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Summary

This paper offers an introduction to a research effort in fault tolerant
computer architecture which has been organized at the University of South-
western L.ouisiana (USL). It is intended - as an overview of several topics which
have been isolated for study, and as an indication of preliminary undertakings
with regard to one particular topic. This first area of concentration involves
the systematic design of fault tolerant computing systems via a multi-level ap-
pr‘oach.- Efforts are being initiated also in the areas of diagnosis of micropro-
grammable processors via firmware, fault data management across levels of vir-
tual machines, development of a methodology for realizing a firmware hardcore
on a variety of hosts, and delineation of a minimal set of resources for the
design of a practical host for a muiti-level fault tolerant computing system. The

research is being conducted under the auspices of Project Beta at USL (26).

* Thisresearch is supported in part by NATO Grant 755 and is being conducted

at the University of Southwestern LLouisiana and at the University of Aarhus.




Fault tolerant computing.

The design of an electronic computing system is necessarily constrained
by the requirements of the particular class of problems it is dedicated to solve.
Such constraints are imposed in the form of performance parameters {(add times,
memory access rates, storage addressability, etc.) which must be directly or
analytically measurable. A range of acceptable values must be extablished for
each parameter during the design process, which is dependent upon available
technologies and the special requirements of solutions to the target probiems.

A class of problems for which system reliability may be the most criti~
cal parameter of all is the class which includes onboard and external support for
space flight, military command and control, signal transmission and analysis, air
traffic control, assembly line and process control, and rapid transit applications.
All of the above have in common the monitoring of irreproducible (or expensively
reproducible) inputs, the real time determination of reaction strategies, and the
initiation of irreversible (or expensively reversible) processes. Each exhibits
an extraordinary concern for the success of its mission‘owing to the fact that hu-
man lives may be jeopardized by mission failure. '

Few computer system designers would be foolhardy enough to suggest
that they could predict reliability of any given logic gate (no matter the technology)
within a specific lifetime. Statistical estimates are often made upon experience
with thousands of components, but no degree of confidence in such an estimate
can of itself preclude the possibility of a single, freak, and possibly very costly
failure. Consequently the designer must arrange available hardware, firmware,
and software components in a fashion as to minimize the failure probability of the
system while justifying the cost-effectiveness of his schema. In this light, we may
accept a qualitative definition of a fault tolerant computing system as a computing
system . ... organized and structured such that it can perform its design speci-
fied functions even in the presence of hardware failure! {18). Some terms related
to fault tolerant computing include:

Mission Time ~- an upper bound to the duration of the required r*eit'able:

operation of a computer system.

MTBF -~ mean time between failure of a component of the system

or of the system itself.

Fail-safe -— a design requirement that the system remain in continu-

ous and completely functional operation.

Fail-soft —-- a relaxation of the fail-safe design requirement which

concedes some degradation of functioning, but retains

the requirement for continuous operation.



Diagnosis -~ determination of the fact that a failure has occurred
and of the location of the failure.

Recovery - - reaction of the computing system to the report of a
diagnosed failure.

Hardcore -~ Ithat portion of the system that must function correctly

to initiate and perform fault testing procedures! (24),

Thus in quantitative terms, we may define a fault tolerant computing sys—
tem as a computing system organized and structured around a Hardcor‘e which
maximizes the MTBF of the system to such an extent as to ensure, within speci-
fic limits of confidence, the fail-safe (or fail-soft) integrity of the system for the
duration of its mission. ‘

Much effort has been expended in the development of reliability models
for systems of identical components (7). Indeed, component redundancy seems to
be the single most intriguing concept to those who have published in the area of
fault tolerant computing (18, 25). Reliability modeling generally begins with con-
sideration of a system of components which requires K out of N identical compo-
nents to be functional in order that the system survive. Arrangement of the com-—
ponents in parallel and series subsystems leads to development of rules for the
prediction of system reliability given the reliability of an individual component.

Models exist (18, 7) for systems using voted outputs as well, in the
form of n-modular~redundant (nmr) systems, where the outputs of n components
are compared and the majority ({n+1)/2) output is chosen as that of the system.
Triple-redundancy is a popular special case of nmr for n=3. Detection of dis-
agreement among the voters in nmr systems may or may not call into play some
reconfiguration mechanism to eliminate the minority components and replace them
with others from a pool of spares. Such '"dynamic! redundant techniques (18, 25,

3, 6) are known as standby sparing, and contrast with !'static! techniques (18, 25)

which derive the majority output while retaining the faulty component, thus mask-
ing the fault. Fault masking can be effective against transient failures, such as
may be caused by local flutuations. These failures are generally irreproducible
and may not affect continued reliability if a voting scheme is being employed,
whereas logic fallures suggest that the offending component need be removed from
active status for repair. Hybrid redundant techniques (18) apply both static and
dynamic philosophies to realize nmr with sparing.

In the context of fault tolerant computing systems, committent of the
system hardcore completely to hardware often limits the utility of the system
with regard to the solution of problems not in the original class, e.g. variation
in the degree or extent of diagnosis required by a given application, or in the

mode of recovery available to the system. Such limitations may be felt in attempts



to recover from multiple adjacent logic failures where the hardware has been
designed to detect only single failures; in this case, there may be certain cri-
tical applications for which it may not be possible to use the given computing
system. There is, however, the tendency today to design fault tolerant computing
systems from bottom upward (18, 25, 3), a strategy which is known to restrict
even the primary applicability of a system by !lcasting in concrete!! basic features
of the system.’ Further, witness the difficulty experienced by systems pro-
grammers in attempting to devise diagnostic routines and strategies for a compu~
ting system after its design had been finalized (10). Design overhead and post~

design complications may be considerable when rethinking and retooling for each

system in a given production series is required.

Current research efforts.
The work which is being initiated at USL. is concerned with the fol-

lowing areas:

(1) development of a systematic approach to the design of fault tolerant
computing systems, '

(2) comparative analysis and refinement of techniques for diagnosis of
dynamically microprogrammable processors with fail-safe or fail-
soft requirements,

(3) realization of firmware diagnostic routines initiatable by virtual
machine emulators (in real time) on a given host,

{4) delineation of architectural constraints for microprogrammable fault

tolerant computers.

Heretofore, research efforts have been reported in hardware implemen-
tations of fault tolerant techniques and software operating system implementations
(18, 25, 14, 17, 29, 11). Both approaches restrict the flexibility of interpreta~
tion of the host architecture. The former imposes restrictions at fabrication time
and the latter at system generation (sysgen) time. Microprogrammed implementa— :
tions of both diagnosis and recovery strategies offer delayed binding of the incor-
poration of fault tolerant capabilities into a computing system, thus adding flexi-
bility to the control of host hardware, while functioning with relative independence
of hiic;her—-level software. It should be obvious that this approach should offer
an order of magnitude enhancement in operating speed beyond that provided by
software schemes —-— a valuable bonus indeed for real time systems.

Manufacturer and user experience with seprvicibility and maintenance
aspects of system design provides a wealth of insight into the specific problem
areas of the diagnosis of a functioning system. Examples of this experience are

found in the literature (11). We will now expand upon the research which is cur-




rently underway.

Development of a systematic approach to the design of fault tolerant computing

sttems.

Professor Wilkes' 1951 article (30) had as its expressed purpose the
establishment of a systematic approach for the design of the control organ of a
digital computer. The technique of microprogramming has since found widespread
applicability not only in the design of new commercial systems, but also in the
realization of virtual machines —— emulated machines —— on microprogrammable
processors committed to architectural research. Firmware implementations of
fault tolerant designs have not been reported in the literature, however, with
the exception of microprogrammed diagnostic routines in certain systems (11, 5,
13, 16) and isolated instances of firmware beckup of hardware functional units
(5).

Indeed diagnostic processing has historically been considered inherent-
ly "different!' from target process execution. Examples of this situation may be
drawn from everyday experience with most any third generation computer: diagno-
stic programs (''diagnostics'') are run typically in a privileged mode by a system
engineer, and are run most often only during maintenance seesions. Certain sys—~
tems ( 5, 16) employ diagnostic microprograms ("microdiagnostics'!) in concert
with diagnostics, but the scheduling of these is also privileged. Examples of fail~
ure diagnosis and timely system recovery are not frequently found in the market-
place as firmware implementations; exceptions to this statement are noted in the
most recent systems, particularly as regards the argumentation of channel/device-
controller autonomy as exemplified in the IBM Systems 370(11).

The research outlined here is concerned with the institution of a syste-
matic design schema for multi-level computing systems with requirements for high
reliability and high availability. Our approach will attempt to extend that of (20,
28, 4) to multi-level systems.

By'multi-level!! here is meant that there exists a collection of virtual
(emulated) machines related in a tree structure. The root node of the structure
corresponds to the physical host hardware of the computing system as in Figure 1
and Figure 2. The order or rank of a nodein the structure indicates the level of
a particular virtual machine; an index may be associated with each virtual machine
on a - given level to facilitate unique identification of the node it occupies. The
pair [level, indexJ specifies a virtual machine in a multi-level system. Acro-
nyms can be introduced into the [level, index ] pair and are to be equated on a
one~to-one basis with the index portion of the pair. This identification schema is

similar to that found in (12). The level information is retained explicitly in Figure

1 and Figure 2, which are examples of multi~level syst'e‘m‘s'.- s



A virtual machine identified by the pair [0,1], where i is an arbitrary
integer index, is a physical machine, specifically one of the host computers a-
vailable to the system. In cases where i is identically zero for level zero, only
one hostisinthe system;this is the situation depicted in Figure 1. Figure 2, on
the other hand, suggests that communication among processors may be a function
of special purpose virtual machines.

et us consider the triplet of virtual machines as depicted in Figure 3.
The three machines include a physical machine, an intermediate-level virtual
machine, and a virtual machine of the highest level in the system. Communica-
tion between extrema machines is mapped through the facilities of the intermedi-
ate machine, by definition. Realization of the level-one (intermediate) virtual ma-
chine is accomplished in the native language of the host; the level-two machine is
realized in the software of the level~one machine.

A fault tolerant computing system designed in a multi-level fashion re-
quires the communication of information of a special nature between pairs of vip-
tual machines. For example, since physical hardware failures at the host level
may induce failures at higher levels, a mapping of the operational status of host
functional units upward is essential. Likewise, reconfiguration initiated by vir-
tual machines in order to bypass faulty physical hardware will require downward
communication, perhaps in the form of component enable/disable instructions ba-
sed on conditional recovery strategies. Any adjacent pair of virtual machines
must maintain this mutual mapping of status in a commonly accessible store. These
mapping functions are intended to be extensions of those found in (12).

Diagnosis of hardware failure must of course precede the initiation of
any recovery strategy determination. Diagnosis of failures in a multi~level com-
puting system is, as expected, a multi-level problem. Solutions to the individual
problems are diverse, ranging from hardware check circuits and flag bits to al-
gorithmic processes. The tradeoffs to be considered in the selection of one tech-
nigque over another at the lowest level of the system will be between added hard-
ware complexity on one hand and process generality and execution time on the
other. So long as hardware costs continue to fall, more complex hardware may
well be consistently the more attractive extreme. However, penalities of inflex-
ibility of the system host may be payable in the future. Furthermore, whereas
the diagnosis of higher levels of the system must be accomplished via algorithmic
diagnostics, an investment in the systematic development of generalized diagnostic
procedures for appli_cation at every level should result in significant benefits in
reduced hardware design overhead and other areas.

Initiation of recovery strategies can be made the responsibility of the

level~one virtual machine. Access to hardware functional units is direct at this

level, facilitating the resumption of previous processor states with the greatest



ease of implementation. Switching of standby componentry may also be effected
at this level should that strategy be preferred. The basis for determination of
recovery strategies may well be supplied in tabular form as part of an environ-
ment specified by some higher~level machine in the system. Intimate knowledge
of the host should be required of any virtual machine other than the level-one
machine however.

An example of a possible diagnosis—recovery sequence is given as
follows:

Presume that a hardware failure has occurred, rendering a bank of
local memory unreliable. Presume further that this bank of jocal memory was
dedicated to the registers of a particular level-two virtual machine. Al level two,
the unavailability of these registers is noted via an intermediate mapping by the
level—-one machine. At the time that the level-two machine was realized on the
level-one machine, specification of a strategy for recovery from a failure in the
registers was made. This strategy may have taken the form of a coded entry in
a failure contingency table, an entry recommending "rollback to restart point
and retry', or '"reconfigure to apply available resources to replace registers',
or even something on the order of "abort conditionally!. The strategy specifica-
tion may itself be conditional based upon the history of failures within the virtu-
al machine at level two.

To review the foregoing discussion of multi-level fault tolerant compu-
ting systems: the philosophy of the system!s organization is the distribution of
diagnostic and recovery responsibilities across all levels of the system. Special
purpose diagnostic hardware may not be a requirement of the host architecture,
although certain features which are cost-effective and do not impact the genera-

ity of the design may be incorporated. Tha advantages of a microprogrammable

host are considerable in view of the resolution capability of microdiagnostics

(15, 19), and the minimal time penalities for level-one diagnostic process execu-
tion and for level-one reconfiguration control. The resolution capability of micro-
diagnostics is not limited by interface with an intermediate control structure, as-
are conventional software diagnostics. Figure 4 suggeststhe relationship of the
several partitions of the diagnosis and recovery responsibility; shaded areas

indicate that some portion of a given virtual machine is devoted to diagnosis, re-

covery; and status mapping.

Comparative analysis and refinement of techniques for diagnosis of dynamically

microprogrammable processors with fail-safe or fail-soft requirements,

Diagnosis of faults in dynamically microprogrammable processors in a
fail-safe or fail-soft restricted environment may require access to and analysis

of a considerable quantity of historical data regarding the status of on-line and



off-line subprocessor units and components. Data management in such an environ-
ment is a critical function, both from the standpoint of the integrity of stored da-~
ta and on the issue of retrieval time, especially when recovery strategies include
either program rollback or possible system r‘econfigur*ation; Correlation of fault
detection reports is an area which may require particular!y high search rates,

as regards the isolation of transient failures among diverse processor subsys-—
tems.

Recognizing fault data management as a significant problem area, care
must be taken in the selection of diagnostic methods for use with microprogramm-
able processors. Checkout techniques which require storage of large numbers of
test patterns may compound the data management problem by further restricting v
the amount of available memory, a commodity limited in simpler systems by ad-
dressability limitations. Concurrent testing of in-service functional units is an
alternative to exhaustive checkout of an otherwise idle unit. The presence of ex-
haustive diagnostic microcode in a processor contrcl store creates a non-trivial
problem in itself, by drastically reducing the amount of memory available for e-
mul ators and therefore dictating additional overhead necessary to !'page in'! di-
agnostics from some secondary storage, be it main store or floppy disc (11).

One tentative solution to this problem is the liberal application of error-
detecting and error-correcting codes {9, 22, 8, 1, 2, 21) to both control and
data words in the processor, a solution which has applied in several contempo-
rary systems (3, 11). Addition of check bytes, interspersal of error codes, and
appendage of redundant encodings to words in the processor and its various me~
mories is an approach which may minimize the number of storage locations re-
quired for diagnosis-associated firmware. These techniques invariably require
an expansion of processors, memory, redisters, and bus widths. Byte~serial
implementations (3) are also feasible, of course.

An alternative approach for the application of error codes is the use
of an auxiliary memory/functional unit in tandem with control store and/or main
store. This ""Snooper Store!' (27) could be considerably wide than control store, *
and would be charged with storage of error codes for the protection of data
words stored in associated locations in the companion store. The simplest asso-

ciation of addresses in the pair of stores is the identity association, for which a

fetch ofcodes at a particular Snooper Store location would be initiated simulta—
neously with a fetch of the control store at the identical address. The Snooper
Store must be writable as well, not only to accomodate modifications to the data
words in the store it protects, but also that coding schemes may be user-altered
-as need be during execution. Residual control of page or bank addressing may
provide an option for multi—emulator utilization of the Snooper Store just as

such an addressing scheme may be applied for control store or main store. The



flexibility of interpretation of error coding strategies may be enhanced by use
of such an auxiliary memory. Realization of the Snooper Store as an associa-
tive memory may add to this flexibility by incorporating distributed logic for the
analysis of coded words without added time or firmware. Further research is
required in this area and is currently underway.

There are indeed other classes of hardware failures which may not
manifest themselves as data word errors. Data transformations in processor
functional units and the transport of data between registers of the processor are
two important classes for consideration. Codes may again be critical to the con-
current checkout of functional units of the hardware (22, 8, 1, 2, 21). Valida-
tion of bus transport is imperative as well, both from the standpoint of data in-
tegrity and as regards accurate selection of source and destination for the trans-
fer. These topics have been treated in detail (3) for a particular bussing struc-

ture, but are the subject of ongoing study over a variety of data transport struc-

tures.

Realization of firmware diagnostic routines initiatable by virtual machine emula-

tors (in real time) on a given host.

At the time of this writing, microdiagnostics for the MATHILDA (27)
machine are under development. At attempt is being made to realize a level-one
partition of diagnosis and recovery algorithms for a proposed fault tolerant mul-~
ti-level system in the microcode of MATHILDA —-- completely in firmware with-
out radical assumptions regarding the capabilities of error detection by the exi~
sting hardware. This 'firmcore! partition will have responsibility for detection
and location of hardware failures, and for communication of failure reports to
successive levels of the system .

Algorithms devised for the diagnosis of the physical hardware at level
one will likely be applicable to the problem of diagnosing "virtual hardware! at
higher levels. Experience in the development of diagnostics and microdiagnostics

(24, 19, 23) has dictated the starting point of this effort. There will be more to

report at a later date.

Delineation of architectural constraints for microprogrammed fault tolerant com-

puters.

This research area consists of a synthesis of information gathered
and assessed in the development of each of the foregoing topics, in an effort to
identify the minimum set of functional units (memories, arithmetic-logic units,
coding schemes, etc.) necessary to the structure of a microprogrammed fault
tolerant computing system. The goal of this aspect of the overall study is thus

to determine the most effective design for the host level of a multi-level fault



tolerant computing system.
Speculation of the composition of the host at this date maybe somewhat

presumptuous. It is possible, however, that diagnostic data paths may be trans-
porting data in parallel with main machine data paths in order that execution of
both diagnostic processes and target processes be expedited when considering
machines of a given cost/per‘formance ratio. By the same token, a horizontal
control structure may be required for such an organization, perhaps with micro-
operations provided specifically for checkout and testing of componentry other-
wise idle during a given machine cycle. The mapping of hardware status through
various levels of multi-level system may best be facilitated via a multiple~key
associative memory. Such alternatives as are mentioned here may or may not

figure in the final design, pending further research.

10



(3, CAM) (3, EDT) (3,BASIC)
(3,0) (3, 1) (3, 2) (3,09) (3,D0S) | |(3,MTS)
(3, O (3,1) (3,2)
(2, TDOS) (2, VMOS)
{2, 0) (2, 1) 2,VM/370)
/ (2,0)
(1,70/46) 1, 370/145)
Y\J(]; 0} (1’ O)
0,170/46
( HOéT”) (0, 3145) (0, 3830)
(0, 0) (0, 0) (o0, 1)
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Figure 2. Dual-host Multi-L evel
System, the Univac 70/46 System.

Computing System, a System 370
subset.

(2,Kk)

| 7

(2,Kk)

(1,J) (1,

k\\%

(0, i) (0, 1)
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System, Depicting Distributed
Diagnosis and Recovery Compon :nts.
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