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Summary

This paper is concerned with extended OL systems and the
effects (with respect to the generative capacity) on these systems

caused by

1) regular ccontrol on the use of subsets of productiors,
2) appearance checking,

3) minimal table interpretation,

and their combinations. Among other things it is proven that the
effect of 3) is strictly stronger than the effect of both 1) and 2), and
ecual to the effect of the ccmbination of 1) and 2). This implies among
other things that the effect of appearance checking or the systems

with regular control is significant.

Finally the notions of matrix and vector control are intro-
duced, and the effects of these mechanisms are investigated. This
leads to results very much different from corresponding well-krown

results for context-free grammars.




Introduction

In the theory of formal languages one has studied intensively
the systems of ordinary Chomsky grammars with various kinds of
regulated rewriting (see, e.g., Salomaa (1973)), that is, systems
in which at any step in a derivation of the grammar, the choice of
the production to be applied is somehow restricted - the restriction
being determined by some kind of a control mechanism. The idea of
regulated rewriting may also be introduced in the so-called L inden-
mayer systems (L systems), which differ from Chomsky grammars
essentially in the way of deriving words: in one step of a derivation
of an L system, productions are applied in parallel to all occurrences
of symbols in the string considered, i.e., a whole subset of produc-
tions is applied. Buti then an L system with regulated rewriting is na-
turally defined as a system in which at any step of a derivation the

choice of this subset is somehow restricted.

In the theory of grammars with control devices one has studied
in particular the power of various control mechanisms added to con-
text-free grammars (that is, power with respect to the gererative
capacity). In this paper we shall study the power of some of the
corresponding control mechanisms added to the class of L.-systems
cerresponding to context~free grammars, the so-called extended
informationless L-systems (EOL systems). In standard L-notation
a subset of the set of productions is called a partial table, sac, in
other words, we shall study EOL systems with a specified set of par-~
tial tables (denoted Part ETOL systems) and with control on the use
of these tables. It is well known that the power of Part ETOL sys-~

tems is strictly greater than the power of EOL systems.

One of the main open questions in the theory of Chomsky grammars
with regulated rewriting, is whether or not the appearance checking
facility affects the generative capacity of context-free grammars with

regular control. In Rozenberg (1971) partial table OL systems, with a



special interpretation of the use of a table - in this paper called the
minimal table interpretation — were considered, and it was proved that
the appearance checking facility does not affect the generative capacity

of those systems with regular control.

I n this paper we shall examine the powers of 1) regular
control, 2) appearance checking, 3) minimal table interpretation,
and their combinations, when added as control mechanisms to Part
ETOL systems. Among other things, it is proven that the effect of
3) is strictly stronger than the effect of both 1) and 2), and equal to
the effect of the combination of 1) and 2). This implies then directly
that the effect of appearance checking on (extended) partial table OL
systéms with regular control is significant; in other words, the
results referred to from Rozenberg (1971) do not carry over to the

case without the minimal takle interpretation.

It should be noted that the results in Rozenberg
(1971) are stated for programmed partial table OL systems. It is,

however, easy to prove that the generati\(e capacity of programmed
(extended) partial table OL systems (with appearance checking) is equal
to the generative capacity of (extended) partial table OL systems with
regular control (with appearance checking). The methods used in this

proof are the same as in the case of context-free grammars.

In the proof of the main result of this paper, a characterization
result for ETOL languages is proved somewhat related to the result
proved in Ehrenfeucht and Rozenberg (1973) - ideas and notation have

been taken from this paper.

In the last section, the notions of matrix and vector control are
introduced in extended partial table OL systems, and some results on the
effects of these mechanisms are proved. These results turn out to be
very much different from the corresponding well-known results for con-
text-free grammars. The differences illustrate in some sense the different
nature of control in context-free grammars and extended partial table

OL. systems.



Notation
The following notation is used in.this paper:

Let Z be a finite alphabet, and x € Z*, then
|Z| denotes the cardinality of I;
[><| denotes the length of x;

min(x) = {c € Z | ¢ occurs in x};

Let t be a finite subset of Z X 2%, then
r*eg(t)={0€2|'.9 xE€L* (o, x) € t};

@ denotes the empty set;
A denotes the empty string;

N denotes the set of natural numbers;




Definitions

Definition 1

A partial ETOL system (Part ETOL) is an ordered sixtuple:

sS=<z, P, L, L_ac, w, A>, where

2 is a finite alphabet;

P is a finite, nonempty collection of finite subsets of L x Z*

- the elements of P are called tables - the elements of
the tables are called productions;

L is a set of labels of P (that is a finite alphabet with an
associated one-to-one correspondance between the
elements of P and L);

L% is a subset of L

w is an element of Z+ - the axiom of the system;

A is a subset of I - the set of terminals;

Definitiorn 2

LetS = &, P, L, L%, w, 4) be a Part ETOL system, and

let X,y € 2% , '€ L. xis said to derive y directly applying the table

labelled | in S, x= y (l), iff
S

1) X = X Xpe oo X, Tor some k where x; €2 fori=1, 2,..., k;

2) Y =YYy eeY,, Wherey, E2* fori=1, 2,...,k;

b

3) (Xi’ yi) €Ctfori=1, 2,...,k, where t is the table labelled I;



x is said to derive vy directly under the minimal table inter-

pretation applying the table labelled I, x& ., V¥ (1), iff

1), 2) and 2) above are satisfied and

4) reg(t) = min(x);

Definition 3

Let S=<%, P, L, Lac’ w, A> be a Part ETOL system and let

x ezt , YEL*, and z€ L*¥, Then x is said to derive y with control

word z (under the minimal table interpretation), x é YV (z) (x % Y (z)),
m

iff

1) z=1lly...tly, where | €L fori=1,2,...,d;
2) there exist words Xor Kpoeres Xy from X* such that Xg = %
= \/ 4 = ' 3 1 = .
Xq=V, and x; . 2 xi(li)(xi_lg mtxi(li)) for every i=1, 2,...,d;

% is said to derive y with control word z (under the minimal table

interpretation) with appearance checking, x %acy (z) (x %?n(; y (z)) iff

1) z=1l/1...0ly, where liEI_ fori=1,2,...,d;

2) there exist words Xgr%q 9oy Xg from 2*  such that X=Xy Xy = Vs
and for every 1 =1,2,...,d (ti denotes the table associated with
the fabel ‘i):

if min(xi__1) < reg (ti) (min(xi_1) = reg (ti)) then xi_123 xi(li)



(

xi(li))’ otherwise I, €% and Xi_q = X3

xi-—1S:>mt 1 i

Now for any x,y € 2% and z = Ilpe e

X = B y (z), where a may be the index mt or not, and corresponrdingly
04 ? ’
[y

—

B may be the index ac or not, you may define a derivatior D of y from

Iy € L* for which

x with control word z as a complete tree structure containing

i nformatior. about

1) strings x satisfying the proper definitior above, i =1, 2,...,d;
2) which productions from the table labelled Ii are used on the

specific occcurences of symbols in X ];

To save a lot of cumbersome notation, a derivation D will just be

writien on the form

The length of D is defined as the length of D's control word.
Furthermore, for a and B as defined above, you may define the

corresponding languages generated by S as

B %
L@(S)={XGA* |5 2z €L* :wSZPOLx(z)}

Definition 4

A Part ETOL system with regular control, RC-Part ETOL, is

a seventuple S =<2, P, L, l_ac, w, A, R>, where

st=<2, P, L, L.ac, w, A> is a Part ETOL system, and R is a



regular language over L. Let & and B as in Definition 3 be variables
that index the relations defined in Definition 3 properly, then the cor-

responding languages generated by S aredefined by

B * g
L@(S)={XEA* IBZEFE:wS:,ax(z)}

Definition 5

A Part ETOL system S =<ZXZ, P, L, Lac, w, A> is calted com-
plete or usually just an ETOL system, ETOL, iff for every t € P
and every o € & there exists an x € Z¥ such that (o, x) €t. S is

called deterministic, PartEDTOL,iff for every t€ P and every o € T

there exists at most one x € ¥ such that (0, x) € t. S is called
propagating, PartEPTOL,iff for every t€ P and every ¢ € %,
(0, X) ¢ t. S is called total or usually just a Part TOL system,
Part TOL, iff Z =A. One may also combine these notions and speak,
for instance, of an EPDTOL system.
Notation

In the following the abbreviations introduced for the various kinds
of systems and the languages generated by these systems, are also used
for the corresponding classes of languages generated. E. d.,
Part ETOL::; denotes the class of languages generated by Part ETOL
systems under the minimal table interpretation and with appearance
checking. The next two sections will be an investigation of the relations
between the following classes of languages
ETOL
Part ETOL Part ETOI_mt Part ETOL%C Part ETOL_rani

RC-Part ETOL RC-Part ETOL,, RC-Part ETOL?® RC-Part ETOLS



General Hesults

il

Theorem 1 Part ETOL. Part ETOLYC

[}

Part ETOL Part ETOLZC
m mt

t

Procf

The thecrem follows directly from the observation that for

ac(

mt S)).

ary Part ETOL system, S, L(S) = L2Y(s) (L _(s) =L
The following thecrem is trivially seen to be true, and is

therefore stated without any proof.

Thecorem 2 ETOL = Fart ETOL.



Theorem 3 Part ETOL = RC-Part ETOL..

Proof
Obviausly it is sufficient to prove that for any RC-Part ETOL
system there exists a Part ETOL .system generating the same language.

Let S=<%, P, L, L%, w, A, R> now be an RC-Part ETOL
system, and let M=<Q, L, 6, F, A9~ be an ordinary finite-state
acceptor for R, where Q Iis the set of states, LL the input alphabet,

0 the transition function, 8 : QX L +» Q, F the set of accepting states,
FcQ, and A9 the initial state, dg € Q. Now a Part ETOL. system, S!,
will be constructed such that L(S) = L(S'). The alphabet of S! is
L'=2x QU A, and the terminal alphabet A . The basic idea in the
construction of S!' is that the second component of the nonterminals

in the alphabet of S' will keep track of the used conirol word with

respect to membership of R. If w=0,0,"... 0y where o, € % for

i=1,2,..., p, then the axiom of S' is equal to the string

w! = (U1 , q0)° et (Gp, qo). The tables of S!', P!, are constructed as
follows:

1) for every table t € P with associated label | € L, containing

productions
(0.,0. 0. *...°0. Jfori=1,2,...,n
R P N I
i
where the Ui‘s and the 0. 's belong to 2, and for every q€ Q,
J
P! contains a table with productions

(o, a), (Gil, 6(q, D) ...<(0. , 6(q, M) fori=1,2,...,n

2) for every g€ F, P! contains a table with productions

((o, q), o) for every o€ A.

So [P = [P [Q] +[F].



Now let S!'=<Z!', P!, L', @ , w', A>, where L' is a set of labels
of the constructed P!'. Clearly S! simulates both the derivations of
S and the behaviour of M (reading the control words of these deriva-
tions), A terminal word is generated (using tables from 2) above) in

St iff the word generated in the simulated derivation from S is ter-
minal (from A*) and the control word used is accepted by M.

This proves the theorem.

Theorem 4 Part ETOLm = RC-Part ETOI_m

t t°
Proct
The proof is identical to the proof of Theorem 3, with the

exception that the set of tables of the corstructed system, S,

centains some more '"terminal!! tables.

Theorem 5 RC-Part ETOL®® ¢ RC-Part ETOL ..
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Proof

Let S=<%, P, L, L_ac, w, A, R> be an RC-Part ETOL system.
Another RC-Part ETOL. system S'=<Z, P!, L', @, w, A, R'> will
be constructed such that LaC(S) = l_mt(S'"). Let K be a set of labels
for the set of nonempty subsets of T, then L' =L x K. For every
table t € P with associated label | and every nonempty subset of
L, I' € L, with associated label k € K, construct the following table

tsrs and associate with it the label (I, k) € L'

1) if Z' < reg (t) then Eso contains all productions from t of the
form (o, x) where o € X',
2) otherwise tE' contains identity productions, (o, o), for all

g€ .

L.et now P! be the set of all the constructed tables tE" and let

R' be the regular language over L! obtained from R by the following

finite substitution ¢ : L+ L!,

Mo 1er® e =1, K| keKk}
M o€ L\Laci (p(l) = {(l, k) i reg (t)2 Z*, where | and k are the

labels associated with tand Z! resp. }

Then clearly LI%(s) = Lmt(S), and the theorem is proved.

Theorem 6 RC-Part ETOL:?[ = RC-Part ETOL .

Proof

RC-Part I'—_"TOL_m is included in RC-Part ETOL:th by definition.

t
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L.et S then be any RC-Part ETOL system. Another RC-Part ETOL
system S' is now constructed exactly like in the proof of Theorem 5

with the following exceptions:

a) The construction of the tables tE‘ is now:
1) if 2! =reg(t) then t= b
2) otherwise s contains identity productions for all

symbols from I3

b) the finite substitution ¢ : L =+ L' is now defined by:

W 1 €eLeC so(l) = {(1,k) | k€ K}
M 1€ L\LEC, where I is
associated with the table t: (1) = {(I, k) | k is the label asso-

ciated with reg(t)}

Clearly the constructed system S' satisfies L°C (s)=L_ . (s),

mt mt(

and the theorem is proved.

Theorem 7 RC-Part ETOLmt < RC-Part ETOLaC .
Proof

Let S=<%, P, L, L%, w, A, R> be any RC—Part ETOL
system with 2 = {cr1 2 Ooseees Un} . Another RC-Part ETOL system
will how be constructed such that Lmt(S) = LaC(S').

Let & =1{g . En} be a set of barred versions of the symbols from

1re
¥, T disjoint from I, and let ¢ be a symbol not in TUZ. The al-
phabet of S' will then be T' =2 U T U {¢}. The set of labels for the

tables of S!' will be L' =1 X {1,2,...,n+2f. The tables of S!', P!,



12

are constructed and labeled as follows:

for every t € P with associated label | € L, let

1) for i=1,2,...,n, ti be the table containing productions of

the form (0, - ) for every o € reg (t)\{oif and associate with
t. the label (1, i)ye Lt

2) be the table containing productions (o, G) and (G, ¢) for

n+1

every o € reg (t), and associate with t the label (I, n+1) € L';

+1
3) t 4o D€ the table containing productions (o, ¢) for every
0 €Z, and (0, x) for every (o, x) €t, and associate with it

the label (I, n+2) € L1}

P! consists of all these |PI + (n+2) tables.
Let ¢ be the homomorphism from L into L! defined by:
if | €L isassociated with t€ P, and reg(t)=1{0. , 0. ,...,0. }

I
then (1) = (1, iy )1, iy)e...«(1, ip)I, n+1)(I, n+2).

Finally define S'=<Z!', P!, L', L', w, A, ¢(R)>. Then S! is a

well-defined RC-Part ETOL system for which l_mt(S) = LaC(S'),

and the theorem is proved.

Now since by definition RC-Part ETOL is included in RC- Part ETOl_aC,
the results from this section can be summarized in the following diagram:
RC-Part ETOLZ =

Part ETOL . = Part ETOLZC =
m mt

t
RC-Part ETOL?® = RC-Part ETOL
ul
RC-Part ETOL. = ETOL =
ac
Part ETOL = Part ETOL

Diagram. 1.
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Some interesting corollaries of the results of this section will

now be discussed.

In Salomaa (1968) the notion of full checking is introduced (for
time varying grammars). A Chomsky grammar with regulated rewriting
Is said to work under the full checking interpretation iff all productions
are applied with the appearance checking interpretation. Corresponding-
ly, in the notation of this paper, a Par‘tETOI_E}Csystem,
S =<Z,P,L,Lac,w,A>, is said to work under the full checking interpre-

tation iff L = Lac.

It follows from results in Salomaa (1968) that the gererative power
of context-free grammars with regular ccontrol and with full
che’bking is strictly smaller than the ore of context-free grammars
with regular control and with ordinary appearance checking. NMote,
hqwever‘, that it follows directly from the procfs of Theorems & and
7, that any RC--F’ar"LE-.TOI_alc system can be simulated by an
RC-PartETOL. system with full checking, i.e., the following

cerollary follows.

Cor*ollarx 1

The generative capacity of RC-Part ETOL &€ is equal to the generatjve
capacity of RC-Part ETOL systems working under the full checking inter-

pretation.

Let us also consider Diagram 1 for deterministic systems.

Theorem 8 Part EDTOL 2 Part EDTOL_mt.
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Proof
Let S =<X,P,L,P,w,A> be a Part EDTOL system. The following
observation is easily checked to be true: For any string x € Z* and any
table t € P with associated label | € L, the min-value of the stringy
satisfying xl::> y , is uniquely determined by t and the min-value of x
(note that this observation is only true in the deterministic case). But
now the mi-interpretation is equivalent to squeezing out from I_* those
control words, z, for which the corresponding sequence of reg~values
is equal to the sequence of min-values associated with the (unique) de-
rivation from w with control word z. But from the observation above it
follows immediately that the set of all control words with this property is
a regular language over L, i.e., L‘mt(s) = | (S,R) for some regular lan-
guage R ¢ L*, But how the construction of Theorem 3 will give you a
Part EDTOL system S', such that L(S,R) = L(S'), and this proves the

theorem (all technical details are left to the reader).

The reader may verify that indeed all theorems of this sections
are also true for deterministic systems as well. But from this and
Theorem 8 you get the following corollary which is interesting in that it
will be shown in the next section that the corresponding result is not

true for nondeterministic systems.

Corollary 2

Leta (resp. B) be the index mt (resp. ac) or missing, then

B
EDTOL = Part EDTOI_S = RC-Part EDTOL _ .
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RC-Part ETOL is properly included in RC-Part ETOL%C

In this section it will be proved that the inclusion of Diagram 1

is proper.

Definition 6

lLet L. be a language over some alphabet A. 0 € A is said to
be distributed iff for every integer n, there exists a word x €L,
such that x contains more than two occurrences of & and the
distance between any two occurrences of & is greater than n.

0 is said to be periodically occurring in L iff for every word

x € L. there exist integers n and m greater than or equal to two, such that
x €(6(A - {6} MM, 6 is said to be tied in L iff for every integer Kk,
there exists an integer Nyes such that for any word x €L, if x con-
tains less than k occurrences of 0, then the distance between any

two consecutive occurrences is less than nk.

Definition 7

Let S=<Z, P, L, Lac, w, A> be a Part ETOL system. The
PartEDTOL system associated with S, denoted Assoc (S), is defined

by
Assoc (S) =<z, P!, L1, l_‘ac, w, A>,
where L' is a set of labels for P!; for any table t € P and any deter-

ministic subset of t, P! contains one (deterministic) table, t!', identical

to this subset; the label of t! is in L1%€ iff the label of t is in L2C.
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Lemma 1
Let S be a Part ETOL system generating a language L(S)
over some alphabet A.If 6 € A is periodically occurring (tied)

in L(S), then 0 is also periodically occurring (tied) in L(Assoc (S)).

Proof
It follows from the definition of Assoc (S) that L(Assoc (S)) c

L(sS), and from this observation the lemma follows directly.

Lemma 2
Let S be a Part ETOL system, S =<XZ, P, L, L.ac, w, A>,
generating a language L(S) over A. If 6 € A is distributed and

periodically occurring in L(S), then & is distributed in L(Assoc (S)).

Proof

Let n be any integer and let

D: w=x0:‘:> X I;é...[:>xd=x
1 2 d
be a derivation in S of a word x € (6(A - {6})k)m, where k= n
and m= 2. Fori=0,1,..., d, X; can be written on the form

X; =y, 0, z. where Yir 7 € Z*, and o, € Z is the unique symbol from
X that generates in D the rightmost occurrence of § in x. Now, for
any i=1,2,..., d, define S; as any (but fixed) deterministic subset

of ti, the table labelled Ii’ satisfying
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1) reg (Si) = preg (ti);
2) the production used in D on the specific occurrence
of O'i mentioned above (generating the rightmost

occurrence of § in x) belongs to Si;

Now consider first the derivation D' in S, obtained from D with

the modification that only productions from S’i are used on symbols
occurring in Zi—1 . Then clearly the derivation of Yy is left unchanged
and since § is periodically occurring in L(S) this implies that the word
derived in D', x', belongs to yd(é(A - {Gf)k)_l-, x! = ydz('j. Consider
next the derivation D" in S, obtained from D! with the modification
that only productions from S, are used in the i'th step of D!'. Then
clearly the derivation of z(‘j is left unchanged, and this implies, since
§ is periodically occurring in L(S), that the word derived in D" be-

1
longs to (6(A - {6} )k)m for some m'= 2. But D" is a derivation

in Assoc (S) and this proves the lemma.

Definition 8

Let S =<, P, L, Lac’ w, A> be a Part EPTOL system, and let

0, L [ d
1 2 d
be a derivation in S. Then a step inD, X1 [::: Xis is called
i
essential iff lxi_1 | < ]xi| . The essential length of D is defined as

the number of essential steps in D.
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Lemma 3

Let S=<X, P, L, L%, w, A> be a Part EPDTOL system. Then
any string y € E+ derived from some string x € E+ in a derivation of
essential length less than k, is also derived from x, in a derivation

in S of length less than k - |E\! . 2’25.

Proof
Let D be a derivation as in Definition 8 of essential length less

=y, and d>k:* |Z] ! - 2|E|. Then there exists

than K, Xo = %y Xy
a sequence of consecutive steps in D, X = K = ><j including
b ez
no essential steps, such that j-i> |Z [t IZ.IZ l . But then there
exists a sequence of indices, i1 , iz, e im’ satisfying
N < o< i
1) =i, <ig<...<i =1
2) m>|Z]!;
3)  min( % ) = min (><i ) forp=2,3,..., m

1 p

Now since S is deterministic and propagating the tables applied in

D between any of these X 's, p=1,2,..., m, determine uniquely a

p

permutation in min (><i ). But since the group of permutations of this
1

set contains no more than lE | ! elements it follows that there exist

iq and ir‘ such that iq ¥ ir' and X=X But now obviously the steps
q r
in D between X, and X, may be omitted, i.e., there exists a deriva-

q r

tion D' of y from x of length equal to the length of D subtracted

by (ip—iq)‘ This process may be repeated until a derivation of y from
x of length less than k- |2| Lo 212] is obtained, and this proves the

lemma.
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Lemma 4
Let S be a Part ETOL system generating a language L (S)
over some alphabet A. If 0 € A is distributed and periodically

occurring in L(S), then 0 is not tied in L(S).

Proof

It follows from Nielsen, Rozenber‘g, Salomaa and Skyum (1 974)
and Theorem 2, that there exists an EPTOL system T such that L(T) =
L(sS)\ {IxX}. Now the assumptions of the lemma imply that & is
distributed and periodically occurring in L(Assoc (T)) (Lemma 1 and
Lemma 2). It will now be proved that & cannot be tied in L(Assoc (T))
which then proves the lemma by Lemma 1.

Let Assoc (T)=<Z, P, L, Lac, w, A>.

2|z |

Define g = |Z|!-2 , and n=max {|x| |x is derived in Assoc (T)

in less than g essential steps from w or from some ¢ € T} . Note that
n is welldefined from Lemma 3.
Let x now be a word generated by Assoc (T), x € (8(A - {6/ )k)m,

where k> n and m= 2, and let D be a derivation of x in Assoc (T),

D:w=x

O?XT l:;~...:>>< = X.
1

2 d

Define io as the largest integer for which there is an occurrence

of a letter 0 €L in X generating two occurrences of § in x in D,

0
and io = 0 1f no such xi exists. It follows from the definition of n
0
that the derivation
f =
D xlo I=> xio+1=> ‘=>xd X
i o1 d
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contains at least g essential steps. This implies that there exists

a sequence i1 , iz, ceey if such that

. - . .
1) I0+2—-I]<I2<...<I

2) > |zt - 21,

= d;

3) x, = % is an essential step in D forp=1,2,...,f;

4)  min (><i ) = min (><i ) forp=2,3,..., f;
1 P

Now define for every ip in this sequence miné(xi ) as the set of sym-

p
bols in x that contributes in D to an occurrence of a § in x. Then
p
clearly there existis a subsequence,j] ,jz, .o ,jh, of the above sequence,
such that
. < e C <
1) i0t2 = fg< e <j =43

2) h>|Z]|!;

3)  x. = X, is an essential step in D forp=1,2,...,h;

4) min(x, )=min(x, ) forp=2,3,...,h;
i s

5) min (><j ) = ming (xJ. ) for p=2,3,...,h;
p

Now the deterministic tables used in D between these x. 's, determine

p
uniquely a permutation in miné(x\i ). But since the group of permutations
1

in this set contains no more than |Z|! elements, it follows that there

exist Jq and In such that Jq< In and the permutation in mmﬁ( J1)
defined by the tables used in D between xj and xJ. is the identity.
q r
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Consider now for any integer i the derivation in Assoc (T) from

w with control word

From the construction above it follows that

1) For every integer i, the word derived in Assoc (T) from
w with control word z; contains m occurrences of 0§,

2) for every integer n there exists an integer i such that the
word derived in Assoc (T) from w with control word z, is

of length longer than n;

Now 1) and 2) above and the fact that 0 is periodically occurring in
L (Assoc (T)) shows that 8 cannot be tied in L (Assoc (T)), and

this proves the lemma.

Finally we are able to prove the main results of this section.

Theorem S The language L = {(abm)n | 2= m= n} does not

belong to Part ETOL.

Proof
Follows directly from LLemma 4, since the symbol a is distributed,

periodically occurring and tied in L.
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Theorem10 The language L of Theorem 9 does belong to

RC-Part ETOL. ..
mt

Proof
Consider the RC-Part ETOL system S =<ZL, P, L, Lac, w, A, R>,
where

r=1{s, s,, X, X,, X X4 @, bl

1? 17 72

P consists of the following tables, labelled with the set

L=1{1,2,3,4,5}:

(s, sls) r€1 » Sb)
s , s) (s , sb)
I Xy 5 X X) = (><1 , X)
X , X) (X, X))
(S , Sb)) s , sN s , a)
b -, b) b , b) 5.{lb , b)
3 <(x , X5) 4 <(><2 , x)> x , X
g(>< ’ X3)_J g(x3 ’ >")J
]_ac - ¢
w = S, SX,X%;
= {ay b} 5

= 1% 2(3 4)% 5

It is how very easy to prove that L = l_m (s).

t
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Theorem 3, Theorem 7 and the last two theorems imply directly the
following theorem, which states that the inclusion in the final diagram
of the previous section is proper.

Theorem 11 RC-Part ETOL ¢ RC-Part ETOL2C.

Theorem 11 has the following corollary, which is of some interest in

relation to the results in Rozenberg (1971).

Corollary 3 RC-Part TOL ¢ RC-Part TOLZC,
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Part ETOL systems with matrix and vectior conirol

As mentioned in the introduction, it is still an open question,
whether or not the appearance checking facility affects the generative
capacity of context-free grammars with regular control. One might
think that a positive solution to this question could be given along the
same lines as the proof of Theorem 11. However, the reader who is
familiar with the theory of context-free grammars with regulated re-
writing, will have noticed that not only is the parallelism of Part ETOL
systems used many times in the proofs of the previous sections, but the
whole nature of (regular) control in Part ETOL. systems is very much
different from the one of (regular) control in context-free grammars.
This difference will be illustrated in this section, in which matrix and
vector control will be defined for Part ETOL. systems. Results on the
effect of these control mechanisms will be proved, and some of these
results turn-out to be very much different from corresponding well-

khown results for context-free grammars.

Definition 9

Let x=0,0,"...%0 _bea string over some alphabet I, o, €z,

1 < i< n. p(x) is defined as the finite set of all permutations of x, i.e.,
) | m is a permutation of {1,2,...,n}}.

Let X be a set of strings, then

p(X) = U p(x)
xEX
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Definition 10

Let x and y be two strings over some alphabet 2. Then

merge(x,y) is defined as the following finite set of strings over 2,

merge(x,y) = {z€ o% | there exists a natural number n, and
strings x.,y. €X*, 1 <i=<n, such that
Z= XY RoYot et XY
X=X Ryt et X

Y=V Vpteaaty

n? n

MNotice that from the definition it follows immediately that for any two

strings x and y

merge (x, y) = merge (y, x)

Definition 11

Let X be a finite set of strings over some alphabet T,
X = {xl ROTERE ,xn} . Then the set of non-recursive mergings of X,

NRM(X), is defined as follows,

NRM, (X) = {x € T* ]3k€;N:x=x;<};
NRMi(X)={x€ Z* | I kEN, HyENRMi_I(X):x=mer'ge(xli<, v},
2=1=<n;

e ?

NRM(X) = NRM_(X);
The set of recursive mergings of X, RM(X), is defined as follows,

RM, (X) = X ;

RM, (X) = {x € o* \gx‘éx,]x"ERMi“

I

1
RM(x) = U RM.(X) ;

i=1

(X) : x = merge(x',x")} , 2< i

Iy
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Notice that in the definition of NRM(X) a specific crdering of the
elements of X is used. It follows, however, from the remark fol-
lowing Definitiorn 10, that the definition of NRM(X) does not depend

or- which ordering is chosen.

Let S! be a Part ETOL system, S!' = (), P, L, @, w, 4), and let X
be a finite set of strings over L, the elements of which are called
matrices. X may be interpreted in various ways as the basis of
cenrtrol on the derivations in S!', as shown in Tabkle 1. DMote that the
ccricepts of Takle 1 were introduced for grammars in Cremers and

Mayer (1973).

Interpretation Notatior: Control_set

Matrix M-Part ETOL. M(X) = X*

Unordered Matrix UM-Part ETOL. UM(X) = (p(X))*

Vector V-Part ETOL V(X) = NRM(X)

Unordered VVector LUv-Part ETOL LV(X) = NRM(p(X))
010} o

Genreralized VVector V -Part ETOL. Vo o(X) = RM(X)

Generalized oo o
Unordered Vector LV ~Fart ETOL uv  (X)

RM(p(X))
Table 1.

The language generated by the I-Part ETOL. system, S = (S!, X),

where | is one of the notations introduced in Table 1, is defined by

LI(S) ={x€r* | z€euX): wg, x(z)}.

As in the previous sections, the notations introduced in Table 1 will

also cdenote the corresponrding classes of languages.



In Cremers and Mayer (1973) and (1974) the relations of Diagram 2
were proven for ccntext-free grammars, CF, with centrol mecha-
nisms corresponding to the ornes introduced above (see Cremers and
Mayer (1973) for the exact definitions). Some relatiors between
Part ETOL systems with the same control mechanisms will be proven

in the next theorems.

VV —-CF =\/ - CF
M -CF =UM - CF
Uk

[e0]
uv - cF =uv” - CF
Uk

CF

Diagram 2

Theorem 12 Let | be any of the control notations introduced in

Table 1, then Part ETOL. < | - Part ETOL..

Proof
Let S be a Part ETOL system with L as its set of labels. Define
X =L as a set of matrices of S, i.e., X contains only matrices of

length 1, one for each element of L.. Then obviously L(S) = LI(S,X).

Theorem 13 Part ETOL = M-Part ETOL = UM-Part ETOL

=V-Part ETOL = UV-Part ETOL.,

Proof
Follows from Theorems 3 and 12 and the observation, that the
control sets corresponding to the four control interpretations are all

regular,

27



Theorem 14  Part ETOL s UV - Part ETOL.

Procf

The inclusion follows from Theorem 12, and it is seen to be

proper from the following example.

Let S =<X,P,L,®,w,A> be a Part ETOL system with

L= {A7B:C>a3b};

P as the following set of tables, labelled with the set
L= {1: 2, 3} ’

1: {(A, AB), (B, B)}

2: {(A, cb), (B, Cb), (C, Cb)}

3: {(c, ab)}

Define X as the following set of matrices associated with S,

X = {12, 3} , it is then easy to see that the language generated by

(S, X) with UV~ —control is equal to
L={abM"| n=2}.

(Note that L is also the language generated by (S, X) with Voo—contr*ol,
since the only control words from both UV (X) and V7 (X) associated

with derivations of terminal words in S are the words in the set

(17273 | n=1}.)

28



29

But now obviously the letter a is periodically occurring, distributed
and tied in L., and hence it follows from L.emma 4 that L does not
belong to FPart ETOL. (this was alsc proven in Ehrenfeucht and

Rozenberg (1973)), and this completes the procf of Theorem 14.

Theorem 15 UV -Part ETOL < V' -Part ETOL.

Procf
For any Part ETOL system S, and any set X of asscciated

matrices, L, ®(S, X) = I_VOO(S, p(X)).

uv

It is not known whether the inclusior of Theorem 15 is proper or not.

The results of this section are summarized in Diagram 3.

[ea]

V -PartETOL
ul
UV’ -Part ETOL
U
V-Part ETOL = UV-Part ETOL =
M-Part ETOL = UM-Part ETOL =

Part ETOL
Diagram 3
Notice the interesting differences between the diagrams of Diagrams

2 and 3, especially with respect to the effects of the concepts "un—

ordering! and '"generalization' on vector control.
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