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Abstract

In this paper we give a method for decomposing subcliasses of
different families of languages, parallel in nature, into other families.
These decomposition theorems can be used to produce languages not
in a family by using examples of languages not belonging to some

"smaller! family.
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INTRODUCTION

Within the last few years there has been a growing interest
in various forms of parallelism in rewriting systems. This is mainly
due to the large amount of work done in the area of L systems or

developmental languages.

In this paper we will examine the ability of different systems
to generate languages in which the words of the language are composed
of words from languages belonging to other families.

These decomposition theorems can be used for examining the reiation
between various families of languages.

On this basis we can give examples of languages not belonging
to a certain family by giving examples of languages not belonging to
some smaller family.

Ehrenfeucht, Rozenberg and Skyum f3] employ this technique
to show that the family of ETOL languages is properly included in the

family of INDEX languages.

It is assumed that the reader is familiar with the basic notions
concerning formal language theory. For unexplained notions we refer

to Salomaa -[12].



The following notations are used in this paper:
I denotes the set of nonnegative integers.
| Z| denotes the cardinality of Z.
| x| denotes the length of x.
P |r~ denotes the number of occurrences in x € L% of symbols
belonging to some subalphabet EP cl.

min(x) denotes the set of symbols occurring in x.



. L SYSTEMS

For a general introduction to L systems we refer to [7, 11].

Definition 1
An EOL system is a 4-tuple G = (V,P,w,%) where V {the alphabet)
is a finite set of symbols, P (the productions) is a finite subset of
V X V¥, such that for each A € V there exists a x € V¥ such that
(A, x) is in P, w (the axiom) is a word in \/+, and & (the target al-

phabet) is a subset of V.

Definition 2

The EOL language L.(G) of an EOL. system G = (V,P,w,%) is
L{G)={xezxn* | w (:;; x }

where 3 is the transitive and reflexive closure of = defined by
G G

z :G:> y iff z =y =X or there exista1,a2,...,ak€ \/ and VisVogs .-

such that z = A8, 008,, YV V.. s Vs

.,vké \VA

and (ai,vi) € P for each 1<i<Kk.

Definition 3

An EOL system G =(V,P,w,%) is deterministic (abbreviated
EDOL) if for each A € \/ there exists exactly one x € V¥ such that

{A, x) € P.

Definition 4
An ETOL system is a 4~tuple G = (V, p,w,}]) where VV, w, and
Y are as in the definition of an EOL system and P is a finite set (whose

elements are called tables) such that for every P € ,/f), (V,P,w,XZ) is an

EOL. system.



Definition 5

The ETOL language L.(G) of an ETOL. system G = (V, ? ,W,E)

L(c) = {x€ ¥ | wié.xf

where = is definedby z = y iff z=y =X or there exist P€ P s
G G

a8y, ---,8 €V, and vi,vy, ...,y € V¥ such that z =a,3,...8,,

y = v1v2...vk, and (ai,vi) € P for each 1<i<k. (We will then write

zZ = vy.)
=3

Definition 6
An ETOL system is deterministic iff each of the underlying

EOL. systems is deterministic.

Definition 7
An EFOL (ETFOL.) system is defined as above, but here we
allow a finite set ) of axioms instead of a single axiom w. The lan-
guage gener"ated by such a system consists of the union of the languages
- generated by the system obtained by choosing in turn each element

w £ ) to be the axiom.
Definition 8
A 0L (I:OL_, TOL, TFOL.) system is an EO0L. (EFOL_, ETOL.,

ETFOL) system G = (\,P,w,Z),(G = (V, £ ,w,T)) where T =V.

For any class of systems, we will use the same notation for the family

of languages generated by these systems.

Definition 9

The prefix H attached to the name of a language family indicates

that we are considering homomorphic images of the languages in the family.



E.g. L cX* belongs to HDFOL. iff there exists a DFOL system

G =(V,P,Q,V) and a homomorphism h : V¥ + L% such that L = h(L(G)).

Some of the relations between different L'families are shown in Figure 1.
If two nodes labelled X and Y are connected by an oriented edge then
X & VY and if two nodes labelled X and Y are connected by a broken edge

then X and Y are mutually incomparable.

ETOL =HTOL

HOL = EOL ¢ EDTOL =HDTOL = HDTFOL

HDOL = HDF 0L

EDOL

Figure 1.

The proofs of the relations can be found in [1, 9].




2. DEFINABLE AND EXTENDED DEFINABLE SETS

SIMPLE AND EXTENDED RECURRENCE LANGUAGES

The following five definitions define notions introduced by Rose

(1964).

Definition 10

A (n-ary) format is any triple (Z;£;F) where I (the alphabet) is
a finite set of symbols, £ is a n-tuple (51 yoen ,gn) of symbois (called

variables) not in Z, and F is a n-tuple (F] yos ,Fn)’of finite subsets of

(B U g, x

N

Definition 11

The generating function g, , . for a given (n-ary) format
Ly E5F
(T;&;F) is defined thus:

For each n-tuple W ='(\/\/1 yoo ,Wn) of finite subsets of (U {§1 oo ,gn} ),

= (U o(F)yees U alF ).

95, ;'F(W)
€ UERE;&(W)

where RE;E(W) is the set of all substitutions ¢ such that, for each
x €2, o(x) ={x and o(gi) is a subset of W, with at most one element

(1 <i<n).

Definition 12

The approximating sequence E(k) = (E1 (), ..o, En(k)) (k €1)

for a given (n-ary) format (I; £ ;F) is defined thus:

E.(0) =@ (1 <i<n), and for all k> 0 E(k) = g«.,.(E(k-1)). The

i L& F

n—tuple £ = ( U E, (K)yeuu, U En(k)) is said to be generated by
k=0 k=0

(Z365F).



Definition 13

A language L. € ©% is said to be extended definable if it is the

n'th coordinate of the n-tuple generated by some (n-ary) format.

We will denote the family of extended definable sets as ED.

Definition 14

The polynomial function p.. . .. for a given (n-ary) format
L3 E5F
(D3 &3F) is defined thus:

For each n-tuple W = (W . ’Wn) of finite subsets of (& U {5,1 yooo ,gn} )*

(=W W
pz;g;FﬁN)—(Sg(F1L ySe (F)
where S\g is the substitution o such that, for each x € I, o(x) = {x}

and O(E;i) =W..

The following lemma belongs to Rose (1964).

Lemma 1

A language L € L% is definable (defined by Ginsburg and Rice
{(1962)) if and only if it is the n'th coordinate for the minimal fixpoint

(mfp) of the polynomial function Py. £ F for some (n-ary) format
b k]

(Z3E5F).
The mfp for py.. ;. - isD=(D1,...,Dn)=(UD1(k),..., Ub (k)
155 k=0 k20
< i< n)and for alt k=1

where DE(O) =@

D(K) = py,, . (Dlk=1)).
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We will denote the family of definable sets by D.

If we use the notion from definitions 10 and 14 we can give the following
definition of the simple recurrence languages introduced by Herman

(1973).

Definition 15

A recurrence system is a 4-tuple R = (£ ;Fa), where
(L;€5F) is a (n-ary) format and o = (a1 oo ,an) is a h—tuple of finite

subsets of L.

We define the simple recurrence language L{R) of R by

Lir) = Uprk)
k=0 "
where D!'(k) =(D{ (), ... ,D‘n(k)) is defined inductively by D!'(0) =
ot ,a ), and for k2 1 D'(k) = pz,g’F(D‘(k—J )

The family of simple recurrence languages is denoted by SR.

Definition 16

LetR = (D;¢;F;@) be a recurrence system. The exiended re-

currence language LE(R) of R is defined by

L(R) = kLZJOE;‘(k)

where El(k) = (E; (), .uns E;‘q(k)) is defined inductively by E'(0) =

(o . ,ah), and for k2 1 ENK) = gz;g;F(E’(k—l .

RN

The family of extended recurrence languages is denoted by ER.
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Proposition |

For every recurrence system R = (Z;¢;F;a) there exists a re-
currence system R' = (Z;£ ';F ') such that F! = (F1', Fhsenn ,F;}) is
a n-tuple of finite subsets of {g; ,512, - ,g%} ¥ and for 1 < i<n a; is
either empty or consists of a single element in L, L(R) =L(R'"), and

LE(R) = L(R"). (The proof can be found in [6, 15].)

Definition 17

A level grammar is a 4-tuple G = (V,P,S,Z) where

V is the alphabet,
P (the productions) is a finite subset of V x V¥,
S € V is the start symbol, and

¢ V is the terminal alphabet.

Definition 18.

We say that w(A,n)w' directly yields W(A1 ,nkl). .. (Ak,n+1 w! in

G (W(A,n)w! 2 W(A1 , N+ ). (Ak,n+‘l yw') if w, w! € (V,1)¥ and
(A,A1 .o ’Ak) € P. é is the transitive and reflexive closure of :G> . As

*
usual we will write = and = if it is clear which grammar G is in-

volved in.

Definition 19

The level language L(G) is generated by a level grammar

G=(V,P,S,5) if

L(G) = h(fw € (v, 1)* | (5,0) = wi)ng*
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where h:{\V, 1)* + V* is a partial function only defined on strings,

where all variables are associated with the same level number n € |.

More specifically h is defined as follows:
{1) h(x) =x.

(2) For all A1""’Ak€ V and n € I, h((A1,r\)...(Ak,h)) =Al"°Ak'

(3) For all other strings in (V, I)+, h is undefined.

We have that

Lic) = U [niwe (v,n)* | (5,003 w}inz¥] = U Lia, n).

n=0 ' Nn=0

We say that L(G,n) is the language of level n generated by G.

Example 1
Let G = ({S,a,bl, {(S,ab), (a,aa), (b,b), (b,bb)}, S, {a,b]).

Then

L(G,n) = {a

L(c) = J L(G,n) ={a
n=0

The famity of level languages will be denoted by LL..

Definition 20

Let G =(V,P,S,Z) be a level grammar. We write
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W, (A,n)WZ(A,n). W (A, n)w WiWWoW W, W it w, €

=
Kk k P 1 k-1

\X_
((V, 1)\ (A, N)* (1 =i=<Kk)and (A, n)=> w. =6 is again the transitive.

and reflexive closure of :>P.

*
We say that w derives w' in parallel if wapw'.

Definition 21

The parallel level language L (G) generated by a level grammar

F)
G ={V,P,3,x) is

Example 2

Let G be the level grammar from Example 1. Then

L (G,0)= @

P
Lo(G,1) = {abl
L(G,2) = [ aab, aabb |}
LP(G,3) = | aaaab, aaaabb, aaaabbbb}
n-1 ,i-1
2 2
Lo(G,n) = {a b | 1=i<n]
n Zi
L_(G)=LJL(G,n)~ a“ b” | 0=i<n|
= o P

The family of parallel level languages is denoted by PL.L.
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Definition 22

A restricted level grammar G = (V,P,S,Z) is a level grammar

with the restriction that for each A € I, (A, A) is a production in P.

The corresponding families of restricted (parallel) level languages are

dencted by RLL. (RPLL).

Figure 2 shows the relations between the families defined in this sec~-

tion.

ER = PLL

RPLL = ED SR = LL (=EO0L)

D =RLL (=CF)
Figure 2.

The proofs of the relations can be found in [6, 10, 15].
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3. RUSSIAN AND INDIAN PARALLEL ISM

For definitions and discussion see [8, 13, 14, 16].

Definition 23

A Russian parallel context~free grammar is a 5~tuple
G =(Vv,T, Pu, PO, S) where the only difference to an ordinary context-
free grammar is that the set of productions is divided into two sets of
productions, P (the universal productions) and P (the ordinary pro-

ductions).

Definition 24

The language generated by a Russian paraliel context-free

grammar is
*
L(G) = {x€eT* | S:>G><}

*_
where :>G is the transitive and reflexive closure of :>G defined by

z:>Gy iff either

1 2
A € V such that (A, v) is in P, or

1) 'z=z1Azzand y = z, vz, for some v, z,, 7, € (VU Z)*, and

. N
 and y'=z vz v vz for some v € (VU Z),

A€V, and z € (VU DN{A})*, 1 = 1=k, such that (A,v) € P

2) z = z, AzzA. ..AZ

We will denote the family of Russian parallel languages by RP.
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Definition 25

An Indian parallel context-free grammar is a 4-tuple
G =(V,Z,P,S3) like a context-free grammar but P consists of univenrsal
productions only., That means that (V,Z,P,%,S) is a Russian parallel

context-free grammar.

We will denote the family of Indian parallel languages by (P.

The relations between RP, [P, CF, and LIN (linear languages) are

shown in figure 3.

RP

CF AP

LIN

Figure 3.

The proofs of the nontrivial relations can be found in [12, 16].

In figure 4 we summarize the known inclusions betweer the families

defined in sections 1 to 3.



RG (Regular languages)

Figure 4.

17
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4. RESULTS

In this section we will examine the possibility of decomposing some

languages from a certain family into languages from some smaller family.

Theorem 1 Let 2 be some alphabet and K € L*. Let #(f, 2 and
el (k) = fw #)™!

N
and [P are closed under the operators Cy -

w | weé€K|. The families HDOL, EDTOL, ED, ER,

Proof

The proof is straightforward and is omitted.

Definition 26

Let L = h(L.(G)), where G = (V, ?,W,\/) is a TOL system and
h: V* 2+ % is a homomorphism.

a € V is called essentially nondeterministic with respect to h and G iff

i *
1) There exist words x,,x,,x3 € V¥, such that x,ax,ax; € L(G).
2) There exists a sequence of tables Pi ’Pi you e ,Pi and words
1 2 n
WI,WZE V¥ such that for j=1,2 AZ W, D WD D W =W
and h(w] ) * h(wz). 1 2 3 n

Lemma 2
_ o P . ]
Let L = h(L(G)), where G = (V, ,wW,V) is a TOL system and
h: V¥ 4 L% a homomorphism. If there are no essentially nondeterministic

symbols in V with respect to h and G then L. € HDTOL.

Proof.
G 7 7
Let G =(V, J7,w, V) be the DTOL system where Y is defined by
P € ? iff P ¢ P! for some P! € P and (V,P,w,V) is a DOL. system.

Now it is obvious that [L(G) € L(G).
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et x = h(y) where vy € L(G).
W' = i e =

P, P,
1 2 n

W, =Y be a derivation of y in G.

Letw=w_ =
Opi

Forl=j=nlet P'i be a table in ? such that P|i o F’i and ifa€ VvV
j ] j
only occurs once in WJ.__1 and is rewritten as z in the derivation then

then just choose one

(a,z) € P; . If a occurs several times in Wj .

J
production from Pi- to be in P% . Note that because a is not essentially
J j ‘
nondeterministic it does not matter which production one chooses.

w1' = ... = w! =y' is aderivation in G and h(y) = h(y!').
C e P/
1 "2 'n

Then w = wO =

.
i

Theorem 2

l.et & be an alphabet and let K ¢ 2% . Let# § T.

(n If ci(K) € ETOL then K € EDTOL..
3

(1) 1f c#(K) € EOL  then K € HDOL..

(1) Ifci(K)é RP then K € IP.

{(1v) If ci(K) € ED then K € ED.

Proof

(0 Let CZ(K) = h(L_(G)) € HTOL = ETOL for some TOL system G and

4
homomorphism h. Because of the form of c_ﬁ:(K) it immediately follows
that there is no essentially nondeterministic symbol in G. Therefore
by Lemma 2 it follows that ci(K) € HDTOL = EDTOL..

L.et then ci(K) = h(lL_(G)), where G = (V, P

,w,V) is aDTOL
system and h : V* = (D U {3} )*¥ is a homomorphism.

Define \/# < \/ to be the set satisfying a € \/:ﬁz iff there exists a
% such that a=" x and # € min(h(x)). Note that every symbol in Vg can
occur at most once in every word in L(G).

Define a DTOL system H = (V/, (i ,w,V) as follows.
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UV=Vvyx2 #

1 (80,81 82...ak b1 ak +1...ak bz...bnak +1...ak )Ep(nz O), where
1 1 2 n n+1

a, € WV, T=isk b€ V,, 1Si=n, and P€ ? then for all

e n+1?
NT, (al,M][faz,M]...[ak],M][bl,MU §b1}]

[ak]_H,MU {bi}]...[akz,MU be}][bz,MU ib,,bz}]...[bn,Mu
§b1,bz,...,bn}][akn+1,MU {bl,bz,...,bh}]...[aknﬂ,MU ib],bz,'...,bn}])
is in a corresponding table P in ? . M=min(y)n V# for some y such that

there exists a x, where N\|{ aO} = min(x) and x :>py . Note that M is uniquely

determined by N.

Ifw:a]...ak b]ak +l"'ak bzak +1...ak bnak +1...ak
1 1 2 2 N

n
where aiE \/\\/#, T=isk 4 and biE Vg, 1 =i=n then

n+1

w = [a]’¢]"'[.ak1r¢][b1igb'l}][akT.H7{bli']“'[ak27{b1}]["b21{b]7b2}]
[akz+1,fb1,bzf]...[akn,fb1,...,bn_]H[bn,{bl,...,bn}]

b1,.‘l.,bn}]...[ak ,ibl,...,bn}].

[a )
Kn-H
If we now define a homomorphism g : V¥ + L* by
h{a) if # ¢ min (h(b)) for all b €N
alfa,N]) = v if a €N and h(a) = v # u for some u € L*

A otherwise

then it follows that K =g(L(H)) € HDTOL = EDTOL.

(11) Let c2(K) = h(L(G)) where G = (V,P,w, V) is an OL. system and

3
+
h: V¥ + (T U {3#})* is a lengthpreserving homomorphism. This is no
restriction (see e.g. Ehrenfeucht and Rozenberg, to appear).

Letn =]V|, man integer such that |w|<m and if (a,x) € P then |x|< m.

Let Vm < \/ be the set of mortal symbols in V, that means that a € \/m

iff a =7 x implies that x = \.



LetV = \/\\/m be the set of vital symbols.

Let VS c \V be defined by a € \/s iff there exists a | > 0 such that if
x € L(G), | x| > I then a ¢ min(x).

Let Vv = \/\\/S.

Observations

1) If a € \/b and a =% x then min(x) < Vb.

2) There exists a k> 0 such that if x € L.(G) and §><lv> k then
min(x) ¢ \/b.

3) If x € L(C) and [x[ > m" + k then min(x) < Vb.

To see the correctness of (3), let w=% Wy D WD DW= X

be a derivation of x € L(G), where | x| > m' e k.

Assume that a € min(x) N Vs' Then because of {1) there exists a

symbol b € min{w,) N V_ which implies that |W1IVS k and

]x| =k mn sO our assumption cannot be true.

Let now x € L(G), | x| > m" + k, and a € min(x). We will prove that if
a:>~i Wy and a:>-i W, for some i > 0 and Wy, W, € V¥ then h(vv1 ) = h(wz).
From that it will follow that ci(K) € HDFOL. = HDOL because we can just
choose one production for every symbo! and choose {x € L(G)] ‘x]Smn~ K}

to be the set of axioms.

Now back to the statement.

Let t =max {] W1l ) | Wz]} . Because of (3) above a € V,, and therefore
there exists a word y € L(G) such that a € min(y) and | y| v 3t+2.

_ i C
Lety = z,az, and 2,2V, for j = 1,2. Then [v1wJ.v2| > 3i+2 for
j=1,2and since |wJ.| < tfor j =1,2h(w,) and h(w,) must be equal.
To prove that K € HDOL. if ci(K) € HDOL we can use exactly the same

technique. as in the proof of K € HDTOL if ci(K) € HDTOL.
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2
4+

Russian parallel context-free grammar. As for ordinary context-free

(K) = L(G) where G = (V,Z U {#}, P, Py S) is a

L}

(rin) Letc

grammars we can assume that all nonterminals are useful. That means
that for all A € \/ there exist words x,y € (VU T U {#})*¥ and
vE(Z U {—#} )¥ such that S =% xAy 2% v,

* * *
Assume that S = X szAx3:> vy szA ces Avk 2V W VW, e W V.
for some words x, € (VUZ U {#}1)*, 1= i<3, v, € (T U {#])*, 1 <<k,

w, €(Z U {#{)*, 1 <i< k-1, and some A € V, such that A is hot rewritten

. . " *
anywhere in the subderivation o szAx3:$ 2 AVZA ... Avk.

Thenw, =w, =... =w__ because vy w, vow, ...w, Vi € L{G) for
1 2 k-1
< i i i < ke
all 1 = PP YRR A I = k-1.
It then follows that c#(K) = L(G'") where G' = (\V,Z U {#] , RU PO,¢,S),
which means that c#(K) € 1P.
Define V,, < VU {#} to be the set satisfying A €V, iff A=% x # x, for
*
some ><1,><2€ .

LetG = (V,Z,P,®,S) where P! is defined as follows.

if (A,A1 Ay ..AkBAk+1 Algo .An) € P, U P_ where A EVUL,

1= i=n, and B € Vy then (A,A A ... A B)E P!If B # # and other-
h !
wise (A,A1 Ay 'Ak) €P'.
(Note that in every sentential-form in G' there is exactly one occurrence
of a letter in \/#.)

If (A, x) € P,UP, and V, N min(x) = @ then (A, x) € P'.
No other productions are in P

It s easy to check that K = L(E).

(1Vv) The proof of part (1V) is very similar to the last half of the

proof of part (111} if we use the fact that ED = RPLL.



Remark 1
K € HDOL. or not.
Remark 2 2

of Theorem 2.3.2 in [5].

Conjecture

If ci(K) € ER then K € ER.

Note that is is open whether ci(K) € EOL implies

If c#(K) € CF then K € RG. This is in fact a special case

Theorem 2 is visualized in Figure 5. If two nodes labelled X and VY

are connected by an oriented edge, then ci(L_) € X implies that L € V.

ER ETOL
ED EO0L RP EDTOL
¢
CF HDOoL P
RC
Figure 5.

We can give a more general theorem than Theorem 2, namely

Theorem 3

L.et 2 be an alphabet and let K

f: K, ?» K

1 2
fw# flw) | wer|.

' ?

Kng*.

be a bijective function from K1 onto K

(1
(11)
(rrr)

If K € ETOL then K, K;, K, € EDTOL.
If K € RP then K, Ky, K, € IP.

If K € ED then K, Ky Kzé ED.,

Let # ¢ = and let

5* Let K =
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Proof

The proof is analogous to the proof of Theorem 2.

Remark
Note that it is not true,that K € £0L. implies that Kz € HD.OL.
Let? ={a,b}, Ky =K, =2Z%, and f: K, + K, be defined by w € K,
f(w) = mir(w). (mir(w) denotes the mirror-image of w).
K ={w#f(w)\w € K1f € EOL because it is generated by the following
EOL. system.
({s,a,b,#}, |S -+ aSa, S+ bSb, S+ 3%, a+a, boab, # #|, S,{a,b,#}).

But ¥ is not a HDOL. language.

Instead of having a special marker #, which divides the words into two
parts we could have disjoint alphabets such that the words are concate-~

nations of words in the alphabets.

Theorem 4
Let 21 ,22, ce ’En be n alphabets, not necessarily disjoint, and
let £, : ET -» E’i“ , 2=<i=n, be homomorphisms. Let K € Ef and
1 =
¢, (K) {wfz(w)f3(w). o f(w) | we K.

EDTOL and HDOL. are closed under the operator c.'q,

Proof Easy to check.

if fi is bijective for 2< i< n then we will denote the operator

by S Note that ED, ER, and IP are not closed under chu

Lemma 3

Let 21 and L, be two disjoint alphabets and let K, E] *,

K, < Ez* . L.et f be a bijective function from K, onto K. L.et
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K = {wf(w) | w€ K]}.

If K € ER then K € SR (= EOL).

Proof
Let K = I_E(R) where R = (E;g1,£2,...,£n;F1 Foree s F s
o, TPYRRR ,ozn) is a recurrence system satisfying the properties of

proposition 1. Assume that there exist integers 1 =i, i1 yos oy im =n,
i,a> 2, words w,_¢€ {51""’€i-1"5z+1”"’5n} * for 1 <k <1, and

words ng), w(zk), € {g,,...,gn} ¥ for 1 < k< m such that

() w g Wb W Ew € r:il

(11) ng)gi w(zk)er:i for 1 Sk=m
Kk k+1
(tv) 1t g ¢ min(w1w ... w,) then Er‘(q) # D

2
(V) 1fg ¢ min(wgk)w;k)) then Er‘(q-i-k) £® for1 <k<m

(V1) There exist words v v, € Ei(q),

1’
Then there exist words x, ET*¥, 1 <=Kk=1, w,WE Eﬁ such that

Xy VRV e VX = wf(w) and XVoRoVge o s VoX, = wf(w).

Since w,W € E’; and f(w), f(W) € Z}é and f is a bijection, we must have

that Vi T Vg, Since the conclusion of our assumption is that Vi T Vg

it does not matter whether we substitute in parallel or not. Therefore

K = L(R) and K € SR (= EOL).

Theorem 5
Let ET ,Ez and 23 be disjoint alphabets and let K, < E’i" , 1 <i< 3.

Lecf: K1 - Kz and g : K] - K3 be bijective functions. Let

K = {wf(w)g(w) | we K]} .
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(1) If K€ ETOL then K, ,K,,K,,K € EDTOL..

12y
(1) 1fTKE EOL then Ky Ky Ky K € HDOL.
(1) fKEER then K, ,K,, K4, K € HDOL.

Proof
In [3] it is shown that if

{wflw) | w€ K1} € ETOL then K, ,K,, {wflw) | wE KI} € EDTOL.

This statement is stronger than the one in this theorem.

(11) The proof is quite similar to the proof of Theorem 2 {il).

(111) Follows from Lemma 3 and part (11} of this theorem.

Theorem 6

Let 21 ,7_32 be disjoint alphabets and let K, < Z}f, K, & EE . Let
f: K1 - K2 be a monotone bijective function.. Monotone in the sense that
| x| < |y| implies that |f(x)] = |f(y)]. Let K = {wf(w) | we K }.

(1) If K € RP then K € LIN and K, ,K, €RG.

(1) 1f K€ ED then K € LIN and K, ,K, €RG.

Proof
Letl = T,U D, LetK = L(G), where G = (\/,Z},PU,PO,S) is a
Russian parallel context-free grammar. We will assume that there are

no useless letters in V.

Assume A € \/ and A =% Wy A ¥ W, for some w,,w, € T*. We have

*
TAVZA. c AV for some x,, %, € (Vuy Z) and

v, €XL¥, 1 =<i<kand therefore Vy W VW W Y € L.(G) and

then S =% X /‘—\xz =% v

Vg W VaWoe o e WoV € L(G). Since f is a monotone bijection, we have that

if W, 75 W, then A can occur at most once in a sentential-form and

w. , W, cannot both be words in E? or E;.

17772
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Now construct H = (V,5,P,S) as follows. If (A,x' sz) € P, UP,
for some Xy %y € (VU I)* and B € V such that B can generate more
than one word, then (A,v1 sz) € P where X =% 2 € Z%‘ and

* * N ;
Xy 3% v, € 22. Note that % ,xz,B,v1 y Vo, are unique.

If (A, %) € F’u U PO and no symbol in x can generate more than one word
then (A, v) € P where x=% v. Note again that v is unique.

It is now clear that L(G) = L{H) and that impiies that K € L.IN and

K KZERG.

1’
(11) Similar to (1) when we observe that ED = RPLL.

Let 21 L, and I 5 be three disjoint alphabets. Let K, c Zf, 1<i=<3,

and let fi P K, Ki’ i =2,3, be length preserving isomorphisms from

1

Ky onto K. LetK = fwfz(vy)f:s(w) | w€ K, }.

i
Using Theorems 5 and 6 we can get the following Figure 6.

ER ET0L
ED EOL RP EDTOL
CF HD oL 1P
( RC
Figure 6.

If two nodes labelled X and Y are connected by an oriented edge

then K € X implies thatK1'E Y.
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5. APPLICATIONS

In this section we will show how the theorems in Section 4
can be used to solve some of the open relations between families

occurring in Figure 4.

It is known from the literature that mutual incomparability
holds between families X and Y if there is no path from X to Y or .

from Y to X in Figure 4 with the following exceptions:

(eD, EDTOL), (ED, ETOL), (ER, EDTOL), (ER, ETOL),

(ED, 1P), (ED, RP), (ER, IP), and (ER, RP).

Mutual incomparability between
(ED,EDTOL), (ED, ETOL), (ER, EDTOL), and (ER, ETOL)

follows by the following theorem.

Theorem 7

ED ¢ ETOL and EDTOL ¢ ER.

Proof
In [2] it is proved that there exist context-free languages which
are not EDTOL.
Let L. be such a language. Then by using Theorems 1 and 2 we get
that ci(L_) belongs to ED but not to ETOL.. Hence ED SF ETOL..
Let K, & 21* be a language in EDTOL\HDOL (e.g. {a,b} *) and let
'K 21* -+ Zi* , 1 =2,3, be isomorphisms where X ,, L ,, and L4 are
disjoint alphabets. Then by Theorems 4 and 5 we get

§Wf1(w)f2(w)v | w€ K} € EDTOL\ER.
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Corollary
ED & RP.

The remaining open problem is now whether or not IP is contained in

ER.
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