Obviously, u=v Iif and only

n+1 i i+1

if there is a control word 71 such that u g Vo,

2. 17. Definition. Let G = (5,%?,S,A) be an ETOL system.

G is called an EOL system if § is a singleton.

G is called deterministic if (1) S is a singleton, and (2) for

every P€é P and a€y there is exactly one wé€ Z¥ such that a-w
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isin P . A deterministic E(T)OL system is also called an ED(T)OL
system.
G is called propagating (or an EPTOL system) if for nho P& &

and ag€X, a~ ) isin P.

We now formalize the intuitive description of an ETOL. deriva-

tion tree in [4].

2. 18. Definition. Let G = (3,9,S,A) be an ETOL system. Define

Q to be the ranked alphabet ZU{e}l such that Q. =4U/ {e},

0
Q1 = {a€Z| there are b€XU{A} and P€ & such that a=+b isin P)
and, for kz2, Qk = {a€Z|a+*w isin P for some P¢% and some

we st of length k }.

For a€f and me®P* , the set of derivation trees with top a

and control word 17, denoted by Ds(G) , is defined recursively as

follows:
(i) for a€h, a€Dy ;

(ii) for a€s and PEP,
if a» i isin P, then ale] isin Dgﬁ(e)

for all meEYP* ;

(iii) for n=1, a,a a8 €%, PeY and P

17" Q’
if ata,...a_ isin P and t.€D2(G) for 1=i<n,
1 n i i)

then a[t1...tn] isin D2

Prr( G) .

The set of derivation trees of G, denoted by D(G) , is defined

by D(G) = ags Dﬁ(e) )
eP*



Note that, if G is propagating, then we do not need symbol

and (ii) above.

Note that D(G) contains only derivation trees corresponding

*
to "succesfull derivations!t of G, i.e. derivations a= w for

a€sS and weEA*® |

2.19. L.emma. For any ETOL system G

, Tr(D(G)) = L(G) .
Proof.

It is left to the reader to show that, for a€¥, wea*

and MEP* ,

Ow if and only if w = fr(t) for some t in DZ(G)
(for B , see Terminology 2. 16).

From this the lemma easily follows.

V4

2.20. Example. Consider the ETOL. system

= ({a7b, C}’ {P’Q}, {a}’ {a7b:} where

P={a%aa, b2?b

, b@acb , c»A} and

Q={a+a, b+ab, b*acb, c+c} . Then the word aaab can be
. . P P Q
derived from b in G as follows: b = acb = aab = aaab . Thus the

corresponding derivation tree =blalalalala]]c[elb[b[ab]]]
. . b
o 'S also in D

aPa A picture of to is

. b
in DPPQ' Note that t

T
AN

R ERVAN

CD‘——O—O'

V4

Note that, in the above example, the tree

tO does not comple-

tely determine the derivation, since it may not be possibie to determine

the actual sequence of tables applied. Therefore, to obtain a complete

e

12
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description of the derivation, we have to add the control word to the

derivation tree.

2.21. Definition. Let G = (5,9, S,A) be an ETOL system. The

set of complete derivation trees of G, denoted by Dcpl(G) , Is defined

by D __(G) = {(?F,t)]tGDTET' for some a€Ss} .

cpl

Thus a complete derivation tree actually consists of two trees:
the first is a '"vertical control word" and the second an ordinary

derivation tree with that control word.

2.22. Example. The complete derivation tree corresponding

to the derivation in Example 2.20 is (P[P[aQle]]], tg) orina

picture

fo)]
o
(0]
o

V4
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3. Surface trees and parallel derivation trees

A connection between sets of derivation trees of ETOL
systems on the one hand and surface tree languages on the other
hand will be established in this section. It will be shown that
derivation trees of ETOL systems are quite closely related to
trees obtained by finite state transformation of monadic trees.

We start by showing that any ETOL system may be viewed

as a top-down tree transducer.

3. 1. Theorem. For each ETOL. system G there is a monadic

tree transducer M such that T{(M) = Dcpl(G) .

Proof. The idea of the proof is that the tables of G may
be viewed as Input symbols to the monadic tree transducer M.
Thus a control word of G is viewed as a monadic input tree to
M . The symbols of the alphabet of G will be used as the states of
the tree transducer. The rules of M are constructed from the
productions of G in such a way that, whenever G produces a
string according to some control word, then M transforms this
control word into the corresponding derivation tree. Formally we
proceed as follows.

Let G=(5,9,S,A) bethe ETOL system. We now construct
a tree transducer M such that T(M) = Dcpl(G) .
Let M= (m(@),Q,—i,g, R) where Q= ZU{e} , the ranking of Q being
defined as in Definition 2. 18, % = {ala€ 3}, S={ala€¢s} and R is

obtained as follows:
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(1) for every k=1, a,a €Z and PE2,

PO ]
1? ? Tk

if 61—>a1...ak is a production in P, then

alP[x]]~ a[51[x]. . .Ek[x]] isin R;

(2) for every a€f and PC&,
if a@®A is aproductionin P, then

SEP[XH -+ a[e] isin R;
(3) for every at€lA, ale]+a isin R.

It is left to the reader to show that, for every a€ X, mc®* and
te TQ s
—_— % - . a
(*) a[*] ;{t if and only if tEDﬂ(G) .
The proof of (¥) _is by straightforward induction on the lengis of 1.

From (*) it follows that

acd — s 4 *
T(M) = {(m,t)|a[m] = t for some at S}
= {(m,t)]te D;‘(G) for some a€ S}
= Dcpl(G) ?
and this proves the theorem. ///

It immediately follows from this theorem that the set of deriva-
tion trees of an ETOL. system is a monadic surface tree language, and
that the language generated by an ETOL. system is a monadic tree
transformation language. These facts are stated in the following

corollaries.
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3.2. Corollary. For any ETOL system G, D(G) is a monadic

surface tree language.

3. 3. Corollary. Every ETOL. language is a monadic tree

transformation language.

Proof (of both corollaries). Let M be the tree transducer

such that T(M) =D __(G) . Then obviously D(G) = range(M) and

cpl
so D(G) is a monadic surface tree language. Furthermore, since
L(G) = fr(D(G)) , it follows that L(G) = fr(range(M)) . Hence L(G)

is a monadic tree transformation language. ///
Next we consider some special cases of Theorem 3. 1.

3. 4. Remark. It is easy to see that, in Theorem 3.1,

(i) if G is propagating, then M is e~free;
(i1) if G is deterministic, then M is deterministic;

(iii) if G has one table only, then M is unary.

We shall now aim at a converse of Corollary 3. 2.

When trying to relate monadic surface tree languages to sets
of derivation trees of ETOL systems in a way similar to Theorem 3. 1,
we should be aware of the following facts:

(1) in a derivation tree of an ETOL system all paths through
the tree (not terminating in e ) are of equal length;

(2) the surface language is obtained by transforming a recog-
nizable set of input trees, whereas in an ETOL system there are no

restrictions on the set of control words;
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(3) in a tree of a surface language the symbol e may appear
anywhere on its frontier.

The first fact suggests that, in order to obtain trees with
paths of different length, we might consider tree homomorphic
images of ETOL derivation tree languages. That this can be done,

when disregarding the other two facts, Is shown next.

3. 5. Lemma. For each monadic e~free tree transducer M

there is a propagating ETOL. system G and a frontier-preserving

tree homomorphism h such that range(M) = h(D(G)) .

Proof. We shall use the well known technique of decomposition.
M will be decomposed into two parts: very roughly speaking, the
first part imitates M, but, at each step, instead of outputting the
right hand side of the applied rule, it outputs one node, labeled by
the rule itself; the second part is a tree homomorphism that trans-
forms each node into the right hand side of the rule labeling that
node. Since the first part emits one node at each step it may be descri~
bed as an ETOL system generating a derivation tree. Note that, if
one wants the homomorphism to be frontier-preserving, then, when-
ever the tree transducer M outputs symbols of rank 0, the ETOL
system is forced to ''prolong!!' the involved paths until they have the
same length as all other paths; however, these paths may be cut off
at the right length again by the "monadic erasing' capability of the
frontier-preserving tree homomorphism. We now proceed to the formal
construction.

Let M= (m(®), 3, Q, Q. R) be an arbitrary monadic e-free

tree transducer, where $ is some alphabet. We first construct an
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ETOL system G for the "first part'! of M (see above). In G, the
elements of R will be used as symbols and the elements of P will
be used as (names of) tables.

For any r€R let state(r) denote the (unique) state occurring
in the left hand side of r .

Let G be the ETOL system (RUZ, UT U {#}, Puifl, s, Z)
where # and f are '"new! symbols, YO = {—a_laé ZO} , S is the set
of all r in R such shat state(r‘)EQin , and the tables of G are
constructed as follows.

(i) Let r€R be of the form q[P[x]]+t for some q€Q,
Pc® and téTZ(Q[x]) .(Note that. Q[x] = {g[x]|g€Q} . Recall that
X=X, .) Then each production r+w is in table P, where w is in
the set flat(t) defined next.

For any tETﬁ(Q[x]) we define the finite set of strings flat(t)

recursively as follows:

(a) for each g'€Q, flat(q'[x]) is the set of all

r€ R such that state{r)= q' ;

(b) for each a€X flat(a) = {a} ;

O ?

(c) for every k=1, a€n and t GTZ(Q[X]) ,

ety
ﬂat(a[t1...tk]) = flat(t,)... flat(t) .

Thus an element of flat(t) is obtained from t by taking its "frontier!
(considering elements of Q[x} as symbols), putting bars on elements
of ZO and replacing each q'[x] by some rule involving q' in its
left hand side.
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(ii) Let r&€R be of the form qg[e]=t for some q€Q and
1:€TZ . Then r-=+fr(t) is a production in table f .

(iii) For every act€¢ ZO R
the production a+a isintable P for each PE€ 9, and the production
a-+a isin table f

(iv) For every aéRU'fOU ZOU {(#} and every PeQu {f} , if
it does not follow from (i) - (iii) that there is a production with
left hand side a in P, then a+*f is a production in table P .

This ends the construction of G . Note that G is propagating.
Note also that for each rule r in R there is exactly one table in
®U {f} in which there are rules r=+w with w## . Note finally
that in all tables the only production for an element a of ZOU {#}
is a4 .

We now construct the tree homomorphism h for the !'second
part" of M. Let Q be the ranked aliphabet RU _Z—OU ZO , where the
ranks are defined such that all elements of D(G) are trees over (
(cf. Definition 2. 18). Note that # does not appear in derivation trees
of G and that we do not need e .

The homomorphism h is defined as follows.

(1) For each a€Qy (that is, a€ ZO) , Bla) = a.

(2) For each act Lo Na) = x4

(3) Let rer, PEQk for some k=1 . Suppose that the right
hand side of rule r is tGTZ(Q[x]) . Let A=Q[x]U %y« Then, ob-
viously, k is the number of occurrences of elements of A in t,
and these occurrences are ordered from left to right in t . (Obviously,
for ac¢ ZO , we only count those occurrences of a that are not followed
by the symbol [ ). Let t be the tree obtained from t by replacing
the ith occurrence of an element of A in t by Xi for each i,

1<i<k . Then we define h(r) =T .
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This ends the construction of h . Note that h is frontier~pre-

serving (in (3), fr(t)= Xqe e .xk) . Note that (2) provides the cutting

off of '"prolonged paths!' to the correct length.
Now the following statement holds.
(*) For every q€Q, me€¥* and t€ Ty,
q[fTﬂ r\% t if and only if there is a tree s

(in T.) such that t = h(s) and SEDT: (G) for

2

some r€R such that g = state(r) .

f

The proof of (*) is by the usual straightforward but awkward induc-
tion argument (on the length of 1 ). In fact, in order to provide a com-
plete formal proof of (*) we would have to define a lot of additional
technical machinery. To avoid this we leave it to the reader to see
that (*) is true. It follows easily from (*) that range(M) = h(D(G));
note that, by the construction of G, in a derivation in G of a string

in Zg the last table applied is always f and all other applied tables

are in P . /4

3.6. Example. Consider the tree transducer

M= (m®),x,q, Qin’R) where @ = {P, T}, Zq = {a,b} ,

Z, = {b} , Q= {q1,q2} , Q. = {q1} and R consists of the following

rules:
ripe a[P[x]]+blabla, [x]a,x]]]
riT qﬁT[x]]—*b
rgre [TIx112 aylx]
Foo qz[e]%b

The ETOL. system G, constructed as in the proof of the preceding

lemma is
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G=({P1p7r'1-r7 PZT’ Pze’ aab,g7—6,#} ’ {P7T¢f} ’ 57{a,b})

where S = {r‘“:,r*ﬂ.} and

P=irprarpryrs Mp?arprlye s Mp?af t oy

PP ar T Pger Myr s rpp i, rp

a+#, b+#, #+#, ara, bbb},

e e LT TP
rip?i, ro i, atlt, bof, fed,
a-+a, b+b}.,

f o= {r‘ze—bb , a*a, b+b , r‘”:,—*# , r'ﬂ."*# ,

PZT-’# ’ a—’# ) b")# 3 :H—’:H} .
The frontier-preserving homomorphism h Is given by

h(a) = a, h(b) = b, K@) = X A(B) = x

{I';(r'1p)= b[x1b[x2x3]] , ?‘:(r*”_) =x,, hir

Consider, as an example, M working on the input
P[T[e]]:
a,[P[T[e]]]g blabla[Te]lay [T e]]]]
i blab[ba,[T[e]l]]
= blab[bay[e]]]
= b[ab[bb]] .

The '"corresponding!! derivation of the frontier abb of this tree in

G is:
P - T — f
r*HD:> ar‘”.r‘z_r = bPZe = abb

with derivation tree
r‘1p[-a—1[_a—[a]] r‘ﬂ_[B[bM r‘z_l_[r‘ze[b]]] . It is easy to see that the image

of this derivation tree under h is b[ab|bb]]. Y A
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Lemma 3.5. is true not only for ranges of monadic tree trans-
formations but. also for arbitrary monadic surface iree languages. To

show this we prove the following lemma.

3.7. Lemma. Every monadic e-free surface tree language is

the range of some monadic e-free tree transformation.

Proof. Let M= (m(¥), 1, Q, Q. ,R) be a monadic e-free tree
transducer. We first note that we may assume M to be nondeleting,
which means that, for each rule q[P[xﬂ—bt , t contains at least
one x (if t is in _I;Z’ then take some symbol a occurring in fr(t) ,
replace it by _a—[x] , where a is a new state, and add rules
al[T[x]]+a[x], forall TEP, and ale]+a). Now let U be a
recognizable subset of Tm(@) . Itis clear that U = {%JITTGV}, for
a regular set of strings VE@* | Let N = (QN,@, 8, qO,F) be a
deterministic finite automaton recognizing V. Thus § is a mapping
QNXQ-*QN and U = {%]@(qo,ﬂ)él:} , where B is the usual extension
of & to QNX@* . We now construct a monadic e-free tree trans-
ducer M such that range(M) = M(U) .

Let M= (m(®), L, axQy, @ X {qo} ,R) where R consists of
the following rules:

(1) For every qcQ, P&, tETZ(@[x]) and q,,q,€Q
if q[P[x]]»t isin R and 6(q1,P) = q, , then (q,q1)[P[x]]—>?
isin R , where t is the result of replacing each state g! in t by
the pair of states (qf, qz);

(2) for every qg€Q, tETZ and q1€QN ,

if glel*t isin R and q,€F , then (q,qi)[e]—bt isin R.




23

It is easy to see that this M satisfies the requirement. In fact,
since M was nondeleting, M is able to check whether the input tree

belongs to U while simulating M . Y/

At the ETOL side this lemma corresponds to the fact that
ETOL is "closed under regular control”, that is, if one restricts
the set of control words of an ETOL system to some regular lan-

guage, then the resulting language is still an ETOL language [5] .

We can now formulate our main theorem, relating monadic

surface tree languages to ETOL. derivation tree languages.

3.8. Theorem. A tree language is a monadic e-free surface

tree language If and only if it is a frontier-preserving homomorphic
image of the set of derivation trees of some propagating ETOL

system.

Proof. The only-if part follows directly from Lemma's 3.5 and
3.7. To prove the if-part, note that, by Corollary 3. 2 and Remark
3. 4 (i), the set of derivation trees of any propagating ETOL system
is a monadic e~free surface tree language. Since the class of iree
transformations is closed under composition with a frontier—-pre—

serving tree homomorphism (see l.emma 2. 14), the result follows.

V4

The string languages involved are related as follows.

3.9. Theorem.

(i) A language is a monadic e~-free tree transformation language
if and only if it is an EPTOL. language.
(ii) A language is a monadic tree transformation language if and

only if it is an ETOL language.
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Proof.
(i) (1f). See Corollary 3.3 and Remark 3. 4 (i) .

(Only if). Let U be a monadic e-free surface tree language.

We have to show that fr(U) is an EPTOL language. By Theorem 3.8,
U = h(D(G)) for some EPTOL system G and frontier-preserving
homomorphism h . Hence fr(U) = fr(h(D(G))) = fr(D(G)) = L(G) .

(i1}  (1f). See Corollary 3. 3.

(Only if). Let U be a monadic surface tree language, eventually
involving e . We have to show that fr(U) is an ETOL language.
Change everywhere in U the symbol e into the hew symbol e
Let U be the resulting tree language. Obviously U is a monadic
e-free surface tree language and fr(U) = p(fr(U)) , where p is the
string homomorphism such that p(e) = » and p(a) = a for all other
symbols involved. By (i) of this theorem fr(U) is an EPTOL language.
Now, since the class of ETOL languages is closed under homomorphisms

[8], if follows that p(fr(U)) = fr(U) is an ETOL language.

VA

It is known that if L. is an ETOL language, then L - {*} is
an EPTOL language [8]. Hence, by Theorem 3.9, the use of the
symbol e In monadic tree transducers gives us no extra power
(except for A ).

Note that in Theorem 3.9 (ii) and in the preceding remark we
used results about ETOL. (we did not do so far). One could also prove
that, for instance, EPTOL = ETOL (modulo A ) by the use of tree
transformation arguments (using composition results concerning top-
down and bottom~up tree transducers). Proofs like this would perhaps

provide more insight in known results, just as properties of recogni-
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zable tree languages give us more insight into certain results about
context-free languages (see [14]).
We now consider some restricted cases of Theorems 3. 8 and

3. 9. We start by investigating determinism.

3.10. Theorem. A tree language is a deterministic monadic

e-free surface tree language if and only if it is a frontier-preserving
homomorphic image of the set of derivation trees of some deterministic

propagating ETOL. system.

Proof.

(If). As in the proof of Theorem 3.8 (see Remark 3. 4 (ii) ).

(Only if). Since the deterministic version of LLemma 3.7 clearly
holds, we only have to prove the result corresponding to Lemma 3. 5.

Let M= (m(®), %, Q, Qs R) be an arbitrary deterministic
monadic e-free tree transducer. Let G = (A, P U {f}, S, ZO) , Where
A= RU ZOUEOU {#}, be the ETOL. system as constructed in the proof
of l.emma 3. 5. In general, the tables in % do not satisfy the deter-
minism requirement (but f does). Construct the deterministic ETOL
system G! = (A9 U {f}, s, Zo) , where $! = {PtcAxAX |PtcP for
some PeP , and for each a€A there is exactly one w&A* such
that (a,w) € P!} . In other words, $! is the set of all ""deterministic
sub-tables'! of tables in & . It can easily be shown from the determinism
of M that D(G!) = D(G) . Hence, by the proof of Lemma 3. 5,
range(M) = h(D(G)) = h(D(G')) , where h is defined in that proof.

This proves the theorem. YA
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For the corresponding languages we have

3.11. Theorem. A language is a deterministic monadic iree trans-

formation language if and only if it is an EDTOL. language.

Proof.
(1f). See Corollary 3.3 and Remark 3. 4 (ii).
(Only if). Similar to the only~if proof of Theorem 3.9 (ii),
using the known fact that the class of EDTOL languages is closed under

homomorphisms. ///

Let us now consider the unary case; that is, the case that the
tree transducer Is unary and the ETOL system is an EOL system

(has one table only). We state the analogue of Theorem 3. 8.

3.12. Theorem. A tree language is a unary e-free surface tree

language if and only if it is a frontier-preserving homomorphic image

of the set of derivation trees of some propagating EOL system.

Proof.

(1f). As in the proof of Theorem 3.8 (cf. Remark 3. 4 (iii)).

(Only if). Since it is easy to see that the unary analogue of
Lemma 3.7 is valid, we only have to check whether the unary analogue
of L.emma 3.5 is true. Note that, in the proof of the latter lemma,
starting from a ¢ with one element P one does not obtain an EOL
system G, since one !"final table'" f is added. However it is clear
from the construction of G that the EOL system G!' with table

Pt = PUf has the same set of derivation trees as G.

VA
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The analogue of Theorem 3.9 is

3.13. Theorem. A language is a unary tree transformation lan-

guage if and only if it is an EOL [anguage.

Proof. Similar to the proof of Theorem 3.9 (ii), using the fact

that the class of EOL. languages is closed under homomorphisms [10] .

V4

Finally we consider the deterministic unary case. Let an
HEDOL language be one which is obtained by applying a (string)
homomorphism to an EDOI_ language. We now show that in the determi-
nistic unary case we obtain the HEDOL. languages as tree transfor-

mation languages.

3. 14. Theorem. A language is a deterministic unary tree trans-

formation language if and only if it is a HEDOL language.

Proof.

(If). Given an EDOL system G and a homomorphism h, it is
easy to construct an appropriate tree transducer such that the frontier
of its range is h(L(G)). In fact, one can use the construction of
Theorem 3.1, where each rule —é[e]—’ a should be replaced by the
rule ale]+h{a) if h(a) # A, andby ale|+e if h(a) =1 .

(Only if). Since the needed version of Lemma 3.7 is obviously
true, it suffices to show that the frontier of the range of a given
deterministic unary tree transducer M= (m(®), %, Q, Qs R) is an
HEDOL. tanguage. 1 is a singleton, say ? = {P} . Construct the

EDOL. system G = (QU Ty U {#}, P, Q. ., QU ZO) , where the productions

of P are defined as follows.
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(1) 1f g[P[x]]»t isin R, then g-f(t) isin R, where,
for tETZ(Q[x]),f(t) is defined by

(i) fla'[x]) =g for g'cQ,

(ii) f(a) = a for act %, » and

(iif) f(a[t1...tk:|) = flt). . () .

(2) For all ac¢ ZOU {#} , a»a isin P.

(3) If there is no rule in R with left hand side q[P[x]] s
then q+# isin P.

This ends the construction of G . Now let h be the string

homomorphism from (QUZX.)* into Zé such that h(a) = a for all

0
a€r, and, if qle]=»t isin R, then h(q) = fr(t) . It is left to the

reader to show that fr(range(M)) = h(L(G)) . Y 4

We note that it can be proved in the same way that in the e-~free
case one obtains the class of NEDOL languages (thoseilanguages
which are obtained by applying a nonerasing homomorphism to an
EDOL. language), which is a proper sub-class of the class of HEDOL
languages (see [6]; actually HEDOL = HDOL. and NEDOL = NDOL,
where the disappearance of the E means that, in the EDOL system
G=(5%,S,A) involved, A=13%). Thus the use of e is significant

in the case of deterministic unary tree transformations.

To conclude this section we consider a generalization of the
ETOL system to trees: the so called ETOLT system [2] In an
ETOLT system productions are applied, in parallel, at the frontiers
of trees. We slightly change the definition of an ETOL.T system, given

in [2], without Influencing the class of languages generated.
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3.15. Definition. An ETOLT system is a 4~tuple G = (3,9, S, A)

2

where 2 is the ranked alphabet, AC ZO is the target alphabet, SQZO

is the set of axioms, and ¥ is a finite set of tables, each table P in

¢ being a finite subset of ZOX TZ such that for each ac¢ ZO there is
a t€Ty with (a,t) EP . An element (a,t) of a table will be written
as a—t and called a production.

. P . .
For PE¢Q the relation = on Ty is defined recursively as

follows:

(i) for each a€Xj and t&Ty,
if a»t isin P, then agt;

(i) for every k=1, aézk and t]""’tk’sw""SkETZ’
it tigsi for each i, 1si<k, then

P
a[t1...tk] = a[ST"'Sk] .

. . P .
We write t=s if t=s for some P in® . As usual L denotes

the transitive-reflexive closure of = . The tree language generated

by G, denoted by L(G), is defined to be {tETZIfr'(t)éA* and

*
a=1t for somea in S} . LL{(G) is called an ETOLT language.

ETOLT languages are related to surface tree languages in an

obvious way.

3. 16. Theorem. A tree language is an ETOL T language if and

only if it is a monadic e-free surface tree language.

Proof. We only provide the constructions and leave the proof
of correctness of these constructions to the reader. The construc-
tions are in fact similar to those of ‘Theorem 3.1 and Lemma 3. 5.

(Only if). Let G=(5,9,5,A) be an ETOLT system, We con-

struct a monadic e-free tree transducer M= (m@), Z,'{Z—,——S—‘, R) where
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Y ={alaex}, S= {ala€s] and R is obtained as follows:

te T

s and Pc@,

(1)  for every act Zg s
if a»®t is a production in P, then
a[P[x]]+x(t) isin R, where x(t) is
defined recursively by

(i) for act %o x(a) = a[x] ;

(ii) for k=1, aEZk and t1,...,tk€TZ,
x(a[t1. .. tk]) = a[x(t1). ..x(tk)] ;

(2) for every a€lA, ale]+a isin R.

Then r‘ange(M) = L(G) , and so L(G) is a monadic e-free surface
tree tanguage.

(if). By Lemma 3.7 we may restrict attention to ranges. L.et
M= (m@), Z, Q, =T R) be an arbitrary monadic e-free tree transducer.
We construct the ETOL.T system G = (Q,%U {f},Qin, ZO) , Where
Q=IUQUZ U{f}, 0y=,UQUE U{#} andfor k=1 O =5 _, and
the productions of G are obtained as follows.

(1) For every q€Q, P€§ and téTz(Q[x]) , if q[P[x]]~+t

isin R, then g=g(t) is in table P, where g(t) is defined recursi-

vely as follows:

(i) for act ZO , 9(a) = a
(ii) for g'€Q, ola'[x]) = q

(iif) for k=1, acy  and t .,tkéTz(Q[x]),

1
g(a[tl...tk]) = a[g(tj). . .g(tk)] .
(2) For every g€Q@Q and t€ T« ,

if gle]»t isin R, then g+t isintable f.
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(3) For every ac¢ ZO ,
the production a-a is in table P for each PE€ ‘3), and the produc-
tion a»a isin table f.

(&) For every aEQO and every PEQPU {f} , if it does not
follow from (1) — (3) that there is a production with left hand side
a in P, then a=+# isin P.

Then L(G) = range(M) , and so range(M) is an ETOLT language.

V4

Of course, it follows from this theorem and Theorem 3. 8 that
a tree language is an ETOLT language if and only if it is a frontier-
preserving homomorphic image of the set of derivation trees of some
propagating ETOL. sysiem. It is left to the reader to check the

deterministic and unary cases.

Conclusion.

We have shown the relationship between ETOL. systems and
top~down tree transducers working on monadic trees. On the one
hand this relationship can be used to give ''tree ~oriented proofs!
of, for instance, closure properties of ETOL. fangauges. On the
other hand one may expect that the results and techniques used
in ETOI_ language theory can be generalized to deal with surface
tree languages obtained from arbitrary recognizable tree langua~
ges.

It remains to be seen whether the results of this paper can be
extended to other classes of parallel rewriting systems and tree

transducers. We can say, roughly speaking, that paraliel rewriting
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corresponds to copying in tree transducers. For instance, in [iO],

a distinction is made between top-down parallelism and bottom-up
parallelism, the former referring to the paralielism in systems

like ETOL and the latter referring to, for instance, the level
grammars introduced in [11]. This distinction seems to correspond

to the different kinds of copying of top-down transducers and bottom-up

transducers as investigated in [ 1, 3].
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