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Abstract.

The paper introduces a new class of L systems, where it is
possible to continue derivations from certain specified subwords of
the words obtained. Such L systems (called L systems with fragmenta-
tion or just JL systems) are of interest both from biological and for-
mal language theory point of view. The paper deals with JL systems
without interactions, discusses the basic properties of the language
families obtained, as well as their position in the L. hierarchy. Final-
ly, two infinite hierarchies of language families are obtained by limited
fragmentation, the notions being analogous to those of ultralinearity and

finiteness of index for context-free languages.
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1. INTRODUCTION

The original aim of the theory of Lindenmayer systems (abbre-
viated L systems) was to provide mathematical models for the develop-
ment of simple filamentous organisms. At first L. systems were defined
as linear arrays of finite automata, but were afterwards reformulated
into the more suitable framework of grammar-like constructs. From
then on, the theory of L. systems has been developed essentially as a
branch of formal language theory. In fact it constitutes today one of the
most vigorously investigated areas of formal language theory.

One of the new aspects in formal language theory brought about
by L. systems is the study of the different ways of defining, ''squeezing
out", a language of a system. The traditional way of defining a language
of a grammar is to intersectthe setof all derivable words (''sentential

forms't) by VT*, where VV_.is the specified terminal alphabet. Thus, this

T
mechanism, usually referred to as E-mechanism in the theory of LL sys-
tems, defines the language by excluding strings which are not of the

right form. Another language defining mechanism widely studied in L.
systems theory is to apply a literal homomorphism (coding) to the set of
all derivable words. This mechanism, usually referred to as C-mecha-
nism, defines the language by transforming strings without excluding any
of them. It has been shown in [1] and [2] that for the basic L families,
the families of OL and TOL. languages, the generative capacity of these
two mechanisms is the same, i.e., EOL = COL. and ETOL = CTOL. Further
results concerning £, C and related mechanisms have been established
in[5].

This paper introduces another mechanism, referred to as J-me-




chanism, which is similar to C in that it transforms strings without
excluding any of them. However, otherwise, it is quite different from
C. The basic idea is the following. The right sides of the productions
may contain occurrences of a special symbol g. This symbol induces
a cut in the string under scan, and the derivation may continue from
any of the parts obtained. Thus, if we apply the productions a - aqga,
b -» ba, ¢ » gb to the word abc, we obtain the words a, aba, and b.

The basic biological significance of the J-operator, which will
be discussed in more detail at the end of this Introduction, is that it
provides us with a new formalism for blocking communication, splitting
the developing filament and cell death. The motivation of getting another
way of squeezing out a language from a system was already discussed.
Another motivation belonging to formal language theory is that this ap-
proach explores further the subword point of view, which has recently
turned out to be very fruitful, cf [3] and the references given there.

In this paper, we shall discuss JL systems without interactions,
i.e., rewriting happens in a context-free manner. JL systems with in-
teractions will be discussed in a forthcoming paper by the middle author,
K. Ruohonen, to whom also belongs the idea of considering fragmentation
in the way described above.

For all unexplained notions concerning formal languages we refer
to [7]. We also expect a basic knowledge of L systems (at least in the
extent of [7] but also parts of [4] or [6] might be consulted) on part of
the reader.

The contents of this paper will now be briefly outlined. In section
2, we discuss the equivalence of various definitions of fragmentation. Sec~

tion 3 studies basic properties of the families JOL and JTOL and, Section



4, the position of these families, as well as some of their extensions,
in the L. hierarchy. In Section 5, two infinite hierarchies of language
families are obtained by imposing an upper bound on the number of
cuts. The two hierarchies correspond to inside and outside control in
regulating the number of cuts. The situation is completely analogous
to the study of ultralinearity and finiteness of index of context-free
grammars and languages, although there are no nonterminals present.

We are grateful to A, Lindenmayer for the remainder of this
Introduction, discussing the biclogical viewpoint in more detail,

Developmental systems with fragmentation can be viewed biolo-
gically as follows. Any kind of reproduction process of any cellular
organism clearly must involve the separation of certain individual cells
from the rest of the organism (the production of gametes or spores), or
it must involve the breaking up of the organism into smaller fragments.
In either case, cellular or subcellular mechanisms must exist which de-
termine where separation occurs between adjacent cells, Fragmentation
may also occur in an organism when certain cells or organs have to be
discarded for physiological reasons rather then for reproductive pur-
poses, The latter case obtains in most epithelial tissues, where a con-
tinous sloughing off takes place of the surface celis, Also, the absci-
sion of leaves and of floral parts at predetermined intervals is of this
kind of fragmenting process,

In general, fragmentation can be induced in two ways: either by
cell death or by differentiation of cells. The first case involves the
(pre-programmed) death of some cells (or cell layers) which are attached
to other cells, Simply by the disintegration of the dead cells the orga-

nism fragments into several parts, This kind of mechanism is well known



in filamentous algae and fungi , as well as being responsible for

leaf abscision in higher plants. This case corresponds to produc-—
tion rules of the form a @ q in JL~-systems. The second case repre-
sents a mechanism by which certain cells develop a change in their
wall structure at certain places, which results then in a mechanical
weakening of their attachment to adjacent cells. This is what happens
in the course of production of gametes or spores. This case corre-

sponds to production rules of the forms a @ bg and a = gb.




2. DEFINITIONS

Consider an alphabet Z, let g € X and assume that 3; =3-{q}

is not empty. A word x over I, is a g-guarded subword of a word

x over X iff either x = x or else there are words y; and y, such that

one of the following equations - is satisfied:

X = ¥, OXy QYa, X = X1 QYa, X =Y, gXy .

We now proceed to two different but equivalent definitions of JOL lan-
guages. The first is a recursive one. Consider a OL system G =(Z, w, P),
where 2 is the alphabet, w is the axiom and P is the set of productions.
For a letter g (not necessarily belonging to ), define recursively the
following languages:

L°(G,q) = { x | x is a g-guarded subword of w},

L™ (G, q) = { x| for some 2, , Z,, Z, €L'(G,q), Z, “s Z2>

and x is a g-guarded subword of Z,},for i = 0.

Define now the operator Jq as follows:

o0 .
e =\U ) L.

A language L. is a JOL language iff there exist a OL system G

and a letter q such that L = Jq(G). The family of all JOL languages is
denoted simply by JOL.. (Because there is no danger of confusion, we
use an analogous notation throughout this paper and, thus, speak of
language families EOL and ETOL).

Note that if q does not belong to X, then Jq(G) = L(G). Thus,



by definition, the family OL. is contained in the family JOL.
Our first theorem can be viewed as a representation lemma

which gives an alternative definition of the family JOL..

Theorem 1. Every JOL. language equals the set of all g-guarded sub-
words of the words in L(G), for some OL system G and letter g such
that g » g is the only production for q in G. Conversely, if G is a OL
system having at most the production q = q for the letter q (thus, g
need not belong to the alphabet of G), then the set of all g-guarded

subwords of the words in L{G) belongs to JOL.

Proof. Assume that L = Jq(G), for some OL system G. Then also
L= Jq(Gl ), where G, is obtained from G by replacing all (if any) pro-
ductions for g with the production q - q. From this observation the
theorem easily follows.

Thus, JOL. is the family of languages obtained as collections
of g—guarded subwords from OL. languages, with the additional assump-
tion that the identity production q » q is the only production for q in the
OL. system in question. From the biological point of view, this require-
ment for q is very natural: for example, it would be unnatural to "glue
together! strings already separated. From the formal language theory
point of view, if such gluing is allowed then the resulting language fam-
ily will strictly contain JOL.. This is seen by considering the OL system
G with axiom aqg and productions

aﬁa’g, g~ bqg, b~ b,
The set of all g-guarded subwords of L(G) equals

{agnbn | n=0} U {\]}



which is easily seen not to belong to JOL. (In this example, g works
at the other end only. Similar examples for q working in the middle,
more resembling to actual gluing, are easily constructed).

Theorem 1 and the subsequent discussion suggest the following
general definition of JL. languages, applicable to any variety of L Sys—
tems. We say that a language is a (q » g) XL. language iff it is genera-
ted by an XL system in which the only production for the terminal let-
ter q is the identity g > g . (Here the variable X refers to any variety
of L systems, e.g., X =PDTO. If we are dealing with systems with
tables, the definition is read: the identity is the only production for q
in each table. If we are dealing with systems with interactions, the i-
dentity is the only production for g in each context. A language belongs
to the family JXL. iff it equals the set of all g-guarded subwords of some
(g » q) XL language.

As mentioned before, we study in this paper only systems with-
out interactions. Thus, our objects of study will be the families JOL

and JTOL., and some of their variations,

Remark 1. From the formal language theory point of view, the notion of
an (g » g) XL. system may seen somewhat unnatural but, as we have al-
ready indicated, the special role of q is quite essential from the biolo-
gical point of view. This reflects also the general situation: from the
biological point of view the language with a generating mechanism is

certainly more important than the language itself.

Remark 2. The letter S or the letter F, being initial letters in the words,
split!" and "fragment'', would have been appropriate for the names of

our language families: SXL or FXL.. However, both S and F already



have fixed meanings in the theory of L systems. Therefore, much to
the delight of the last two authors, we have chosen to use the letter
J which is the initial letter of the corresponding Finnish word

Hjakautua.
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3. PROPERTIES OF JOL and JTOL

We use the expression JOL. system for any pair (G, q) where
G is a OL. system and g is a letter such that G contains at most the
production g = g for gq. Then the language of a JOL system (G, q) e-
quals the set of g~guarded subwords of L(G). The notion of a JTOL
system is similarly understood.

By definition, JOL contains the family FOL (F standing for a
finite set of axioms) and, hence, the family of finite languages. Our
next theorem gives a sufficient condition for a JOL. or JTOL language

to be finite.

Theorem 2. Assume that L is generated by a JOL system or a JTOL sys-
tem (G, q) where the right side of every production either equals the

empty word or contains an occurrence of q. Then L is finite.

Proof. LL cannot contain words longer than twice the length of the longest
g-guarded subword appearing either in the axiom of G or on the right
side of some production of G.

The following theorem strengthens Theorem 1 and gives a nor-

mal form for JOL. systems.

Theorem 3. Every JOL language is generated by a JOL. system (G, q)
such that the right side of each production contains at most one occur-

rence of q.

Proof. An arbitrary JOL. system (G!, g) can be transformed to an equi-

valent one satisfying the condition of the theorem by repeated applica-
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tions of the following trick: a production a ® xqyqz, where x and
z do not contain occurrences of g, is replaced by the production
a @ xqz and, at the same time, the axiom is catenated from the left
by the word yq. (Here it is assumed that a occurs in some word in the
language L.(G').).

We now investigate closure properties of JOL and JTOL.. Both
of the families turn out to be anti-AFL's, i.e., they are closed under
none of the AFL. -operations. The next theorem is a lemma needed in

subsequent proofs.

Theorem 4. Neither one of the languages L; and L, defined by
n n
L, = {a®""" | n=1} U {a°}, I_2=I_:Wher*eL.3= {a® ba® | n=o0}

belongs to the family JTOL.

Proof. Consider first L., , assuming that it is generated by a JTOL sys-
tem. If some table contains a production a » a’ then necessarily i = 1
(because, otherwise, either A € L, or else a®! € L, withi> 1). On
the other hand, if all right sides of the productions contain an occur-
rence of q, then L; is finite by Theorem 2. Hence, some table contains
the production a = a. If it is the only production for a in all tables, L,
is again finite. Therefore, some table t contains both of the productions
a— a and aﬁaixaj,

where x € {q} U {q} {a, q}*{q} and i, j= 0.

Since a % L, , an application of t to a® shows that either i = 2 and ] is
odd, or else i is odd and j = 2. Consider the alternative i =2, j= 2k-1,
the treatment of the other alternative being similar. A contradiction
now arises by applyingt to the word a®because we obtain

- +
a®¥* " taa® = a***? €L, .
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Consider then the language L ,, and assume it is generated
by a JTOL. system. We now make a sequence of observations as fol-
lows.

(0 If some table t contains a production

a—=x wherex € { a, b, q}+— { a, b}+
then x € L.;_ ( {a} U {q} (LsU {q} )+{q}) L.;' . This is seen by applying
t to the word aba. Hence, if it contains also a production

a~>y wherey€ {a, b}*
then necessarily y € LL . This is seen by applying t to the word a°ba®.
(ii) If some table t contains the production a - a then t must be the
identity [ a=~ a, b>b, g- q]. This follows by (i) if we consider a
word aznbazn, where n is sufficiently large.

(iii) Some table must contain a production a » a' with i > 1 because,
otherwise, the number of consecutive a's in the words of L., would be
bounded which is not the case. Denote by T; the set of tables containing
such a production. As in (ii) we see that the only production for b in
tables belonging to T; is b » b and, furthermore, that no table in T;

can contain two productions a - a' and a = a’ with i #j.

(iv) Assume that some of the tables in T; contains the production
a~a', i> 1, and also the production

a - a’'xa* where x € {b} U {b} {a,b}* {b} and j, k = 0.

An application of this table to the word aznba'gn gives the word

i (2% =1)+;

k i2
V. = a xa ba™"

. But all words yn do not belong to L;. (In

n

fact, a necessary condition for this would be that k > 2", for all n,
which is absurd). Hence, none of the tables in T; contains such a pro-
duction a » a’xa". By (i), we may now conclude that the tables in T,

are all of the form [a-a', b~b, g~ q].

n n
Consider now the word a° ba® *'bac¢€ I_-'g, where n is suffi-
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ciently large. Our JTOL. system cannot generate this word. The
only possibility to obtain it would involve an application of a table in
T, at the last step of the derivation but there is no suitable direct

. + . . e
ancestor in L 5. This contradiction proves Theorem 4.

Theorem 5. The family JTOL is an anti-AFL.

Proof. In order to apply the same argument also for some other results,
we give examples where AFL.-operations applied to OL languages yield
languages outside JTOL..

The language L, of Theorem 4 is the union of two OL languages.
Also L; = h(L 4) where
L,={a""*" | n=21}U{b}
and the homomorphism h is defined by: h(a) = a, h(b) = a°.
Clearly, L, is OL.

The language L.; can also be expressed in the two forms

L, =Ls N{a}l* =h"* (Ls),

where

Ls ={a*"*" b |n=21}U{c UL,
and the homomorphism h,; is defined by:
h, (a) = a, h; (b) =b°%, h; (c) =c°.

L s is generated by the OL system with axiom ¢ and productions

3 2
a—»a, b»a’b, b»\, c»ab, c~»a".

Finally, we note that L 5 in Theorem 4 belongs to the family OL.
Hence, Theorem 5 follows.
Since by definition OL € JOL. < JTOL., we have also established

the following result.



Theorem 6, The family JOL. is an anti-AFL.
Since each of the families OL., FOL, TOLand FTOL contains OL and is
contained in JTOL, we have also given another proof for the following

well-known result.

Theorem 7. Each of the families OL, FOL, TOL and FTOL is an anti-

AFL.

14.
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4. THE POSITION OF JOL., JTOL AND SOME EXTENSIONS

IN THE L HIERARCHY

Comparisons will be made between JOL and JTOL. onh one hand
and especially the videly studied L families OL, TOL, EOL and ETOL,
on the other.

We defined above the general family JXL.. Thus, the meaning
of JFOL, JTFOL, JEOL, JETOL should be clear. We also apply the
operators E and C to the JXL families in the ordinary sense. Thus, a
language belongs to CJTOL iff it is a coding of a JTOL language, and
a language belongs to EJOL iff it is of the form L N V_*, for some
JOL language L. and alphabet VT.( From the definitional point of view,
EJOL. is more natural than JEOL). The next theorem is an immediate
consequence of the definitions.

Theorem 8. JFOL = JOL. and JTFOL. = JTOL.

We now prove a lemma
useful for the investigation of the J families. For a language L. and a
letter q, denote by Jq (L) the collection of all g-guarded subwords of
the words in L.. (Thus, if q does not belong to the alphabet of L. then
Jq (L) = L). A language family K is closed under the operator J iff,

for any L € K and any letter q, Jq(L)E K.

Theorem 9. If a language family K is closed under gsm mappings then

it is closed under the operator J.

Proof. Assume that L € K and q is a letter. Consider the gsm M defined

by the following table:
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Sp 51 52 S3

I 5 /A s /s sa/h
s, /a

q SO/X So/l Ss/?L Ss/l
53/7&

where a ranges over all ietters of the alphabet of L different from q,
and sq is the initial and s; the only non-final state. It is easy to see
that M(L.) = Jq(L_), which proves Theorem 9.

Theorem 9 is applicable, for instance, to any language family

which is a cone (a full trio).

Theorem 10. EOL. = JEOL. = EJOL. = CJOL. = JCOL. and

ETOL = JETOL = EJTOL = CJTOL. = JCTOL.

Proof. We prove the former equations, the proof for the latter being
exactly the same. The inclusions

EOL € JEOL, EOL < EJOL, EOL < CJoL
follow by the definitions and (the last one) by the equation EOL = COL.
Each language in JEOL. is obtained from a language in EOL. by some
operator Jq. Since EOL is closed under gsm mappings (cf [4]), The-
orem 9 implies that JEOL < EOL. Hence, JOL < EOL. The inclusions
EJOL. € EOL. and CJOL. € EOL. now follow because EOL is closed under
intersections with regular sets and under codings.

Theorem 10 remains valid with the same proof if the operator

H (taking arbitrary homomorphisms) is considered instead of C.
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Theorem 11. The following diagram holds true:

ETOL
EoL
JToL
JoL- TJ—:OL_ }
FoL ToL
\ 01_/

Here arrow denotes strict inclusion. Whenever the families are not

connected by a directed path, they are incomparable.

Proof. It is well-known (cf [4] and [5]) that the lower part of the dia-
gram involving OL, FOL, TOL, TFOL holds true and that EOL and
TOL. are incomparable and EOL. § ETOL.. The inclusions FOL. < JOL.
and TFOL. < JTOL follow by Theorem 8, and the inclusions JOL. S EOQL
and JTOL € ETOL by Theorem 10. The language L., of Theorem &
belongs to EOL. - JTOL. From these facts the whole diagram follows,
provided we still can present a language in the difference JOL - TFOL.
Such a language is

L=¢{aba" |n=1}U{a" ba| n=1}.

Indeed, L. is generated by the JOL system with the axiom aba
and productions

a—-a, b—abagqgaba.
(We note in passing that this system is also deterministic and, hence,

L. € JDOL. A further discussion of the family JDOL. lies beyond the
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scope of this paper). On the other hand, L ¢ TFOL. (In a TFOL
system for L, no production for a can contain b's on the right side,
and each production for b contains exactly one b on the right side. By
considering productions a - a', b - a’ba® and words aba, a°ba and
abag, it is seenthati =1, j=k = 0. Hence, every table would have
to be the identity which is absurd).

Finally, we compare fragmentation with cell interactions. The
most important result here is that the mechanism of fragmentation is
even in its simplest form (JOL) capable of doing something which cannot

be done with any interactions.

Theorem 12. There is a JOL. language which is not an IL language. There

is an lL. language which is not in JTOL.

Proof. L, of Theorem 4 is an example for the second sentence. An ex-
ample for the first sentence is provided by the language L = K, UK UK 3,

where

2
t

{a"ba®"ca®"ba" | n =0},

{an+mba.2n+m l n

A
[V
i

v
3

v
=)
et

Ks=mi(Kjy).
indeed, L is generated by the JOL. system with the axiom bcb and pro-
ductions

a—~»a, b-—aba, ¢ - aca, c- aqga.
We prove by an indirect argument that L is not in IL.. Assume the con-
trary: a (k, 1) L system G with the production set § generates L. We
make a sequence of observations, finally arriving to a contradiction.
(i) Clearly

5 (a*, a, a') € {a}*
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and
5(a“, a, a' " 'b)d(a", a, a'"®ba)...d(ba"" !, a, a' )€ {a,b}*.
(Here 6(ak, a, a') denotes the right side of an arbitrary production
for a in the environment (a*, a'). The same notation is used through-
out this proof.) This implies that words in K; of sufficient length can
be obtained directly only from words in K, . Moreover, the productions
used must be deterministic.
(it) By (i),
6(a*, a, a') = a'
is the only production for (a*, a, a'). Furthermore, the language
K .= {a"ba*"ca®"ba" l n > k+l}
is generated (deterministically) by G from a finite number of starting
words
a"iba®% ca®™ ba"! (j=1,0....., N).
Assume first that i > 1. Then the starting word a™ ba®"! ca®™! ba™
generates the language
Ks;= {a" ba®"n ca® bah | h, = (ng=x/(1=1)) "™ +x/(1-i), n=n,},
where x is a constant not depending on j. But the union
N
\J Ky
=1
is properly contained in K4 because the number of words of the form
a"ba®"ca®"ba" , i®<n<i*tt,
in the union is bounded by a constant not depending on s. Thus, we
conclude that i = 1.

(iii) We consider now the language Kg = Kz U K,, where

Keg=1{a"""ba®"""| nz1, m=z20, ntm = k+l},
Ky =mi(Kg).
We note first that, in each word of K, U K 3, the numbers n and m are

uniquely determined by the exponents of a because the equations
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n+m = n'+m!

2n+m = 2n'+m!

imply the equations n = n! and m = m!. By (ii), every word in K4
yields directly a word in Kg. We claim that also every word in Kg4
(resp. K,) yields directly only words in K¢ (resp. K,). This fol-
lows because assuming that, for instance,

n+.aoly 20+ n 2n+m n+
a" ""ba = a ba""",

we obtain for sufficiently large p
ap—n‘—nbap___> att n+n-2no- m'bap+n+m—2n‘—m'

where the right side is not in K4 although the left side
I aP—zfn'+n)+(n'+ n)bap—z(n'+n}+ afa'+n)

isinKg.

Consider now an arbitrary relation

an'+ m'ba2 o'+ m' > a*tPpgerte

a
If n # n! then, for sufficiently large p, the word a’t T M pa?

(which is inKg ifn < n!', and in K, if n > n!) yields directly a word
not in Kg. Hence, n = n!'. But this means that all words in Kg are not

generated by G.
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5. HIERARCHIES DUE TO k-LIMITED FRAGMENTATION

The discussions in this section are restricted to JOL.. A si-
milar theory can be developed for JTOL.
L.et kK be honnegative integer. We say that a language L. € JOL

is obtained by k-limited fragmentation under inside control, in sym-

bols, L € 1 C (k) iff L is generated by a JOL. system (G, q) such that
no word in LL(G) contains more than k occurrences of q. If L € JOL.
but L § I C (k), for every k = 0, 1\, 2, ..., we say that L € I1C(=).
For instance., all OL languages belong to IC(0). Any FOL
language generated by a system with two axioms belongs to IC(1). We

say that a language L. € JOL. is obtained by k=limited fragmentation

under outside control, in symbols, L € OC(k) iff L is generated by a

JOL system (G, q) and, furthermore, every word in L. is a g-guarded
subword of such a word in L.(G) which does not contain more than k
occurrences of q. If L € JOL but L ¢ OC(k), for every k=0, 1, 2,...,
we say that L € OC («?).

Note the analogy in context-free languages: CC(*®) corresponds
to languages of infinite index, and IC(®®) to languages which are not

ultralinear.

Theorem 13. For all k 2 0,

IC(k) ¢ 1C(k+1), OC(k) $ OC(k+1), IC(k+1) $ OC(k+1). Furthermore,

1C(0) = OC(0) and there is a language inOC(1) belonging to 1C(%).

Proof. We prove first the second sentence. The equation I1C(0)=0C(0)

is obvious by the definitions. Consider the JOL system with axiom abc
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and productions

a—~>abc, b-»bc, b>q, c~-ec.
The generated language is
L= {abcbc®bc®..bc! [i= 13U {c! |iz1}U{c'bc'"®bct " 2b...bct T |i21,j=2].
It is easy to see that every word in L not belonging to the first mem-
ber L., of the union is obtained from a word in L.; by making one cut
at the end. Hence, L € OC (1). It is also easy to see that L. ¢ 1C(k),
for all k=0, 1, 2, ..... This follows because L is not generated
by a JOLL system where no production for b or ¢ contains g on the right
side and, on the other hand, no JOL system for L where q occurs on
the right side of some production for b or ¢ satisfies the requirements
of k=limited fragmentation under inside control.

The inclusions in the first sentence, apart from being proper,
follow by the definitions. It is now a consequence of the second sentence
that the last inclusion is proper. Finally, the strictness of the first two
inclusions follows because

n n R v2
{af |nz1} U {&a |n21}U...U{awe |n=1} € 1C(k+1) - OC(K),
where p; is the ith prime.
Finally, we exhibit a language in the class OC(*®), i.e., a JOL

language which can be viewed to have an infinite index.

Theorem 14. The language

L= {b} U {loagn“1 In=1} ( {A} U {b})

is in the class OC (®).

Proof. L. is generated by the JOL system with the axiom bab and produc-
tions

a-a°, b-bgba.
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We now claim that LL does not belong to any of the classes
ocC(k), k=0, 1, 2, ..... To prove this, we consider an arbitrary
JOL system G generating L. We again make a sequence of observations
as follows.
(i) G does not contain any production a - x, where b occurs in x

but g does not occur in x. (Otherwise, we would obtain words with too

many b's).
(in) It is not possible that
a—>->¥, a—a, a>Xp,..., @+ Xy ,

where each x; contains an occurrence of g, are the only productions
for a. (Otherwise, we could show in the same way as in the proof for
Theorem 2 that G generates a finite language).

(iii) G contains a production a » a', i > 1. (This is a direct conse-
quence of (i) and (ii).)

(iv) There is no production for a such that b occurs on the right
side. (By (i), such a production P would also contain an occurrence of
g on the right side. We could now consider the word bagn_l , for some
large n,and apply the production a - al from (iii) to the first m a's and
P to the (m+1)st a, for variable m. We would then obtain words with
mi+j occurrences of a, for some constant j. But clearly some numbers
mi + j are not of the form 2" ~1).

(v) Sufficiently long words of the form bagn"lb are generated
directly only by words of the same form. (This is an immediate conse~
quence of (iv)).

(vi) The production b - b is not in G. (Otherwise, we would get a
contradiction by applying this production and the production a » a' to
words of the form bagn—lb-)

(vii) The right side of every production for b must begin with bq.

(Consider an arbitrary production P for b. The right side cannot begin
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with q because ) is not in the language. It cannot begin with a be~
cause there are no words beginning with a in L. Thus, by (vi), it
must begin with bg, ba, or bb. The last two alternatives are ruled
out because, otherwise, an application of P to the final b in the word
ba® n"lband a~ a' to the occurrence of a immediately preceding it

would give a word not in L.)

Our claim is now an immediate consequence of (v) and (vii).
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