CONTEXT-FREE GRAMMARS

WITH GRAPH CONTROLLED TABLES

by

Grzegorz Rozenberg
&

Arto Salomaa

DAIMI PB-43

January 1975

Institute of Mathematics University of Aarhus '

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

— -

]
=Hil
]




1. Introduction

One of the quite vivid areas of research in formal language
theory is a search for proper kinds of control which, when applied
to context—-free grammars, yield the family of context-sensitive lan-
guages or some large enough subfamily. (see, e.g., [2], [4], [7],
[8], [9].) Context-free grammars have the advantage of being very
useful as a language generating device but have the disadvantage
that their generative capacity is not too strong.

Perhaps the most obvious contro! one can introduce on a set
of context-free productions is a graph specifying their succession
in rewriting. Modifications of this idea are matrix grammars,
programmed grammars, time-varying grammars, and grammars with
a regular control language, cf. [9]. It has been shown in [8] and
[4] that proper direction control added to matrix grammars or to
programmed grammars (without erasing) yields indeed all context-
sensitive languages. These results are to be contrasted with the
fact that the fargest family of context-free programmed languages
without erasing (F’ac in the notation of [9}), as well as the cor-
responding family with the left most interpretation on the application
of productions, are properly contained in the family of context—-sen-
sitive languages.

In this paper, we re—-examine the idea of graph control from
the very beginning. We prove that if one imposes the control over
sets of productions rather than over single productions, then one
gets indeed (under the leftmost interpretation but without erasing)
all context-sensitive languages. The result holds true for both

variations of graph control corresponding to programmed grammars




of simplest kinds: those with empty failure fields and those with uncon-
ditional transfer. The idea of using sets of productions rather than
single productions corresponds to the notion of a !''table!" borrowed
from the theory of L. systems, cf. [3] and [5].

A brief outline of the contents of this paper follows. In Section
2, we investigate traditional programmed grammars and present some
results concerning unconditional transfer and leftmost application of
the productions. Graph control of two different types for sets of pro-
ductions is introduced in Section 3. In Section 4, it is shown that
both of these types of control vield all context—sensitive languages.

Section 5 contains some corollaries and concluding remarks.

2. Unconditional transfer and leftmost interpretation

We expect the reader to be familiar with formal language theory
in the extent of [9:| As regards programmed grammars, we use the

notation of [9]

' A A
61) P, P ’paC’Pac

for the four language families obtained by allowing or excluding A-pro-
ductions and/or‘ appearance checking. In [9], several equivalent
characterizations for the families (1) (e. g., in terms of matrix grammars)

are given. It is well=-known that

A
(2) pac""o and LZCngacCL1 ,

where I_O ) I_1 and I_2 denote the families of recursively enumerable,

context-sensitive and context-free languages, respectively, whereas

it is an open problem whether or not the inclusion P ¢ Pac is proper.




Also the position of the family P;\ , apart from inclusions obvious
by definitions, remains open.
We now consider some modifications of the families (1). The

families obtained by the leftmost interpretation (contrasted to the

free interpretation in the families (1) ) on the application of produc—

tions are denoted by adding (left) after the name of the family. Thus,
Pac (left) is the family generated by A-free programmed grammars
such that each production A~ x has to be applied to the leftmost

occurrence of the nonterminal A . It has been shown in [2] that

(3) PSP lleft),

whereas it is an open problem whether or not the inclusion is proper.
The family Pac (left) is still properly contained in the family of
context-sensitive languages.

We denote by Pu (resp. Put (left)) the family of languages

t

generated by A-free unconditional transfer programmed grammars
(resp. operating under leftmost interpretation), i.e., programmed
grammars where each production has identical success and failure

fields. It is well-known that

L, cP
u

2 (1eft) Pac

t

but the mutual relation between the families P and Pu is open.

t

The emptiness probiem is decidable for P undecidable for Pac ,

ut ?

and open for P ., Finally, we denote by R the family of languages

fc
generated by A-free context-free grammars with a regular control
language operating under full checking, i.e., appearance checking

is possible for every production. The family Rfc(left) is defined




similarly. Full checking was introduced in [7] Our first result

gives a hew characterization for the family Put .

Theorem 1. P . = R, .
—_— ut fc

Proof. The inclusion of the left side in the right side is easy
to establish by the technique of [9, p. 177]. In fact, the situation
here is even somewhat simpler than in the guoted reference because
we do not have to introduce two copies of the productions.

To prove the reverse inclusion R, < Put , we consider an

fc

arbitrary language L generated by a A—free context-free gram-—
mar G = (VN,VT,XO,F) with a reguliar control language operating
under full checking. Assume, furthermore, that the control language
is accepted by the finite deterministic automaton with state set S,

initial state s final state set S, , transition function &, and

0’ 1

input alphabet equal to the alphabet of labels for the productions in

F . An unconditional transfer programmed grammar G] for L will

now be defined. The nonterminal alphabet of (31 is obtained by adding

to VN the letters

Y and [a,s] , a€V UV SES .

T ?
The terminal alphabet of G, is V., and the initial symbol [xo, sOJ.

For a nonempty word x over VNU VT and s€S, we denote by x

the word obtained from x by replacing the last letter o with the

S

letter [cc,s]. For a production A~ x in F labeled by t, we let

O(s, t)

AS o x labeled by ts , and A® 4 x labeled by t3(final) be

productions of G, . The production set of G, consists of the produc-

1 1

tions appearing in the following matrices, where B(s,a) denotes the




sequence consisting of all productions of the form
[oc],sl]—i Yy , s +s , ! * o

in some order:

(4) [B(s,a) , t, [a,s] = [a,d8(s,0)], a F A,

(4! [Bs,a) , [a,s]*a, o~ [a,s]]

(5) [t°]

(6) [B(s,a), t, [a,s]»a] if a+A and 8(s,t)€ S,
(7) [t5(final) ] if o(s,)€S, .

(Throughout this paper, Y stands for a '"garbage' letter which can
never be eliminated once it is introduced.) The go-to fields are de-
fined in the following way. From the last productions of the matrices
(4),*-(4)1 and (5) it is possible to go to the first production of any
matrix. The go-to fields of the last productions of (6) and (7) are
empty. The go-to field of any production in (4), (4)1 or (6) different
from the last one consists of the next production in the same matrix.
It is easy to see that LL is generated by Gl and this completes the
proof.

The proof of the next theorem is similar and is, therefore,

omitted.

Theorem 2. Put(left) = Rfc(left).
The results of Theorems 1 and 2 hold true also for the corre-
sponding families with erasing productions. Our next theorem gives

a binary normal form for grammars of languages in pac .




Theorem 3. Every language in Pac is generated by a grammar,

all of whose productions are of one of the two forms

2
(8) A~ X, xé\/NUVNUVT,

(9) ArY, YEVN,

where the failure fields of productions (8) and success fields of pro-

ductions (9) are empty.

Proof. Given a programmed grammar for a language in Pac ,
we first eliminate terminals except from productions of the form

A~ a by the technique of [9, p. 19]. We then apply the technique of
[9, p. 177] to get a grammar satisfying the requirements, except
that x in (8) might belong to Vi , for some 1>2 . Finally, the re-
duction technique of [9, p. 56] is applied, which proves the theorem.

It is to be noted that we have not been able to eliminate from (8)
productions of the form A -+ B, where B is a honterminal. Such an
elimination might be very difficult for programmed grammars.

Our last theorem in this section proves the rather surprising
result that the inclusion corresponding to (3) does not hold true for
unconditional transfer programmed grammars. (Note that all inclu-
sions in this paper are effective.in the sense that, given a device for
a language in the smaller family, we can effectively produce a device
for the same language in the larger family. Such an effective inclusion

is meant also in the statement of the next theorem. )

Theorem 4, The family Pu is not included in the family

t
Put(left).




Proof. Assuming the contrary, we show how io solve the emptiness
problem for the family Pac . This is a contradiction because every
recursively enumerable language is a homomorphic image of a language

in P .
ac

Given a grammar for a language L. In Pac , we first transform
it to an equivalent grammar G satisfying the requirements of Theorem 3.

We now construct an unconditional transfer programmed grammar G1

(operating under free interpretation) as follows. The only production

e 1 . 1 :
for the initial letter Xo of 61 is Xoﬂ on , where ><0 is the

initial letter of G and B Is a new nonterminal. The productions (9)
are taken to be productions of G1 , too, with their success field made

identical to their failure field. The productions (8) are replaced by

the matrices

(10) [B» B A+B, ,B,*x, B +B],

A’ A A

where BA is a new nonterminal and the go—~to flelds are defined in

the obvious fashion. (If (8) is in the field of some production, then

B+ B, is added to this field. The productions in (10) have to be

A
applied in the order indicated. The common success and failure field
of the production BA + B equals the success field of (8).) Finally
the production B~ d, where d is a new terminal, is added. The
go-to field of this production is empty, and this production is added to
the go-to field of (9) and to that of the last production in (10). It is
now easy to verify that L is nonempty iff d occurs as an initial

subword of a word in L(G,) . However by [2], this property is decidable

1

for languages in Put(left). This completes the proof.




In our estimation, the open problems mentioned in this section,
in particular the strictness of the inclusions in (2) and (3), are difficult
ones. As regards the open problem of determining the relation between
the families P(left) and Put(left) , our results in Section 4 show that
these families coincide with the family of contexi-sensitive languages
when control is introduced for sets of productions rather than for

single productions.

3. Graph controlled tables

A context—free grammar with graph controlled tables is an

ordered sixtuple
(11) G =V Vs X B {F 5o F L 9

where G, = (VN,

i.e., each production in the set F Is provided with a label and there

7 X0 F) is a labeled context-free grammar,

may be several copies of the same production with different labels,
nz1 and FiEF , fori=1,...,n, and v is a directed graph whose
nodes are the sets Fi’ i=1,...,n. We denote V = VNU V_r , and
define yield relations of several types. All relations are defined in

the Cartesian prduct
V*X{F1,...,Fn} .

The relations are defined for a fixed grammar (11) and, thus, G
could be added as an index to the name of the relation.
By definition, (x, F'i) = |y, Fj) iff both of the following conditions

are satisfied: (i) For some x xZ,A and o, x = X, sz » Y X0,

17




and the production A~ g Is in the set F'.I. ; (i) There is an edge from
F, to Fj in o.
By definition, (x, Fi)liﬂ(y, Fj) iff conditions (i) and (ii) above

hold and, furthermore, x, does not contain any letters appearing on

1
the left sides of the productions in Fi .

By definition, (x, Fi) =>ut(y, Fj) iff either (x, Fi) = (y,FJ.) , or
else condition (ii) is satisfied, x does not contain any letters appearing
on the left sides of the productions in Fi , and x =y .
left

Finally, by definition (X’Fi) = (y,Fj) iff either (x,F‘i

left
ut ) =

or else condition (ii) is satisfied, x does not contain any letters appea-
ring on the left sides of the productions in Fi , and x=vy.

For any of the four relations 6 thus defined, we denote by &%
its reflexive transitive closure.

We define now GC?‘L(

B), where a is either missing or equal to
ut and (B) is either missing or equal to (left) , to be the family of

languages of the form
* ©
{xevT|(xo,Fi)6*(x, Fj) , for some i and j},

for some grammar (11) and relation & such that ut and left appear
simultaneuosly in. the name of the relation and in the name of the family.
By omitting A from the name of the family we indicate that only such
grammars (11) are considered, where all productions in F are A-free.

We have, thus, defined the following eight language families:

(12) ach , Gcﬁt , GC}\‘(!eft) , GCkut(left) ,
GC , GC, » GC(left) GCut(left) ,




10

Note that the situation in analoguos to the one considered in the
previous section and we have, in fact, defined variations of the fami-

lies P and P
ut

4, Generation of context—-sensitive languages

In this section we show that both of the families GC(left) and
GCut(Ieft) equal the family L_1 of context-sensitive languages. Graph
control is perhaps the simplest control device so far introduced which

vields, operating on context-free core productions, the family of con-

text—sensitive languages.

Theorem 5. GC(left) = I_1 .

Proef. The inclusion of the left side in the right side is obvious,
either by the workspace theorem of [9:] or by a simulation by a linear
bounded automaton.

To prove the reverse inclusion, we consider an arbitrary con-
text-sensitive language L . (Throughout this paper, we assume that
the empty word is not contained in a context-sensitive language.) By
a result due to Kuroda, cf. [6] and [1], L is generated by a gram-

mar G1 with productions of the forms

(13) A= BC,
(14) AB + CD ,
(15) A-+a,

where capital letters denote nonterminals and a is a terminal.




11

Furthermore, the following assumptions can be made without less of
generality. Every word possesses a derivation, where all applica-
tions of productions (13) precede all applications of productions (14)
which, in turn, precede all applications of productions (15) and,

finally, productions (13) are applied always to the leftmost letter

only. {The letter assumption is due to the fact that it suffices to assume
that productions (13) are used to generate the language TU¥ , for some
nonterminals T and U.)

We now define a context—free grammar (11) with graph controlled

tables which, in the sense of relation left , generates L . The set

of nonterminals is obtained by adding to the set of nonterminals A of

G1 their "primed versions A! and A" , as well as a new garbage

nonterminal Y . The productions and tables will how be defined.
All productions (13) (resp. (15)) constitute a table denoted

by F—'E (resp. F—'T) . All productions A -+ A! (resp. Al # A) , where

A ranges over nonterminals of G constitute a table denoted by

1 b
. ) . For each of the productions (14) , we
nonprime
i) i) i)
N
is the number of productions (14). The table F
(N
2

B -+ D" and of the productions X -+ Y , where X ranges over all

Fprime (resp. F

for i=1,...,k where k
(1)
1

consists of the production

introduce three tables F
consists of the

production A - Cf alone. The table F

nonterminals of G1 different from B . The table Fg) consists of

the production D" -+ D and of the productions ><" + Y, where X

ranges over all nonterminals of G, . (We may assume that all of the

()
J
tions whenever necessary.)

1

tables F are distinct by introducing several copies of the produc-




12

Finally, the graph ¢ will be defined. From F there is an

E
(i) .
edge to FE’ Fpr‘ime’ FT , and each F1 . From FT there is an
edge to F__ only. From F_ . there is an edge to itself and to
T prime
each Fg') . From F(1') there is an edge to F(Z') . From F—‘(zl) there
is an edge to Fnonpr‘ime . From Fnonprime there is an edge to it-
(i) () .
self and to each F—'3 . From F3 there is an edge to FT , Fpr‘ime

()
D

This completes the definition of the grammar (11). We leave to

and to each F

the reader to verification of the fact that the construction has desired

effect.

Theorem 6. GCut(Ieft) = L.1 .

Proof. Again, the inclusion of the left side in the right side is
immediate. The proof of the reverse inclusion is obtained from the
preceding proof by the following modifications in the constructions
of the grammar(11). The starting configuration is XO# , where #
is a new nonterminal. The production # + b, where b is a terminal,

is added to the terminal table FT . The production #-+Y is added

0

to each of the tables Fﬁ') and Fz This is to make sure that these

tables are not applied in the appearence checking sense.) Now the
modified grammar (11) generates in the sense of the relation I%fjt
the language Lb . We, thus, have the following result: for each
context-sensitive language L. and terminal symbol b, the language

Lb is in the family GCut(left) . The proof is now concluded by the

argument in [9, p. 152] .




13

5. Corollaries and concluding remarks

Our next theorem follows immediately by Theorems 5 and 6 and

[9, p. 90].

Theorem 7. GCl(left) = GCf:t(left) = L_0 .
As regards the remaining families introduced in (12), we are

able to state the following results.

Theorem 8. GC'X=F">L,GC=P, P.cGC <P .
—— ut ut ac

Proof. In the first place it is immediate that any P-family is
contained in the corresponding GC-family because P-grammars can
be considered as grammars with tables where each table consists
of one production only. The reverse inclusions needed for the two
equations follow because if we have no appearance checking and no
feft control, we can simulate any table by single productions in the
obvious way. Finally, the last inclusion in the statement is establis~
hed by the following construction. Given a GCut-—gr‘ammar‘ , we con-
struct a F’ac—gr‘ammar‘ by splitting all tables into single productions.
Any one of these productions can be entered whenever the table could
be entered. The success fields are obtained directly from the original
graph, whereas the failure fields lead to a sequence of productions,
where each nonterminal appearing on the left side in the table is
mapped into garbage, after which the continuation is as in the original
graph. This completes the proof.

It remains an open problem whether or not the inclusions in
Theorem 8 are proper. In particular, as regards the first inclusion,
we have not been able to settle the question whether or not the addi-

tional appearance checking mechanism for the whole table increases




14

the generative capacity with respect to Pu As regards the remaining

.
family GC?;t , we can of course prove the inclusions of Theorem 8
for the P-families with A . It seems likely that the much stronger

result

A
cht < L'1

(modulo X\ ) holds true. The proof of this involves problems similar
to those still open for the family P}! .

In this paper, we have generalized the notion of a programmed
grammar in a most natural way. Surprisingly enough, this yielded
the family of context-sensitive languages (or recursively enumerable
languages if erasing is allowed) in two different fashions, corres-
ponding to the simplest classes of languages generated by programmed
grammars.

We would like to point out the duality between our results and
those of [8] concerning matrix grammars with the leftmost restriction.
A matrix grammar can be viewed as a collection of sets of productions
(tables) with no control (graph) on the tables themselves but a control
(linear order) within each table. In a grammar with graph controlled
tables, there is no control within a table but there is a control (graph)
on the tables themselves. In both ways one gets the same families of

languages.

Acknowledgement. The authors are grateful to Mogens Nielsen,

Martti Penttonen and Sven Skyum for useful discussions.




[1]

[2]

[3]

[4]

(8]

[o]

15

References

M. Penttonen, One-sided and two-~sided context in formal

grammars. Information and Control 25 (1974) 371-392.

D. Rosenkrantz, Programmed grammars and classes of formal
languages. J. Assoc. Comput. Mach.

16 (1969) 107-131.

G. Rozenberg, TOL_ systems and languages. Information and

Control 23 (1973) 357-381.

G. Rozenberg, Direction controlled programmed grammars.

Acta Informatica 1 (1972) 242-252.

G. Rozenberg and A. Salomaa (ed.), L. Systems.
Springer Lecture Notes for Computer Science, Vol. 15,

(1974).

A. Salomaa, Theory of Automata. Pergamon Press,

Oxford (1969).

A. Salomaa, Ongrammars with restricted use of productions.

Ann., Acad. Sci. Fennicae, Ser. Al 454 (1969).

A. Salomaa, Matrix grammars with a leftmost restriction.

Information and Control 20 (1972) 143-149.

A. Salomaa, Formal L.anguages. Academic Press,

New York (1973).




	20050919094249_Page_01_Image_0001.tiff
	20050919094249_Page_02_Image_0001.tiff
	20050919094249_Page_03_Image_0001.tiff
	20050919094249_Page_04_Image_0001.tiff
	20050919094249_Page_05_Image_0001.tiff
	20050919094249_Page_06_Image_0001.tiff
	20050919094249_Page_07_Image_0001.tiff
	20050919094249_Page_08_Image_0001.tiff
	20050919094249_Page_09_Image_0001.tiff
	20050919094249_Page_10_Image_0001.tiff
	20050919094249_Page_11_Image_0001.tiff
	20050919094249_Page_12_Image_0001.tiff
	20050919094249_Page_13_Image_0001.tiff
	20050919094249_Page_14_Image_0001.tiff
	20050919094249_Page_15_Image_0001.tiff
	20050919094249_Page_16_Image_0001.tiff

