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Absiract:

This paper provides a method of '"decomposing!' a subciass of
ETQL languages into deterministic ETOL languages. This allows
one to use every known example of a language which is not a deter-
ministic ETOL. language to produce languages which are not ETOL

languages.




I. INTRODUC TION

The theory of L systems originated from the work of A. Lindenmayer
{see L.indenmayer [1 3] ). Although initially proposed as a theor*y for the
development of filamentous organisms, in the last four years it turned
out to be useful and interesting from both the biological and formal points
of view (see e.g. Herman and Rozenberg [1 1 ] , and Rozenberg and Sa-
lomaa [16]).

One of the central families of L. languages (that is languages
generated by L. systems) is the family of ETOL languages (see, e.g.
Downey [ 2], Rozenberg [15] and Salomaa [18]). An important research
area in the theory of ETOL. systems and languages is to provide results
which would facilitate proofs that certain languages are not ETOL. lan-
guages. Although some such results are already availabie (see, e.g.
Ehrenfeucht and Rozenberg [ 41, and Ehrenfeucht and Rozenberg [ 5]),
a lot of work in this direction remains to be dorie.

This paper provides a criterion for proving that some languages
are not ETOL languages. In fact it shows how, in certain cases, tore-
duce this problem to proving that some languages are not deterministic
ETOL languages (see Rozenberg [1 5] and Ehrenfeucht and Rozenberg
[6]). This is a great help indeed, because it is easier to investigate the
structure of derivations in a deterministic ETOL system, and quite a
number of examples of languages that are not deterministic ETOL. lan-
guages are already availabie (see, e.g. Ehrenfeucht and Rozenberg
[7] and Ehrenfeucht and Rozenberg [8]).

As a corollary of our results we get that the family of ETOL. lan-

guages is strictly included in the family of index languages of Aho (see,



Aho [1]). This was quite an important open problem of a rather
long standing (see, e.g. Downey [ 2], Salomaa [18] and Salomaa [19]).
We assume the reader to be familiar with rudiments of formal

language theory, e.g. in the scope of the first four chapters of Hop-

croft and Ullman [10].



1. DEFINITIONS

In this section we provide definitions and examples of systems

and languages used in this paper.

Definition 1

An extended table L. system without interactions, abbreviated as an

ETOL system, is defined as a four-tuple G =<V, ? ,w,Z> such that:

(1)  Vis afinite set (called the alphabet of G),

(2) Pis a finite set (called the set of tables of c), P= {P] yo oo ,Pf}

for some f = 1, each element of which is a finite subset of

VvV x v¥. P satisfies the following (completeness) condition:

(™ P)
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(3) we€ \/+ (called the axiom of G),

(& a)y, (4 @) (€a,a> € P),

(4) T <V (called the target alphabet of G).

We assume that VV, 2., and each P in P are nonempty sets.

Definition 2
? +
Let G =<V, ,w,2 > be an ETOL system. Let x€ V ,
X=ag...a, where each a., 1 = j=< k, is an element of VV, and let
J
y € V¥ . We say that x directly derives y in G (denotes x = y) if

G
and only if there exist P in ? and PpaeeeaPy in P such that

Py =<a;,0y >, Py =<a,,0,>, ... ,P = <a,0, > (for some Opyeee,0 € v*)
and y =a1 .. .cxk. Also A = A. We say that x derives vy in G (dencted
*
x g y) if and only if either (i) there exists a sequence of words
X1 Kq oo X 0N V¥ (with n> 1) such that Xg =% X, =y and

Xy = X

08 % P xn;or‘(ll)x=y.

= XA e
G 2 G



Definition 3.
Let G =<V, ? , W, > be an ETOL. system. The language of G

*
(denoted as L(G)) is defined as L(G) = {x € 2% : w g x}.

Definition 4

An ETOL system G =<V, 7 ,Ww,2 > is called deterministic

(abbreviated EDTOL sxstem) if for each P in fpand each a in V there
exists exactly one & in V¥ such that <a, o> € P. It is called a TOL
system if V = 2. (Thus a DTOL system denotes a deterministic TOL.

system. )

Definition 5

Let T be a finite alphabet and K € 2 *. K is called an ETOL
(TOL, DTOL., EDTOL) language if and only if there exists an ETOL
(TOoL, DTOL, EDTOL) system G such that L(G) = K.

We shall use £(ETOL), £(TOL), £(DTOL), and £(EDTOL) to

denote classes of ETOL, TOL, DTOL, and EDTOL languages respectively.

Definition 6
Let G =<V, P ,w,5> be an ETOL system. For P in % let

C(r) denote the subset of ZP defined as follows: for arbitrary T in

Zp, T € C(P) if and only if for every a in V there exists exactly one

¢ in V¥ such that <a,a> € T.

Now an ETOL system H =<V, iz ,w,=> is called the combinatorially

complete version of G if P={T:TEC(P)for some P in ?} .

We have now the following obvious result.



L.emma 1

If H is the combinatorially complete version of G, then

L(H) c L(G).

Notation and Terminology

LetG =<V, P ,w,5Z> be an ETOL system.
(i) If <a,@> is an element of some P in P, then we call it a

production (for a in P) and write a » o.
- - P

(i1} We can talk about words over ? (thus elements from ?*) re—
presenting functions from V¥ into V* in the obvious sense. Thus for
a word x over V¥ and for a word T over 2 * we use T(x) to denote
the set of all words that can be obtained from x when applying the

sequence of tables T.

(ii1) A coding is a homomorphism which maps a letter into a letter,

Example 1

Let G? =< {a,b,A,B,C,D,F}, .?, cD, {a,b} > where
P={P,,P,P5} and
P, ={a+F, baF, A+ A, B+ B, C+ACB, DDA, F »F|
P, ={a+F, baF, A»A, B+B,C~CB, D+D, F~F|
= ={aaF,baF, Ava, Bab, Cax,D=» X, FaF}.
G, is an EDTOL system and L_(O )—-{anbman:nz 0, m=nj.

1

Example 2

Let G {abAA B,8',C,C! F} , ABC, {a,b}>wher‘e

2"
P ={P} and
P=f{a+F,baF,caF, A+A'A, A»a, B+B'B, B+b, C~+C'C,

CHc, A2 A, Alaa, B'+»B!, B'2b, C'2C!, Cla+c, FF}.



Gz is an ETOL. system {(but not an EDTOL system) and L(G) =
{ahbncrn cnz14.



. RESULTS

In this section we shall present the main result of this paper

(Theorem 2).

First however we need a definition {(Definition 7) and an

auxiliary result (Theorem 1) which is interesting on its own.

Definition 7
Let G =<V, ?,w, V> be a TOL system and h a homomorphism
from V¥ into Z¥*. Let b be in V.

(N We say that b is a (G, h)-nondeterministic letter if the following

conditions hold:

1. There exist words X1 9% Xg in V¥ such that
% b><2b><3 is in L(G).

2. There exist T in P* and Yi:Yy in T(b) such that
h(y1)?é hiy,).

(ii)  We say that G is h-deterministic if V does not contain (G, h}-

nondeterministic letters.

Theorem 1

L.et G be a TOL system over an alphabet VV and let h be a
homomorphism on V¥ . If G is h-deterministic then there exists a

DTOL system H such that h(L.(H)) = h(L(G)).

Proof

Let H be the combinatorially compiete version of G. From Lemma 1

it follows that h(L.(H)) c h(L(G)).
On the other hand as G is h-deterministic, it is clear that

h(L.(G)) < h(L.(H)) (this can be easily proved, and we leave the proof

to the reader). Thus h{lL{H)) = h{L(G)).



Theorem 2

Let 21 ;L , be two disjoint alphabets. Let K, & Z«f y Ky Z;
and let f be a surjective function from Ki onto KZ' Let
K = {wf(w) : wE€ Kl }. (i) If K is an ETOL. language then Kz is an

EDTOL language. (ii) Moreover if f is bijective then also Ky is an

EDTOL. language.

Proof

L et us assume that K is an ETOL language. It is well known
(see Ehrenfeucht and Rozenberg [1 0]) that each ETOL language is
a coding of a TOL language. Thus there exist a TOL system
G=<Vv, ?,w,V> and a coding h from V¥ into Z* (whereZ =L, U Z,)
such that K = h(L(G)). Let h, be a homomorphism from V¥ into L¥
defined as follows:
h(a) if h(a) € Ez,

for a in V, hz(a) =
A otherwise .

We shall prove first that G is hz—deterministic. This will be
accomplished once wehave shown that for every b in V whenever
% b><2bx3 € 1.(G) (for some Xy 9 Xgs X g inV¥)and 1 € 7% then for every
Yi2Yo in 7(b) we have hz(yl) = hz(yz). To prove this we have to con-
sider 3 cases.
(i) hiy,) €Z].

But,for every _>-<1 in 7(x, ), ">~<2 in T(x,) and ;3 in 'r(x3),

h(3'<1 )h(yz)h(iz)h(y1 )h(—>Z3) € K and so h(yz) € ZJ?.

Thus h,(y,) = h,ly,) = A.
(i) hiy,) €T .

But, for every X, in T(x] ), X, in T(xz) and X in 'r(><3) and for
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every i,j in{1,2}, h('>?1 )h(y. )h(x

: 2)h(yJ.)h(3<‘3) € K with

—_ - + - * =
1) =2,z for some z, in 21 and z, in Ez where f(z1)

zzh(3<'1 )h(yi)h(SZ2 j 3l

h(X

Thus h(yj) = h(yz) and so hz(y1) = hz(yz).
(iii) hly,) = A.
Note that if we assume now that h(yz) € EZ then, almost re-

peating the reasoning from (ii) we get that h(yz) = h(y1 ), a

-+

contradiction. Also it is clear that h(yz) cannot be in 2 EZ .

Thus h(yz) € ZJT and consequently hz(yz) =A = hz(y1 ).

Now if one notices that h(‘y1) cannot be in Z}:— Z}; then it is clear that
the above three cases exhaust all possibilities. But in each of these
cases we have hz(y1) = hz(yz) which proves in fact that G is h,~-deter-
ministic,

(1) Now the proof that K, is an EDTOL language goes as follows.

2
The function T is an onto function and so hz(L(G)) = hZ(K) =

{f(w) T w € K1} =K Thus by Theorem 1 there exists a DTOL system

o

H such that h,(L(H)) = h,(L(G)) = K,. But it is well known (see Nielsen,

2 2 2°
Rozenberg, Salomaa and Skyum [14], diagram D7) that if a language
is a homomorphic image of a DTOL language then it is an EDTOL
language. Consequently Kz is an EDTOL language which completes
the proof of part (i) of the theorem.

(ii) To prove that K, is an EDTOL language (if f is bijective) we

1

proceed as follows. (For a word x, Xenir denotes the mirror image of

x and for a language M, M_. = { X . 1 x€ M} ). Letf . be a function
mir mir : mir
. . , - (s . _
from K1 mir into Kz mir defined by fmir‘(x) y if and only if f(xmir‘)
y . . Itis clear thatf . is a bijection from K . onto K . . But
mir mir 1 mir 2 mir
- ) o ] X
Kmir‘ h {(f(w))mir' Wenir © Ymir € K‘i} §Xfmir*(x) P € KZ mir‘} .
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Applying Theorem 2 to the language Kmir‘ we get that Ir<1 mip 1S

an EDTOL language. But, obviously, the class of EDTOLL languages
is closed with respect to the operation of taking the mirror image and

so K, must be an EDTOL language. Thus (ii) is proved.

1
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V. APPLICATIONS

We will provide now several examples of languages which are
not ETOL languages. As we will do it with the use of Theorem 2, let

us first recall some examples of languages that are not in S{(EDTOL).

Lemma 2 (Ehrenfeucht and Rozenberg [3] or Ehrenfeucht and

Rozenberg [7].)
Let W, = {x € {0,1}+: | x| = 2" for some n= 0} . w, ¢ S(EDTOL).
Lemma 3 (Ehrenfeucht and Rozenberg [8])
lLet, for each i =1, Ei = {1[,...,i[,9,...,]]} and letB . be the
language generated by the context-free grammar H((Bi) =
< {Si} ,Ei,Pi,S>, where
P. = (S [ss]: 1Ssi<i} U {s [s]: 1<i<ii U {s- [ 1 1<j<i}.
JJ

i i '
For every i =1, B, is not in S(EDTOL).

For our next result we assume the reader to be familiar with the

notion of a Dyck language as defined, e.g., in Salomaa [1], p. 210.

Lemma 4 (Ehrenfeucht and Rozenberg [ 8])
If K is a Dyck language over an alphabet of at least eight letters

then K is not in S{(EDTOL).

Now we are ready to prove the following results.
Let T be an enumeration (possible with repetitions) of all words
from W1 (so T is a function from positive integers onto W1 ). Let

E] ={a} and let Z1 = {anW T wE \/‘\/1 and T(W)zn}.
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Proposition 1 z, ¢ S(ETOL).

Proof

This follows directly from Theorem 2 (i) and LLemma 2.

Now let us assume that T is an enumeration without repetitions
of all words from V\/1 (so T is a bijection from positive integers onto
W1 ). L_etZZ1 = {al and let Z,= {Wan twe W, and T(w) = n}.

Proposition 2 Z, ¢ S(ETOL).

Proof

As 'r“1 must be a bijection, if Z2 is an ETOL language, then
(by Theorem 2 (ii)) W1 must be an EDTOL language which contradicts

Lemma 2. Thus Z. is not an ETOL. language. (Note that Theorem 2 (i)

2

alone was not sufficient for the direct proof of this proposition.)

Finally we can settle a quite important open problem of long
standing (see, e.g. Downey [2] and Salomaa [19]) whether or not the
class of indexed languages (see Aho [17]). Let £(IND) denote the class
of indexed languages. (Now we assume that the reader is familiar

with Aho [1].)

Thoorem 3

LetZ be a finite alphabet and lety, = {3 :a€ L}. Leth be a
homomorphism from Z¥* onto T* defined by h(a) =3, for every a inx.
Let K be a context-free language over & such that K is not an EDTOL

language. Then the language Mk = {w(h(w))miP :w € K} is in £(IND)
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but is not in S(EDTOL).

Proof

If a language is context-free then it can be generated by a
right linear grammar (see Aho [1], LL.emma 6.1). Thus, obviously,
Mk € £(IND). On the other hand Theorem 2 implies that MK is not
in (EDTOL).

Now, Theorem 3, Lemma 3 and Lemma 4 imply the following

results.
Corollary 1

For every iz1, M, € E(IND) - £(ETOL).
i

Corollary 2

If K is a Dyck language over an alphabet of at least eight letters,

then MK € S(IND) - S(ETOL).

We end this paper with the following two remarks.

Remark 1
It is shown in Skyum [ 20], that the result presented in

Theorem 2 is quite typical for several familis of parallel languages

(in the sense of Salomaa [19]).

Remark 2

A little bit stronger version of Theorem 2 is proved in Ehren-
feucht and Rozenberg [9] . The proof presented there is quite longer
than the proof presented in this paper, however, it is using a very

different idea.
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