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Abstract

The paper gives a survey of the mathematical theory of develop-
mental systems and languages. Many of the results have not yet

appeared in print.



0. INTRODUC TION

The theory of L systems originated from the work of Lindenmayer
[31]. The original aim of this theory was to provide mathematical models
for the development of simple filamentous organisms. At the beginning
L systems were defined as linear arrays of finite automata, later how-
ever they were reformulated linto the more suitable framework of gram-
mar-like constructs. From then on, the theory of L systems was
developed essentially as a branch of formal language theory. In fact
it constitutes today one of the most vigorously investigated areas of
formal language theory.

In this paper we survey the mathematical theory of L systems. As
to the biological aspects of the theory we refer the reader to an ex-
cellent paper by Lindenmayer ("Developmenta! systems and languages
in their biological context'", a contribution to the book Herman and
Rozenberg [19]).

This paper is organized in such a way that it discusses several
typical problem areas and the results obtained therein. The results
quoted here may not always be the most important ones but they are quite
representative for the direction of research in this theory. It is rather
unfortunate that we have no space here to discuss the basic techniques
for solving problems in this theory, but information about these can be
found in the listed references. As the most complete source of readings
on L. system the volumes [19] and [ 51 ] are recommended to the reader.
On the other hand, the present paper contains many results not contained
in these two volumes. This reflects the very rapid development in the area.

In this paper we assume the reader to be familiar with basic formal

language theory, e. g.withinthe scope of the book [ 56] by Salomaa. We



shall also freely use standard formal language notation and terminology.
(Perhaps the only unusual term used in this paper is "coding! which
means a letter-to-letter homomorphism).

We also want to remark that this survey is of informal charac-
ter, meaning that qu’ite often concepts are introduced in a not entirely
rigorous manner, and results are presented in a descriptive way
rather than in a form of very precise mathematical statements.This was
dictated by the limited size of the paper. We hope that this does not
decrease the usefulness of this paper.

Finally, we would like to state that this survey is by no means
exhaustive and the selection of topics and results presented reflects

our personal point of view.



1. L. SCHEMES AND L SYSTEMS

In this section we give definitions and exampl!es of basic objects
(the socalled L. schemes and L. systems) to be discussed in this paper.
We start with the most general class, the so~called TIL schemes and
TIL systems. (They were introduced in [26].) TIL systems are in-
tended to model the developemnt of multicellular filamentous organisms

in the case when an interaction can take place among the cells and the

environment can be subject to changes.

Definition 1.1. Let k,! € N. An L scheme with tables and with <k, !>

) . . . >
interactions (abbreviated T <k, |> L scheme) is a construct S =<5, ¥, o>

where L is a finite nonempty set (the alphabet of S), g is a symbol

which is not in Z (the masker of SJ, 7) is a finite nonempty set, where
each element of P (called a table of S ) is a relation
satisfying the following: P c A x Z* with
A = \J {a'12d x =z x 2™ {a"}

i,j,mnz0

i+] = Kk

m+n = |
and for every <¢,a,f> in A there existsa v in L% such that

<a,a,B,y>€P.

(Each element of P is called a Qr‘oduction.)

Definition 1.2, Let S =<E,?,g> be a T <k, |> L. scheme. We say that

S is:

1. an L scheme with <k,| > interactions (abbreviated <k,| > L. scheme)

it #7= 1.

2. an L scheme with tables and without interactions (abbreviated TOL.




scheme) if k=1 =0.

3. an L scheme without interactions (abbreviated 0L scheme) if both

#7)=1andk=l=0.

Definition 1.3. A construct S =<2, 79,9> is called a TIL scheme

(resp. IL scheme) if, for some k,| € N, S is a T <k, > L. scheme

(resp. <k, > L scheme).

Definition 1.4. Let S =<, ?,g> be a T <k, I> L. scheme. Let

x = a1...an6 X, with a],...,ané z, and let y € Z¥ ., We say that
x directly derives v in S (denoted as x= vy ify =Y. Y for some
S
PATRRE Y n in 27 such that there exists a table P in _/f)and for every i
in {1 y oo ,nf > contains a production of the form <°‘i’ ai,Bi,'yi> where
o, is the suffix of gkai. -8 of length k and Bi is the prefix of
[ . K [ ¢ =
ai_H...ang of length . (F-—orf i=1, 49 ay..-a; reads g . For i =n,
ai+1 . ahgI reads g[.) The transitive and reflexive closure of the relation
* *
= is denoted as = (when x= y then we say that x derives y
S S S
in S).

Definition 1.5. A TIL system (resp. IL._system) is an ordered pair

G =< S,w> where S is a TIL scheme (resp. an IL scheme) and W
is a word over the alphabet of S. The scheme S is called the underlying

scheme of G and is denoted as S(G). G is called a T <k,|> L system

(resp. a<k,l> L system, a TOL system, a OL system) if S(G) is a

T <k, I> L scheme (resp. a<k,|> scheme, a TOL scheme, a OL scheme).



IL. systems in restricted form originated from [31]; in the
form discussed here they were introduced in |44, 45]. TOL systems
were introduced in [40] and OL. systems were introduced in [32] and

[48].

Definition 1.6. Let G =<S,w> be a TIL system. Let x,y € 2¥. We

say that x directly derives y in G, denoted as x = y (resp. x derives

* *G
y in G, denoted as x= y )if x = y (resp. x= vy ).
G S S

Notation. It is customary to omit the masker g from the specification
of a TOL system. If S is an IL or a OL scheme (system) such that

#+ P = 1, say ? = {P} , then in the specification of S we put P rather
than {F’} . Also to avoid cumbersome notation in specifying a TIL system
G we simply extend the n-tuple specifying S(G) to an (n+1)-tuple where
the last element is the axiom of G. (ln this sense we write, e.g.,

G =<2, ?,g,w> rather than NG =<, ?,g>,w>). In specifying pro-
ductions in a table of a given TIL system one often omits those which
clearly cannot be used in any rewriting process which starts with the
axiom of the system. If <a,a,B,y> is a production in a TIL scheme
(system) then it is usually written in the form <o, a,f> 2y (where
<a,a,B> is calied its left-hand side and vy is called its right-hand
side). When the productions of a TOL scheme (system) are being spe-

cified, then we write a # ¥ rather than<A,a,A> - V.

Example 1.1. Let X = {a,b} , P1 = {<g,a,A>—> a3, <a,a,A> a,
<a,b,A>+ b2, <b,b,A> b%, <b,a,A>~ a}, P, = [<g,a,A> + a”,
<a,a,A>- a, <a,b,A> b3, <b,b,A> b3, <b,a,A> -+ a} and

56

w=a"b a. Then G =<, {P1 ,Pz} ,9,w> is a T <1,0> L system.



Example 1.2. Let L = {a,bf , P = §<a,a,A>-+ az, <b, a,A> - az,

<g,a,A> + a, <a,b,A> » b2, <b,b,A> + b?, <g,b, A> + b,

<g,b, A> asz and w = ba. Then G =<Z,P,g,w> is a<1,0> L system.

Example 1.3. Let T ={a,b}, P, = {a- az, b -+ bz}, P2={a—v a3,

b - b3} and w = ab. Then G =<Z, §P1 ,PZ} , w> is a TOL system.

Example 1.4, lLet L = {A,K,a,B,g,b,C,E,c,F:f, P ={A- AZ\,

A-a, B+ BB, B+b,C+CC,Cc, A+ A, A+a, B+ B, B~ b,
C+»C,C+c,anF,b+F, c»F, F»F} and w = ABC. Then

G =<%,P,w> is a OL. system.
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2. SQUEEZING LANGUAGES OUT OF L SYSTEMS
There are several ways which one can associate a language with
a given word-generating device. In this section we shall discuss

several ways of defining languages by L systems,

2.1 Exhaustive approach

Given an L. system G ( with alphabet ~ and axiom w) it is most
natural to define its language, denoted L(G), as the set of all words
(axiom included) that can be derived from @ in G; hence L(G) =
{x € 2% w ‘i; xf . This situation can be illustrated by the following
scientific d?agr‘am.

A Ve

Fig. 1
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Example 2.1.1. The language of the T <1,0> L. system G from
2n+3m _2"3"
{a a 1 }

Example 1.1 is b In,m= The language of the TOLL
n,m ,n.m
system from Example 1.3 is {az 3 b2 3 tn,mz= 0] .

The languages obtained in this way from OL, TOL, TIL and I
systems are called OL, TOL., TIL and IL languages respectively.
(Their classes will be denoted by £(0L.), £(TOL), £(TIL), £(IL) re~

spectively). For k,| = 0, a<k, > L language (resp. a T<k, I> L language)

is a language generated by a <k, I> L system (resp. a T <k, > L system).
One may notice here two major differences in generating languages
by OL and IL. system on the one hand and context-free and type O gram-
mars on the other. OL and IL systems do not use nonterminal symbols
while context-free and type 0 grammars use them. Rewriting in OL and
IL systems is absolutely parallel (all occurrences of all letters in a
word are rewritten in a single derivation step) while rewriting in
context—-free and type O gr‘amn;nar‘s is absolutely sequential (only one

occurrence of one symbol is rewritten in a single derivation step).

2.2 Selective approaches

We now study various ways of squeezing a language out of a
system such that all words obtained by grinding afe not considered to
be acceptable. Thus, we consider pairs (G,F), where G is an L system
and F is a filter. The final language is obtained by applying = to the
words in L(G). AAgain, the situation can be illustrated by the following

scientific diagram.
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2.2.1 Using nonterminals to define languages.

The standard step in formal language theory to define the language
of a generating system is to consider not the set of all words generated
by it but only those which are over some distinguished (usually called
terminal) alphabet. In this way one gets the division of the alphabet of a
given system into the set of terminal and nonterminal (sometimes also
called auxiliary) symbols. In the case of L. systems such an approach
gives rise to the following classes of systems. Thus, filtering consists
here of intersecting the language with the set of words over the terminal

alphabet.

Definition 2.2.1.1. An extended OL, (resp. TOL, IL, TIL) system,

abbreviated EOL. (resp. ETOL, EIL, ETIL) system, is a pair G =<H, AN,

where H is a OL (TOL, IL, TIL) system and A is a subalphabet of the

alphabet of H (called the target alphabet of G).

Definition 2.2.1.2. The language of an EOL. (ETOL. , EIL , ETIL) system

G =<H,A>, denoted as L(G), is defined by L(G) = L(H) N A*.

An EOL (resp. ETOL, EIL, ETIL) system G =<H,A> is usually
specified as <l ,P,w,A> (resp. <&, J ,w,A>, <¥,P,g,w, A>, <%,

7

» 9y, A>
where <% ,P,w> (resp. <E,5D,w>, <X,P,g,w>, <L, S,g,w>) is the

specification of H itself.

Example 2.2.1.1.Let G =<X,P,w,A>, where Z, P, ware specified as

in Example 1.4 and A ={a,b,c}. Then L(G) ={a'b'c": n=1}.

If K is the language of an EOL (resp. ETOL, EIL, ETIL) system,

then it is called an EOL. (resp. ETOL, ElL, ETIL) language. The
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classes of EOL. languages, ETOL languages, EllL. languages and ETIL
languages are denoted by £(EOL.), £(ETOL.), £(EIL), and S(ETIL) re-
spectively.

EOL. systems and languages are discussed in [16]; ETOL systems
and languages were introduced in [46]; ElL systems and languages are
discussed e.g. in [6] and [44]; ETIL systems and languages were intro-
duced in [26].

It is very instructive at this point to notice that, as far as gene-
ration of languages Is concerned, the difference between EOL. and EIL
systems on one hand and context-free and type-0 grammars on the other
hand is the absolutely parallel fashion of rewriting in EOL and EIL
systems and the absolutely sequential fashion of rewriting in context-

free and type-0 grammars.

2.2.2 Using codings to define languages

When we make obser‘vat{ons of a particular organism and want to
describe it by strings of symbols, we first associate a symbol to each
particular cell. This is done by dividing cells into a number of types and
associjating the same symbolr to all the cells of the same type. It is
possible that the development of the organism can be described by a
developmental system, but the actual system describing it uses a finer
subdivision into types than the one we could observe. This is often
experimentally unavoidable. In this case, the set of strings generated by
a given developmental system is a coding of the "real' language of the
organism which the given developmental system describes. The filtering
device consists here of a coding table which associates with each letter
its image under coding. This gives rise to the following classes of

systems.
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Definition 2.2.2.1. An OL (resp. TOL, IL, TIL) system with coding,

abbreviated COL. (resp. CTOL., CIL, CTIL) system, is a pair

G = <H,h>, where H is a OL (resp. TOL., IL, TIL) system and h

is a coding.

Definition 2. 2.2. 2. The languége of a COL (CTOL., CIL, CTIL) system

G =<H,h>, denoted as L(G), is defined by L.{G) = h(L(H)).

Example 2.2.2.1. lLetH =<{a,b}, {a- az, b-+ b}, ba>and h bea

coding from {a,b} into {a,b} such that h(a) = h(b) = a. Then L{(<H, h>)

n.
{az H:nz 0} .

If K is the language of a COL (resp. CTOL, CIL, CTIL) system,

then it is called a COL, (resp. CTOL, CIL, CTIL) language. The classes

of COL., CTOL, CilL., and CTIL languages are denoted by £(COL), CTOL),

S(CIL) and £(CTIL) respectively.

Using codings to define languages of various classes of LL systems

was considered, e.g., in[5, 10, 11, 12, 36].

2.2.3. Adult languages of L systems

An interesting way of defining languages by L. systems was pro-
posed by A. Walker,[20] and [65]. Based on biological considerations
concerning problems of regulation in organisms, one defines the adult
language of an L. system G, denoted as A(G), to be the set of all those
words from L(G) which derive in G themselves and only themselves. Thus,
the filtering device consists of a dynamical stability test. The notation
£(AOL) is used for the family of adult OL. languages. £(AIL), £(ATOL),

S(ATIL) are corresponding notations for other adult families.
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Example 2.2.3.1. Let G =<X,P,w> be a OL system such that

L ={a,b}, P={a»Aa~ab, b» b} and w = a. ThenA(G)={'brl :nz=0f.

2.2.4 Fragmentation

Another filtering device which consists of taking subwords of
a certain kind was recently introduced in [50] and [52]. The basic
idea is the following. The right sides of the productions may contain
occurrences of a special symbol g. This symbol induces a cut in the
string under scan, and the derivation may continue from any of the
parts obtained. Thus, if we apply the productions a - aga, b - ba,
c -+ gb to the word abc, we obtain the words a, aba, and b. The bio-
logical significance of this device is that it provides us with a new for-
malism for blocking communication, splitting the developing filament

and cell death.

Definition 2.2.4.1. Consider an alphabet L, let g €2 and assume

that 21 =% - {g} is not empty. A word X, over ET is a g-guarded
subword of a word x over L if either Xy = xor else there are words
Y and Yo such that one of the following equations is satisfied:

*E Y gx] Yoy XTX Yoy K=Yy g%y -

Definition 2.2.4.2. Let G =<X,P,w> be a OL system, let g€ X, and

assume that g - g is the only production for g in G. Then the fragmentation

language of G, in symbols Jg(G), consists of all g-guarded subwords

of LL(G).
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Example 2.2.4.1. Consider the OL system

G=<{a,b,g}, {a» a, b+ abagaba, g~ gl , aba>. Then

q

J(G)=1{aba":n=1}ufaba:n=1}.

g
The family of all fragmentation 0L languages is denoted by
£(JOL). The families £(JTOL) and £(JIL) are defined in an analogous
fashion.
It is of course possible to combine some of the filtering devices

introduced above. Thus, one may apply a coding to a fragmentation OL

language, which gives rise to the family £(CJOL).
In the sequel we shall use the term L _language to refer to any
one of the types of languages introduced in this section, Similarly, we

use the general terms "L system!" and "L scheme!'.

2.3 Comparing the language generating power of various mechanisms

for defining languages

Once several classes of language generating devices are introduced
one is interested in comparing their language generating power. This
is one of the most natural and most traditional topics investigated in
formal language theory. In the case of L systems we have, for example,

the following results.

Theorem 2.3.1. (see, e.g., Herman and Rozenberg [19]).

1) For X in {OL, TOL, IL, TiL}, £(X) s £(EX).
2)  For X in {oOL, TOL, IL, TIL}, £(X) ¢ £(CX).

3) £(0L) is incomparable with £{AOL).
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Theorem 2.3.2. (Ehrenfeucht,and Rozenberg, [10, 12], Herman and

Walker, [20], Rozenberg, Ruohonen and Salomaa, [50]).

1) S(EOL) = £(COL) and £(ETOL) = £(CTOL).

2)  £(0L) ¢ £(JOL) ¢ £(EOL) = £(CJOL) & £(ETOL).

3) &(TOL) ¢ £(UTOL) ¢ S(ETOL) = £(CJITOL).

4) $£(TOL) and £(JOL) are incomparable, and so are £(A0OL.) and

£(TOoL), and £(AO0L) and £(JOL.).
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3. FITTING CLASSES OF L LANGUAGES INTO KNOWN

FORMAL LANGUAGE THEORETIC FRAMEWORK

The usual way of understanding the language generating power
of a class of generative systems is by comparing them with the now
classical Chomsky hier‘ar‘chy: (One reason for this is that the
Chomsky hierarchy has been the most intensively studied hierarchy
in formal language theory.) In the area of L languages we have, for
example, the following result. (In what follows £(RE) denotes the
class of recursively enumerable languages, £(CS) denotes the class
of context-sensitive languages, and £(CF) denotes the class of con-

text—-free languages.)

Theorem 3.1. (van Dalen [6], Rozenberg [46], Herman [16].

S(EIL) = &(RE), £(ETOL) ¢ £(CS) and £(CF) ¢ £(E0L).

Note that this theorem compares classes of systems all of which
use nonterminals for defining languages. Thus the only real difference
(from the language generation point of view) between (the classes of)
EllL, ETOL and EOL systems on the one hand and (the classes of) type-~0,
context-sensitive and context-free grammars respectively on the other
hand is the parallel versus sequential way of rewriting strings. In this
sense the above results tell us something about the role of parallel re-
writing in generating languages by grammar~like devices. In the same
direction we have another group of results of which the following two

are quite representative,
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Theorem 3. 2. (Lindenmayer [32], Rozenberg and Doucet [ 48]).

A language is context—free if and only if it is the language of an
EOL system <L ,P,w,A> such that, for each a in A, the production

a-aisinP.

Theorem 3. 3. (Herman and Walker [20].)

A language is context—-free if and only if it is the adult language of

a OL. system.

As far as fitting some classes of L languages into the known
formal language theoretic framework is concerned, results more de-
tailed than those of Theorem 3.1 are available. For example we have
the following results. Let £(IND) denote the class of indexed languages

and let £(PROG) denote the class of A-free programmed languages.

Theorem 3. 4. {(Culik [ 3] and Rozenberg [46].)

S(ETOL) € £(IND) and S(ETOL) ¢ £(PROG).

Results like these cah be helpful for getting either new properties
or nice proofs of known properties of some classes of L languages.
For example, the family £(IND) possesses quite strong decidability
properties which are then directly applicable to the class of ETOL.

languages. An example will be considered in section 8.

One of the most famous open problems in formal language theory,
the LBA problem, has its counterpart also in the theory of L. systems.

An L. system or scheme is propagating (abbreviated P) if the empty
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word does hot occur on the right side of any production. This notion
can be associated with any type of L system. Thus, we can speak of
EPTOL. systems and languages. An L system or L. scheme is deter-
ministic (abbreviated D) if whenever <g,a,f> - Y and <@, a,B> Y,
are two productions (resp. two productions in the same table), then

Y1 =7 o Furthermore, we use the letter F to mean that, instead of one
axiom, we may have a finite set of axioms in the system. The resulting

language families are denoted using the letter £ as before.

Theorem 3.5. (van Dalen [ 6], Vitanyi.)

The family $(EPIL) equals the family of (A-free) context-sensitive lan-
guages. The family £(EPDIL) equals the family of (A-free) deterministic

context-sensitive languages.

The generative capacity of various mechanisms was already
briefly discussed in Section 2. 3. From the extensive literature in this
area, we mention the following results, where also comparisons with
the Chomsky hierarchy are taken into account. The results illustrate

also the role of erasing, which will be further discussed in Section 5.

Theorem 3.6. (Vitanyi)

Every recursively enumerable language can be obtained from a language
in £(PD<1,0>L.) by applying a homomorphism which maps each letter
either to itself or to the empty word. On the other hand, the set of
languages obtained from languages in £(EPD<1,0>L) by applying non-

erasing homomorphisms does not contain all regular languages.
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Theorem 3.7. (Nielsen, Rozenberg, Salomaa and Skyum [ 36],

Karhumaki [ 24].)
1) £(PDOL) ¢ £(EPDOL.) ¢ £(CPDOL) ¢ £(CDOL) & £(CDFOL) =£(CPDFOL).

2) £(CF) ¢ £(CPFOL).

The most interesting oben problems in this area are whether
or not the equations
g(CPFOL) = £(COoL) (= £(EOL), L(CPTFOL.EL(CTOL) (= £(ETOL.))

hold true.
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4. OTHER CHARACTERIZATIONS OF CLASSES OF L. LANGUAGES

WITHIN THE FRAMEWORK OF FORMAL LANGUAGE THEORY.

4,1 Closure properties.

A classical step toward achieving a mathematical characterization
of a class of languages is to investigate its closure properties with re-
spect to a number of oper‘ations(. The next two results display the behavi-
our of some of the families of L. languages with respect to the basic opera-
tions considered in AFL. theory. There are essentially two reasons for con-
sidering these operations. One reason is that in this way we may contrast
more sharply various families of L. languages with traditional families of
languages. The other reason is that we still know very little about what set

of operations would be natural for families of L. languages.

Theorem 4. 1. 1. (Rozenberg and Doucet [48 ], Rozenberg [40, 44], Rozen-

berg and Lee [26], Rozenberg, Ruohonen and Salomaa [50]).
None of the families of 0L, FOL , JOL., TOL., JTOL., I, TIL lan-

guages is closed with respect to any of the following operations:

U, ., *,hom, hom 1, M

R

Theorem 4. 1. 2. (Rozenberg [46 ], van Dalen [6], Herman [16].)

The families of ETOL and EIL. languages are closed with respect to all of
the operations J, . ,*, hom, hom * ,ﬂR. The family of EOL. languages
is closed with respect to the operations U y «, % ,hom and m R but it is
hot closed with respect to the hom™ ! operation.

When we contrast the above two results with each other we see the
role of nonterminals in defining languages of L. sysitems. On the other hand

contrasting the second result with the corresponding results for the classes
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of context—-free and context—-sensitive languages enables us to learn
more about the nature of parallel rewriting in language generating sys-

tems.

4.2 Machine models.

It is customary in formal language theory to try to find, for aclass
of generative devices for languéges, a class of recognition devices or ac~-
ceptors which define the same collection of languages as the generative
devices considered. Various classes of L. languages have also been inves-
tigated from such a '"programmer's point of view!. Some of the machine
models will be briefly mentioned in this chapter. It is cbvious that a good
machine model for a family gives a strong characterization of the family.

As regards machine models for LL systems in general, the following
point should be noticed. All reasonable machine models (at least in the
classical sense) possess a finite-state control. Since the control can simu-
late a finite automaton, the famﬁily of acceptablie languages will be closed
under intersection with regular sets. If some L. family does not have this
closure property, one cannot expect to find for it a machine model reason-
able in this sense.

We will now discuss the notion of a pre-set pushdown automaton. By

presetting a pushdown automaton we mean that at the beginning of a compu~
tation a certain stack-square is allocated as the maximum location to which
the stack may grow during the computation. The presetting remains unchan-
ged in each particular computation. Formally, this is accomplished by let~
ting a natural number n be one unchangeable item in instantaneous descrip~-
tions. The new structural feature is to let an overflow-indicator actively
influence the computation. Formally, this means that there are two transi-

tion tables: 6 (to be used when stack is not maximal) and 8,,, (to be used
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when stack has reached the pre-set maximum). Moreover, empty loca~
tions in the stack should be preserved for counting purposes. An ordi-
nary pushdown automaton is obtained as a special case where 6;op is
empty. On the other hand, languages like {a"b"c"”| n 21} are easily
shown acceptable by pre-set pushdown automata,

Two restrictions are now imposed on pre-set pushdown automata.

The property of being locally finite means that there is a fixed bound on

the length of local computations,i.e., computations with non-moving poin-

ters. The finite return property means that there is a fixed bound on how

many recursions there can be from a location.

Theorem 4. 2. 1. (van L.eeuwen [27]).

The family of languages acceptable by locally finite pre~set push-
down automata with the finite return property equals the family £ (EOL),
The family of languages acceptable by pre-set pushdown automata with the
finite return property equals the smallest full AFL. containing the family
gloL).

A natural characterization for the family of languages accepted by
unrestricted pre~set pushdown automata is obtained in Section 13. We con-
clude this Section 4.2 by mentioning a few other machine models.

FM-and RM-automata introduced in [4] are machine models for the
families mentioned in Theorem 4. 2. 1\. Basically, they are pushdown auto-
mata writing on the stack pairs consisting of a letter and a natural number
which indicates the "level! of the letter. Special restrictions of tally push-
down automata discussed in [60] can be used as acceptors for the families of
OL and <k, [>L. languages. The point mentioned above concerning finite~
state control is also discussed here in more detail. Finally, special cases

of the PAC~machines (where PAC stands for the pushdown array of count-
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ers) introduced in [47] are acceptors for the families of EOL., FoOL,

and OL. languages.

4,3 Recurrence systems and recursion schemes.

In the following formal definition, we use the notion of an n~tuple

standard function from [14, pp. 13—-14].

Definition 4. 3. 1. A recurrence system is a construct R = { 2, f, a>,

where 2 is an alphabet, f is an n~tuple standard function over 2 and
o =y ,....,an) is an n-tuple of finite subsets of 2*. For j 2 0, we define

the n-tuple a(j) of subsets of u* by
(0)_ (4, (0) (o)

= (o (jH), ...... , an(jH)) = f (on(j)),

a(jH)
0 (3

The language L(R) of R is defined by L(R) = UJ':o

Example 4.3. 1. [Let R= <{b7 r, s, C7 e, x},(flyfg)y (¢7 {X })>

where f, (X ,>.) =br X5 s X5 ¢ X5 e and f (X, X)) = xX;.
J

Then L(R) = { br x! s x! e x) e :j> 0].

Theorem 4. 3. 1. (Herman [17]). The family £(EOL.) equals the family of

languages of recurrence systems.

Thus, the family of ALLGOL.~like languages (which equals £(CF)) is
a special case of recurrence languages, obtained by systems, where all
components of o equal the empty set. Theorem 4. 3. 1 shows that S(EOL) is
a very natural extension of £ (CF) (and perhaps mathematically a more na-
tural family altogether).

Recursion schemes introduced in [8] are systems of functional equa-

tions used to characterize £(ETOL ) and certain of its subclasses.
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5. STRUCTURAL. CONSTRAINTS ON L SYSTEMS

One of the possible ways of investigating the structure of any
language generating device is to put particular restrictions directly
on the definition of its various components and then {o investigate the
effect of these restrictions onﬂ the language generating power. Theorem
Theorem 2. 3.1 represents a result in this direction (it says for example
that removing nonterminals from ETIL., Ell., ETO0L. and EOL systems de-
creases the language generating power of these classes of systems).
Some results along these lines were already mentioned in section 3.
Now we indiéate some other results along the same lines,

The first of these results investigates the role of erasing produc-

tions in generating languages by the class of EOL systems.

Theorem 5.1. (Herman [17], van Leeuwen [27].)

A language K is an EO0L. language if and only if there exists an EPOL

system G such that K-{A}] = L(G).

The result corresponding to Theorem 5.1 is valid also for ETOL

systems.

Our next result discusses the need of "two~-sided context! (more

intuitively: "two-sided communication!) in IL systems.

Theorem 5. 2. (Rozenberg [ 44].)

There exists a language K such that K is a<1,1 > L language and for

no m=2 0 is K an<m, 0> L language or a <0, m> L_ language.
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Our last sample result in this line says that for the class of IL
systems with two-sided context it is the amount of context available
and not its distribution that matters as far as the language generat-

ing power is concerned.

Theorem 5.3. (Rozenberg [44].)

A language is an <m, n> L. language for some m,n =1 if and only if it is
a<1,mtn-1> L. language. For each m =1 there existsa<!,m+ > L

language which is not a <1, m> L language.

Definition 5.1. A language is a AL language if it is an<m, 0> L

language or a <0, m> L language, for some m = 0.
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6. SQUEEZING SEQUENCES OUT OF L SYSTEMS

From a biological point of view the time-order of development is
at least as interesting as the unordered set of morphological patterns
which may develop. This leads to investigation of sequences of words
rather than unordered sets of words (languages), which is a novel
point in formal language theory. [t turned out that investigation of se-
quences (of words) gives rise to a non-trivial and interesting mathe-
matical theory (see, e.g., [19, 37, 38, 41, 53, 61, 63]).

The most natural way to talk about word sequences in the context of
L. systems is to consider deterministic L. systems without tables
and to take the exhaustive approach, which simply means to include in
the sequence of a DIL system the ordered set of all words that the

system generates (and in the order that these words are generated).

Definition 6.1. Let G =<4, I5, g,w> be aDIL system. The sequence of G,
denoted as E(G), is defined by E(G) = WorWys.-. Where w,=w and
for 121, W 4 :>wi .
G
Example 6.1. Let G =<%L,P,g,w> be a DIL system such that & = {a,bf ,

w = baba® and P = {<g,b,A> » ba, <a,b,A> - baz, <a,a,A> - a,

<b,a,A> + al . Then E(G) = babaz, bazba4, ..., baba?® .

Definition 6.2. Let s be a sequence of words. It is called a DIL

sequence (resp. DOL sequence) if there exists a DIL system (resp.

DOL. system) G such that s = E(G).

Obviously as in the case of L languages (see section 2) one can

apply various mechanisms of squeezing sequences out of DIL systems.
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Thus, in the obvious sense, we can talk about EDIL and EDOL. se~
quences (when using nonterminals for defining sequences) or about
CDIL and CDOL. sequences (when using codings for defining sequences).
Comparing the sequence generative power of these different mechanisms

for sequence definition, we have, for example, the following result.

Theorem 6.1. (Nielsen, Rozenberg, Salomaa and Skyum [36].)

The family of DOL. sequences is strictly included in the family of EDOL.
sequences, which in turn is strictly included in the family of CDOL.

sequences.

In the sequel we shall use the term L_sequence to refer to any

kind of sequences discussed in this section.
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7. GROWTH FUNCTIONS

7.1. Definitions and basic problems

A particularly interesting aspect in the study of Lindenmayer
systems is the theory of growth functions. The basic paper in this
area is by Szilard [61]. In the theory of growth functions only the
lengths of the words matter, no attention is paid to the words them-
selves. From the point of view of biology, this means making obser-
vations only about the number of cells a filamentous organism has.
Growth functions fit into the framework of the theory of integral se-
quential word functions. The latter have been studied extensively
in the past, e.g., in connection with probabilistic automata. This is
also one of the areas where powerful mathematical tools (such as formal
power series and difference equations) are applicable.

Consider any DOL, DI1L., or DIL. system defining a sequence of
words Was Wy Wosenn Wher‘é Wy is the axiom. The function

'f:(h) = lwn|
mapping the set of nonnegative integers into itself is termed the growth

function associated with the system.

Example 7.1.1. We give a few examples of DOL growth functions. In

each example, a is the axiom and the alphabet is implicitly defined by

the productions. For the system determined by a~ ab, b+ b, we have

f(n) = (n+1). For the system determined by a + b, b+ ab, we have
f(n) = n'th Fibonacci number. For the system defined by a - abcz,
b - bcz, c + c, we have f(n) = (n+1 )2. FFor the system defined by

3

”, c - cd6, d* d, we have f(n) = (nt1)".

a- abd6, b -+ bcd
The following theorem is immediate by choosing t to be the length
of the axiom and u to be the length of the longest right-hand side among

the productions.
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Theorem 7.1.1. For any L. system, there are two constants u and

t such that f(n) = tu”
Thus, growth defined by an L. system is at most exponential.
propagating
Similarly, one sees that ifvgr*owth is not bounded by a constant, it has
to be at least logarithmic. Consequently, functions like loglogn and
n :
2 cannot be growth functions associated with L. systems. Whenever

such growth is observed, it cannot be modelled by an L system.

We shall now introduce a classification of growth types. We use

the numbers 3, 2, 1, 0 to denote what might be called the pure types,.
(In fact, we shall see in Section 7.2 that they are exactly the types
possible in the DOL case.) In addition, we shall speak of the mixed types
2% and 1% .

We say that a growth function f(n) is of type 3 iff it is ultimately

n

exponential, i.e., there are numbers t>1 and Ny such that f(n) = t

for n = Ng- {(With biological connotations, exponential growth has sometimes

been called ""malignant''.) A function f(n) is of type 2 iff it is bounded
from above by a polynomial and from below by a polynomial with positive

feading coefficient of degree = 1, of type 1 iff it is bounded from above

and from below by a constant > 0O,
by a constant and of type 0 iff it becomes ultimately 0. A function f(n)

isof type 2% iff it is "between!! the types 2 and 3, and of type 1% iff it

is "pbetween!' the types 1 and 2. Of our examples above the second is of

log n

type 3, whereas the others are of type 2. The function n is of

*

type 24, and the functions n® and log n of type 11.
In addition to I systems we also consider L. schemes. The growth

type combination associated with a scheme S is the set of types of the

growth functions associated with the systems S(w) obtained from S by
adding some axiom w. Thus, the DOL scheme determined by the produc-

tions a - azb, b~ bc, ¢+ cd, d+ A possesses growth type combination



33

3210, whereas the DOL. scheme determined by the productions a -+ b,
b + ab possesses growth type combination 3.
We now list using standard automata theoretic terminology some

basic problems concerning growth functions.

Analysis problem: Given a system, determine its growth function. A

weaker variant isto determine only the type of the function. One may also
ask for the growth type combination of a scheme.

Synthesis problem: Given a function f(n), determine if possible a system

belonging to a given class of systems (say, DOL. systems) whose growth
function is f(n). An associated problem is the cell number minimiza-

tion problem: realize a given growth function with a system (belonging

to the class of systems considered) with minimal cardinality of the alpha-
bet.

Growth equivalence problem: Given two systems (in the class of systems

considered), determine whether their growth functions are the same.

As we shall see in the following sections, the basic problems have
fairly nice solutions in the case of DOL systems but, for D1L and DIL
systems, they are undecidable. In addition to these problems, various
hierarchy problems have been studied. E.g., it may be the case that
the set of growth functions generated by one class of systems is contained
in the set of growth functions generated by another class of systems but the

same does not hold true with the corresponding sets of sequences, f38] .
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7.2. DOL growth: equivalence, analysis, synthesis

To aDOL system<{a .,a | ,P,w>, we associate the following

.',..

matrices. The initial vector, 7, is the k-dimensional row vector such

K

that its i'th component equals the number of occurrences of the letter
a, in the axiom w , for i=1,...,k. The fina! vector, 7, is the k-dimen-

sional column vector with all éomponents equal to 1. The growth matrix,

M, is the k-dimensional square matrix whose (i,j)'th entry equals the
number of occurrences of aj in the production for a;, for i,j=1,...,kK.
These matrices are introduced because from the growth point of view the

order of letters is immaterial.

determined by the axiom a and

1
. 2.2 3
the productions a -+ acde, b~ cde, c+ b"d”, d=+d”, e~ bd, we have

Example 7.2.1. For the DOL. system G

10111 1

00111 1
m = (10000), M=| 02020 , n={ 1
00030 1
01010 1

Theorem 7.2.1. (Szilard [617], Paz and Salomaa | 38].)

The growth function of a DOL. system can be expressed in the form
fln) = TM™.
Consequently, the generating function F(x) for the growth function
can be expressed in the form
Fx) = 1(1-Mx)"'7,
where 1 is the identity matrix.

From the above expression, we can compute the generating func-
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tion for the growth function of the system G1 defined above:

F(x) = 1/(1-x)(1-3x).

Since the generating function is always a rational function, the
DOL. growth equivalence problem is reduced to deciding the identity of

two polynomials:

Theorem 7.2.2. (Szilard [61], Paz and Salomaa [ 38].)

The growth equivalence problem for DOL systems is decidable.

Example 7.2.2. L.et us consider another system Gz with the axiom a

and productions a - ab3, b- b3. Although it looks very different, it is

growth equivalent to G1 because we get exactly the same generating
function.

In some sense, Theorem 7.2.1 also solves the analysis problem in
the DOL case. However, mor';e practical methods are obtained because
the matrix representation gives rise to various strong mathematical
characterizations. Some of the results are summarized in the following

theorem.

Theorem 7. 2. 3. (Paz and Salomaa [ 38].)

The generating function for a DOL. growth function is rational. Every
DOL. growth function satisfies a homogeneous difference equation with
constant coefficients. The infinite Hankel matrix associated with a DOL
growth function is of finite rank.

Considering the difference equation mentioned in Theorem 7. 2. 3,

the following results are obtained.
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Theorem 7.2.4. (Paz and Salomaa [ 38].)

Every DOL. growth function is exponential, polynomial, or a combination
of these. In particular, it is always of one of the types 3, 2, 1, 0, If
f Is a function such that for every integer n there are integers m and
i>n with the property

flm+i) ¥ f(m+n) = f(m+n=-1) =... = f(m)
then f is not a DOL. growth function.

Theorem 7. 2. 4 can be used to construct examples of D1L. .growth
functions which are not DOL growth functions. The best known among them
is "Gabor's sloth' (due to Herman): A DI1L system with the alphabet
{a, b, c, d} , masker g, axiom ad, and productions given in the follow~-
ing table, where the row defines the left context and the column defines

the symbol to be mapped.

a b ¢ d
g c b a d
a a b a d
b a b a d
c b ¢ a ad
d a b a d

The first few words in the sequence are

ad, cd, aad, cad, abd, cbd, acd, caad, abad,
cbad, acad, cabd, abbd, cbbd, acbd, cacd,

abaad,
The lengths of the intervals in which the function stays constant not
only grow beyond all bounds but they even grow exponentially. Examples
like this show that the family of D1L growth functions properly contains
the family of DOL growth functions.

As regards the synthesis of functions as DOL. growth functions,
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efficient algorithms can be given for polynomials. A general algorithm
is applicable whenever an upper bound for the Hankel rank of the func-

tion is known, [38].

Theorem 7.2.5. (Salomaa [53], Vitanyi [63].)

There is an algorithm for detérmining the growth type combination asso-
ciated with a DOL. scheme. In such a combination 2 never occurs without

1 but all other combinations are possible.

Theorem 7.2.6. (Pollul and Schutt [ 39].)

Assume that the generating function for a DOL. growth function f(n) equals
p(x)/a(x) where p and q are polynomials in least terms. Then f is
of type 0 iff q(x) is constant, and of type 3 iff g(x) has a root of absolute
value < 1.

As pointed out by Lindenmayer, [33], the biological significance of
the mathematical results like ﬁthose mentioned lies in the fact that for
well-known growth functions, such as linear, square, cubic, exponen-
tial and S-shaped functions, one can study how classes of local cellular
programs {DOL systems) can be found to realize such functions. Of
course, the functions must be first digitized, i.e., some suitable
discrete time steps must be chosen. There are usually valid biochemical
or physiological grounds (e. g., diffusion and reaction rates, cell
division rates) according to which length of time steps can be chosen.

A consequence of Theorem 7. 2. 4 is that if a growth curve Keeps rising
without limit, but always slower and slower, then such a growth process

cannot take place without interactions among the cells.
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The existing rather comprehensive theory of DOL. growth functions
is due to the matrix representation of Theorem 7. 2. 1 and the resulting
mathematical implications. No such theory exists for growth functions
associated to systems with interactions. The situation is analogous
to the corresponding difference between context-free and context-
sensitive languages.

However, quite a number of specific examples have been construc-
ted to yield general conclusions. As an over-all statement one can say
that undecidability and great variety of possibilities are the characteris—

tic features.

Theorem 7.3.1. (Vitanyi [64].)

The growth equivalence for PDIL.systems is undecidable, and so is the

problem of determining the type of a given PD! L growth function.

Theorem 7. 3. 2. (Karhumaki [22], Vitanyi [64].)

The types 14 and 2% are possible for PD1L growth.

Especially interesting is the example, [22], showing the existence
of growth type 24 . Itis alcomplicated PD<1,1 > L system realizing
essentially the function 2" ‘. By the results of [64], a PD1L. system
exists for this function.

It is obvious that any type combination among the numbers 3, 2, 1,
0 can occur for D1L schemes. The statement remains
true even if 24 and 1% are added to the list, and even if a finer clas-
sification is introduced to replace type 134. Gabor's sloth is an example
of logarithmic growth within the type 1%, If you make the lengths of the

constant intervals to grow in a linear (resp. quadratic) fashion, you

, . -L
get the growth function n® (resp. n'?f) [30], [58]. Vitanyi [64] has
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generalized these results further to fractional powers. It is also
possible, [23] , to obtain growth directly corresponding to type 231,
i.e., a growth function which is faster than logarithmic but slower than
any fractional power.

Although all details around this matter have not yet been clarified,
it seems reasonable to assume'that the whole hierarchy of 1. languages
exemplified in Theorem 5. 3 collapses as regards growth functions:

D1L. growth functions give you essentially everything.

7.4. Length sets
For a language L., we define its length set

lg(l_)={n[ n=|w|, for some w € L.
Considering type X systems, we use the notation S,?(X) for the family
of length sets associated with languages in £(X). It is well-known
(e.g., consider regular and context-free languages) that a proper inclusion
between two language fami!ieshmay reduce to the equality between the
corresponding families of length sets. On the other hand, a proper in-
clusion between two length set families always implies a proper inclusion
between the corresponding language families, provided inclusion has been
shown by some other means. (This argument is used, e.g., in the proof
of Theorem 3.7 (1).) To avoid trivial exceptions in the statement of the
following results, we make the following definitional convention: Whenever
a set S belongs to a family of length sets then also S U {O} belongs to

the same family.

Theorem 7. 4.1. {(Karhumaki)

£Y(CF) £ ¢(PDOL) & £Y(DOL) ¢ £(DFOL) = £§(PDFOL) ¢ £4(POL)
=¢9(ProL)c sf(oL) = sE(FoL) ¢ $YOTFOL) =L GDTOL) = £Y(TOL)

=£9(TFoL) ¢ £7(CS)
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Moreover, $%(PFOL)¢ £4(PTFOL) = £4(PTOL) = £4(PDTFOL)
=g£4(PDTOL) = £f(ToL).
The most interesting open problem in this area is whether or not
the inclusion
£4(PoL) c £9(oL)
is proper.
A decidability problem concerning length sets will be briefly

discussed in Section 8.
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8. DECISION PROBL.EMS

8.1. Some decidability and undecidability results

Decidability results for growth functions were already discussed
in the previous section. We now extend this discussion to concern the
standard problems studied in formal language theory.

Since the corresponding results hold for index languages, the

following theorem is an immediate corollary of Theorem 3. 4,

Theorem 8.1.1. Membership, emptiness and finiteness problems are

decidable for the family £(ETOL) (and, consequently, for all of its
subfamilies), and so is the problem of deciding of an arbitrary language
in the family and of an arbitrary word whether or not the word occurs
(resp. occurs infinitely often) as a subword in a word in the language.

By an SFE_language we mean a language which equals the set of sen-

tential forms of a context-free grammar. It is easy to see that the family
of A-free linear SF languages is included in both of the families

£(POL) and £(PDTOL).

Theorem 8.1.2. (Blattner [1], Rozenberg [42], Salomaa [54].)

The equivalence problem for A-free linear SF languages is undecidable.
Consequently, the equivalence problem for POL. and PDTOL languages is
undecidable.

Decision methods of an arithmetic nature can be obtained and nor-
mal form results, [59], concerning regular languages become useful in
the case wher*e the alphabet consists of one letter only. Such systems
are called UL systems. In this case, it is obviously irrelevant whether

the system is with or without interactions.
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Theorem 8.1.3. (Herman, L.ee, van Leeuwen and Rozenberg [18],

Salomaa [55].)
The equivalence problem of UL languages is decidable. There is an
algorithm for deciding whether a given UL language is regular and also

whether a given regular language is UL.

Theorem 8.1.4. (Rozenberg)

It is undecidable whether an arbitrary IL (COL, EOL, FOL) system

generates a OL language.

8.2. DOL eqguivalence problem

Without any doubt, the most intriguing open mathematical problem
around L systems is the DOL equivalence problem. The first impression
most people have had is that the undecidability result of Theorem 8.1.2
does not hold for DOL systems. However, the problem is stifl open.
The following variations of the problem have been considered. Each of
the variations can be stated for PDOL. systems as well. (This is, of

course, a special case of the variation stated.)

(1) The language equivalence problem for DOL. systems (i.e., given
two systems, one has to decide whether the generated languages coin-
cide).

(ii) The sequence equivalence problem for DOL. systems.

(iii) The Parikh language equivalence problem for DOL systems. (As
usual, the Parikh vector associated to a word indicates the number of
occurrences of each letter in the word. The Parikh language, resp.
Parikh sequence, is the set, resp. the sequence of Parikh vectors

associated to words in a language, resp. in a sequence. )
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(iv) The Parikh sequence equivalence problem for DOL systems.
(v)  The growth language equivalence problem for DOL systems (i.e.,
whether or not the ranges of the growth functions coincide).

(vi) The growth equivalence problem for DOL systems. -
Considering the matrix "'r'epr*esentation for growth functions and
making an appropriate change in the final vector 7, it is seen that

(iv) and (vi) are decidable.

Theorem 8.2.1. (Nielsen [34].)

Problem (iii) is decidable. Problem (i) is decidable if and only if

problem (ii) is decidable.

The second sentence of Theorem 8. 2.1 holds for PDOL. systems
as well, [34]. Problem (v) is open for the general case but has been
shown decidable for FPDOL. systems, [34].

Thus, to solve the language equivalence problem, it suffices to
solve the sequence equivalence problem. For the solution of the iatter,
it suffices to determine a constant k (depending, for instance, on the
cardinality of the alphabet) such that if the sequences coincide with
respect to first k words, they coincide altogether. However, finding
such a constant is not easy even for PDOL sequences over two-letter
alphabet. 1t does not suffice to choose k equal to the cardinality of the

alphabet, as seen by considering the following example.

Example 8.2.1. Consider two DOL systems G1 and (52 over the al-

phabet {a,b} and with the axiom ab. The productions for G1 (resp. Gz)
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are a~ abb and b -+ aabba (resp. a + abbaabb and b + a). The se-
gquences coincide with respect to the first three words only.

A modification of this example shows that it is possible to con-
struct two DOL. systems over an alphabet with an even cardinality n
such that their sequences coincide with respect to the first 3n/2
words but not after that. These considerations may be contrasted with

the following result for growth functions.

Theorem 8. 2. 2. (Karhumaki)

Assume that n, (resp. nz) is the cardinality of the alphabet of a DOL.

. 2). G1 and Gz

for each i=1,... Ny +n2+1 , the i'th word in the sequence of G1 is of

the same length as the {'th word in the sequence of GZ'

system G, (resp. G are growth equivalent if and only if

Theorem 8.2.3. (Ehrenfeucht and Rozenberg)

The equivalence problem is décidable for DOL. systems with growth

type = 2.

Theorem 8. 2. 4. (Johansen and Meiling [21].)

Assume that 61 (resp. Gz) is a DOL. system such that the free group

generated by L(G, ) (resp. L(Gz)) is finitely generated. Then it is de-

1

cidable whether L_(G1 ) = I_(Gz).

We conjecture that the equivalence problem for DOL systems is de-
cidable. Combining Theorem 8. 2. 3. with the results in [ 34], it suffices
to consider conservative and growing sequences (i.e., each letter occurs
in every word and the sequence of Parikh vectors is strictly growing)

which, furthermore, are of growth type 3.
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9. GLOBAL VERSUS LOCAL BEHAVIOUR OF L. SYSTEMS

The topic discussed in this section, global versus local behaviour
of L systems, is undoubtedly one of the most important in the theory of
L systems. Roughly speaking, a global property of an L system is a
property which can be expr‘es&sed independently of the system itself (for
example a property expressed in terms of its language or sequence). On
the other hand a local property of an Lsystem is a property of its set
of productions (for example a property of the ""graph'' of productions of
a given system). In a sense the whole theory of L. systems emerged from
an effort to explain on the local (cellular) level global properties of
development.

As an example of research in this direction we discuss the so-called
locally catenative L systems and sequences (see | 49]). Locally catenative
L sequences are examples of L sequences in which the words themselves

carry in some sense the history of their development.

Definition 8.1. An infinite sequence of words TO’T1 . is called
locally catenative if there exist positive integers m,n, 31 g e ey in with
n= 2 such that for each j=z m we haveTJ. =T. ; Tj ; ...Ti ;

T2 Tn

Definition 9.2. A DIL (or a DOL) system G is called locally catenative

if E(G) is locally catenative.

Very little is known about locally catenative DIl. sequences. For
locally catenative DOL sequences some interesting results are available.
Our first result presents a property of a DOL sequence which is

equivalent to the locally catenative property.
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LLet G be a DOL system such that E(G) =Wy W, ... Isa

doubly infinite sequence, meaning that the set of different words

occurring in E(G) is infinite. We say that E(G) is covered by one

of its words if there exist k= 0 and j= k+2 and a sequence s of

occurrences of w, in (some of the) strings w

K kb1 ? P27 0@

such that wJ. is the catenation of the sequence of its subwords derived

from respective elements of s.

Theorem 9.1. (Rozenberg and Lindenmayer [49].)

A DOL system G is locally catenative if and only if E(G) is covered

by one of its words.

Our next theorem presents the result of an attempt to find a
Ustructurall' property of the set of productions of a DOL. system such
that its sequence is locally catenative. First we need some more no-
tation and terminology.

If G=<%,P,w> is aDOL system then the graph of G is the
directed graph whose nodes are elements of 2 and for which a directed
edge leads from the node a to the node b if and only if a+abf is in P

for some words o,f3 over .

Theorem 9. 2. (Rozenberg and Lindenmayer [497.)

Let G =<2 ,P,w> be a PDOL system such that L{G) is infinite, w is

in 2 and each letter from Z occurs in a word in L.(G). If there exists ¢
in 2 such that w ; g and each cycle in the graph of G goes through
the node ¢ then EG(G) is locally catenative.

We may note that neither of the above results is true in the case of

DIL. sequences (systems).
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10. DETERMINISTIC VERSUS NONDETERMINISTIC BEHAVIOUR

OF L. SYSTEMS

An L system is called deterministic if, roughly speaking, after one
of its tables has been chosen, each word can be rewritten in exactly one
way. Investigation of the role the deterministic restriction plays in L.
systems is an important and quite extensively studied topic in the theory
of L systems (see, e.g., [7, 9, 25, 34, 38, 41, 53, 61]). First of all,
some biologists claim that only deterministic behaviour should be studied.
Secondly, studying deterministic L. system especially when opposed to
general (undeterministic) L systems, allows us to understand more clear-
ly the structure of L systems. Finally, the notion of determinism studied
in this theory differs from the usual one studied in forma! language theory.
One may say that they are dual to each other: '"deterministic'! in L systems
means a deterministic process of generating sirings, "deterministic!' in
the sense used in formal langi;age theory means a deterministic process
of parsing. Contrasting these notions may help us to understand some
of the basic phenomena of formal language theory.

As an example of a research towards understanding deterministic
restriction in L. systems we shall discuss deterministic TOL. systems.

It is hot difficult to construct examples of languages which can
be generated by a TOL system but cannot be generated by a DTOL system.
One would like however to find a nontrivial (and hopefully interesting)
property which would be inherent to the class of deterministic TOL
languages. |t turns out that observing the sets of all subwords generated
by DTOL systems provides us with such a property. In fact the ability to
generate an arbitrary number of subwords of an arbitrary length is a

property of a TOL. system which disappears when the deterministic restric-
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tion is introduced. More precisely, we have the following result. {In
what follows ’ﬂk(l_) denotes the number of subwords of length k that

occur in the words of L).

Theorem 10.1. (Ehrenfeucht and Rozenberg [91 .)

Let 2 be a finite alphabet such that #2 =n=>= 2. If LL is a language
m (L)
i

generated by a DTOL system, L. € Z*, then Iim — 5 = 0.

k?o n

Recently, results concerning the decomposition of some ETOL
languages into EDTOL languages have been obtained. Along these lines,

a rather intricate problem has been solved (see Theorem 3. 4).

Theorem 10. 2. (Ehrenfeucht and Rozenberg [13].)

The family of ETOL languages is contained properly in the family of

indexed languages.



49

11. L TRANSFORMATIONS

An L system consists of an L. scheme and of a fixed word (the
axiom). An L. scheme by itself represents a transformation (a mapping)
from E+ into L* (where I is the alphabet of the L. scheme). From the
mathematical point of view, it is most natural to consider such trans—
formations. This obviously may help to understand the nature of L.
systems. Although not much is known in this direction yet, some re-
sults about TOL. transformations are already available.

lL.et a TOL scheme G =<E,f> be given. (Note that each table P of

_7) is in fact a finite substitution, or a homomorphism in the case that
?satisfies a deterministic restriction.) The basic situation under
examination consists of being given two of the following three sets:

a set L, of (start) words over &, a set L, of (target) words over I,
and a (control) set £ of finite sequences of applications of tables from
?. The problem is to ascer‘thain information about the remaining set.
{(Note that we can consider a sequence of elements from ?either- as a
word over ?* , called a control word, or a mapping from Z* into Z* .
We shall do both in the sequel but this should not lead to confusion.)

The following are examples of known results concerning this problem.

Theorem 11.1. (Ginsburg and Rozenberg [15].)

If L, is a regular language, and 1_1 an arbitrary language then the set

2

€ of control words leading from L_1 to L_2 is regular.

Theorem 11.2. (Ginsburg and Rozenberg [15].)

If L, is a regular language and £ is an arbitrary set of control words

2

then the set of all words mapped into l_z by £ is regular.
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Theorem 11.3. (Ginsburg and Rozenberg [15].)

If I_1 is a regular language and { is a regular set of control words
then the set of all words obtained from the words of L1 by applying
mappings from [ is an ETOL. language. Moreover each ETOL language

can be obtained in this fashion,

Theorem 11.4. (Ginsburg and Rozenberg [15].)

There is no TOL. scheme S =<E,?> such that /)D* is the set of all
finite nonempty substitutions on Z*. There is no TOL scheme

S =<%,F> such that P+ is the set of all homomorphisms on L% .

Theorem 11.5. The family of EOL languages is not closed under EOL.

transformations. The family of ETOL languages is closed under ETOL.

transformations,

As regards control dev}ces, one can also take an approach
different from Theorems 11.1-11,3 and study various kinds of control
devices, as customary in the theory of formal grammars. Such a study
was initiated in U&Cﬂ The most complete account on this topic is the
recent paper [35]. Two sets of results in [ 35] can be outlined as
follows: (i) The generative capacity due to various control mechanisms
is in many cases reverse for L systems and grammars, i.e., a mechan-
ism giving rise to weak generative capacity for L. systems gives rise
to strong capacity for grammars, and vice versa, and (ii) Some of the
problems concerning "appearance checking'', which are still open for

grammars, have been solved for L systems.
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In Section 2.2, 3, we discussed adult languages of L systems. One
may also consider adult languages of L schemes. They are naturally
defined as fixed points of the corresponding L. transformation. We

mention the following result in this direction.

Theorem 11.6. (Walker)

The family of adult languages of IL. schemes is properly contained in

the family of regular languages.
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12. GETTING DOWN TO PROPERTIES OF SINGLE L LANGUAGES

OR SEQUENCES

One of the aims of the theory of LL systems is to understand the
structure of a single L language or sequence. Although some results
in this direction are alr*eadyxavailable, there is not enough work done
on this (rather difficult) topic.

It is in general difficult to prove results of the form that a cer-
tain language does not belong to a certain family because such a proof
involves an investigation through the whole class of devices generating
the family. This remark holds true also with respect to L. families. It
is, therefore, of special interest to prove results to the effect that all
languages within a certain family possess some specific property. If
the particular language under investigation does not have this property,
it can then be immediately concluded that it is not in the family. We
will mention some of such chér‘acter‘ization results for the families of
ETOL., EDTOL. and EOL languages. The results do not give a full cha-
racterization of the families. However, in many interesting cases, they
can be used to show that a particular language is not in the family.

For a set B of letters and a word x, we denote by #B(x) the
total number of occurrences of the letters belonging to B in x. IfL is a
language over an alphabet 22 and B is a nonempty subset of 2J, then
(i) B is called nonfrequent in L iff there exists a constant C(B, L.)
such that for every x in L., #B(x) < C(B,L),

(ii) B is called rare in L. iff, for every natural number k, there exists
a natural number N such that whenever n > N and a word x in L.
contains h occurrences of letters from B, then each two such occurrences

lie at a distance 2 k from each other.
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Theorem 12.1. (Ehrenfeucht and Rozenberg [111].)

If L is an ETOL language over analphabet L and B is a nonempty

subset of 2 which is rare in L., then B is nonfrequent in L.

For a word x, we define u(x) as the minimal natural number n
such that any two non—over‘labping subwords of length n of x are different.

A language L. is called exponential iff there exists a natural number

C > 1 such that whenever x,,x, €L and |x] | > ><2| , then ['xl | = Clle .

Theorem 12.2. (Ehrenfeucht and Rozenberg [11].)

If L is an exponential language in the family EDTOL., then there exists
a natural number C(l_) such that every nonempty word x in L satisfies

| x| /u(x) < C(L).

Theorem 12. 2 can be used to show that there is a OL language which
is not in £(EDTOL), for instance, the language

{x€ {a,bl*| for some nz 0, |x] =2 - {p}.

Consider again a language L. over an alphabet 2 and a nonempty
subset B of .. Define
N(L,B) = {n | for some x in L, #B(x) =ni.

We say that B is numerically dispersed in L iff N(,B) is infinite and,

for every natural number k, there exists a natural number N such
that whenever U, and u, are in N(L,B), and up > Uy >N, then

Uy —uy > k. B is clustered in L. iff N(L.,B) is infinite and there exist

natural numbers k1 , kz both larger than 1 such that whenever a word

B(x) = k,, then x contains at least two occurrences

of letters from B which lie at a distance < kz from each other.

% in L satisfies #



Theorem 12.3. (Ehrenfeucht and Rozenberg [11].)

Let L be an EOL language over & and B a nonempty subset of L. If B is

numerically dispersed in L., then B is clustered in L.

For DOL. sequences we have the following result. (In what follows
if xis a word and k a positive"integer then Pr‘efk(x) denotes either x
itself if k= ]x[ or the word consisting of the first k letters of x if

k< \x] . Similarly Suf, (x) denotes either x itself if k = [xl or the word

i

consisting of the last k letters of x if k< | x]|.)

Theorem 12. 4. (Rozenberg [41].)

For every DOL system G such that E(G) =W Wy, is infinite there
exists a constant CG such that for every integer k the sequence
F’r'efk(ooo),Pr*efk(cu1 ), ... (resp. Sufk(wo), suf, (w, ),...) is ultimately

periodic with period CG'
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13. GENERALIZING L. SYSTEM IDEAS:

TOWARDS A UNIFORM FRAMEWORK

It was noticed already in the early papers on L systems (e.g.,
cf. {40]) that the underlying operation is that of iterated substitution.
However, in the theory of L systems it occurs in a somewhat modified
way. The notion of a K~iteration grammar introduced in this section
generalizes this idea. Moreover, it can be used to illustrate the following
point.

One of the first observations concerning L. systems was that L
families have very weak closure properties. In fact, many of the families
are anti-AFL's, i.e., closed under none of the AFL. operations. This
phenomenon is due to the lack of a terminal alphabet rather than to
parallelism which is the essential feature concerning LL systems. The
notion of a K-iteration grammar can be used to convert language families
with weak closure properties ‘Into full AFL's in a rather natural way.
Furthermore, it provides a uniform framework for discussing all context-
free variations of OL. systems and shows the relation between OL systiems

and (iterated) substitutions. 7

Definition 13.1. Let K be a family of languages. A K-iteration grammar

is a quadruple G = (\/N, Vo, S, U), where V a@nd Vo are disjoint

+
alphabets (of nonterminals and terminals), S € V with V = VigY Vo

(initial word), and U = {g . ,(In} is a finite set of K-substitutions

1?7
defined on VV and with the property that, for each i and each a € V,
O‘i(a) is a language over V. The language generated by such a grammar

is defined by

L{(C)=U . ...0.(8)n Vv
1 'k T
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where the union is taken over all integers k=1 and over all

k—tuples (i1 ey ik) with 1 = ij = n. The family of languages generated
by K-iteration grammars is denoted by Kiter" For tZ 1, we denote by
K(t) the subfamily of K, , consisting of languages generated by such

iter iter

grammars where U consists of at most t elements.

The different var‘iations'; of OL. families can now be easily charac-
terized within this framework. Denote by F the family of finite languages.
Clearly, F(i1t23r = $(E0L) and Fiter = L(ETOL). The families with D
and/or P are charaterized as follows. D means that the g's are homo-~
morphisms. P means that the ¢'s are A-free. Thus, $(EPDTOL) is the
subfamily of Fiter" obtained by such grammars where all substitutions
o are A-free homomorphisms. If one wants to consider families without

E (0L, TOL, etc.) , then one simply assumes that \/, is empty. Thus,

N

all L systems without interactions find their counterpart in this formal-
ism, which can be extended to cover IL. languages, |[66]. Note, however,
that so far one has not considered in the theory of L. systems cases more

general than K =F.

In the next theorem we obtain a natural characterization for

(1)

e where R is the family of regular languages.

the family R

Theorem 13.1. (van Leeuwen | 28], Christensen | 2].)

. (1)
The family Riter"

equals the family of languages accepted by pre-set push-
down automata. This family lies strictly between the families £(EOL)

and £(ETOL).
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Theorem 13.2. (van Leeuwen [27], Salomaa [57].)

Assume that the family K contains all regular languages and is closed
under finite substitution and intersection with regular languages. Then
the families K. and K(.t) are full AFL.'s.

iter iter

Every cone satisfies the conditions required for K in the preceding

theorem. The resulting full AFL's are naturally called Lindenmayer

AFL's. Apart from the inclusion relations obvious by the definitions,
very little is known about these AFL.'s.

A very natural notion in AFL~theory arising from L systems is the
notion of a hyper-AFL., \_2,8, 57]. By definition, a language family K is a
hyper-AFL iff K satisfies the requirements of Theorem 13.2 and, more-
over, K =K.

iter

Theorem 13.3. (Christensen [2])

The family $(ETOL) is the smallest hyper-AFL.,

This interesting mathematical property gives additional significance
to problems concerning S(ETOL). It might be mentioned that indexed
fanguages form also a hyper-AFL..

Since K-iteration grammars provide a uniform framework, they can
be used to generalize specific results. A number of such general results
already exists, [30]. We mention here the result generalizing the im-

portant Theorem 2.3.2. (1).

Definition 13. 2. Let K be a family of languages. A language L is hyper-

sentential over K if there exist a K-iteration grammar G and a language

L.] € K such that

L.={y:>< :>*y for some x € LI}'
G
A language L is hyper~algebraic over K if there exist an alphabet 2 and
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a language L, hyper-sentential over K such that L. = L1 no*.

1

Theorem 13.4. (van LLeeuwen and Wood, [ 30])

Assume that K is closed under K-substitution, marked K-substitution
and the operation N Z* , and that K contains singleton sets. Then each
language L. hyper-algebraic over K is of form L = h(L1 ), where L_1 is

a language hyper-sentential over K and h is a homomorphism.

Another generalization (in the direction of )-algebras) is presented
in [62]. This might be a proper way of introducing a truly many-dimen-

sional theory of L systems.
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14, CONCLUSIONS

The following two concluding remarks are in order.
(1) In the first five years of its existence the mathematical theory
of L systems has become each year more and more fruitful and popular.
This is exemplified by exponential growth of the number of papers
produced (per year), and a linear (with a decent coefficient) growth of
both the number of results and the number of people joining the area.
(2) 1t may have already occurred to the reader {and it is certainly
clear to the authors of this paper) that both formal language theory and

the theory of L. systems have benefited by the existence of the other.
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Since our presentation below (Definition 1. 1) begins with the
most general type of an L. system, we will describe here briefly
and in very informal terms the basic notions about L. systems. We
feel such a description will be useful expecially for a reader who
is less acquainted with formal language theory.

The essential feature about L. systems, as opposed to grammars,
is that the rewriting of a string happens in a parallel manner, con-
trary to the sequential rewriting in grammars, This means that at
every step of the rewriting process according to an |l_ system
every letter has to be rewritten. One step of the rewriting process
according to a grammar changes only some part of the string
considered. |

L et us consider a very simple example. Assume that we are
dealing with a context-free grammar containing the production
S + SS . Then, starting from S, we get any string of the form Sn ,
where n = 1. This follows because at one step of the rewriting
process we can replace one <\)ccur'r~ence of S by SS and leave
the other occurrences unchanged. Assume next that we are dealing
with an L. system containing the production S + SS . Then, starting
from S, we get by this production only strings of the form s2" ,
n=0. This follows because wg cannot leave occurrences of S un-
changed. Thus, if we are rewriting the string SS , we obtain at
one step the string SSSS = 54 , and not the string S3 . On the
other hand, if our L. system contains also the production S+ S

“then we can derive any string of the form s" , Nz 1.
This pafallelism in rewriting reflects the basic biological

motivation behind LL systems. We are trying to model the development



of an organism. The development takes place in a parallel way,
simultaneously everywhere in the organism. Sequential rewriting
is hot suitable for this modeling.
The simplest version of LL systems assumes that the develop-
ment of a cell is free of influence of other cells. This type of LL
systems is cus%)mar‘ily called a OL system. (1"O! stands for zero-
sided communication between cells.) By definition, a OL.-system
is a triple G = (2, w,P), where I is an alphabet, w is a word
over %, and P is a finite set of rewriting rules of the form
a’*x , a€r , x€i¥
(It is also assumed that P contains at least one rule for each letter
of ¥ .) The language of G consists of all words which can be.
derived from ® using rules of P in the parallel way. (The meaning
of this should be clear enough. The formal definition in terms of
the yield-relation will be given in Section 1.)
As an example, consider the OL.-system
({a,b} a, {a=b,b»ab}) .
The first few words in the generated language are
a, b, ab, bab, abbab, bababbab, abbabbababbab .

Since the system is deterministic (there is only one production for

each letter), its language is generated as a sequence in a unique
way. The mathematically minde(;l reader will also notice that the
lengths of the words in this sequence form the famous Fibonacci
sequence. In fact, our Ol. system provides a very simple way to
generate the Fibonacci sequence, when compared to other possible

devices in automata and formal language theory.



In L. systems with interactions, abbreviated IL systems, the
productions have the form (y,a, z) @ x . Such a production can be
applied to rewrite the letter a in the context yaz as x . If in
all productionsf#yr fength of y (resp. z ) equals k (resp. 1), we
speak of a system with <k, |> interactions. {(From the biological
point of view, this means that an individual cell may communicate
with k of its left and | of its right neighbours.) Near the ends of
the string, the missing neighbours are provided by a special letter
g . For instance, the string aaa may be rewirtten as bbaba by
the (1,1) productions (g,a,a) +bb, (a,a,a) *ab, (a,a,g) *a.

An L. system with tables (abbreviated T ) has several sets of
rewriting rules instead of just one set. At one step of the rewri-
ting process, rules belonging to the same set have to be applied.
For an L system of any type, systems of the same type and with
tables may be considered. The biological motivation for introducing
tables is that one may want different rules to take care of different
environmental conditions (heat, light, etc.) or of different stages of
development.

When defining the language generated by an L. system, we have
so far considered only the exhaustive approach: all words derivable
from the axiom by the rules in a parallel way belong to the language.
In addition, various selective a“ppr‘oaches will be considered in
Section 2. Our presentation in Section 1 will begin with the most
general type of an L. system, namely, TIL system. The other types
are then obtained as special cases. We will also consider L. schemes

differing from Lsystems in that the axiom ® is not specified.



As we already pointed out, we do not consider biological app-
lications in this paper. At first sight, L. systems appear to be too
simple io deal with the complexity of real biological development.
However, they have been successfully applied to the study of a
variety of organisms, as well as a number of biological problems
of a general nature. Among the organisms that have been investiga~
ted we find red algae, blue-green algae, fungi, mosses, snails
and leaves, Among the theoretical problems that have been attacked
we find problems associated with the notions of polarity, symmetry,
regulation, synchronization, opical and banded patterns, branching
patterns and positional information.

We are now ready to begir; our survey on the mathematical
theory of L systems. We would like to emphasize that the survey
is by no means exhaustive and the selection of topics and results

presented reflects our personal point of view.



14. SOME PROOF TECHNIQUES

In this section we will try to present to the reader some proof
techniques used in the theory of L systems. As an example we will
discuss proofs of some results concerning EOL systems and lan-
guages.

Because of the limitations on the size of this paper and also
to ensure that the reader is not [ost in technicalities we will sketch
the proofs presented here rather than to provide them in ail details.

et us start with an auxiliary notation.

If G is an EOL system and x derives y Iin G in k steps,
then we write xé v .

Also we state without a proof the following obvious result.

Lemma 14.1. For every EOL language K there exists an EOL

system G = <{%,P,S,A> such that L(G) = K and S € Z-A .

First we will present a proof of theorem 5. 1: A language K Iis
an EOL. language if and only if there exists an EPOL system G
such that K~{A} = L(G) .

If there exists an EPOL system G such that K-{A} =L (G) ,
then clearly K is an EOL. language.

The more difficult part of the proof of this theorem is to show
that if K is an EOL language then there exists an EPOL system G
such that K~={A} = 1L(G) . Let K= L(H) for an EOL system
H=<%P,S,4> and let us assume that L(H) is infinite and P con-

tains erasing productions (otherwise the result holds trivially).



By LLemma 14. 1, we assume that S € Z-A . We also assume that
A€ ¥ .(This can be clearly done without loss of generality). The
idea underlying our proof can be explained rather simply. We want
to construct an EPOL system G which would simulate derivations
in H in such a way that in corresponding derivation trees (in G)
the occurrences of symbols which do not contribute anything to
the final product (word) of a tree will not be introduced at all.

et us assume that the following tree T is a derivation tree

(for a word babb ) in H:

OA oC

C@/ \Oa

r oA ©

C oB
/N
Ao/ \oA oa Lag o B
/\
A oB Oa bo ob oa
ob ao ob ob

In simulating this tree in G we want to avoid the situation
in which we will be forced to abply an erasing production and so we
want to delete every subtree which does not !'contribute! to the

final result babb . Hence we want to delete subtrees with double

circled roots.



We would like then to be able to produce in G a derivation

tree of this form

=
B'o/u\oC'
|
alo o
allo a'”o/ =1l
aVo b'o/ \ob” oaY
b o avlo ob!V opv
where S BI-BMCH al ..., aV'; b!,...,b” are some "representations!

of symbols 5,B,C,a,b .

In other words we are "Killing!" non-productive occurrences
as early (going top-down) as possible. But, in general, there is no
relation whatsoever between the level on which we delete (in G) a
subtree at its root and the level (in H) on which this subtree really
vanishes. Thus we have to carry along some information which would
allow us to say (in G) at a certain moment: aha : the considered sub-
tree vanishes (in H). Fortunately for this purpose we can carry a
finite information only: it is enough to remember the minimal subalpha-
bet Min(x) of a word x der‘ive;d so far In the considered subtree
rather than the word ifself. We will carry this information as the
second component in two-~component letters of the form [G, z]
where 0 € 2 and Z2< Z.
Thus in oupr particular example we will have the following tree

in G.



(B, {A}]e [c, @]
[a,{c}]o o[3, {A,C} ]

/

[a,{A) o [a,@]a \o [B,0]

A

[a, {B} o [b,@]0 ©o[b,d] °la,®]

[b7¢]0 [a:¢]l O[bagb] 0[b7¢]

Now inspecting words on alf levels of this tree we notice that
only the last word
[b,#][a,¢][b,#][b,8]
should be transformed to the ter;minal word (babb) because only on
this level all subtrees that we have decided to delete (in G) really
vanished (in H).
How to perform such a transformation within the system G
itself?
To this aim we introduce a rather simple trick called ttthe
synchronization!t,
For each letter of the form [O,¢] with ¢ in A we introduce
a production [0,¢] -+ 0 and a production ¢ * F where F Is a
distinguished nonterminal symbql in G for which the only produc~
tion in G is F * F . Assuming that no other productions have ter-
minal symbols on their right hand sides, this trick does the job.
To see this observe that
[b,¢][a,#][b,8][b,8] gbabb g F* g F* g...
but iIf we atiempt to use these terminating productions t00 early

then we fail to obtain a terminal word.



Now the reader should easily understand the following construc-
tion.

Let G=<V,R,[S,0],A> be the EOL. system defined by
1. v=v, U {F} UA, where v, = {[0,z]:0€% and Zz< %},

and F is a hew symbol.
2. R consists of the following productions:
2.1 If A~H31...Bk isin P with k22, B

for every Z < X,

1,...,Bk6 2 then ,

1 1 2 2 p p
1S|]<12<...<1p£k and ,
for 2<j<p-1, Z =Min (Bi.’fi B 1y By ~1) )
i j j J+1 _
2'1 = Min (B|1+1 i1+2 "Bi _1) U Min (B]Bz...
= M 1
Zi Min (B‘ip+1 Bip+2"'Bk) Uz

providing that Z! € pSucH(Z) , where
SucH(Z) = {tU € ¥: there exist x,y in ¥ with Min(x) = Z,
Min(y) = U where x & v} .
2.2 If A»B isin P with B in I, then, for every Z <X
[A,z]»[B,Z'] isin R providing that Z! € SucH(Z) .
2.3 [o0,@] =0 isin R forall 0 in A.
2.4 F2F isin R, andsois 0 *F forall 0 in A.
The reader should be able to convince himself that
L(G) = L(H)‘ - {A} , and this ends the proof of Theorem 5. 1.
Now we present a proof for the first part of Theorem 2.3.2.1)
(slightly extended). We denote by &(HOL.) the family of homomorphic
images of Ol_ languages. We also make the definitional convention

"that whenever a language L belongs to some of the families conside-

red, then also L U {A} belongs to the same family.
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Theorem 14. 1. (Ehrenfeucht and Rozenberg [10])

S(CcoL) = £(HOL) = £(EOL.).

Proof.,

1) By definition £(COL) < £(HOL) .

1) After having read the proof of Theorem 5. 1 the reader should
be able to produce easily the proof of the containment £(HOL) < £(EOL.).
If one considers only non-erasing homomorphisms then the synchroniza-
tion trick presented in the proof of Theorem 5. 1 suffices on its own.
However if one considers an erasing homomorphism then this trick by
itself does not work. But then one can construct an equivalent EOL.
system in which the symbols which are to be erased by the considered
homomorphism will not be introduced at all. Technically it can be
done in exactly the same way as avoiding (occurrences of) symbols
which are to be erased in the gfven system.

[11) Thus we have to prove now that £(EOL) ¢ £(COL) . By Theorem
5.1, it suffices to prove that £(EPOL.) € £(COL.) . If A is an ultima-
tely periodic set of non-negative integers then thres (A) denotes the

smallest integer | for which there exists a positive integer- q such

that, for all i2j, i isin A if andonly if (i+q) is in A. The
smallest positive integer q such that, for all 1= t%*/es (A) , when-
ever i isin A also i+q isin A, is denoted by per (A) .

If G Is an EOL system with a terminal aiphabet A and ¢ is
a letter in the alphabet of G, then the specirum of ¢ in G, denoted
as Spec(0,G) , is defined by Spec(0,G) ={n=0:0 (% w for some

‘w in A%} .
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The spectra of letters in EOL. systems satisfy the following

important result.

Lemma 14.2. Let G= <%,P,S,A> be an EOL. system and let 0 € 2.

Then Spec(v,G) Iis an ultimately periodic set.

Proof.
For a given 0 in X let I—IG be a right-linear grammar such that

Hy = <V Vo R, {o}> where

o T

\VJ Vo ey
N {[z]: z< 2},

{a} where a is a new symbol,

{[X]+a[Y]:YE Sch(X;} Uf{[X]»1:Xxeca}.

Py
I

We leave to the reader the easy proof of the fact that

%
{o} H=>ak for some k = 0 if and only if there exists w € A* such
o .

that 0 derives w in G in k steps.

But it is well known (see, e.g., [59] ) that if a language
K over a one letter alphabet, K < {a}* is generated by a right-li-
near grammar then {n: a' € K} is an ultimately periodic set.

Thus the femma holds.

Now we need some more terminilogy and notation.

Let G=<Z,P,S,A> be an EOL. system and let 0 € Z . We say
that 0 is vital, if for every k > 0 there exists an | > k such that
a 5 w for some w € A¥ . (We will use AG to denote the set of all

vital symbols from ).
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Once we have noticed that each symbol in an EPOL system G
contr‘ibutes terminal subwords to terminal words in G in an ulti-
mately periodic fashion we are trying to decompose G into a
(finite) number of component systems in each of which one can con-
sider only terminal contributions at the samé moments of time.

Let G= <X, P,S,A> be an EPOL sy#tem. Wé define the

uniform period of G, denoted as m_,. , to be the smallest positive

G

integer such that

W,

0l

() forall kzmg, if a isin X~ Ag and a
then w § A% |

(i1) for all a in Ag Mg > tvnl'/‘es (Spec(G, a)) and
per_(Spec(G, a)) divides Mg - a

Now our starting point is to consider all words that can be
derived from S in mg steps. (We will loose in this way all terminal

words that can be derived in less than m steps from G but this is

G
a finite set and, as we will see, easy to handle).

Then we will divide the words in this set into (not necessarily
disjoint) subsets in each of which we can view all derivations going
"according to the same clock! or, in more mathematical terms, con-

forming to the same (ultimately periodic) spectrum.

Here is thus our basic construction.

G
G

m
= W

Construction. L.et 0 <k < Mg and let Ax(G,k) = {w € Ag: S

and, for all a in Min(w), m. +k isin Spec(G,a)}.

G
If Ax(G,k) # @, then, for all w in Ax(G,k) define a OL system

Gk, w) = <Zk, w R ,w> as follows:

K, w
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(1) Zk, w {ac Agimg*tk is in Spec(G,a) and, for some
l'm

[ 20, a isinMin(y) for some y such that WT:E“‘g v},

m ..
(ii) a-a isin Rk,w if and only if atc—"ﬁ—Gon with aEZk,W

R
and (IEZKW

’

Henhce we have the following situation. If w € Ax{(G,k) then the

derivation in G(k,w) goes as follows:

1 step in G(k,w) | 1 step in G(k, w)
W= ... :>w1:>... =>W2=>...
mG steps in G Mg steps in G

Now using the fact that all symbols appearing in words in

L(G(k, w)) contain Mes +k in their spectra we can squeeze the lan-

guage from G(k,w) in the following way.
Define M(G(k, w)))by

M(G(k,w)) = {x € A* : there exists y in L(G(k,w)) such that
Mg + k

y:?x}.

We shall now show that the union of the languages M(G(k, w))

over all k < my and w in Ax(G,k) is identical (modulo a finite set)

to L(G) .

I
g w for some | < ZmG} U

U t<k<JmG W%JAX(G,k) M(G(i, w)) .

Claim 1. L(G) = fwe at: s

Proof.

" Obviously {w € At:is 4w for some | < ZmG} U

|
G
Y Zm g WEAK(G, MG, W) = L(8) .
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Now let us assume that x isin L(G) .
(a), If x can be derived in less than ZmG steps, then x
is in the first set in union.
(b) If x is derived in at least ZmG steps, then let
D= (S,><1, ceeaXmgy e Xp T x) be a derivation in G where
p=I|em.+k_ forsome | =22 and 0=k <m
P G P p P
For all I, 1=1< Ip and a in Min{(x

G

), we have
fem
G

. . . . - -, +
(1) a is vital, since a 2 x for some word x in A,

where t = (Ip' me + kp) - l-mG Mg -

(i1) m +kp is in Spec(G, a), since (Ip— )m +I<p is In

G G

Spec(G, a) and Spec(G, a) is an ultimately periodic set with period
Mg and tizeshold smaller than l;nG .

Therefore x is in M(G(kp,xm })) and hence x is in our union
G
of languages on the right hand side of the equality from the claim.

Therefore Claim 1 holds.

Now the reader should note that we have already proved a quite
significant result: each EPOL language is a result of a finite substi~
tution on a OL_ language!

However we want to replace the finite substitution mapping by
a coding. To this aim we shall prove now that each component !anguage
in the "union formula for L_(G)“Yas given in the statement of Claim 1 is

a finite union of codings of OL. languages.

Claim 2. Assume that Ax(G,k) + @ and let w be in Ax(g,k). Then

there exist Ol- systems H .,H, and a coding k such that

170 f

M(G(k, w)) =@1 h(L(Hi)).
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FProof.
Let w=b,...b, where b. isin A for 1si<t.

1 t l G m .+k

. _ + . G _
For all a in Zk,w let WU(a,k) = {x €A : a ==g=> x}

= {aa,k,1’aa,k,2""’aa,k,u(a,k)} , say, and Zk,W= {[a,b] ,
]a,b :aEZJk W and b € A} .

?

Let W{w) = {[?]’C11Mb1’c12]"' [m“ﬂ1][b27C21:|...

.. [bz,czpz], .. [bt,c” ]... [bt,ctpt] ey “ij‘j € u(bj,k) for

1<j<t}.

Let ﬁk,w= {[a,b] A : aéz;\—,w ,be A
U{[a,b]»»[‘c1,d11][c1,d12]...[cwdlv]]...;_cs,d
...[z:_-.,«d“w»]:béA,aﬂc....c isin R and

s’ SV - 1 S

S K, w

]

s1

d d éu(cj,k) for 1<j<s}.

[IRERLIY
1 J
Let, for every z in W(w), G(k,w, z) be the OL system

<Zk,w’ Rk,vv?z> and let h be a coding from X

h([a,b]) = h([a,b]) =b .

K into A such that
w

)

We leave to the reader the obvious, but tedious proof of the fact
that

M(G(k, w)) = ZELVJ(W)h(L_(G(k, w, z)) .

Thus Claim 2 holds.

Now we state two obvious results.
(1) If K is a finite language, then there exist a OL system
G and a coding h such that K = h{l.(G)).

() iIf H1,...,H are OL systems, hT,...,h are codings

f f

. f
and K =H hi(L‘(Hi)) , then there exist a OL system G and a coding

h such that K = h(L(G)) .



The above two simple observations allow us now to collect
together all the component languages of G by means of one OL
system and one coding..

This ends the proof of Theorem 14. 1.

16
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