A SHORT DESCRIPTION OF
A TRANSLATOR WRITING SYSTEM

(BOBS - SYSTEM)

by

Bent Bruun Kristensen
Ole LLehrmann Madsen
Bent Baek Jensen

Soren Henrik Eriksen

DAIMI PB-41
October 1974

Institute of Mathematics University of Aarhus l }

Ny Munkegade - 8000 Aarhus C - Denmark

DEPARTMENT OF COMPUTER SCIENCE J{»

=1l
I

Phone 06-1283 55

A SHORT DESCRIPTION OF A TRANSLATOR

WRITING SYSTEM

(BOBS - SYSTEM)

BY

BENT BRUUN KRISTENSEN
OLE L EHRMANN MADSEN
BENT BAK JENSEN
SPREN HENRIK ERIKSEN

DEPARTMENT OF COMPUTER SCIENCE
INSTITUTE OF MATEMATICS

UNIVERSITY OF AARHUS
DENMARK

ABSTRACT

This paper is itself an abstract describing a translator-writing-system
called the BOBS-SYSTEM, which is an implementation of some of the
ideas in the Ph.D. thesis of De Remer.

De Remer's thesis describes closely the parsing techniques for the
hierachy of LR(K)-grammars. The main parts of the BOBS-SYSTEM
are described without many details. Appendix A is a short user manual

for the system.

This paper is a revised edition of DAIMI PB-11.

0. CONTENTS

Introduction

Notation

Global design of the system

3.1.

The Parser—-generator

3.1.1. Input of source grammar

3. 1. 2. Grammarchecks

3. 1. 3. Generation of the LLR(0) and extension to SL.R(1)/LALR(1)
3.1.4. Optimization

3. 1. 5. Output from the parser—-generator

. The parser

3.2.1. Lexical analysis
3. 2. 2. Syntax analysis

3.2.3. Error recovery

4, Evaluation

5. Further projects

6. - References

Appendix A: User manual for the BOBS-SYSTEM

A.

> > > >

[@)]

1

o & W N

Notation

Syntax . of input to the parser-generator
Error messages

The parser

Error recovery

Example

1. INTRODUCTION

This paper is a short description of a translator writing system called
the BOBS-SYSTEM. It is an implementation of some of the ideas in the
Ph.D. thesis of De Remer [1]. The class of grammars in consideration
is the LR(K)-grammars, first described by Knuth in [3], whose imple-
mentation requires very large tables. However De Remer claims that
by using his techniques one achieves parsers, which are competive in
both space and time with precedence parsers. Horning and L.alonde dis-
cuss this topic closer in [5]. De Remer defines a hierarchy of LR(K)-
grammars in ascending order of complexity by LR(0), SLR(K), LALR(K),
L{(MIR(K) and LR(K). What we have done is to implement a parserge-
nerator in the programming language Pascal [6] for the SL.R(1)- and
L.ALR(1) —grammars.

2. NOTATION

The reader has to be familiar with finite state machines (FsSmrs), deter-
ministic push down automata (DPDA's), and context free grammars, An

inadequate state is a State in the FSM where applying a production is in-
consistent with applying other productions or reading symbols at the sa-

me time,

3. GLOBAL DESIGN OF THE SYSTEM

First of all the system is divided into two parts:

1) the parser—generator

2) the parser

3. 1. THE PARSER-GENERATOR

In further detail you can divide the parser-generator in the following

parts:

1) input of source grammar
2) grammarchecks

3) generation of the L.R{0)-machine

3.

4) Extension to SLLR(1)/LLALR(1) through look-ahead
5

)
)
6) Conversion to DPDA (deterministic push-down automata)
7)

Optimization according to De Remer

Further optimizations

1. 1. INPUT OF SOURCE GRAMMAR

The source grammar has to be written in a slightly modified BNF

(Backus Normal Form).

3. 1. 2. GRAMMARCHECKS

This part can be used as an independent part of the system, If you are

designing a grammar for a language it has turned out, that the implemen—

ted grammarchecks are very helpful . But of course the grammarchecks

are an important part of the system as a whole because you cannot pro-
b

duce the LR{0)-machine for an ambiguous grammar,

The following i s a description of the grammarchecks that the system

performs:

1) Left and right recursion,

The systems checks, whether any nonterminal is both

left and right recursive, If so, the grammar is ambigious,

2) Termination,

The system checks, that all nonterminals can produce a

string of only terminals,

3) Erasure.

The system checks,whether any nonterminal can produce
the empty string. If so the grammar is modified so it cannot,

(The modified grammar produces the same language).

4) tdentical productions,

The grammar is modified by removing the needless pro-

ductions,

5) Unused productions.

The system checks, that every nonterminal except the
goalsymbol appears in both left andright side of a

production,

6) Removing simple productions.,

A simple production is a production, of which left and
right side consists of only a single nonterminal, and
the left side nonterminal does not appear on the left
side of any other production, The grammar is modifi-

ed by eliminating all the simple productions,

7} Connection,

The system checks,; that all nonterminals can be derived

from the goalsymbol,

3.1.3. GENERATION OF THE LR(0) AND EXTENSION TO SLR(1)/
LALR(1)

- The LR(0)-machine is derived by using the technique developed by De
Remer in [1] and [2]. If the LR{0) is generated without any inadequate
states, then the source grammar is LLR(0), On the contrary, if inadequa-
te states exist, you have to repair the machine by making look-ahead.
In our case we have implemented the global one [ook-ahead (SLR(1))
and the local one look-ahead (LALR(1)) and if this is not sufficient one

has to change the source grammar.

3.1.4. OPTIMIZATION (5,6 and 7).

If the source grammar happened to be LLR(0), SLLR(1) or LALR(1), you

will get a rather big machine in both space and time.

The most important optimizations suggested by De Remer and Lalonde

[4] are therefore performed at this point.

3.1.5. OUTPUT FROM THE PARSER~GENERATOR

1) A list of the source grammar, exactly as you have
written it. Any error according to the syntax of

input is marked,
2) The results of the earlier mentioned grammarchecks,

3) The grammar written ina nice BNF with possible modi-

fications.

4) Description of states which are not SLR(1)/LALR(1).

5) An error message table for use when parsing a siring

in error.

6) The parsetables (the optimized machine) in the form

of a selfcontained Pascalprogram.

If there are errors in input you will only get 1. Logical errors in the
grammar will give you 1, 2 and 3. If there are no logical errors and
the grammar is not SLLR(1)/LALR(1) you will also get 4. In the case
that the grammar is SLR(1)/LALR(1) you will get 1, 2, 3, 5 and 6.

In addition there exist several other output facilities, mentioned in

[9] but they are only of little interest for this paper.

3. 2. THE PARSER

As mentioned the parser is a pascal-program, which without changes will
check the syntax of an input-string written in the language defined by the

source~grammar, If you want to add semantic actions this is possible.

The parser is roughly divided into three parts:

1) Lexical analysis
2) Syntax analysis

- 3) Error-recovery

3.2. 1. LEXICAL ANALYVYSIS

Because of the important role of an effective lexical analysis for the parser
several are designed, Two are to be mentioned here. The first is a fairly
general but simple one which only transforms the sourceinput into a string
of internal values, The second is of greater importance in our point of
wiew, since it collects identifiers, constants and strings {defined in a
Pascal-like manner), which makes the tables smaller and the parsing fas-

ter,

3.2.2. SYNTAX ANALYSIS

The syntax analyser uses the machine produced by the generator, to parse

the input-string. When the syntax analyser makes a reduction a procedure
ICODE! is called with the number of the production (reduction) as a parameter.
The user may then decide, what kind of semantic action, he wants to per-
form, This is done by writing the body of the procedure 'CODE!', which

is the only place one has to change the program but of course you may also

add new procedures and declarations,

3. 2. 3. ERROR-RECOVERY

Discovering an error under parsing, an error-recovery algorithm is cal-
led, which in a Pascal~like mannermarks the error-symbol (with marks
under error-symbols and matching numbers in the margin), and try to re-

cover theerror and continue parsing.

4. EVALUATION

The system has been used in a variety of different projects. A compiler
for the language PASCAL [6,7] has been based on the system. The PAS-
CAL grammar consists of more than 250 productions and the generated
LALR(1) tables occupie about 1100, 60 bit words on a CDC 6400. Com-
pared with the Zurich Pascal Compiler (version 6.Sept. 72) the needs

for core and execution time are nearly the same.

Inside our department the system has been used for various compilers

and assemblers. Also it Is used in a compiler course, at which the stu-

dents have to write a small compiler. At the Danish Data Archieves™®

the system has been used to implement special purpose languages, which
are designed to ease for example the use of libraries of statistical pro-
grams, the handling of files and the controlling of data bases. It is of

great advantage to be able to experiment with such langauges.

We conclude that the system is usable in practice and that experience

has shown that it is easy to modify grammars to become SLR(1) or LALR(1).
The work was started as an undergraduate project under the guidance of
Mr. P. Kornerup whose good ideas and great interest have been of great

help to the accomplishment of the project.

5. FURTHER PROJECTS

As the work has been moving along new projects have arisen. Automatic
error recovery in LR-parsing [8] has been studied. For the time being
the problem of defining semantics is studied. One project is to extend the
system with the Oxford semantic [10]. Another project is to extend the
system with facilities for handling symbol-tables, type-checking etc.

as used in practical compiler-writing.

Unfortunately the implementation of the system depends on the PASCAL
implementation (version 6. Sept. 72) available on CDC 6400. However
a standing project is a new implementation of the system to make it

completely portable.

* An institution under the Danish Social Science Research Council

REFERENCES

[1]

[2]

[3]

[4]

[5]

(8]

[7]

De Remer, F,L_,

"Practical Translation for LLR(K) L.anguages!",

PH. D, Thesis, Massachusetts Institute of Technology,
Cambridge, Mass, August 1969,

De Remer, F,L..
"Simple LR{K) Grammars",
CACM p, 453-459, (14,7,1971)

Knuth,D, E,
"On the Translation of LLanguages from L.eft to Right'',
INF, and CONT, p, 607-639, (oct, 1965),

L.alonde

"An efficient LLALR-Parser-Generator!,

Tech, Report CSRG-2, University of Toronto,
Toronto, Ontario, 1971,

Horning, J, J,

L_alonde, W, R,

"Empirical Comparison of LLR{K) and precedence Parsers',
Tech, Report CSRG-1, University of Toronto,

Toronto, Ontario, 1970,

Wirth, N,
"The Programming lLanguage Pascall!
ACTA informatica 1,35-63(1971).

Bent. B. Kristensen, Ole L. Madsen, Bent B. Jensen
"An Implementation of a Pascal Compiler!
Unpublished paper, April 1974

Daimi, University of Aarhus

(8]

[o]

[10]

Bent B. Kristensen

"Erkendelse og korrektion af syntaks fejl under LR-parsning!

Master Thesis in danish, May 1974.

Daimi, Aarhus Universitet

Bent B. Jensen, Ole L. Madsen, Bent B. Kristensen,
Séren H. Eriksen

"BOBS-SYSTEM brugervejledning {In Danish)!!
Daimi Pb. No. 10, December 1972

Aarhus Universitet

P. Mosses

"The Mathematical Semantics and Compiler Generation!!
Ph. D. Thesis, In preparation September 1974

Oxford University Computing Laboratory

Oxford, England.

APPENDIX A

USER MANUAL FOR THE BOBS-SYSTEM.

This paper is an abbreviated, but complete (hopefully) English
version of the BOBS-system uder manual (BOBS-SYSTEM,
BRUGERVEJLEDNING, DAIMI pb. no. 10 and 22).

A. 1 NOTATION

<A> metavariable

>

at most one of the clauses A,B or C may occur (i.e.

B .
! optional clause)
L.C.
precise one of the clauses A,B or C must occur
B
C

.o the preceding clause may be repeated zero or more times.

A.2 SYNTAX OF INPUT TO THE PARSER GENERATOR.

[OPTIONS (<OPTION-NUMBER> [, KOPTION-NUMBER>]...)]
[<METASYMBOL.-DEFINITIONS>]
{<TERMINALS <Ma3)

[STRINGCH=<CH> <M4>]

[GOALSYMBOL =<NONTERMINAL > <M4>]
{ < GRAMMAR-RULE > [<METASYMBOI_—DEFINlTlONS>]}. ..

{<M4>}

COPTION-NUMBER>

is a integer from 1 to 30. Most of the options are for test purposes and
some may cause an error in the generated parser. The most useful
ones are: 1,6,8,9,10, 11, 26, 27, 30.

1 Internal values of all terminals are printed,

6. Internal values of all nonterminals are printed,

8. No listnhing of input to the generator,

9, No output frem grammar checks.
10

11. No listning of error message table,
26, Extended parser with NAME, KONST and STRING,
27. LALR(1) lookahead instead of SLLR(1) lookahead.

No listning of grammar in BNF.

30. The LR(0) machine is printed,

<METASYMBOL~-DEFINITIONS >

METASYMBOLS M1=<CH> M2=<CH> M3=<CH> M4=<{CH>

Correspond to the following symbols in BNF:

M1 is the same as :i=

M2 is the same as |

M3 is the same as < and >

M4 indicates the termination of a sequence of alternatives in a

grammar rule.

M1, M2, M3, M4 must all be different.
Default metasymbols are:
Mi== M2=/ M3=< Mi=;

"1

<TERMINAL >

All terminal symbols used in the grammar must be listed. A terminal
symbol consists of a most 10 characters. The character set has

been divided into two classes:

1. Letters and digits

2. All other characters except space and end-of line(eol)

All the characters forming a terminal must belong to the same set
of the above groups. Terminals consisting of symbols from group1
must start with a letter. The terminal symbols in the list must be

delimited by spaces and/or‘ end-of lines.

The following terminals have a special interpretation. If they are

used. in the grammar, they must be listed among the other terminals.

EMPTY denotes the empty string.

NAME an identifier is legal in this place of the grammar. {a
sequence of letters and digits, with the first symbol

being a letter).

KONST a constant is legal in this place of the grammar. (a
sequence of letters and digits, with the first symbol

being a digit).

STRING a string is legal in this place of the grammar. A string
is a sequence of characters surrounded by a string-
escape~character (see later). If the string-escape-
character is used in the string, it must be written two

{imes per occurence.

STRINGCH=< CH> < M4>

Defines the string~escape~character to be the character <CH>.
It must not be part of any other terminal symbol. No default value

exists.

12

GOAL SYMBOL =<NONTERMINAL > <M4>

Defines the nonterminal to be the goalsymbol of the grammar. If
not present the first nonterminal met in the grammar is assumed
to be the goalsymbol. The generator always adds the following

grammar rule (production no. 0):

<{BOBS-GOAL> i:= <GOALSYMBOL > end-of-file

< GRAMMAR-RULE >

<M3> <NONTERMINAL > <M3> <M1>
CALTERNATIVED> [<M2> <ALTERNATIVE>]...<M4>

CALTERNATIVE>

<M3> <KNONTERMINAL> <M3>
<TERMINAL > “os

The terminals in a grammar rule may not contain any of t he metasymbols
currently defined, If they do, the metasymbols must be redefiried, The

terminals in the list must be delimited by spaces and/or end-of lines.

<M1>, <M2>, <M3>, <MA>

Denotes the metasymbols definedpy the last metasymbol~definition

statement.

<NONTERMINAL >

A sequence of characters not containing the current <M3>, Spaces

and end~of-lines are skipped.
<cH>

Any character except letters, digits, SPa3<® and end~of=~line,

A.3 ERRCR MESSAGES.

Two types of error messages can occur:

1. Error messages according to syntax errors in the input to the
parser generator. If an error is met in a grammar rule, the

message is prinited after the next <M4>.

2. Errors caused by table overfiow in the parsergenerator. The

appropriate constant must be changed in the parser generator.

A.4 THE PARSER.

NOTE: option 26 must be set when using the parser described in this
paper,

When using the parser generator, the parser must reside on the
local file PARSIN. The parser generator delivers the parser with
initialized tables on the file PARSOUT. The user can extend this
program with semantic procedures. MNew variable declarations
are not allowed before the comment:

» ~end-of-parser-~variables-4¢

The terminal symbols in the string to be parsed must be delimited by
spaces or end-of-lines. However two terminals may be concatenated
if they are not in the same group of characters (see < TERMINAL>).
Terminals from group2 may be concatenated if they do not together

form the head of another terminal.

If NAME, KONST, and STRING are used one can get access to the
last sequence of characters which has formed a NAME, a KONST
or a STRING.

The array NAMECH contains the last scanned NAME from cell1 to
cell NAMENO.

The array KONST contains the last scannhed KONST from cell 1 to
cell KONSTNO.

13

14

The array STRING contains the last scanned STRING from cell1
to cell STRINGNO.

NAMENO, KONSTNO, STRINGNO are integers variables.

Note that the grammar must be formed so the semantic procedures
can do something to the above arrays before they are overwritten
by the next occurences of a NAME, KONST or STRING on input.
However in very special cases this may not be possible. A warning
message is then given by the generator and the grammar should be

modified,

A.5 ERROR RECOVERY.

If an error is detected by the parser, the involved symbols are

marked with "1, 1Ll op 14t 141 means that the symbol is illegal
in this place; "_I" means the same, but the symbol has been deleted
by the error recovery routine. '+ means that the symbol has been

inserted before the preceding symbol.
Example:

GRAMMAR:

CEXPRESSION>::= KEXPRESSIOND> + <TERM> | <TERM>
KTERM>::= <PRIMARY> * <TERM> | <PRIMARY >
<PRIMARY >::= NAME | (<EXPRESSIOND)

INPUT To THE PARSER:!

(AB-CDE)))+*FG)

OUTPUT FROM THE PARSER:

(AB=CDE +))) +(* NAME FG) 2 0 3 0 1 0
- + —-— A +

INTERPRETATION OF QUTPUT FROM THE PARSER:

(AB+CDE) + (NAME*FG)

As can be seen, + and NAME is inserted,

15

16

A.6 EXAMPLE

card deck :

DATZZ yCMLT7000.

RFL 2000,
ATTACH,BOBS,BOBSSYSTEM,ID=DATZZ.
ATTACH,PARSIN, ROBSSYSTEM,ID=DATZZ,CY=3.
RFL,100.

RFL 47000,

PASCAL ;LOAD=BORBS,

REWIND sPARSOUT.

PASCAL ,P=PARSOUT ,L=NIL.

P
I
¢

OPTIONS{2B)
METASYMBOLS Mize M2=% M3=Z Mi=y
DECLARE IF THEN ELSE FI WHILE DO OD
READ WRITE {) EOL [1 < € = ¢ 2 3 + = / %
+ 3 3 £ 3= EMPTY KONST NMAME
ZPROGRAME » ZDECLARATIONT ZSTATEMENT-SEOZ. ¥
ZDECLARATION= ¢ DECLARE ZVYARLIST= ¢
T EMBTY
SYARLISTZ o ZYWARLISTE 4 ZITEME $ ZITEME 9
ZITEMZ » ZIDE 3 ZIDZ I ZCONSTANTZ 2 ZCONSTANTZE 1 4
“STATEMENT-SEQZ p» ZSTATEMENT-SENQZT § =STATEMENTZ $ Z=SSTATEMENTZS
SSTATEMENTE » EMPTY
$ ZVARIABLEZ 3= ZEXPEZ
$ IF ZEXPZ THEN =ZSTATEMENT-SEQZ ELSE =STATEMENT-SEQZ FI
$ WHILE ZEXPZT DO ZSTATEMENT-SEQ= 0D
$ IF ZEXPT THEN ZSTATEMENT-SEQS FI
$ READ(ZVARIABLEZ) $ WRITE(SEXPZ) $ EOL ¥
ZEXPZ ¢ ZAEXPz ZRELOFZ ZAEXPEZ 8§ ZAEXPE 4
TAEXP= p ZAEXPT ZADDOPz =TERMZT $ ZTERMT
ZTERMZ p» ZTERMT ZMULTOPz =PRIMARYZ 3 ZPRIMARYZS ¢
TPRIMARY T p ZVARTIABLEZ $ ZCONSTANTZE $ (ZEXPZ) ¥
SZVARTABLE=Z » ZIDE § ZIDZ [ZEXPZ 1 ¥
SRELOPZ p « §$ £ 3 £ 3 =35 >3 2
ZADDOPE p + F - ¢
ZMULTOR= p % § /7 3
=10z » NAME
ZCONSTANTZ p KONST $ + KONST § - KONST
¥
DECLARE NyUB,LBsIsTo4BOO,SUMIDE2]
READI(N) ¢ READ{UR)Y S READ(LB)
Tg=1¢
WHILE I<N DO
READ(T) ¢
IF 0=7 THEN
BOO2=(LBSTY*{T2UB) 3%
SUMIBOOIS=SUMIEQQOI+ROD*T*1
SUMIBOO]+=SUMIROOI+(1-B00)X*7/1
FIs
Ii=1+1
0n3
SUMIA+1 18={(SUMIOI+SUMI11)*{(UB-LB)/ (UB+LBY) /2
WRITE{SUMIZ]} e

¥y yxaxxrx A L IST OF INPUT WITH POSSIBLE ERRORMESSAGES ¥ ¥exxyxxsryx
17
OPTIONS{286)
METASYMBOLS Mi=p M2=3 M3== Mi=y
DECLARE IF THEN ELSE FI WHILE DO 0D
READ MWRITE () EOL [1 < £ = ¢ 2 > + = /[¥
s 3 3 % 3= EMPTY KONST NAME ¢
ZPROGRAMEZ » ZDECLARATIONZ ZSTATEMENT=-SEQZ. ¢
“DECLARATIONZ » DECLARE Z=VARLIST:Z 3
$ EMPTY ¢
ZVARLISTE » ZVARLISTZ 4 ZITEMZ $ ZITEMZ
ZITEMZ p ZIDZ $ ZIDZ [ZCONSTANTZ ¢ ZCONSTANTE 1 ¥
zSTATEMENT-SEQZ o ZSTATEMENT-SEQZ § =STATEMENTZ § Z=STATEMENTZ=
=STATEMENT= o EMPTY
$ ZVARIABLEZ 3= ZEXPZ
3 IF ZEXPZ THEN ZSTATEMENT~SEQZ ELSE ZSTATEMENT-SEQE FI
¥ WHILE ZEXPZ DO =STATEMENT-SEQZ QD
$ IF ZEXPZ THEN ZSTATEMENT-SEQZ FI
$ READ{ ZVARIABLEZ) 3 NQITE{ ZEXPZ) $ EOL ¥
—EXPz p ZAEXPZ ZRELOPZ ZAEXPZ § ZAEXPZ ¥
ZAEXPZ p ZAEXPT ZADDOPE ZTERMZ $ ZTERME
ZTERMZ p ZTERMz ZMULTOPZ ZPRIMARYZ % ZPRIMARYZ 4
ZPRIMARYZ p ZVARIABLEZ 3 ZCONSTANTZ $ (ZEXPzZ) ¥
ZVARIABLEZ » ZIDZ @ =ZIDz [ZEXPZ 1 ¥
ZRELOPZ » < 3 2§ 2% =85> 3% 2 9
ZADDOPZ ¢ + $ - ¥
ZMULTOPZ p * § /7 3
=IDZ » NAME
ZCONSTANT=Z p» KONST $§ + KONST % - KONST ¢

¥

FRAREFHRELEER GRS XLRRERRFLERR END OF LIST FHFFXEXPERARRR R LR LERRER RN XN

¥

18

FHPFEERRRERERFERREFRFEFERFEE GRAMMARC HECKS H XXX EXXTRELXFRFRLEREREBEEER

IT HAS BEEN CHECKED THAT ALL NONTERMINALS
EXCEPT THE GOALSYMBOL APPEAR IN BOTH
LEFT AND RIGHTSIDE OF A PRODBUCTION

IT HAS BEEN CHECKED THAT THERE
EXISTS NO IDENTICAL PRODUCTIONS

THE GRAMMER HAS BEEN CHECKED FOR
SIMPLE CHAINS

IT HAS BEEN CHECKED THAT ALL NONTERMINALS CAN
PRODUCE A STRING OF ONLY TERMINAL SYMBOLS

THE GRAMMAR IS MODIFIED FOR ERASURE
I. E. NO NONTERMINAL TAN NOW PRODUCE THE EMPTY STRING

IT HAS BEEN CHECKED THAT NO NONTERMINAL
IS BOTH LEFT AND RIGHYT RECURSIVE

¥EXIXZ XXX EXEE THE GRAMMAR BEFORE CONSTRUCTION OF THE LRO (¥¥X¥¥¥¥X¥XXELEE 49

1
2
3
&
5

1§
7
8
g
10

11
12

13
14

15

16
17
18

19
24
21
22
23
2L
25
26
27
28
29
30

31
32

33
34

35
36

37
38
329
40
LS
L2

43
Ll

L5
Lt

47
48

49
50
b1

<PROGRAM> 22= <DECLARATION> <STATEMENT-SEG>» o
/ <DECLARATION> .

/ <STATEMENT=-SEG>» .
/

<DECLARATION> 22= DEGCLARE <VARLIST>

1

<STATEMENT-SEQ> $3= <STATEMENT~-SEQ> § <STATEMENT>
3 <STATEMENT>

<STATEMENT-SEQ>»

14

AT R

?
<STATEMENT>

<VARLIST> , <ITEH>
<

= KONST
/7 + KONST
/ - KONST

<STATEMENT> 2% <YARIABLE> 3= <EXP>

IF <EXP» THEN ELSE FI

WHILE <EXP> DO <STATEMENT-SEQ> 0D
WHILE <EXP> DO 0D

IF <EXP> THEN <STATEMENT-SEG> FI
IF <EXP> THEN FI

READ (<VARIABLE>)

WRITE (<EXP>)

EOL

MmN N N SN N S N N

<VARIABLE> 2:= <ID>

/7 <ID> [<EXP>]

<EXP> $2= <AEXP> <RELOP> <AEXP>

/ <AEXP>
<BEXP> 23= <AEXP> <ADDOP> <TERM>
s/ <TERM>
<RFELOP>» $131= <
7/ s
A=
S =
7 >
/7 2

<ADDOP> 3132

o

~

<TERM> 2= <TERM> <MULTOP> <PRIMARY>

7/ <PRIMARY>

<MULTOP> 33= %
/7

<PRIMARY> $i1= <VARIABLE>
/ <CONSTANT>»
f (<EXP>)

IF <EXP> THEN <STATEMENT-SEQ> ELSE
IF <EXP> THEN <STATEMENT-SEQ>» ELSE FI

<STATEMENT-SEQ> FI

IF <EXP> THEN ELSE <S3STATEMENT-SEQ> FI

20

P R Ry Y Ry Y I T YRS TR

THE GRAMMAR

Is SLR1

P R R R R Y Iy I Ly Y Y T s

P T SRy S Y

ERRORNG # 0

FRRORNG ¢
108
2 3
3 ¢
L 2
5%
£ ¥
7 3
A 32
G 3

io 32
11 ¢
i2 3
13 %
14 %
15 ¢
i6 %
17 3
i8 %
19 8
20 3
21 3
22 %

#% SPECIAL ERROR **

COMPILER ERROR MESSAGES

EXPECTED SYMABOL 2

READ
{

KONST

NAME
Do

ad

WRITE
THEN

ELSE
READ

FI
WRITE

FI
ELSE
an
KONST

e
?

WRITE

~EOQOF-

DECLARE

WRITE

KONST

®

3
EOL

FI
WRITE

3
EOL
3

FI

e

b1

5
EOL

’ IF
EOL NAME
+ -

IF WHILE
NAME

H IF
EOL NAME
IF WHILE
NAME

IF WHILE
NAME

RERFELE LR LEL SRR RR R RN

WHILE

NAME

READ

WHILE

READ

D R R S Iy Ry e ey

21

NOTICE: BOBS-PARSER WITH #NAME# , ZKONST# AND #STRING# MUST BE USED

Qutput from the parser

DECLARE NoUBsLBsI:T,B00,SUMID2213
READ(N) 3 READ(UB) § READ(LRB)
I2=1%
WHILE I<N DO
READ(T) 3
IF 0<T THEN
BOD2=(LBST) ¥(T<UB) 3
SUMIBOOI:=SUMIBOOI+BOO*¥T*]}
SUMIBD0I3=SUMIB001+(1-BO0Y*T/1I
FIs
I3=1+1
00
SUMI1+1 8= ((SUMTDI+SUMTI1 D) ¥(UB~-LB)/ (UB+LR)) /23
WRITELSUMIZ2T)

COMPILATION-TIME 3 De 137 SEK.

	20050919093926_Page_01_Image_0001.tiff
	20050919093926_Page_02_Image_0001.tiff
	20050919093926_Page_03_Image_0001.tiff
	20050919093926_Page_04_Image_0001.tiff
	20050919093926_Page_05_Image_0001.tiff
	20050919093926_Page_06_Image_0001.tiff
	20050919093926_Page_07_Image_0001.tiff
	20050919093926_Page_08_Image_0001.tiff
	20050919093926_Page_09_Image_0001.tiff
	20050919093926_Page_10_Image_0001.tiff
	20050919093926_Page_11_Image_0001.tiff
	20050919093926_Page_12_Image_0001.tiff
	20050919093926_Page_13_Image_0001.tiff
	20050919093926_Page_14_Image_0001.tiff
	20050919093926_Page_15_Image_0001.tiff
	20050919093926_Page_16_Image_0001.tiff
	20050919093926_Page_17_Image_0001.tiff
	20050919093926_Page_18_Image_0001.tiff
	20050919093926_Page_19_Image_0001.tiff
	20050919093926_Page_20_Image_0001.tiff
	20050919093926_Page_21_Image_0001.tiff
	20050919093926_Page_22_Image_0001.tiff
	20050919093926_Page_23_Image_0001.tiff
	20050919093926_Page_24_Image_0001.tiff
	20050919093926_Page_25_Image_0001.tiff

