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Hyper-AFL's and ETOL.~-systems

Introduction:

This paper deals with relations between substitutions and
parallel rewriting in the sense of Lindenmayer-systems. We are
especially interested in iterated substitution, which was introduced
by Jan van Lieeuwen [10] and Arto Salomaa [12], and which is a
generalization of the EOL. -~ and the ETOL ~system. In anatural way
these iterated substitutions lead to the notion of a hyper-AFL, and
it will be proved that the family of ETOL -languages is the smallest
hyper-AF L.




1. DEFINITIONS

We will first define the different types of LLindenmayer-systems,

which will be used in what follows.

Definition 1.1

An extended table LLindenmayer-system without interaction

(ETOL ~-system) is a 4-tuple G =(V_, V—, T, o), where

N, T’
(1) VN and VT are finite disjoint sets, the nonterminal and terminal
alphabets,
(ii) T is a finite nonempty set of tables, T = { t,,e..,0 1, where
n=1andfori=1,...,n: tié(VNU VT)X (\/NU VT)*, t, is

finite and t; is complete, i.e. ¥ a € (VU VT)] w € (VN U VT)*:
“(a, W) € t;. Instead of (a, w) € t;, we will often writea- w € t;
and call it a production int; .

(iiti) o€ (v, U VT)+ is nhamed the axiom of G.

N
Definition 1.2

An ETOL-system G = (\/N, Ve T, o) is called

(i) a TOL-system if V, = (0)]

. ) . . +
(ii) an EPTOL-system if for each table t in T tL:(VN U VT) X (VNU VT)
(iii) a PTOL-system if it is TOL and EPTOL
(iv) an EOL ~-system if T = {tl} , i.e. T consists of exactly one table

(v) an OL-system if it is EOL and TOL

(vi) an EPOL -system if it is EOL and EPTOL

(vii) a POL-system if it is OL. and EPOL..




Definition 1.3
If G = (vN, \Y

T, g) is an ETOL -system and if

T’
a,eeea €V UVoandyy,..., ¥ € (VNU \/T)* and if there
exists a t in T such that (a;, y;) €t for j=1,...,k then we
will write a; ...a 8 Yi...¥% . The transitive reflexive closure

of 8 is denoted by (:2 .
The language generated by G is denoted by L(G) and defined as

L(G) = {w € v_¥* |c§w}.

T
If X € {x, ET, EPT, E, EP, T, PT, P} we will call a language
generated by an XOL -system an XOL.-language. The family of all XOL -
languages is also denoted by XOL..
Note, if X € iET, E, EP} we may assume, without loss of gene-
rality, that the axiom of the XOL -system is a nonterminal letter, and
furthermore, the tables need not fulfil the completeness condition in

(i) of def. 1.1.

We will use the following names for well. known families of

languages:
= - the finite languages
Fo - the finite A-free languages
R - the regular languages
Ra - the regular A-free languages
CF - the contexi-free languages
Ccs - the context-sensitive languages.

In the sequel we will use the following notion of a synchronized

version of an ETOL -system:

Definition 1.4

Given an ETOL -system G = (VN, Vs T, o) then define the
ETOL-system G' = (V' V, T', o') by :
NERAYNE {a' | a€ VT} U {¢}, where a' and ¢ are new symbols.

. . . * 1%
Define the homomorphism h : (VN U VT) -+ VN by



aifaév
h(a) = N
a' if a€ VT
FT={t,...,t,] thenT'={t;',...,t '} wherefori=1,...,n:

]

{(h(a), h(w)) | (a, w) €t} Uila, ¢ )| ac Vo U {¢})
U {(a', a) | aéVT}.

The axiom of G!' is g! = h{(g). It is now obvious that L{G) = L(G!). In
deriving a terminal word in G', all the terminal letters are produced
in the last step. That is the reason for calling G' a synchronized

version of G.



2. ITERATION-GCRAMMARS

We will start this section by listing some definitions and

theorems - without proving them - from A. Salomaa [12].

Definition 2.1

Let K be a non=trivial family of languages. A K-iteration grammar
is a 4-tuple G = (VN, Vi: S, u), where vV and Vo
sets (the nonterminal and the terminal alphabets). V = VN U VT is called
G's alphabet, S € V+, S is G's axiom. U = {9‘"1 y oo ,qhn} is a finite set
of K—substitutions defined on V* such that for each a in V and for each
Tinu: T(a) e v*.

The language generated by such a grammar is denoted by L(G) and

are finite disjoint

defined - as:

L =( F . ...F (shnvx,

1 k

where the union is taken over all integers k = 0 and all k-tuples

(iyyeee, ) With1 <i; <nfor j=1,..., k.

Definition 2. 2

The family of all languages generated by K~iteration grammars is
denoted by Kjier -

Ifn=1 is an integer then the family of all languages generated by
such K~iteration grammars, where U consists of at most n K substitutions,

is denoted by KS{;)I.

Theorem 2.3

If K is a non~trivial family of languages such that

DoLEK: L*Er@ AL # A\
ii) K is closed under finite substitution,

iii) K is closed under intersection with regular sets,

and if K is a language generated by a A-free K-iteration grammar (i.e.,

¥ a€cv vTeu: ¢ T(a)), and if h is an arbitrary homomorphism,



then h(L)\{A} is also generated by a A -free K-iteration grammar. with

the same number of substitutions.

Corollary 2.4

Assume K is a nontrivial family of languages fulfilling i), ii) and
iii) of Theorem 2. 3.
If L is generated by a K-iteration grammar, then L\{)\} is gene-

rated by a A -free K~iteration grammar with the same number of substitu—

tions.

The next lemma shows that these iteration-grammars are exten—

sions of the usual LLindenmayer-systems.

Lemma 2.5
Fgf)r = EOL and Fi., = ETOL.
Proof

Let G = (VN’ Vs T, 0) be an ETOL-system. Define the F-ite-
ration-grammar G' = (VN, Vis 0, u), where Vi V1 and ¢ are as in G,
and if T={t,..., t,} then U=1{T,,...,9.}, where for each a in
VY V1 and each i (f’i (a) ={w | (a, w) € t, ] . Then obviously
L(G) = L(G!).

Therefore EOL. < Fge)r and ETOL. € Fy..

Now if G = (VN, VT’ S, U) is a F-iteration grammar, then define the
the ETOL -system G'! = (VN uist, Vo T, S), where Vi V1 and S are
as in G, $ is a new symbol and if U={T,,...,T.} then T = T I
where t, is defined by t, = {(a, w) | we T.(a)} U {(a, $) |71 (a) = @}

u (s, $)}.

Since $ is a new non-terminal symbol, which only derives $, the
only task of $ is to block the words in which $ appears from being
terminal, and this obviously simulates Ti (a) =§Z§.

Therefore LL(G) = L(G') and the lemma is proved.

From the proof of this lemma it is immediately seen that:
EPTOL is the family of languages generated by A-free F-iteration gram-
mars, and EPOL is the family of languages generated by A~free F-itera-
tion grammars with one substitution. Thus, since F fulfills i), ii), and

iii) in Theorem 2.3 we have proved that:



a) L € ETOL ¢ L\{\} € EPTOL
b) L € EOL & L\{x} € EPOL

Definition 2.6
A family of languages is said to be guasoid iff

(1) K is closed under finite substitution
(2) K is closed under intersection with regular sets

(3) Re K
Note: Because of (1) and (2), (3) could be exchanged by (3)': {a}l * € K.

Finally we mention the general theorem about iteration grammars from

[12].

Theorem 2.7
If K Is a quasoid then Kﬂe)r and Kiier are full AFL's,
Thus, since full AFL's obviously are quasoids:families like nge)r ,

Riter and CF ., are full AFL's.




3. SUBSTITUTIONS INTO LINDENMAYER - LANGUAGES.

In this section we will pay attention to families of languages in the
form LMOL or LMTOL., whereM stands for substitution into andL is
some family of languages i.e. LMTOL = {T(L) | L € TOL, isa
L-substitution}. These families were introduced by Culik and Opa-
trny [in 2 and 3]. We will begin with a general theorem about these

families.

Theorem 3. 1.

If K is a quasoid which is closed under regular substitution then KMOL
and KMTOL are full AFL's.
proof:
(i) Since RS K and {a} € OL € TOL we conclude:
RS KMOL, R< KMTOL.

(ii) Letl,;,L; € KMTOL, i.e. there exist TOL-systems
G;= “3,‘v15,qi, ..... ’tnii}’ ol)
for i = 1,2 and K~substitutions 5’/1 and g: such that L =.7: (L(G )
and Lo= T (L.(Gs)). We can assume, without loss of generality,
V_I_l n VTz =@, Let S be a new symbol and assume for instan-
cen =ns. To prove L, UL, € KMTOL define the TOL~system
G= (@, {s}U Vo U vTE, f ot eenennnn tnz},S). Where the
table t; consists of the productions:
if1<i<n then: Sec:fl and S~ 0° plus all productions in til and
til and t;5.
ifn, <i<ng thent S~ o and S - 05 plus all productions in
ty
Define the substitution Tby: T(s)=0
vacv: T@= T, (a
M a € VTZ: T (a) = T, (a)
Then it is obvious that L; U L, = (L(G)) € KMTOL, and since
the number of tables in G is ny then L UL, € KMOL if
L,, L, € KMOL.
To prove L; ¥ € KMOL if L, € KMOL, we define the OLL-system
G=(9, {s,51}U VTl , {t}, S), where t consists of the produc-

tions: S=A; S S S, S~ o plus all productions from tll .

) 1
“ and a - a for each a in V. .



The substitution 9”"' is defined by f/w(a) =@ifac{s, 5 1;0 (a)=

07 (a) ifa€ VL. Then obviously L, * = (L(G)) € KMOL.

If L, € KMTOL we define the TOL.-system

Gi(¢, {S, Sl} Uv-'l Uv.]-l ’ { tl,....., tn1+1 }, S), Wher‘e_-i =
{ a\ a€ VTl}, Define the homomorphism h by M a € \/le h(a) = &.

For 1 < i=<n t; consists of the productions: S » S; S - S and for

eacha€ V_ 1 a»aand a-»h(w) iffa>weé t;*. t consists of the

T .
productions:

S-»L; S-S5 ; S5 »5; S eh(cl)foreachaEVTl :a-aand
a > a.

The substitution T is defined by

@ifac | s, sl}ule

Ta) =1 T (a) ifac vy

Then it is obvious that L, * =§ (L(G)) € KMTOL.. Thus we have so far
proved that both KMOL. and KMTOL. are closed under U and *,

(iii) To prove that both families are closed under intersection with
regular setslet G= (@, L, { t ,..., t,}, 9’) be a TOL-system,
let7 be a K-substitution and finally let M = ( Q, L0 0y o F) be
a finite automaton. Now define the TOL-system G! = (@, {$, S}
Uaxzx, {t,..., t,}, S), where S and $ are new symbols.
ITf G is an OL.-system G! is too.

Assume 0 = ai&""aik’ wherea; € yforj=1,..., k.

3
For 1 <i<n t;!consists of the productions:

S-(do, a; , 9 )lay , a5 , 95 )eeernnn. (a; »a; 5, 9, ) for

. 1 1 2 2 . k7q X . h
all possible choices of A 5eenen » i inQand qg; inF.

1 k k
And ifa>b ....b, €t withn=1andb ,...,b, € ¥ then:
(a,, a, a;) »(a;, b, a; ) (a; ,by, qig) ...... (a; , b,, qlfor
n
all possible choices of qil, d; ,l i yevevoo q, in Q.
1 17y

Finally if a=> )\ € t; then:

for each d,, 9 in Q:

ifi4] then(a,, a, a,) > %

ifi=] then (a;, a, qj) > A

plus the production $ - $ Define the regular sets R(q;, q,) for
each q; and qa; in Q by:

R{ag, a;) ={ we 5 #| 8(a,, w=aq, 1.
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Now we can define the K-substitution 7! by: T H$) = @
M q;, g cQMacy::
T(a;, a, a)) = T(a) N R (a;, a;). Then obviously: T (L(G))
NT M) =T 1(L(G!) € KMTOL. Therefore we have proved that
both KMOL. and KMTOL. are closed under intersection with regular
sets.

(iv) Finally since K is closed under regular substitution then it is ob-~
vious that KMOL. and KMTOL. also are closed under regular sub-
stitution.

(i), (ii), (ii7), and (iv) proves the theorem.

Corollary 3. 2

If K is a full AFL then both KMOL and KMTOL are full AFL.!'s.
proof:

Obvious from 3.1 since a full AFL. is a quasoid.

We have thus proved that families of languages |like RMOL and RMTOL
are full AFL!'s. Since full AFL.!s are closed under regular substitu-
tion RMOL (RMTOL.) is obviously the smallest full AFL containing OL
(TOL). Since each EOL (ETOL.) - language is obtained from an OL.-
(TOL)~ language by intersection with a regular set, it is obvious that
RMOL. (RMTOL.) is the smallest full AFL containing EOL. (ETOL.).

In fact we can prove a little stronger theorem:

L_emma 3. 3.

RMOL. (RMTOL) is the smallest AFL. containing OL or EOL (TOL or
ETOL).

proof:

As mentioned above the smallest AFL containing OL (TOL) is the same
as the smallest AFL. containing EOL (ETOL.). Since AFL!s are closed
under Ry-substitution, this smallest AFL will contain RoM(EOL) =
RoM E %) (RM (ETOL) = R, M Fyq.).
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Thus to prove the lemma we just need to prove RMOL.ER MF‘i(t‘le)I' (RMTOL
SRoMF jier ). Let LLEOL(TOL) and let p be aregular substitution, since
OL < EOL. = F(i‘t)er (TOL < ETOL. = Fjer)

we know from corollary 2.4 that L\{x} is generated by a A-free

=)

Define the finite substitutions‘]: and I, by:

if L < v% then let E= {a \ a €yl bea setof new symbols and:

(F) - iteration — grammar.

if A € p(a)

{a, a}
Vaezirf:(a)=i {a) if A & p(a)

T, (a)={ a} and T, @={1r1.

It is obvious that f.rl (L\{\}) is generated by a A-free F'(l) (F)-iteration-
grammar, since L\{)1} is. From theorem 2. 3 follows that Tg(f?j (LMD
\{r\} € Fi(tle)r = EOL. (F j;er = ETOL) and thus ;‘/‘"2(?’; (L)) ¢ EOL (ETOL.).
Define the Ry — substitution p by:

Macy:gla)=pla\ (1}
Thus 7 ( f{"g (‘7: (L) ¢ RM (EOL) (RQM (ETOL)) but obviously (L) =
-p- (5> ("j”1 (L)) and the lemma is proved.

L_emma 3. 4.

RMOL. is not closed under substitution

proof:

N n
LetLi:= {a® | nz0} and L = {ab2 |n=o01 thenL , L_ ¢ OL ¢
RMOL. Define the substitution T by 7 (a) = L., if we can prove f?g(l_1 )$
RMOL. the lemma is proved. Since regular languages fulfils a pumping-
lemma (i.e. M ACRD ny) OV we A: \W\Z‘nAﬁ(BX, v, z:( | vy z|
< nA) A (\y\) O) A (w=xyz) A (M iz0: xyl z& A))) the n because of the
powers of 2 'J"(l_1 ) § RMOL\FMOL, therefore it is enough to prove
T(,)d FMoOL. '
Define the finite substitution 'Jr by:
T'(a) = fa} and TY b) = {1, b}, and define the hormorphism h by: h (a)=
a, h(o) =\, then b*J1 ( (L, )= ht (L,), Herman [8] has proved that
ht (L) ¢ EOL, but.the proof shows that ff_"( (W) ¢ EOL, and since EOL
is closed under finite substitution and intersection with regular sets the

lemma is proved.



12

4. HYPER - AFL !s.

()

in Jan van Leeuwen [10] and A. Salomaa [12].

The notions of a hyper - AFL., and a hyper - AFL were introduced

Definition 4. 1.

(t)

If K is a quasoid such that Kij;.r = K then K is said to be a hyper' -
AFL.

If K is quasoid such that K., K then K is said to be a hyper-AFL..

()

(1)

From theorem 2.7 follows immediately that each hyper' '=-AFL and each

hyper-AFL. are full AFL!s.
The notion of a super-AFL was introduced in Greibach [6 ].

Definition 4. 2.

A family of languages is said to be a super-AFL, iff

(i) DLEKBweL: {w| ).
i.e. there exists a language in K with a word of lenght greater
than one.

(ii) K is closed under intersection with regular sets.

(iii) For any language L. in K and any language I_l , satisfying. ¥ w€ L, :

lwl <1, LuL, ek

(iv) IfLeKandif Tisa K-substitution, such that L < 5 * and & is
defined on % * and for each ain 4 : a € J(a). Moreover if
ET(L) < L, % we extend T to be defined on (% U 25 )* by for each
b € % \% T(b) = {b} (because of (i) and (ii) T is still a K-sub-
stitution). We now define f/w" (L) = L and for eachn =0 T a*! (L) =
T(F (L)
Then U J%(L) € K.

0=

In [6] the following theorem is also proved.
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Theorem 4. 3.

Each super-AFL. is a full substitution-closed AFL (i.e. K is a full
AFL and KM K =K ).

Remark:

This theorem shows that the difference between a super-AFL and a
hyper'(l)—AFI_ is, that in the definition of a super-AFL we just re-
quire iteration-closure under such substitutions 7 where for each a
ac T(a). This difference is obviously due to the difference between

parallel and non-parallel rewriting.

Theorem 4. 4.

1
Each hyper‘( )—AFL_ is a super—-AFL.

proof:

L.et K be a hyper‘(l)—AFl.. Then we know K is a full AFL and therefore
K satisfies (i), (ii), and (iii) in definition 4. 2.

To prove that (iv) is satisfied let L € K, L. < 5 * and letJ; be the ex-
tended K—-substitution (i.e. ifF (L) € Z,%* then T, is defined on (3 UZ,)%)
still satisfying that for each a: a € f; (a).

Let S be a new symbol, defines ={a |a€ 3 U]} as asetof new
symbols, finally define the homomorphism h by: ¥ a € 2; U Zz: h (a)= a
Now define the K(l)— iteration-grammar G= ({S} U, 5 U XL, S, {11,
where T(S) = h(L) € K, since K is a full AFL, for each ain 2; U 2ot
T'(3) = h (T (a)) U {a} and T(a) =

SinceV; is a K-supstitution and K is a full AFL

1
substitution and \J T *(L) = L(G) € K(t)
n=0 tter

Tis obviously a K-
= K, which proves the

theorem.

Corollary 4.5

Each hyper-AFL is a super-AFL.

proof:

Each hyper-AFL is obviously a hyper‘( l)—AI:I_.
Corollary 4.6

Each hyper‘( 12—AFI_ and each hyper—-AFL. are substitution-closed.

proof:

Immediate from theorem 4. 4, corollary 4.5 and theorem 4. 3.
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Theorem 4.7.

(*)

iter

ETOL = ETOL ,.,= ETOL

iter

proof:

LetL € ETOL, L < I¥, et S be a new symbol i.e. S ¢ I

1
Define the ETOI_( ) ~iteration-grammar G= ({S}, %, S, {T}), where
% (s) = L and for each a in 2:9(a) = {a}. Then obviously L =L (G) €

etoL’ Zter . Thus ETOL ¢ ETOL, Zer S ETOL,,.

To prove ETOL,,., & ETOL:
let G=(V , V., S, U) be an ETOL~iteration grammar with U= {T7,...

‘jﬂn}, where each g: is an ETOL ~substitution defined on VN U VT =

. (7 *
{ag, «ven. , am} such that for each i and each j Jj(ai) - (vN § v_r) .
Assume that Y j(ai) L (Gi’j)’ where Gi,j (VN s Vo U Vs Ti,j ,

Si J.) are synchronized versions of ETOL.-systems, vhere we obviously

? . ; i,
without loss of generality can assume that the nonterminal alphabets VN 2

are pairwise disjoint.

We define a hew ETOL.~-system G! = (V, Voo T!, S), where VN' =
i,j = o kw] = = . -_—
($3 U H (V" TU 8] DUV U UTL uT, wheredandall 5 |

are new symbols.

Vy = {a] ac VX} andV = {a| a€ Vx} for X= N, T are sets of new sym-

X
bols.
If X is a string of symbols X =b; ,..... bm’ then we write X = By oeeen. Bn .
and X = ;t;l ..... b .

The axions of G is defined as S in this way.
Finally T! consists of the tables:

to: Zi —>§{ ] for each i and each j. A~ $ for each other symbol A.
?
For 1 £] =n we have the table:

t: S ~>s ;3 S. .» S. . for eachi. a. = a.; a.~ a, for each a,
J 7J ’J l’J I’J l l l I
N

?
[
in VU Vo A - $for each other symbol A. For 1< ] <

we have the set of tables:

':Jl‘r J.:Which consists of all tables from Ti . where we have changed the
2 H
table with terminal productions (Gi ] is a synchronized version of an
2
ETOL.~system) to produce barred terminals instead. In all the tables

we add the productions: ay -> ay for each g in VN U VT'
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—S-k i 9§k . for eachk A - Efor each other symbol A.
2

?
Finally there is the table with terminal productions:

Z - a for each a€ VT
A - $§ for each other symbol A.
The claim is now that L(G) = LL(G!).

S IfFS € VT‘X‘, we can obviously derive S from S in G! by using the

table with terminal production. Now assume t =2 1; 1 <i;, ....,i,<n
G 7 7 !
and X; € Y 3 (), Xz € Jig(xl), ....... » X, € JE (xt_i) and assume
Xt € VT* , then we want to prove that ><t € I_(G‘f
ITf S=a, ceceoe a then:
= = ll = ]k
S = al ...... aI
1
; k
O—-— — —
= T - S
Il s 1 |27 h Ik’ I1
G!
f.
]
=S s, . S
11 17 Ig, IR Ik, 13
:F . . 7\:> X 13 § . -
Il y I . Il lg, I oo eeees . I i
G[ k? 1
t.
- _
=3 5 Sy i erereccnses S,
1 291 h. i
G! 2 '1
T . =2 X X e s
l27'1 17'1 17'2 lk’ I
G!
t.
i — _
=
XI"I x1,lz ............ Slk’ iy
a!
o = = == - =
><1,ll xl,lg ........... 'XT,Ik ><1
( in the same way as S ;(‘;3!>=(1 )
l _
G Xz
=> =
xt
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. N
terminal table: &, Xy

The reason why >=<1 is derivable in the stated way is simply that X; €

9 (s) = T (@ cevennnena ) =G (a ). T,
1 1 1 1

(a, ) and thus
Iy I3 |

k k
Xy = Xp gy eeeeeeeea X, where X, Eg-i (a[) for j=1,.....,k.
" < L 3
Therefore X , | is derivable from S] ; via the tables from 'II I
- 9y 1 .9 .

J J J
In exactly the same way ;—22 is derived from >=<1 and so forth. Thus

><t € L(a"). And the inclusion is proved.

AL 3
—_ - —_

2: Assume that §%, X, where X € VT"“, then obviously S gr Xgi X

By definition of T! the only table, which is able to change a double~-
barred word (without producing terminals from which only strings with
$—symbo|s are derivable) is toe

In to we choose for each double-barred symbol Ek

rewriting it to —S—k i As usual if a $—symbol is introduced in a string,
?

we are never able to derive a terminal word. Therefore the only possi-

a substitution f: by

bility to rewrite gk . to anything different from S, . is to use the table

) J k, ] 7

tj’ in doing this we are forced to choose the same substitution S, for

each double-barred symbol, if we want to avoid producing $—-symbo|s.

The table ,,tj can only change a §k ] by changing it to Sk i’ and now
. 2 ?
we are forced (to avoid producing $) to rewrite this via the tables in
Tl'k i until a single-barred word is produced, this word with bars dele~
?

ted belongs therefore to -(rj(ak').

At this point we are forced to use tj’ which double-bars the single~bar-
red string. We are forced to go on in this way until all §k j's are re-

2
written through S, . to a single-barred word in Tj(ak), and thenthis
?

K,
word is immediately double-barred.

We have now produced a new double-barred word, which with the bars
deleted is an element of T/(the double-barred word, which we started

to rewrite via ty with the bars deleted). Now we of course have the

possibility to start all over again via to’ and the only other possibility

is if the double-barred word is an element of VT""‘, then we can choose

the table with terminal productions, which eliminates the double-bars
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and from here we are only able to derive strings in {$} Thus we
have proved that there exists t 2 o such that X € Ti ............
gf_‘; (s) N VT* € L(G). And the theorem is proved. t

1

Corollary 4. 8.

(1)

ETOL. is a hyper' "= AFL and a hyper - AFL..

proof:

because of theorem 4.7 we only need to prove that ETOL is a quasoid.
The proof of this is straight-forward, but we will omit this, since it
is already well-known, G. Rosenberg [11], that ETOL is a full AFL,

and therefore of cource a quasoid.

Corollary 4.9.

If K is a family of languages such that : F S K € ETOL then Kiger =ETOL.
proof:
according to lemma 2. 5 F,

it er
ETOL,,.. = ETOL.

We have thus proved that:

= ETOL., thus ETOL = F, S K

iter iter

I
m
|
Y
|
0
T
!
m
)
r

ETOL

iter ' “iger iter iter
RMOL, = ETOL

iter iter

since we know that
FESRSCF S EOL € RMOL..

Il

Corollary 4. 10.

ETOL is the smallest hyper-AFL.

proof:

Each hyper-AFL.K is a full AFL and therefore K 2 R and thus K =
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K 2R ,.=ETOL

From corollary 4.6 and corollary 4.8 follows:

Corollary 4.11.

ETOL is closed under substitution.
From this corollary and from the following theorem of Greibach [7]
we will be able to prove the existance of an infinite hierarchy of full

AFL.!'s containing CF and contained in CS.

Theorem 4. 12.

If L is a full AFL, then LML=Ls(LML)M(LML)=LML ; i.e.

L is substitution-closed iff L M L is too.

Corollary 4. 13.

¥nz1: RMOL)" is a full AFL and CF ¢ EOL ¢ R(MOL)" ¢ RimoL)™

< ETOL ¢ Cs.

proof:

from the fact that {a} € OL follows that for each n = 1. R(MOL)" <

R(MOI_)nH. As mentioned before CF ¢ R(MOL)" for each n= 1. From
corollary 4. 11 follows by induction that R(MOI_)n-H = R(MoL)" moL [
(ETOL) M (ETOL) = ETOL.. It is well known that ETOL ¢ CS. There-
fore we just need to prove that the inclusions R(MOL.)" < R(MOL)nH o

ETOL are proper.

From corollary 3. 2 follows by induction' that R(MOL)" is a full AFL
for each n = 1.
Now define A = RMOL

= : ¢ =
and for n = 1: An+1 : AnMAn'
Since Ay is a full AFL, then according to lemma 3.4 A C:F-—Ag. But
from this it follows from theorem 4. 12 by induction that An & An-l—] for
each n 2 1, since Ginsburg and Spanier in [5] proved that if LL; and

Ls are full AFL!s then so isL; MLz, and therefore An is a full AFL
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for each nz1 and thus An = An+1'

But since RMOL. is a full AFL. and since {a} € R : RMOL = (RMOL)MR
From this we conclude (RMOL)MOL. = ((RMOL)MR)MOL. = (RMOL) M
(RMOL), where the last equality holds because of the fact, which we
have used before without mentioning it, that as far as we are dealing
with symmetric families of languages (i. e. families closed under iso-
morphisms) the substitution-operator is associative. By induction we
can now prove that: ¥ > 1 : RMOL (MoL)"= RMOL.(M RMOL)". Thus
according to the definition of An then for each n = 1 there exists a

k =z n such that R(MOL_)k= A
Finally if R(MoL)™ = R(moL)™ *!
R(MoL)™ = R(moL)™ H,
Therefore since Ay % Ag % ...... % An % An+1 % ..... and since each
An equals R(MOL) "~ for some k 2 n, .there cannot exist any n; = 1 such
that R(MOL)™ = R(MOL)™ 1. Since we already know that R(MOL)" g
R(MoL) "t

also proves that R(MOL.)
know ETOL is.

then obviously for each j 2 1:

for each n the corollary is proved, since the argument

n+1 is not closed under substitution, which we

Remark:

We have now proved the existance of a proper infinite hierarchy of full

AFL 's containing CF and contained in CS.

Since RMTOL is the smallest full AFL containing TOL and ETOL is a
full AFL then of course RMTOL = ETOL. But since TOL £ ETOL and
(ETOL) M{ETOL) = ETOL then for each n = 1 R(MTOL)" = ETOL, this
operation doesn't give rise to an infinite hierarchy in the case of TOL-

systems.

Theorem 4. 14.

(1

R ier IS not closed under substitution.

proof:

n n

As already mentioned L; = { a? | n=0} and Ly = { ab? | n =0} are
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(1 -languages. De-

iter
fine the substitution T by T (a) = Lz, thus T (L) € R‘Jt)er M R(I)ter,

OL -languages and therefore EOL = F

iter

But (L) cannot belong to R(li)wr , since as mentioned in the proof
of lemma 3. 4. Cf/(L_l) ¢ EOL = Filer , and infinite regular sets

. ! )
fulfil a pumping—-lemma thus (J%(L_l) ¢ R(Iter F.(Ti'tet' . We conclude

T) ¢ R(Rer , and the theorem is proved.

Corollary 4. 15.

1
R i)ter ¢ Ryer =ETOL.

proof:

(1)

1t is obvious that Ry, R ;. =fETOL, and thus the corollary follows

from theorem 4. 14 and corollary 4. 11.

Final remarks:

From theorem 4. 14 we conclude that we can constructan infinite hierarchy
of full AFL.'s from R( )

1ter in the same way as we did in corollary 4.13
from RMOL..

(1

From theorem 4. 14 and corollary 4.6 we conclude that R' ;. is not
a hyper(n— AFL, so ifK is a hyper'( 1)- AFL then K - R“)ner .
Which gives the following interesting question: is there a smallest hy'-

per (1)-— AFL and if there is which?

There exists a full AFL K such that K & Kiser but Kiger= (Kiper ) 1ger
(Kiter)“) ier and K“)Her ¢ K iger namely K=R. But this doesn't answer
the interesting question: Does there exist a hyper*( 1)— AFL which is

not a hyper — AFL.
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