The Design of a Programmable Computer:

A Qualitative and Quantitative Analysis

by

Michael J. Manthey

DAIMI PB-31
JUNE 18574

This work was conducted with the support of NSF grant # GJ-993.

Institute of Mathematics University of Aarhus T

DEPARTMENT OF COMPUTER SCIENCE 1%_ —
Ny Munkegade - 8000 Aarhus C - Denmark J‘»-T—r T T
[==

Phone 06-1283 55

Abstract

A survey is made of the contemporary state of program con-
struction and subsequently the isolation of the areas where errors
and programming difficulties creep in. A machine architecture which
attacks these difficulties is then presented, first in its larger out-
lines, and then a more detailed exposition of its operation. Finally,
this machine architecture, which is based on block structure, is
quantitatively compared to two ""'standard!" machines (the IBM 5/360
and the DEC PDP-10). The result of this comparison is that one
should expect superior performance from the block structured machine

herein presented, perhaps by as much as a factor of two.

Keywords: block structure, machine architecture, microprogramming,

tag bits, delayed binding time, stack machine, dope vector.

Chapter 1.

Contents.

Contemporary Computer Usage.

1. 1 Historical Perspective.

1.2 Problems in Applications Programming.
1.2. 1 HLL. Suitability.
1. 2. 2 Debugging.

1. 2.3 Summary of Applications Programming Problems.

1. 3 Problems in Systems Programming.

1.
1.
1.

1.
1.

3.

.2 Service Programs.

W W W Ww w W

1 Programs that Generate Programs.

. 3 Programs that Manipulate Programs.
. 4 Other System Trouble Spots.

. 4.1 Linkage/l.oading.

. 4,2 Interrupts.

. 4, 3 Lockout and Events.

3.

5 Microprogramming.

1. 4 Summary of Contemporary Computer Usage.

Chapter 2.

Design Criteria for a Programmable Computer.

2. 1 Block Structure and Systems Programming.

2.
2.
2.
2.

1.
1.
1.
1.

1 Interrupts.
2 Muliti-tasking.
3 Storage Protection.

4 Conclusions on Block Structure.

2.2 Data Representation.

N N MDD NN

Chapter 3.

. 3 Evaluation of Expressions.

. 4 Procedures and Parameters.
.5 Compiler Considerations.

.6 Binding Time.

. 7 Input/Output.

. 8 Conclusion.

The Design of the Programmable Computer.

3. 1 Pushdown Stack.
3. 2 Block Structured Addressing.

3. 3 Memory Siructure.

3. 4 Descriptors, Pointers, and Indexing.

page

Q VW N NN -

@D WD ==

20
20
22
22
22
22
24
25
31
32
33

34

36
37
40
48
48

3. 4.1 Descriptors.

3
3

4.
. 4.

2 Relocatible Addresses.

3 Indexing and Contiguous Descriptors.

3. 4. 4 Pointers and LLogical Addresses.

3

. 4.5 Summary of Descriptors, Pointers, and Indexing.

3. 5 Opcode Stiructure and Code Stream Maintenance.

3. 5.1 Short Operators.

3.5.2 l_ong Operations.

3
3
3

. 5.
. 5.
. 5.

4 Code Stream Maintenance Registers.
5 LLocal Branches.

6 Non~L.ocal Branches.

3.6 Procedures and Parameters.

3.

3.

.7 Overall Structure of the Programmable Computer.

[©)«) B o) B 6

6.

6.

1 Disabled and Enabled Code.

.2 Preparing to Enter a Procedure.
. 3 Supplying the Parameters.
. 4 Entering the Procedure.

.5 Exiting a Procedure.

6 Summary of Procedures and Parameters.

3.7.1 Tasks and Blocks.
3.7.2 The Stack Vector.
3.7.3 The Interrupt Procedure.

3.8 Virtual Memory and Paging.

3.

W W

W W

9 Semaphores.

3. 9.1 Semaphore Code Descriptor.

3. 9. 2 Semaphore Pointer.

3. 9. 3 Semaphore Data Descriptor.

. 10 Generators.

. 11 Suppor‘t of Sub-emulators.

W oW e e w

11

11

11

11.

11.

. 1 Emulator Storage Descriptors.

2 Entering an Emulator.

.3 Life within an Emulator.

4 Exiting an Emulator

.5 Some Final Observations on Emulators.

. 12 Input/Output.
. 13 Summary of the PC Design.

page
50
50
52
56
59
59
60
60
64
64
64
64
64
66
67
68
69
69
69
69
73
73
75
77
77
79
79
80
80
80
83
84
85
85
87
88

page

Chapter 4. Comparative Analysis of the PC. 90
4, 1 Rationale for the Comparison. 20
4,2 The Criteria and Data for the Comparison. 91
4,3 Comparison of Data Fetch Operations. _94
4, 4 Comparison of Transfer of Control Operations. 108
4. 5 Information Theory Approach. 112
4,6 The Environment Pointen 113
4,7 Conclusion. 115
Chapter 5. Major Conclusions and Future Directions. 1\1\6
5.1 Acknowledgements. 117

Bibliography. 118

1. 0 CONTEMPORARY COMPUTER USAGE

1. 1 Historical Perspective

The usage of computers has progressed far from the days when it was
estimated that five Univac I!'s could totally saturate the national requi-
rements for computation. In large part this advance is the result of

the realization that a computer is a general purpose symbol processor
capable of far more than just floating point calculations. Indeed, the
evolution of operating systems and concomitant software (loaders, as-
semplers, compilers) parallels the development of the computer as
symbol processor. There can be no doubt that the early pioneers in the
field would gasp in amazement at the sophistication and complexity of a

modern computing system.

The development of these software complexes has not come cheaply,
however. The history of computer usage is littered with failures large
and small, and even the most glorious software triumphs have sprung
phoenix-like from near disaster e. d. the SABRE airline reservation
system, the B 5000/5500, and most currently MUL TICS (whose Resur-
rection was by no means assured). Even when software projects have
been successfully completed, they have most often been the product of
cost overruns and downward-revised performance specifications. Part
of this checkered success record is the resultofthe fascination of comput-
erniks with their toys, their unshakeable faith in the potential of their
Ichildren!. A second influence has been the unfortunate alliance between
software!s unprecedented malleability (the bell and whistle syndrome)
and the nascent development of software construction. as a science in-
stead of an art. [The fact that Knuth could contemplate gathering all

of programming technology in a unified work and then entitle it "' The
,_A_rs_t of Computer Programming! is a capsule statement of this situation.]
A third influence on software technology!s stuttering progress is the
hardware, the machines on which the dreams are to be realized: that
hardware advances were each time hoped to solve !'the software pro-

blem! indicates the position that hardware was felt to hold in the minds

of implementors.

The current status of these problems is as follows:

1. While computerniks are still entranced by the computer!s
potential, 20 years of experience now blends this fascina~
tion with realism.

2. Fundamental theoretical knowledge of software primitives
(e. 9. mass storage queueing, grammars) is slowly being
felt, but the seat-of-the-pants approach is still commonly
found.

3. The hardware supplied by manufacturers remains fundamen-
tally unchanged but is garnished with certain features which
are obviously required by the software plans e. 9. bounds

registers.

Looking back over the history of computing i. e. computers, one finds
that computers were the creations of electrical engineers, who, until
faced (as they are now) with the limitations of the speed of light, were
in the vanguard of advancing computer technology. However, if we sur-
vey the current state of computing, it appears that software, and not
hardware, is the stumbling block. It therefore makes sense that hard-
ware must do more that just 'be there on the floor!, but rather must
take an active role In supporting the environment which software com-

plexes demand.

Unfortunately, 'hardware types! are still much in control of the design

process. The following true life parable illustrates the type of problems

this causes.
K is a brilliant digital logic designer who is also an excellent
programmer. He was told of the inconvenience of performing
programmed l/O on devices such as teletypes, paper tape gear,
etc. when one would rather relegate such business to a data
channel. K himself had experienced this as well. Unfortunately
the minicomputer involved did not allow this, so K set out to de~
sign a multiplexed data channel which would relieve the software
people of their worries. And a wonderful design it was! The pro-

grammer had only to set up a table in core which contained the

necessary parameters and then fire off the channel. Better yet,
K was able to take advantage of some already existing hardware
features and thereby build the device very cheaply. At this point
it should be mentioned that logic designers are (rightly) obsessed
with cost [$ | due (if only) to their formal education. True to
form, K decided to build the device with the restriction that the
parameter table must begin on a memory page boundary! The
software people were horrified, as this caused severe memory
allocation problems and restricted dynamic memory management.
K!s reply was that the restriction saved about $20 since the low
order bits of a register would be zeroes ‘and thus buildable with

miuch cheaper components.

The basic problem was that while K is an excellent programmer, he un-

derstands little about the environment in which programs execute. Ground-
ed firmly in his knowledge of programming, he maintained that the re-
striction represented only a minor inconvenience. K won the day, and due

(in large part) to the restriction, the device never saw use.

Another common hangup of hardware designers is speed -~ any operation
which takes more than X micro (nano)} seconds is ! too slow "', When
faced e. g. with the requirement for a set of semaphore primitives (which
might have to make several accesses to memory and perform several
different functions), the designer replies

(1) it's too slow,

(2) it costs too much,

(3) and besides, all you really need is a ! replace add 1 "' which

is both cheap and fast !

As in the preceding parable, this kind of reasoning indicates a lack of
awareness of the environment in which e. g. semaphores are used. This
environment is the dynamic and complex world of the operating system, a
world where experience has shown that what can go wrong will go wrong,
and hence hardware constructs which diminish the universe of potential
bugs are valuable regardless of their speed or other such myopic quali-
ties. After all, a program which runs with blinding speed, but usually

crashes due to unfindable bugs, is of no value to anyone.

The use of hardware constructs which directly reflect higher-order
processes clearly has smaller potential for error than the simulation
of these processes via software, which can be subject to unforeseen
effects such as interrupts, mis—association of parameters or other
names, violation of usage convention, or accidental overwriting. Thus
what is needed is for the hardware to be structured in such a way as

to create a comfortable environment for programs to execute in, an

environment in which whatever basic operations are necessary can be
stated as hardware primitives. If all the basic software operations e. g.
expression evaluation, indexing, semaphores, etc. have counterparts
in the hardware environment, then the !'distance! between the source
language program and its implementation in hardware is greatly dimin-
ished, and concomitantly the universe of potential errors which enter

as the result of improper bridging of the gap.

This !'distance! between the source language and the object computer

can be seen to be proportional to the size of the so-called 'runtime
environment!: if the distance is great thenthe runtimeenvironment is
large, and vice versa. Thus a true e. g. Fortran machine would have no
code devoted to runtime support. The seemingly ideal situation of
completely hardware-based environmental support is not realistic, how-
ever, in view of the fact that contemporary computing requirements are
for multiple languages on the same computer, and hardware which is suit-
able for Cobol 1/O or Fortran addressing may not be for Algol or PL/I.
In addition, certain aspects of the environment are most cost effectively
accomplished in software e. g. 1/O formatting. It can thus be concluded

that completely hardware-based environment is not practical.

Impinging on the discussion of substitution of software by hardware is
the much bandied about concept of lefficiency!. Efficiency is usually
associated with speed, as well as the converse: inefficiency equated
with slowness. We define efficiency as accomplishment of certain spe-
cification with the maximum speed, given the available tools. Thus the
complaints about early OS/360, bugs aside, are not totally justified
since the slowness was only partly due to poor coding or whatever, the
remainder coming from the unsuitability of the given tools: the 360 in-
struction set, etc. A second example is Snhobol 4, which runs slowly

enough, to be sure, but compared to what?

Efficiency also applies to hardware design, since all hardware is built
out of the same logical building blocks. Thus if two groups are given

the same specification and one builds it faster (costs being equal),

that one is clearly more efficient. But what if the winner were also more
expensive? Or what If the specification was to produce a system that

minimized software costs? How does one measure?

The preceding discussion reveals that efficiency is a term that every-
one understands, but whose meaning is very stippery. Indeed, defining
lefficiency! Is not unlike Platol!s defining !'the good!. Faced with this im-
passe, and yet unwilling to abandon the concept, we shall henceforth
utilize the working definition that " X is inefficient if it could be done

(in some global sense) better!'. Clearly this definition is more efficient

that not using the word at all!

With these conclusions in mind, we next ask what contribution should
the hardware make toward the environment? The answer is in the form
of two choices which delimit a choice spectrum : (1) the hardware does
what is minimally necessary with software !filling in! the gaps, and {2)
the hardware does as much as possible while still not restricting a par-
ticular language!s needs. The former is characteristic of 2nd and 3rd
generation computers, while the latier has been approached by several
atypical architectures [12 |, [B3 |, [B5]. The principal problem
posed by the second choice is the isolation of those primitive features
required by i_l_l_ languages and systems, and the following sections ex-
amine contemporary programming practicees on the assumption that
problem areas grow out of the lack of good environmental support. Iso-
lating the problem areas is therefore the first step in the derivation of

(hardware) environmental primitives.

1.2 Problems in Applications Programming.

Contemporary applications programming (by which is meant programs
which fulfill a specific user need e. g. data processing,equation solving)
is done almost exclusively in higher level languages (HLL.!'s) such as
Cobol, Fortran, Algol, and PL./1, the primary exception being real time

applications.

Unfortunately, in spite of the popularity and proven effectiveness of
HLL's, construction of even relatively simple programs is often a
painful process. Even assuming (possibly incorrectly) that the chosen
HLL is appropriate for the problem statement, the programmer still
faces the difficulties of debugging, as well as interfacing his program

to other programs, data files, and the ubiquitous System.

1:2:1 HLL Suitability

The applications programmer faces a dual problem in implementing a

program in an HLL. The first is choosing (or learning) an HLL in
which to write the program, and the second is adapting his problem to
that language. The choice begins with ' Cobol, Fortran, or PL/1 2 1
versus a whole menagerie of less common and more special purpose
languages. The choise is usually in favor of one of the Big Three since
these are the best supported by, and also somewhat standard across,
vendors. This situation exists primarily because even supporting three

fanguage processors is an awesomely expensive endeavor.

Having chosen one of the common (and hence familiar) languages, the
programmer is faced with stating his problem within the syntactic and
semantic confines of that language. Herein lies the fundamental issue:
the program executed by the computer is doubly distant from the origi-

nal application problem since

(1) the problem was translated (by the programmer) into the
HLL, and
(2) the HLLL was translated (by a compiler) into machine

code.

The first transliation!s effectiveness is a function of the programmer!s
skill and cleverness and the language!s suitability, which are more or
less user controllable factors. The second, however, directly confronts
us with the !distance! between the source program language and the

actual hardware machine.

1. 2. 2 Debugging

Program bugs can be classified as arising out of (1) the programmer's

translation from the problem to the HLL, and (2) the compiler!s trans-
lation from the HLL to machine code. While the former is an intangible,
the latter is (theoretically) amenable to action. This action could be

in the form of better documentation or improved runtime diagnostics, but
the real crux of the probiem lies in the !distance! mentioned earlier
which seperates the source program from the object (machine) program.
In effect, documentation explains how the compiler has bridged the gap

(via the runtime environment and generated code) between the source
and machine program, while the runtime diagnostics may or may not in-
form the programmer that he has violated certain explicit or { worse

yvet) ilmplicit assumptions of that environment. Most often, these assump-
tions are based on the raw physical realities of the particular computer
involved e. g. word length, type of arithmetic, and addressing peculiar-

ities.

The preceding sections have discussed the problems faced by the appli-
cations programmer : choosing a language and debugging the program.
The major conclusion is that the basic problem is the gap between the
source language and the object language, the gap being filled by the
user-unknown machinations of the compiler and a large and mostly my-

sterious runtime environment.

1.3 Problems in Systems Programming.

This writer'!s defination of a 'system program! is a program whose
data are other programs. As such, system programs perform in the
general areas of

(1) generating programs e. g. compilers,

(2) providing services to programs e. g. runtime environment,

(3) manipulating programs e. g. loading, scheduling.

We now examine each of these areas in greater detail.

J1.3.1 Programs that Generate Programs
Compilers represent a magnified view of the problems which faced the
applications programs: choosing a language, debugging, and system

interfacing. The source of this magnification is that a compiler must

simultaneously be aware of two environments: its current executing

environment, and that of the program it is generating.

For example, a compiler is a large complex program which utilizes
broad range of system services and is usually written in assembly
language. But because of the known [productivity, documentation, cor-
rectness proving] disadvantages of a large program written in assem-~
bly language, the contemporary trend is toward HLL!'s with special
features [the nature of the data manipulations (character and bit strings,
packed tables) is such that to state these manipulations in an HLL with-
out such special features implies intolerable inefficiencies.] Since
additionally compilers are being written in their own language (implying-
therefore that the compiler and user runtime environments are one and
the same), the question now arises of the extent to which the !special
features! should be available to ordinary users - in view of the fact

that system integrity could thereby be compromised. Yet such features
as runtime availability of the symbol table and the ability to build code

at runtime are obviously desirable. [It should be observed at this point
that the severity of this dilemma is lessened if a compiler is not !speciall
to the system i. e. the hardware-software complex is such that even P

misuse of system services affects only the user program.]

The gap between the source language to be compiled and the target ma-
chine also has the same doubled effect mentioned above. A compiler
written in an HLL is itself remote from the object-form compiter, and
must also generate code which plugs this gap. The wider the gap, the
more difficult it is to bridge and the less efficient is the resulting com-

piler.

The issue of system interfacing in a compiler is particularly severe
since the compiler must generate calls on service routines which will
be executed by the generated program in a manner which is not com-
pletely predictable at compile time. Therefore the service routines
must be general, extremely self-protective, and able to deal with a
myriad of possible situations (this last being particularly true of time

dependent functions such as 1/0).

In summary, compilers are faced with the following probfems:

-the nature of the compilation task versus the capabilities of
the hardware host machine

—~the nature of the compilation task versus the capabilities of
the target machine

~the extent of user access to compile time information and

abilities.

J1.3.2 Service Programs _

Service programs fall into two categories — those which can be view-
ed as subroutines { e. g. conversions) and those which must be view—
ed as co-routines (e. g. buffered I/O). The former tend to be small
and logically simple functions which are very concerned with the con-
ventions ruling themselves and their fellows; the latter are distinguish-
ed by their logical complexity and intimate relationship to the operating
system. L.ikewise, the service subroutines are closest to the user and
should be concerned with divining the cause of errors so that the user
can be informed of the error in terms that relate to his source program;
in contrast, the coroutine services tend to be invisible to the user and
exclusive of simple user exceptions (e. g. end of file), any errors
which they detect represent bugs or actual errors in the object code,
whether due to the compiler or user self-destruction. Experience has
shown that determining how code came to be destroyved is extremely dif-
ficult and we should therefore strive toward an environment in which

such is not the case.

We should also take note of the peculiar nature of almost all service
programs in that they give the user the ability to temporarily step out—
side of his formal execution environment i. e. they are a system ap~
proved means to !'break the rules! . As an example, consider type con-
versations : they are defined as an automatic mechanism in the Fortran,
PL./1 etc. machine, but must necessarily be accomplished outside that
environment. Often the "System provides analogous services to the en—

vironment itself e. g. storage requests.

Since the fulfillment of such requests without error is so critical to the
System, it must ensure that these routines are protected from acciden-
tal damage. In 3rd generation machines this has been accomplished

through the Supervisor Call mechanism which asks the System to exe -

10.

cute a piece of code which is not in the user!s address space. This
scheme is easy to implement on contemporary machines but in turn im-
poses an interrupt burden on the System. It is important to note that
the purpose of this mechanism is not to prevent the user from invoking
the service routine, but merely to ensure the integrity of the code.
This scheme is used because the storage protection mechanism on most
contemporary machines have insufficient resolution to allow multi-
user access to code while ensuring entry only at designated entry
points and forbidding write operations therein. Clearly it is desirable
to relieve the operating system of the interrupt burden so long as the

other constraints are met.

1.3.3 Programs that Manipulate Programs.

This category of system program is essentially the nuclear operating
system plus allied functions such as the spooling and file management .
subsystems. The nuclear operating system includes the linkage editor‘/
loader, traffic controller and scheduler, memory and l/O device manag-
er, and interrupt handler; these functions usually communicate with
each other through a number of global tables which contain the status

of all entities in the system.

The nuclear system is itself not very large, but is logically intricate
due both to the complexity of the job it is doing and the presence of in-
terrupts. 1t would be very helpful to be able to write the operating sys-
tem in an HL.L., but two considerations have traditionally discouraged
this : the requirement for object code efficiency, and the lack of source
language constructs for e. g. interlock, interrupts, and multi-tasking.
Additionally, if the operating system is written in an HLL, then it is
actually executing on an HLL. machine and must move outside this ma-
chine when it wishes to break certain rules, as an operating system

is wont to do. Note that this situation is exactly analogous to that of a

compiler written in its language.

The reasons for the desire to write in an HL.L. are the usual ohes -
clarity of statement, and ease of maintenance and debugging; these
considerations are especially important when one considers the mag-
nitude of coding represented by a full system. The requirements of

efficiency and necessary language constructs have been the stumbling

11.

blocks; nevertheless, several outstanding examples exist Qf systems
written in HLL.'s,notably the Burroughs MCP!s and MUL.TICS. In the
case of Burroughs, the hardware has been structured so that compi-
lation is quite efficient, whereas MUL TICS uses a PL /1 subset which
contains only what is needed coupled with a compiler and documenta-

tion which together yield acceptable object efficiency.

The question of 'whither HLL.! aside, operating systems in general can
be characterized as having overlong ‘childhoods ahd> being :

rather fragile in adulthood. OS/360 is a case in point, but is by no
means alone. They can also be characterized as being too large, too
complicated, and too slow — this latter in spite of being written in as-
sembly language. One exception .tothis bleak picture, but chiefly with
respect to efficiency, is Burroughs who claims [D4] system overhead

on the order of 5-10 % while most systems are in the 15-25 % bracket.

1. 3. 4 Other System Trouble Spots.

The initial concept of a loader was a program which simply loaded an
object program into memory. Unfortunately this happy state of affairs
was quickly followed by a large number of demands on the loader!s a~
bilities: satisfaction of external addresses, overlay structures, memory
(data) initialization, partial linkage etc. The result is that on most
systems the loader is an exceedingly complex and creaky program, one
that takes an inordinate amount of time to get rolling even for a trivial
job; and heaven help the user who attempts to use the more exotic so-
called !'standard features! - if they work, it usually is different from

the manner specified in the documentation.

The root of the problem lies in the type of address space used by most
computers: linear. The linear address space forces the System to de-
mand that a program lie in a (address-wise) contiguous area of memory,
and thus the loader must build a monolithic load module. Since the same
loader is usually used for user jobs and the entire system, it must be pre-
pared for even the most incredible eventualities relative to table space
and options. Additionally, all external addresses must be resolved ,

whether or not they are ever invoked.

12.

It is safe to say that if loaders did not have to resolve external address—
es and link everything together all at once, they would shed most of
their problems. It is possible to structure hardware to hélp .in this

endeavor, as we shall see.

J1.3.4.2 Interrupts.

An interrupt can be viewed as a time-random procedure entry in a pro-
gram; as the result of some hardware generated condition, a procedure
entry is forced to some environmentaliy~defined location, where execu~
tion is resumed. [In most computers, this is accomplished by saving
the program counter in a register, then setting it to the interrupt rou-
tine address. If the register contents should be destroyed, there is ab-
solutely no way to either recover or possibly even to figure out why you
are where you are.] Presumably the Interrupt handler does whatever it
deems necessary and then causes execution to proceed once more from
the point of interruption. As far as the typical user program is con-

cerned, there are no problems.

However, if the interrupt should occur while the System is itself per-
forming some state-dependent function, and the interrupt routine un-—
knowingly modifies the state, disaster invariably ensues. The obvious
solution is to allow interrupts to be disabled and enabled under pro-
gram control, which works fine as long as interrupts are not disabled
_too long - after all, an interrupt often represents the occurrence of a
time dependent event, and as such, cannot be ighored over long. Further-
more, some interrupts are more time critical than others, and many

computers allow interrupts to be enabled/disabled on a proirity basis.

Especially in older systems, the interrupt handler always operated
with interrupts disabled due to the difficulty of design which would
otherwise be necessary. Indeed, most contemporary operating systems
are either partially or entirely nonreentrant, and rely on interrupt

discipline and coding conventions to prevent reentry to nonreentrant code.

We can conclude that if interrupts

(1) could be forced in such a way that the path was unlosable, and

13.

(2) weren!t time dependent, and
(3) all code was reentrant, and
(4) code which shouldnl!t be interrupted or reentered absolute-
ly couldn't be,
then the impact of interrupts on operating system design and stability

would be minimized.

J:3:4.3 Lockout and Events

The fourth item in the list above - code which can't be interrupted-<is the
subject of a classic paper by Dijkstra [D2], who denotes such code
Icritical!l. An example of critical code would be a routine which is re-
sponsible for updating a multiple entry table: if an interrupt occurs be-
fore all the entries have been made, and in the course of processing the
interrupt this routine is reentered, the table will hereafter contain in-
valid information. Dijkstra demonstrates that this problem can be solved
by the use of 'semaphore! variables i. e. variables which can be updated

without possibility of being !'seen! in their transitory state by another

piece of code.

While Dijkstra's paper assumes that multiple processors are executing
cooperating pieses of code which must be coordinaied by the use of sema-
phores, a single interruptable processor executing on logically distinct
processes interrupts poses the same problems. In traditional computing
systems, the situation has been resolved either by disallowing interrupts
throughout the (logical) vicinity of critical code, or by using the incre-
ment memory (! replace add 1') feature, or a combination of the two. The
increment memory instruction constitutes the necessary primitive to ac-
complish the semaphore strategy. In actual operation, what happens is
that a process will increment and test the semaphore, and if it finds the
semaphore 'busy! must either (1) continue to poll the semaphore until it
becomes 'unbusy! (very wasteful of compute time) or (2) ask the System
to place it in a wait siate until the semaphore clears. Current termino-
logy for this situation is !'waiting for an event!, although events are not

restricted to being semaphores e. g. an interrupt.

While it is true that Dijkstra's semaphores are useful primitives, they

demand more than !lincrement memory! to be truly efficient e. g. suppose

14.

process A locks semaphore S, and then process B 'blocks! on S and
is queued by the System. Now process A unlocks S; if the unlocking
action neglects to inform the System that S is now unlocked, B is
blocked forever. This can be avoided with today!s hardware, but mul-
tiple instructions and programming conventions are required; in addi-
tion, the semaphore is associated with its target variable only by con-

vention, not by hardware, and therefore bugs can creep in via misas~
sociation. The problem of !'deadly embrace'[Z] is a meta-problem in this

context, and as such isoutside this scope of this paper‘[see HB].

Another inefficiency deriving from the need to use multiple instructions
to test and react to semaphores is that several different types of criti-
cal code are involved i. e. producer/consumer, non-reentrant code ,
and data lockout. While it is true that all can be accomplished using
simple semaphores, usage becomes clearer and more efficient if the

different types of lockout are available [R2 |, [H1].

Thus far the discussion has been directed toward the System!s use of
semaphores. However, contemporary usage e. g. real time subsystems,
cries out for allowing user programs as well as the System to spawn
subtasks coordinate their activity via semaphores and event variables.
Furthermore, these facilities are most needed in HLLL.!s since users
prefer to write inHLL.!'s and also because the System can then use the
compiler to enforce adherence to conventions. Clearly if an arbitrary
number of users in a large multiprogramming system wish to declare
semaphores, the operating system will swell in size if it is demanded
that semaphores be known a priori thereto; therefore we postulate that
semaphores should operate in such a fashion that they need not be known
before-hand to the System, and need only be of concern to the System

when a task blocks or unblocks.

In summary, it is desirable that both system and user programs be
able to spawn and coordinate parallel processes in a simple, clear,

and flexible manner.

1.3.5 Microprogramming
This section deals with microprogramming as it impacts systems (and
user) programming i. e. microcode as a rescurce, and not micropro-

gramming as an implementation technology. We include it, besides for

15.

its own merits, to point out that a System must be forward looking re-
lative to new and unique demands for allocation and control; the discus-
sion also illustrates that often times what may seem nhew is really an

old problem in disguise : in this case multiprogramming and block structure.

When the IBM Corporation announced System/360, it also provided emu-
tators for prior systems (1400 and 7000 series machines). Although
these systems were (usually) implemented 'on the 360! via micropro-
gramming, there was no capability provided to multiprogram these emu-
lators i. e. if the 7090 emulator was in use, this precluded the use of
the hardware as e. g. a 360, with consequent disruption of job stream
scheduling. System/370 attempts to remedy this problem by allowing em~
ulators to be multiprogrammed within certain limitations, but in essence,
when a given emulator is in control, the entire system acts as if it were
e. g. a 1401. Upon occurrence of an interrupt or when control is trans-—
ferred to the 370 machine, the 1401 machine logically disappears and
the system is a 370. The barrier between the 370 and the other emulators

is arranged to preclude any real communication between them.

At the present time, IBM and other vendors prohibit the user from tamp-
ering with or adding to the microcode. This is done for reasons of pro-
priety and maintenance, but pressure from users of smaller computers
which encourage experimentation with microprogramming will eventually
force the large manufacturers to allow the use of microprogramming as

a resource, and eventually all operating systems will be expected to allow
multiprogramming of emulators., Unfortunately, the emulaiors which users
are likely to consiruct will be for machines which have hitherto not ex-—
isted. The following problem now arises : a computer is of no use with-
out software-compilers, I/O drivers, loader, storage and file manage-
ment disciplines, etc. Whereas the IBM emulators execute problem pro-
gram cum operating system within the emulator partition (thus supply-
ing the problem program with a ready made software set), new emulators
will not have such a ready made system to greet them. The choice now
facing the owner of a new emulator is between the nontrivial difficulties
and expense of constructing a new software complex or finding a way

to bridge the gap between his emujator and an existing system.

At this point it is useful to distinguish between two types of microcode

16.

a user might write: simple extensions/r‘eplacements to the existing
instruction set, or a complete subsystem (although the latter can be
viewed as an extreme case of the former). The destinction is useful

because it enables one to draw an analogy with extensible languages.

The discussion on Application Programming stressed the gap between
the user'!s problem and the language in which it must be stated. Exten-
sible languages are seen in many quarters as the bridge across this gap.
In general, such languages allow new operators to be defined upon

entry to a block which become undefined upon exit from the block. Such
extensions constitute an execution environment which is elaborated by
cascading the extended statement into calls on procedures in outer
blocks. In figure 1. 3.5-1, the 'less than! operator can be looked upon
as such a procedure, to say nothing of the routine which coerces inte-

gers to reals.

Clearly the example of the figure represents a trivial case of the type

of extension which can be specified, and more extensive definitions
would result in a more deeply nested sequence of procedure elaborations.
Thus the user of such language extension features must pay for his 'con-

venience! in increased execution time, which is to say: emulation of a
computer which simulates the desired execution environment. If however

the extensions were implemented using microcoded subroutines, thenthe

user could have the best of both worlds.

Unfortunately, the user with his microcoded language extensions still
expects to be able to multiprogram jobs written in his augmented lan-
guage, with perhaps different jobs employing different microprograms.
Hence the liberal support of a microcode-extended |language is tantamount

to multiprogrammed emulation.

We have now gone full circle on the subject of multiprogrammed emula-
tion in the sense that we have argued that a demand for multiprogrammed
emulation arises out of the seemingly disparate areas of extensible lan-
guages and emulation of new computers. However the digression has
paid a dividend if we notice that such language extensions, whether ac-
complished through procedures or microcode, always operate on a block

basis. On the other hand, emulators are also implemented using micro~

17.

begin
op min = (real a,b) real: (a<b|a|b);
T ++....Statements using min of two reals..... ..
end
¢ above min operation now no longer exists ¢
begin
op min = ([1:] real al1) real :
(real x := max real;
for i to upb al do (al[i]<x|x=a1[i])
x)
i......statements using min of an entire vector...... .
end

¢ examples from [L1] ¢

Figure 1. 3. 5-1

Algol 68 Program Skeleton Illustrating the Declaration

of Operators within Block Structure Scope Definition Regulations.

18.

code. Language extensions operate on a block basis, so should the
computer emulator. If we therefore complete the analogy and state that
computer emulators should also be viewed as blocks, we have the key
to multiprogrammed emulation, since multiple tasks can be thought of

as parallel biocks.

The next chapter delves more deeply into the relationship between block
structure and multiprogramming and it will be shown that a computer
architecture that supports block structure (and therefore multiprogram-
ming) well would be amenable to the inclusion of the ability to support

multiprogrammed emulation. See [3.11].

1. 4 Summary of Contemporary Computer Usage

The preceding sections have dealt with the contemporary problems of
application and systems programming. With regard to the applications
programmer, we saw
(1) most programming is done in HLL!'s,
(2) these HLL!'s do not correspond well either to the user'!s
problem or the hardware on which they execute,
(3) this lack of correspondence is a breeding ground for pro-

gramming errors and bugs.

With regard to the systems programmer we found

(1) a heed to program in HL.L.!'s which is frustrated by the un-
suitability of the hardware,

(2) system software is very complicated, yet it seems that much
of this complication is due to the unsuitability of the hard-
ware,

(3) this complication causes system software to be slow to sta-
bilize, bulky, and inefficient,

(4) even operating system primitives such as storage protection
and semaphore processing are only minimally supported by
the hardware,

(5) there is a need to be able to easily write reentrant code,

(6) there is a need to support user-program subtasking,

(7) there will be a need to support multiprogramming of user

microcode under existing software.

19. .

In conclusion we can state that in general, programs seem overly dif-
ficult to write and debug (particularly system software), and that ul-
timately the blame falls on an environment which is too much software

and not enough hardware.

The remainder of this paper describes and evaluates a computer archi-
tecture which attacks the probiems heretofore described by providing
the supportive environment which has been lacking. The design is not
perfect, but experience in writing a compiler and operating system for
this machine indicates that it is eminently and efficiently programmable

in a higher level language. That in itself is progress.

20.

2. 0 DESIGN CRITERIA FOR A PROGRAMMABL E COMPUTER

This chapter presents design criteria which derive from attacking the
software problems described in Chapter 1. In general, we are looking
for a computer architecture which is a good host for divers higher lev-
el languages and system software. The latter therefore implies that our
computer must be a good host for multiprogramming, subtasking, time
sharing, and new developments such as user microcode. Although Pl_/l
has demonstrated the problems of trying to be all things to all users,
we shall demonstrate that the environment requirements of [1.0] can

be accomplished while the overall structure remains fundamentally simple.

Our first topic is block structure, as well it should be, since the major-
ity of extant HLL.!'s are block structured. Clearly an architecture which
is a comfortable host for HLLL.'s would be of great value to applications
programmers, but it would be unfortunate if such an architecture were

unsuitable for the systems programmer.

2. 1 Block Structure and Systems Programming.

This section explores the relationship between block structure and sys-—
tems programming (or rather the logical structure of systems). Let us
begin by stating some of the characteristics of biock structure:
(1) the nesting of blocks yields a tree structure,
(2) data and code entities are known only to subsidiary portions
of the tree,
(3) dynamic allocation of storage is inherent,

(4) recursion is inherent (given the existence of procedures).

The analogous characteristics of a running system are:
(1 the nesting of tasks and subtasks yields a tree structure,
(2) data and code entities are known only to subsidiary portions

of the tree,

(3) dynamic allocation of storage (to tasks) is inherent,
(4) recursion’is inherent {given the existence of interrupts).
One can see that the analogy is very close, as Figure 2. 1-1 illustrates.

We now consider more carefully the application of biock structure con—

21.

Block Structure System Structure
e L
-global data —-system tables
~global procedures ~interrupt routine
—system services
B [
declarations —-compiler A translation-
time entities
—compiler A runtime en-—
vironment
— -
block i ~-user 1
L.. b
block j ~-user 2
[-
declarations -compiler B translation-
time entities
~compiler B runtime en-
~ —Vvironment
block k user 3
block | user 4

Figure 2. 1~1
ItTustration of the Similarities

between Block Structure and System Structure.

22.

ceptis to system structure.

2.1.1_Interrupts.

As shown in the figure, the operating system is global to all other en-
tities in the system, and therefore so is the interrupt processibg pro-
cedure. Thus processing an interrupt can be regarded as a (block
structured) entry to a global procedure, with the interrupt type, etc.
as parameters to this procedure. Nested interrupts merely cause the
interrupt routine to be entered recursively. A subsidiary dividend is
that subtasks can directly invoke the interrupt procedure, ‘whether to
signal !'soft! interrupts or external interrupts (e. g. for testing pur-

poses).

Consider a program in which two blocks exist on the same lexical level.
Normally the two blocks would be executed in serial fashion - firstone,
then the other. If however it made no difference in which order they
were executed, then they could in fact be executed in paraliel. See Fig-
ure 2. 1-2, The ability to execute in parallel is not restricted to blocks
which have no common data; however, the sharing of data between par-
allel processes requires some mechanism such as semaphores to prevent
ambiguity. L.ooking now at our two blocks executing in parallel (sharing
or not sharing data), they have the same characteristics as two parallel
tasks. Thus it would seem that an architecture which supports blocks

ought to be able to support tasks with minor extensions.

2.1.3 Storage Protection

The scope rules of block structure provide exactly a type of logical stor-
age protection that is lacking in modern systems: if we accept the analogy
between parallel blocks and parallel tasks, then disjoint tasks (jobs)
cannot !'see! each other, subtasks can see their parent but not each other,
and all can see their global environment, i. e. the runtime environment
and the operating system. Furthermore, since only the procedure head

(and not its interior) is !'visible!, it is impossible to enter any procedure

(especially crucial system routines) except at the designated entry point.

2.1.4 Conclusions on Block Structure

The close analogy between block structure and system structure; the nat-

T

The arrows denote the path of execution.

Figure 2. 1-2
Two Independent Blocks (a)

Can also Execute in Parallel (b).

23.

24,

ural application to interrupts, tasking, and storage protection; coupled
with the ubiquity of block structured languages; altogether comprise a
compelling argument for hardware which conforms closely with the re-

quirements of block structure.

2. 2 Data Representation.

The basic data which programs manipulate are numbers, characters, and
bits; furthermore these entities are often processed in groups which are
commonly referred to as arrays, character strings, and bit strings. The
more closely the environmental support of these latter entities resembles
the source language semantics, the easier it is for the compiler to gene-
rate good code and the more likely that the environment can detect a vi-
olation of the source semantics. A particular case is ar‘r'ay/str‘ing
bounds violations: automatic hardware recognition of this condition not
only aids during the formal debugging phase, but also recognizes that a

program is never really ever completely bug-free.

A fourth type of data is addresses or pointers. Until recently, pointers
were not supported by HLL.!'s, and this lack only « enhanced their unsuit-
ability for systems programming. It is therefore helpful to both applica-
tions and systems programmers to include pointers in the HLL.'s, and
given that a pointer appears to be merely an address, one would think that

hardware support of this construct would be easy.

The first inkling that such is not the case appears when one realizes

that the mapping of data onto the address space (1) is unknown to the
user, and (2) often does not correspond to the lexical ordering of entities
in the source program i. e. add one to an address, and you may not get

a pointer to the expected variable.

Worse yet, there is great impact on the System if user programs can
retain absolute addresses since this precludes the System from moving
programs around in memory. Therefore if we want pointers in our
source language, it is imperative that the environment support them in

a relocatible form.

We must also note that pointers have the characteristic of being used as

25.

a pseudonym for either a single datum or an entire set of data. Either
the compiler (via its generated code) or the hardware must be cogni-
zant of this distinction, since data arrays require indexing and simple

data do not.

We have thus far discussed how the environment ought to support num-—
bers, characters, bits, arrays, character and bit strings, and point-
ers. What about linked lists, associative arrays, array crossections,
etc. 7 At this point we must consider the tradeoff between supporting
them directly in hardware and forcing the compiler to generate code
which implements them in terms of the existing structures. Clearly nei-
ther alternative is particularly desirable. Forinstance, besides the
fact that a hardware implementation would be rather complicated, there
are the two remaining problems of (1) choosing a particular set of se~
mantics from the many possibilities (e. g. singly or doubly linked lists?),
and (2) melding these constructs into the existing environment so as to

retain consistency and generality (e. g. linked code 7).

In addition to choosing between compiler and environment support for
such data structures, we can beg the issue by doing neither but pro-
viding the ability to extend the environment to allow later inclusion. The
discussion in [1.3.5] of user microprogramming bears on this topic,
and [3.11] discusses the required environmental 'hooks! for convenient

microcode extension.

2. 3 Evaluation of Expressions.

The sequential nature of { contemporary) computers dictates that the
parenthesized manner in which humans write arithmetic expressions be
linearized. This linearization is performed by the syntactic parsing of
the compiler to produce an intermediate form called polish notation [61]
(although in many compilers, code is generated with the polish siring's
existing only implicitly). At this point the compilers! treatments (of the

polish string) diverge due to differences in the target hardware.

If the target machine contains multiple general purpose registers, then
the compiler must keep track of which registers are in use and deal with
the movement of temporary results between the registers and memory.

This inefficiency at compile time is (hopefully) recovered during exe-

26.

cution since movement of temporaries between the registers and memory
occurs only when necessary. If however the target machine is capable
of executing the (reverse or suffix) polish string directly (KDF 9,
85500/6500 computers), then the compilation speed increases and exe-
cution speed decreases according to the number of temporaries and the

number of top-of-stack registers on the machine [W6].

The most commonly heard arguments againsi direct execution of polish
strings revolve around this very point of memory accesses. We now

examine them.

Argument #1
Consider the expression "A: = B+C,". The reverse polish coding of this
expression if '"aAvBvC+:=!' where !'a! denotes !laddress of!, 'v! denotes
'value of!, and !:=! is the assignment operator. A machine which exe—
cutes strict reverse polish would require the following code:

—~load the address of A

~load the value of B

—load the value of C

—add the top two items in the stack

~store the topmost item in the stack into the location specified

by the second item in the stack.

[Each hyphenated line above represents one instruction with
appropriate stack maintenance automatically performed by the

hardware. |

The argument says that on a register machine, the STORE instruction -
contains the target address, and therefore the loading of the address
of A onto the stack and subsequent (automatic)maintenance is pure
overhead. The origin of the argument is probably the notion that opera-
tors (e. g. :=) must be zero address instructions, and therefore the

address must be preloaded onto the stack.

The refutation of the argument is to postulate that the STORE operation
shall be a single address instruction, just like the LOAD instruction.
The object code now becomes

~load the value of B

27

—load the value of C

—add the top two items in the stack

~store the top~of-stack item into A
In terms of the actual instructions generated, this is ho different code
from a register machine (although, depending on the state of the top-

of-stack registers, there may be an exira stack manipulation).

Argument #2

"But wait. ' say the opponents of stack evaluation. "If the expression
is complicated, then there must be movement of temporaries between
the top-of-stack registers (of which there are usually 1~3) and main
store. Even though the hardware does this automatically, it still takes

time to read/write memory. !

The argument is valid so far as it goes, but it neglects to consider that
the movements can be overlapped (i. e. done at the same time as) the
fetch and decode of the next instruction (given memory interleave and/
or multiple instructions per word). Moreover, if the next instruction
is a single (instead of zero) address operation, there is even more
time since an effective address must be calculated and possibly several

memory accesses made.

Affirmative Point # 1

There is an argument in favor of Ipolish hardware! which is often over—
looked. Since there are a number of registers which can hold operands,
an instruction for a multiregister machine must contain therein one { or
several) register address(es), thereby increasing the length of the in-
struction (in bits). In contrast, there is no need for register addresses
in a stack machine instruction since the source/destination of all oper—
ands is known by the hardware to be the top~of-stack. therefore stack
machine instructions tend to be shorter than their multiregister counter—
paris. Since the instructions are shorter, more instructions can be

packed into a machine word, thereby decreasing the number of instruction

fetch cycles which must access memory { see Figure 2. 3-1).

Figure 2.3-2 from [H4 | (and see also [W3]) demonstrates that indeed

code for stack machines is more compact.

28.

n
0

5 N .,

S Nt ultiregister Machine
Yo

T

c

0

S ~

I ~

. N

fu';' ga- D e Stack Machine
£

Y

o)

C

0

Q

£ ;

Z 0 100

% of instructions that can be !short-ops!

The graph illustrates the fact that a multiregister machine must always
specify the source and destination addresses for operands. The short
operations of a stack machine [e.g. +, -, A] on the other hand require

no such addresses since source and destination are known to be the stack.
The multiregister machine is unable to take advantage of the potential
shortening, and consequently cannot achieve the code density of the

stack machine.

Notes:

1. Long instructions are memory reference or register-instructions,
while short instructions are zero-address stack-oriented opera-
tions.

2. The graph assumes
(a) long instructions for both machines are the same length
(b) short instructions are half as long as long instructions.

3. The reader should be aware that the figure oversimplifies consid-
erably from the discussion in the texi.

4, N/2 is an asymptote, since long instructions must be used to load

operands onto the stack.

Figure 2. 3-1
Number of Instruction-Word

Fetches on Multi-register and Stack Machines.

LX)

£ e

.A_HQTL wody) "sdeindwo) Jd81SI63J 1IN PUR MOBIS JOo4

SIUBWIUB [SSVY PUB SUOISSaJdXT 931]-|0B |V 40 SSduUioRdWOD 9poD SAIR |9

2-¢ 'Z 2dnbid

-~
Aowol1s—~~ (02

- T

oz T T

. \\\\\ -

93H0LS =—7 -7 9340lS o8

[

—— 7O
IOERSY ¥
WV QO
9l Zi 8 7 [4 L
s1q 02 o _ ') _ _ _ - - . ool
2 SuHW

E53Jppe ebeuols T

21 Jo Yibusi |
Toli
Jor Al

€ oA ~
~ og¢l
S~
~
~
//
(Z SHW dUlYoe 2oUsUDaH) SUIBUS] 9poD 9n|iE |9y ™~
™~ Ao¢_
~

\{
%

*ouIyo
—euw Jdoje NuNoOe~3Uo
‘sSsSodppe-duUo DISSE|D IWVO
"1UDWID |9 >ORIS JO
~do_] ssadppe AJuo ued
YDILM SUIYD BW MORIS D1S
*dol ay1 o1 annejad
‘sjuawd |8 >orig-jo-~do L
—UouU SS9dJdppe 01 ANljige
Ulim autyorw >oris :QOWDLS
‘spprise snid sdoisibad
|easusb 9 |dil|nw 93AHDILS
‘Adowsw pue J431s |6
~2d B USOM]}9Q JO SJ31S
—1Bad usamiaqg JaUlie

suojiedeodo oilawiylide 1ZSHW

.m(.mum_mm(_ usamilaqg N_CO

SUOI1BJSdOo D119W Yllde 1gHEHN

rsadA 1 auiydey

It must be pointed out that multiregister machines coupled with multiple
parallel arithmetic units (e. g. CDC 6600) do an extremely effective
job in evaluating expressions, whereas the means of accomplishing
this on a stack machine is not apparent. The only counter-arguments
are the relatively small number of such applications, the expense of
such hardware, and that compilers which can take advantage of such
hardware are both difficult to write and slow { e. g. CDC 6600 FTN

compiler).

Affirmative Point # 2

Because all operands, including parameters and return addresses, can
be stored in the stack, object code for a stack machine is inherently re—
entrant. A stack is also the usual means of accomplishing the dynamic
allocation of activation records [w2 J required by e. g. Algol 60 and

PL /1 AUTOMATIC.

Affirmative Point # 3

Because the hardware knows where the stack is and how io store and
retrieve items therefrom, it can use the stack to hold hardware gener-
ated items e. g. return addresses. This is In contrast to the typical
register machine wherein the hardware cannot arbitrarily decide to use
some of the registers for its own purposes because it doesn!t know
which ones (if any) are unused. Even if some registers were desig-
nated as belonging to the hardware , the many possible recursive situ-

ations that exist (e. g. interrupts) would cause the hardware to at-

tempt to reuse iis registers when they were already full.

We shall also see in [2.6 | that the ability of the hardware to use

temporary storage has great impact on the deferral of binding time.

Lonclusion

The two arguments against direct hardware execution of polish strings
are refuted above. In favor we have the ease of compilation, code com-
pactness and reentrancy, and applicability to dynamic storage. Thus the
decision would seem to favor a stack type architecture from the point of
view of expression evaluation. See [12], [M1], [B6] and[W6] for ad-

ditional discussion.

31.

2. 4 Procedures and Parameters

Procedures (or subroutines) constitute a doubly potent programming
tool. In the first place they represent a means of structuring a program
so that it can be comprehended, written, and debugged. [Incidentally,
one wonders if an equally convenient tasking facility would not have the
same benefits!] Secondly, procedures imply object code compactness
by allowing a body of code to be executed 'out of line! rather than being

repeated in-line at each needpoint.

We now postulate that the environment should support reentrant and re-
cursive procedures unless this causes undue inefficiency in the resuli-
ant object code. This seems reasonable in view of the recursive nature
of the operating system, compilers, and artificial intelligence applica-
tions such as pattern matching, problem solving, game playing, and

list processing in general.

The fact that procedures are out-of-line code means that they require
parameters to particularize them for each invocation. The problem that
now arises is how changes to the parameters inside the procedure body
should reflect back to the point of invocation. Three schemes are in use:
call by value, call by reference, and call by name. The first allows no
changes to be reflected back to the caller; the second that changes will
be reflected, but if the actual parameter is an arithmetic expression,
then the expression is called by value; the third that changes will be
reflected, and if the actual parameter is an arithmetic expression, re-
ferences to the value of the parameter will{ each time) cause the expres-

sion to be reevaluated in the environment of the caller. This last require-

ment (underscored) turns out to have some rather subtle implications,
the resolution of which has had great (deleterious) impact on object
code efficiency; it was for this reason that Pl_/1 replaced call by name

with call by reference.

The prevailing attitude toward call by name is that while it has its (really
nice) uses | K2], [N1], for the most part the inefficiencies outweigh the
benefits. Certainly this attitude had much to do with the PL /1 decision

to call by reference. By far the thorniest problems with call by name oc-
cur when a procedure is passed by name, the problem being that the (block

structure) environment at the time of the call must be saved and used with

32.

the procedure whenever it is invoked. However, besides the sort of
'tricky neat! uses of procedure call by name, there is one extremely

useful one, demonstrated by the so called 'ON conditions! of PL /I.

The idea behind ON-conditionsisto allow the programmer the ability to spe-
cify certain processingwhen and if certain exception conditions occur.

Call by name has a perfect use here since the user can pass his error
procedures by name to the System (at which time the current environ—
ment is saved) which can then invoke them when the condition occurs.
Since the procedure!s original operating environment is applied, the

user gets exactly the results he wants, regardless of how far afield he

has strayed from the point at which the ON-condition was established.
Since ON-conditions can also be associated with semaphore and other
levents! [B4] the aggregate of usage possibilities for call-by-name

argues for its support by the environment.

2.5 Compiler Considerations.

This section deals with a rather nebulous concept - that since a com-
piler tends to be somewhat myopic relative to the piece of source code
it is currently processing, the eventual environment architecture should
strive to operate Iin such a fashion that the compiler needn!t care weth-
er a particular variable is a formal parameter, actual parameter, name
or value referenced, fullword, halfword, byte, bit, loop index (even
expression), or linvolved! with pointers. Admittedly this is a stupen-
dous wish, yet the payoffs in both compiler size and speed and object

time efficiency are equally large.

Clearly if the compiler doesn!t worry about these matters, then the en-
vironment must. Thus the crux of the problem is that the environment
must somehow be able to make the appropriate decision at runtime,
which therefore implies that it must have a means figuring out what it
is it is supposed to do i. e. there must be a means for the environment

to distinguish between several possible courses of action.

Section [3. 3] discusses how this can be accomplished.

33.

2.6 Binding Time.

The preceding section was actually talking about something called

binding time. Thus, [2. 5] was saying that the compiler!s life would be

considerably simplified if the time at which action (i. e. code) is bound
to variables could be deferred to runtime. In fact, binding time has
cropped of several times in the preceding pages e. g. [1.3.3 |.Linkage/
l_oading, [2.2] pointers, [2.3] Affirmative # 3, [2.4]ON-conditions.

One can trace the advances in computing by the increasing deferral of
binding time e. g.
1st genepration absolute code
2nd generation relative code and subroutine libraries
3rd generation relocation hardware, virtual memory, incremen-
tal compitation, languages like Snobol 4 and
APL..

Weganer states [Wﬂ p. 18 that '"Binding attributes as early as possible
sometimes results in more efficient program execution, since it saves
repetition. However, binding attributes as late as possible allows the
decision regarding the bound atiributes to be delayed and thereby allows
greater flexibility in specifying the attribute!. Using the reasoning that
efficiency of use for programmersis more important than super-efficient
execution by the hardware, we postulate that our environment shall strive

toward maximal deferral of binding time.

2. 7 Input/Output.

Two types of operating system bugs which are exasperatingly difficult

to track down are (1) a lost interrupt due to an unexpectedly long lockout
of interrupts, and (2) an error in the parameters to an 1/O channel
which results in its writing beyond the buffer limits. Both of these bugs
have the characteristic that by the time they result in a detectable error

(usually unrelated to the real culprit), all trace of the cause is gone.

The solution to the lost interrupt problem is to make all interrupts non-

time dependent, though this seems to be a contradiction. If this can be

34.

accomplished, however, then we are in a much better position to make

use of semaphores on the System (having resolved Wirth!s dilemma in

[W5] in which he can't seem to decide whether or not he really wants

interrupts). The efficacy of using a semaphore approach is reported

by Wirth [ibid] and Dijkstra [D3].

2.8 Conclusion

The design criteria established in the preceding paragraphs are

(1)
(2)

(3)

(7)

the hardware should support block structure,

the hardware should support the source language data types
directly,

expression evaluation should be accomplished by direct ex—~
ecution of reverse polish strings,

call by name has valid uses and should be supported by the
hardware,

the hardware should allow maximal deferral of binding,
implying it can !fill in! the semantics that the compiler left
unbound,

1/O channels should be cognizant of the logical structures
residing in the PCt!'s memory,

interrupts should be time independent insofar as is possible,

The next chapter presents the actual design of a computer which meets

these criteria. Since these criteria were derived from considerations

of software '"programmability!, the computer described in [3. O] is

called the Programmable Computer (PC).

35.

Preface to Section 3

This section presents the actual design of the PC in a narrative fash-
ion which explains the motivation behind the various constructs that
are considered primary or highlights. As a result, some of these are

treated in detail while other points are only mentioned.

The knowledgeable reader may become frustrated at the ordering of
topics or the apparent missing details. However, the material has been
organized for expository clarity to the unitiated and hopefully all the

loose ends will have been gathered together by the end.

36.

3.0 THE DESIGN OF THE PROGRAMMABL E COMPUTER.

Let us summarize the problems outlined in [1. O] and distilled into de~
sign criteria in [2. O]. The Programmable Computer (PC) attempts to
optimize throughput by the following considerations:
(1) ease of program creation via HILL's,
(2) ease of debugging,
(3) recognition of the relationship between block structure and
mul tiprogramming,
(4) recognition of the Dijksira coordination primitives both be-
tween cotasks and between the PC cpu and the l/O pro-

cesses.

These considerations result in the following design objectives:

(1) The PC!s instruction repertoire should be !close! to the
languages which execute on the PC, thus allowing easy
compiler generation, efficient code, and execution time
diagnostics relatable to the source program.

(2) The PC hardware should automatically oversee all program
execution (including the System) and trap all questionable
semantics. This implies the existence of primitive features
which allow the hardware to distinguish among different
data types, addresses, and code.

(3) Hardware support of the Dijkstra primitives implies an ex—
plicit hardware recognition of task structures i. e. block

structure.

The resulting design can be summarized as a machine with a block struc-
tured address space, hardware supported dope vectors, hardware re-
gulated pushdown stack, and timeindependent and PC-cognizant I/O
channels.As it turns out, variable size page virtual memory is a (nearly)
free dividend of the dope vectors, so this is also included in the design

along with several special instructions to help maintain storage.

The following paragraphs discuss these features and related topics.

37.

3. 1 Pushdown Stack.

The hardware maintained pushdown stack is discussed first because
it is basic to the evaluation of expressions and the block structured

nature of the machine as a whole.

A pushdown stack can be implemented most easily In hardware with the
stack itself residing in main store (hereinafter referred to as 'memory!),
and the controlling registers in a fast store. Each element of the stack
is one machine word; the limits of the stack are maintained in two re-
gisters called BOS (base of stack) and LOS (Iimit of stack); the ad-
dress of the word currently on the 'top! of the stack is contained in TOS
(top of stack). Normally, TOS is in the range BOS < TOS =< LOS;
stack underflow occurs when TOS becomes less than BOS, and stack
overflow when TOS exceeds LOS. When an item is to be pushed onto
the stack, TOS is incremented and checked against LLOS, and then the
item placed in the memory location pointed at by TOS. An item is re-
moved (popped) from the stack by decrementing TOS and checking a-
gainst BOS. Figure 3. 1-1 illustrates.

A load-type insiruction causes an item to be pushed onto the stack, while
a store-type instruction causes an item to be popped off the stack and
stored elsewhere in memory. Binary operations e.g. ADD, LESS THAN
cause the two fopmost operands to be manipulated and the result placed

on the stack i.e. as if the operation had performed POP, PORP, PLISH.

The stack maintenance hardware assures that operands are always
available to operations, and that TOS never violates the bounds of

BOS and LOS.

Also associated with the stack are the B or display registers, which

are used to maintain the block/task structure of the running program.
These registers point into the stack at those points where the storage
for particular blocks are located, and are numbered 0,1,2,....; the
register CL.VL denotes the maximal B[i] currently In use. Figure

3. 1-2 illustrates and the next paragraph explains their use further.

LOS

Vv

TOS

BOS
\

Stack

Memory

Figure 3. 1-1
The Stack and Controlling Registers.

38.

CLVL

I
B/Display
Registers

Stack

\ //

Figure 3. 1-2
Stack with B/Display Registers

39.

LOS

TOS

BOS

40.

3. 2 Block Structured Addressing.

Figure 3.2-1 shows a simple Algol 60 program. Note that the various
block have been dilineated and their nesting level labeled. We can now
label the variables according to this nesting level e.g. | is in the first
(b=0) block level, and is the first (d=0) variable therein decalred.
Thus | is denoted [0,0]. Similarly, J is denoted [0,1]; A is [0,2];
and P is [0,3]. The bracketed pairs [b,d] are called address couples
[R1], and Figure 3. 2-2 lists the address couples for the entire pro-
gram. Observe that there are three I's in the program (11, 16, 110),
and that 16 and 110 both have the same denotation [1,1]. This lack of
uniqueness poses no problems however if we remember that one cannot
simultaneously 'be! in two block on the same level, according to the
definition of Algol. Thus within the definition of block structure, our
[b, d] notation provides us with a method of uniquely addressing all
variables, and furthermore, this method of addressing has the prop-
erty that it reflects the source program natation within the variable!s

address, a valuable debugging tool.

Another way to view address couples is as addresses in a tree. Figure

3. 2-3 illustrates this point af view.

The problem now facing us is how io map our tree space addresses into
the linear address space found in computer memories. The mechanism

by which this is accomplished utilizes the B-registers mentioned in the
preceding section. An address couple [b, d] is mapped into an absolute

linear address !'a! via the B registers by the algorithm:
a:=8B[b]+d.

Hence, so long as the address in B [b] is the address In the stack where
the variable of block (nesting level) 'b! begins, this mapping preserves
the intent of the source program. We can observe that the B registers
are really nothing more than index registers, and thus the price paid

for having block structured addressing is that all memory references

integer 1, J;
array A[10];
procedure P (V,l1);
array Y; integer [;
real X
begin
if 1¢1 then
begin
real Zz[10];
for I:= 1 step 1 until 10 do
begin‘

-

end compound statement;

end biock
else Y[1]=Y[l]+ 1;
end P;
1=2;
inarray(A);
P (A1) ;
l.1: begin
arrayZ[20;
integer I;
L.2:P(z,1);

.

end block;

end program;

Figure 3. 2-1

Block Structure

of a Simple Algol 60 Program called SIMPLE.

41,

10.

variable block level biock displacement
1 0 6]
J 6] 1
A 0 2
P 0 3
Y 1 0]
I 1 1
X 1 2
Z 2 0
z 1 0]

Figure 3.2-2
Address Couples for Program SIMPLE.

address couple

[0, 0]
[0, 1]
[0,2]
[0,3]
[1,0]
[1,1]
[1,2]
[2,0]
[1,0]
[1,1]

42,

43.

=1

Figure 3.2-3
Address Couples as Tree Addresses (Program SIMPLLE).

44,

require indexing. Figure 3. 2-4 illustrates how this addressing scheme

is applied.

The next question which arises is how many B-registers should there
be? At first glance one might think that an infinite number are neces-
sary if recursion is allowed, but this is not true since a recursive
procedure always executes at the block level at which it was declared
(thus causing the same B[i] to be continuously updated). The only
real requirement on the number of B!s is whatever one considers to be
a 'reasonable! maximum for block/task nesting. Clearly 8 is too few
and 64 more than necessary, and therefore either 16 or 32 is probably

a reasonable number.

Having decided on the number of B registers, we now must fix upon the
maximum displacement { i. e. the maximum number of declarations at a
given block level). It is necessary to choose a maximum because the
[b,d] will be the address field of the PC!s (single address) instruc-
tions, Employing logic similar to the above, 64 is probably too few,

and 1024 too many. Thus we will choose among 128, 256, and 512. This
decision has distinct impact on the System since the outermost block
contains the declarations of all the system library routines and utilities.
In effect, too small a d-field restricts the total humber of 'externals!
that can exist. There is, however, another approach to these field cal~-
culations, described in [W3, W4].

Two primitive operations are required to maintain the B registers: en-
ter block (NTRB), and exit block { XITB). Figure 3. 2-5 gives the
function which each must perform. The attentive reader will note that
upon entering a block, the contents of the associated B-register are
pushed onto the stack. This is done, though it may at first seem unnec-
essary, because execution may be retracing the tree structure as the
result of an outer block procedure call, and the hardware must save
the register 'just in case!'. [lt is also crutial to realize that in the final
machine, the contents of the B's cannot simply be pushed onto the stack
(as shown in Figure 3.2-5 ab) because they contain absolute addresses,
the bane of relocation. Hence they are converted to a relocatible form

called [s,d] (explained later) and then pushed.] XITB undoes the ef-

CLVL
z B[2,0]
X B[1,2]
! B[1,1]
Y B[1,0]
P B[o, 3]
A B[0,2]
J B[0, 1]
I B[0,0]
<
Stack

Figure 3.2-4
Execution Snapshot of Program SIMPLE,

45,

LOS

TOS

BOs

46.

procedure enter;

begin

comment Interchange code page logical address and stack[f—T];

old f:=get field (stack[f], full word);

unpack 2 (stack[f-1], recent mscw, displacement);

pack return control word(stack [f-1], cpra, cplam, cplad);
comment see comment on cpra, cplam and cplad in exit;

cplam:=recent mscw; cplad:=displacement; cpra:=0;
comment follow pointers to code reference word and unpack;

address:=botitom of stack+recent mscw-+displacement;
follow pointers (address, recent mscw);

unpack 2 (stack[addr‘ess], current lexical level, displacement);
comment unpack codedescriptor;

address:=bottom of stack+displacement;

unpack 2(stack[address]|, pageplace, pagelength);
comment build new mscw and update f;

pack mscw(stack[f], upper mscw, current lexical level, recent mscw);

upper mscw:=f; f:=old f;

comment update display;
lexlvl =current lexical level;
display[lexlvl] :=next mscwi=upper mscw;
lexlvl:=lexlvl-1;
for next mscw:=get field (stack[next mscw |, previous mscw)
while display[lexIvl] $ next mscw do
begin
display[lexIvl J:=next mscw; lexlivl:=lexlvl-1
end while

end procedure enter;

Figure 3. 2-5a

Enter Block/Procedure Action.

47.

procedure exit;
begin
top of stacki=upper mscw-2;

comment unpackreturn control word;

unpack 3(stack[upper mscw-1], cpra, cplam, cplad);
comment where cpra Is locationcounter inside codepage, and
cplam and cplad are address of a mscw and displacement such
that cplam+cplad is address (relative to bottom of stack) of

a pointerchain to code reference word;

comment follow pointers to code reference word and unpack;
address:=bottom of stack+cplam+cplad;
follow pointers (address, recent mscw);

comment unpack codedescriptor pointed at;

address:=get field (stack[address |, relative cdsc address)+bottom
of stack;

unpack 2 (stack[address |, pageplace, pagelength);

comment update upper mscw and display;
upper mscw:=get field (stack[upper mscw |, previous mscw);

lexivl:=old lexical level:=current lexical level;
current lexical level:=get field (stack|upper mscw], lexical level);

display [lexlvl]:=ne><t mscw:i:=upper mscw;

lexivi:=lexlvi-1;

for next mscw:=get field (stack[next mscw], previous mscw)
while lexivl) old lexical level V display[lexlvl] + next mscw do
begin

display [lexlvl]J:=next mscw; lexIvi:=lexlvI~1
end while
end procedure exit;

Figure 3. 2-5b
Exit Block/Procedure Action.

Explanation to preceding algoltext:

unpack <i>(parameter 0, parameter 1,..... , parameter <i>);
unpacks parameter 0 into the following parameters.
Note that the tagfield of parameter 0 defines the packing.

get field (p1, p2);
A field described by the mask p2 is extracted from p1 and
rightshifted.

follow pointers (address, recent mscw);
Selfdescribibg. On call address is the address of a pointer—
chain. On return address is the address of the last object
in the chain, and recent mscw is the address of the last mscw
encountered before the end of the chain.

48.

fects of NTRB. Rather than explore the gory details of block entry

and exit here, the reader is refereed to [S1, O1 1.

3.3 Memory Structure.

The discussion in Chapter 2 relative to binding time states that the hard-
ware must be able to distinguish among different data types, addresses,
and code. The mechanism which the PC uses to accomplish this is called
tag bits! [HZ]: several bits appended to each word of memory which de-
note or tag the contents of the word. The hardware on which the PC is
implemented has 18-bit wide memory, which given the word size for the

PC as 32 bits, leaves 4 bits for use as tags.

Four tag bits per 36-bit word means 11% of memory is devoted to tag
storage, which might seem somewhat excessive. Two rationalizations
are given:
(1) Since a 32-bit word size was chosen rather than violate the
US de facto standard, and because 8-bit characters are
also a forward looking stand, the extra four bits are either
wasted, or must be gathered together eight at a time to form
extra words of memory at a ridiculous processing cost.
(2) The original PC design postulated only two tag bits, which
actually were quite sufficient, but allowed no room for ex-
pansion, hence the decision to go to four, especially since

four were. available.

A much more global rationalization for the apparent luxury of tag bits
is represented by the arguments of the first two chapters. Besides al-
lowing deferral of binding time, tags can tell the hardware that what

it's been asked to do is definitely illegal. Further support is given by

[F1].

The tag bit designations for the PC are shown in Figure 3. 3-1.

3. 4 Descriptors, Pointers, and Indexing.

Tag type two (TT2) entities are those which (with the exception of

49,

tags data/code/etc.

—lymm SRS 7, T —

(a) a word of the PC memory

Tag Value Hardware Interpretation

0 data: word, byte, bit
data: nonstandard e. g. multiprecision
non data: descriptors, pointers

3 memory links, hardware created entities,
object code

4 continuation i. e. this word is a continuation
of another

5 . semaphore—either ptr, code descriptior, or
buffer descriptor

6 emulator storage descriptor

7-15 unallocated

Figure 3.3-1

Tag Bits in the Programmable Computer.

50.

code descriptors) contain information about data, but which them-

selves are not. TT2 words fall into two catedories: descriptors, and

relocatible addresses.

3. 4.1 Descriptors.
A descriptor is another name for 'hardware supported dope vector!,
and describes an area memory outside the stack. This description in-

cludes the absolute address of the area, and the type and number of

data items in the area. Aside from the PC!s registers { B-registers
etc.), descriptors are the only PC constructs which contain absolute
addresses. The type field denotes the type of data io be bit, byte,
halfword, or word data. The number of items is held in the length field
which is checked by the hardware to assure that the bounds are not vi-

olated by indexing.

One other field of the descriptor is important: the socalled !'presence
bit!. This bit in the descriptor tells the hardware whether or not the
data area associated with the descriptor is present in main memory; if
not, an interrupt is generated so that the System can bring the area

(i.e. page) into memory from auxiliary store.

3.4.2 Relocatible Addresses.

In keeping with the overall philosophy that the occurence of absolute
addresses should be minimized, and yet that the use of addresses in
programs is well established, wecompromise on two constructs: point-
ers and logical addresses. Although both have the same form, pointers
are interpreted to mean Tautomatic indirect! whereas logical addresses
say !this is the last indirect!. Essentially logical addresses are the
means by which pointers can be 'gotien hold of! since they (ptrs } are

otherwise automatically passed through.

One at first might think that an address couple constitutes a perfect form
for a relocatible address, but this is not the case. Figure 3.4-1 illu-
strates this by pointing out that procedure calls cause the block struc-
ture to become folded upon itself, thus in a sense destroying the defini-
tion of block structure which states that one cannot 'be! in two blocks

at the same leve! at the same time. Procedure parameters { which the

51.

“ LOS
3 .
2 105 I Gl O S
104 104 Z
0 100 103 P
102 A
B 1\01 J
100]
BOS
Stack

(a) SIMPLE's display while in the block labeled L.1. Address of (L.1's)
zis[b,d]=1][1,0]

LOS

109 X
108 l

107 v
106 104
B 105
104
103
102
101
100 l

106
0 100

——

> TN

<—-BOS

(b) SIMPLE!s display after calling P from within block L.1. Note that
now [1, 0] is no longer the address of Z; in fact, Z cannot be ad-
dressed using the display (use of B[O] to address Z totally vio-

lates the sense of [b, d] addressing).
Figure 3. 4-1

Two Snapshots of SIMPLE lllustrating the Inadequacy of [b,d]!'s as

General Purpose Pointers.

52.

figure illustrates) are the evidence of this violation, since they allow
one block to reference variables (in a disjoint block) which ordinarily
(by the scope rules of block structure) would be unknown to it. Since
the scope rules are violated, and these scope rules are the basis of
[b, d] addressing, it is therefore not surprising that address couples

are unsuited to such addressing 'outside! of block structure.

The solution to this addressing problem is to consider a new form of
address which is relative to the base of the stack. Given which stack
and the relative displacement within that stack, the hardware can find
any particular stack location; this [stack, displacement] form of ad-
dress (denoted [s,d]) is the form used for pointers and logical ad-
dresses, as well as for relocating B registers which must be pushed

into the stack. Figure 3. 4-2 shows the format of TT2 words.

3. 4.3 Indexing and Contiguous Descriptors.
Most structured data e. g. arrays and strings, utilize this type of de-
scriptor (reference Figure 3. 4-2), which informs the hardware that
the data region described is L. elements in length, beginning at (PC)
absolute address A. When any data descriptor (or structured poir\ter‘/
logical address) is encountered, the value at MEM [TOS | is assumed
to be the required index (i.e. TTO0) and first checked against L., then
added (with appropriate adjustments for data type in the case of

byte, or bit) to A. If the index is not in [0:L] then an index
out of bounds interrupt is generated. If the TOS element is not TTO,
an invalid index interrupt is generated. Note that since L. is a 10 bit
field, the maximum size of any one dimension of a structure is 1024 e~
lements, be they words, halfwords, bytes, or bits. Multidimensioned
structures are accomodated by using one descriptor for the entire
structure which points to a vector of descriptors describing the next
layer of the structure etc. Multiple indexing from the stack as required

for such structures is supported. See Figure 3. 4-3.

The lappropriate adjustments! referred to in the above description of
indexing proceeds as follows (assuming no bounds or index type vio-

lations) :

53.

M1S idsid 71 ipesmp Ll A Lit PJOAA
10U
20UBUBOJ BP0
8 5 7 Z € 1 39 9POO
dSId iMIsS XaaNl Ll d OotLl SSaJpPpY
d
B
6 g 0l I & 1 1e21607
dSIdiMls i XaAdNE 1L L Jd 101 Jolulod Bie(
d
6 g8 ol I € i
MI1S dsid 417 L L d 001 Jd91ulod 8poD
d
8 6 ol l ¢ L
HAvsav N3 1T Lid LLO Joidldoasag
IR POMUl
) ol z t© | 12a poUlT
Havsgav N= T IiL:id ol0 Joidjdosag
e1R (] shonbljuo
o1 ol z ¢ | ed 11400
Javsav N=ZT 1jLid 100 Joldidosa
opon pPa|geu
o1 ol z £ 1 PoD paIqEU
ol ol Z € 1 spoD pa|gesiq
1 VYWHO S 00 =adA L NOlLdIH0s3d

Figure 3. 4-2
Format of Tag Type Two (TT2) Words.

54,

91ND9X3a |{BYS *o0dJdd 8yl YdIUM 1B |9ASd| |BDIXS| 9yl
pJdom j9bde]l 01 MOSIN PUnoy wWod} jusweoe |dsip
Joididosap >orls o] Xdpul 01 pasn

JO109A MOB]IS WR1SAS 8yl Xapul o] pash

J01diJoS$9p punoj syl Xepuj ol pasn

Joaljulod (l=) 9dniondis Jo (0=) o|dwis

BaJR BIRP 9yl JO SSOJpPpE 9402 d1Nnjosge

BadJe ei1ep a8yl jo (Xdl) 9dA1 weli AQ Yibus|

elep 9yl uo Buixapul 119 ‘91Aq ‘pdom ‘suou
UwIN[od 3 |ppiW 8yl Ul UMOYS SBe

niudsedd,; 1ou S| BaJe udUl ‘O=4l

jONS| |BDIXD|
jusweor|ds|p |BDO|
lusweor|dsip soris
Joquinu 3oeils
Xapul |Bd0|

adAl Jalujod
sSseJuppe ainjosge
Uibua|

2dAl wcmxm_uc_

S11q 9pod odAl

11q @ouasaud

ml
ds1an
ds1a
MLS
XZANI
ld
davsav
N3
Xai ‘1
1

d

Figure 3. 4-2 (cont.)

l.egend of Abbreviations.

55.

(a) declare A(10) i.e. [0:9]

10 e
lements

Descriptor of A

\

\

\

data is
Stack here
}‘T_. 1 X ohsolute
-’iois 00 L=9 :.a&:;ess of
PC Memory
data for one
row here
v
20
elements
10 ele- -
(b) declare A(10, 20) ments l

Descriptor of A 77 ¢

20
e‘emew{-s
B bsolute,
A I: = :&&nss o
ioio 00 L=13 page PC Mem ry

data for one row is here

Figure 3. 4-3.

Implementation of Homogeneous Arrays on the PC.

56.

(1) If the indexing type of the descriptor is 'word!, then the
element on TOS is added to the absolute (page) address
and that location i. e. MEM [A+MEM [TOS]] fetched and the
stack popped. If the location thereby referenced is TTO,
it is copied and pushed onto the stack. If the location is
not TTO, but rather TT2 e. g. another descriptor or a
pointer, the fetch operation continues analogously, con-
suming indicies from the stack as required.

(2) If the indexing type of the descriptor is not 'word!, but
rather halfword, byte, or bit, the index from TOS is shift-
ed right the appropriate number of bits (2 or 5 respec-
tively) and the result added to A. If the word found thereby
i.e. at MEM [A+shr (MEM[TOS]) |, is not TTO, this is
an error since only TTO words can be bytes etc. From ‘
the found word is now extracted the subfield indicated by
the low order (1, 2, or 5) bits previously ignored; the
extracted subfield is right adjusted and pushed onto the

stack, the index having previously been popped.

Figure 3. 4-4 illustrates, although insufficient information about the

PC!s instruction set at this point makes the example somewhat obscure.

3. 4.4 Pointers and Logical Addresses._

Referring back to Figure 3. 4-2, we see that a pointer has three numer-—
ic fields - an index, a stack number, and a (stack) displacement. The
latter two define the location in memory of some item, while the index
field supplied an index (possibly in addition to TOS) to the item if it
_is a descriptor.if several pointers are passed through before encoun-
tering a descriptor or datum, the respective index fields are simply
accumulated by the hardware in a working register known as 'cumula-

tive index!.

There are two types of data pointer: simple and structured, which are
destinguished by the pointer type bit. The only place where the two
types are distinguished is when the object pointed at is a data descrip-

tor; for all other objects the actions are as outlined below:

57.

declarations: declare A(5, 5) fixed;

declare S(10) character;

exampl e: A(5, 1) = S(3);
1. LITC 5 ; push a 5 onto the stack
2. LITC 1 ; bush a 1 onto the stack
3. LITC 3 ; bush a 3 onto the stack
4, VALC S ; 'value call! on S(3)
5. STC A ; 'store and clear! into A(5, 1)

siack after 1Stinstr‘uction:

G LOS
5 Cm TOS
X
d ¢ BOS
stack after 3r‘ instruction:
3
1
E . TOS
X

th. .
stack after 4 instruction:

S(3) & TOS ;the 3 on TOS was

1 consumed by S's de-
5 scriptor. The value
% of S(3) is automati-

cally placed on TOS.

stack after Sthinstr‘uction:

; the STC instruction
hits S's descriptor
X | €&—TOS which consumes the
1; then the next(col-
umn) descriptor con-
sumes the S; the Im-
plied location is TTO,
so S(3) is stored
there and the stack
cleared.

Figure 3. 4-4

Example of Indexing Using Descriptors.

[Note: cum index is initially zero |. =

item encountered by pointer

pointer (either type)

TTO word

code descriptor

data descriptor

58.

actions

cum index:= cum index
+index field; continue.
cum index is ignored; this
is the desired object.

use cum index as a byte
address into the page.

see below.

In the case of a data descriptor, the type of access is checked, and

the actions taken are:
path to descriptor

direct { no pointers)

via simple ptr

via structured pointer

actions

descrip index: MEM[TOS |;
TOS:=TOS-1.

descrip index:=cum index.
descrip index:i=cum index+

MEM[TOS |; TOS=TOS-1.

'Descrip index! is then applied to the descriptor (biased appropriately

by the type bits) and the implied item fetched. Actions are now as de-

scribed in the preceding paragraph on descriptors.

The motivation for having two types of pointer is that it allows the PC

to reference either a particular data element in the first level of a

structure, or the entire structure, through pointers; a single pointer

type would lead to ambiguity as to which form of reference is desired.

Example:

Assume that the following extended XPL. declarations are in effect:

declare X fixed initial (5);

declare A(5) fixed initial (1,2, 3, 4, 0);

declare P1 simple ptr initial (X);
declare P2 simple ptr initial (A(5));

declare P3 structure ptr initial (A);

declare P4 structure ptr initial (A(4));

59.

Then all of the following have the effect of assigning the value 5 to
A(5) :

1. P2 = 5;

2. P2 = P1;

3. P3(5) = 5;

4, P3(X) = P1;

5. P3(P1) = P1;

6. P4(1) = 5.
The fifth assignment above shows a simple pointer being used to index
an array pointed at by a structured pointer. Example 6 coupled with
the declaration for P4 shows how a structured pointer can also define

an initial offset to indexing to the first level of its associated data struc-

fure.

A logical address is identical in form and interpretation to a pointer
except that the indirect reference must be terminated at the next word,
even if that word is a pointer. Another exception to the similarity to
pointers is if the logical address is 'simple!, then the index field is ig-
nored when a descriptor is encountered (i.e. the descriptor is not in-
dexed), and the descriptor itself is returned. In contrast, if a struc~
tured logical address encounters a descriptor, an element of the de-

scribed page, not the descriptor, is retrieved.

o ot S S st e P St e Gt St o Bt St P Pt B (e (e i e et i i S e S e e S e (. B e o St e (e U St WA A S Qi et S s

Descriptors provide a means for uniform treatment of different types of
data, automatic bounds checking, and virtual memory (via the presence
bit). Pointers allow the source language to treat address variables
without affecting the System!s ability to relocate pages; structured point-
ers permit the creation of pseudonyms both for the entire structure and

(front end offset) substructures. Logical addresses are the means by

which pointers and descriptors themselves can be manipulated.

3. 5 Opcode Structure and Code Stream Maintenance.

The two types of instructions in the PC are single address and zero ad-
dress, the former being 16 bits in length and the latter 7 bits. They are

known as long and short operators respectively.

60.

3.5.1 Short Operators.

These operators consist of the common arithmetic and less common

and more specialized operations. See Figure 3. 5-1. In general, these
operators finds their arguments on the stack, consume them, and place

their result (if any) on the stack.

The short operators are packed two per 16-bit halfword, and such a

halfword is identified by having the leftmost two bits 111,

2 7 7

11 op1 op2

Seven bits are used because of the following reasoning: six bits are prob-
ably enough (the current PC uses about 35 short ops) but seven bits
(=128 opcodes) are certainly sufficient; furthermore, the seventh bit

is !stolen! from the long operators leaving a maximum of twelve of these,

which appears to be sufficient.

3.5.2 Long Operations

These operators are generally the most commonly used, and which also
require a single argument. A given long operator could just as well be
coded as a short operator, but then it would always require the execution
of a prior (long) operation to place its argument on the stack. Clearly

in commonly used operations this is inefficient.
The long operators fall into three categories:

L.iteral Call Places its immediate field on the stack.
iL_ocal Branches Uses its immediate field to update the
code stream registers.

B-reg References Immediate field is a [b, d].

61.

Mnemonic Opcode(dec) Description

ADD 0 add two elements of stack

SUB 1 subtract top two elements of stack

LT 2 test top two elements for LTW

GE 3 n " " n Ge | boo-
lean

EQ 4 nmooonounon EQ| re-

NE 5 n] 1" " NE %sult
re—

GT [1" it 1l 3] GT tur‘ned

LE 7 " n 1] 1" LE__J 'CSC;aCk

DUP 8 duplicate TOS element

REV 9 reverse top two elements

POP 10 pop one item off stack

MKS K 11 mark the stack

NTRP 12 enter block/procedure

XITP 13 exit block/procedure

XITPV 14 exit block/procedure with value

BTOS 15 branch top-of-stack

HALT 16 halt

NOP 17 Nno operation

1GEN 18 initiate generation

GENS 19 geherate single

GEND 20 generate double

STASK 21 swap task

PRAJ 22 prepare return address and jump

STOS 23 store TOS via TOS-1

LTOS 24 load TOS via TOS-1

MUL 25 multiply top two stack elements

Dlv 25 divide top two stack elements

MOD 27 find modulus of top two stack elements

SHCL 28 shift circular left

AND 25 logical and

OR 30 fogical or

EOR 31 logical exclusive or

DINT 32 disable interrupts

EINT 33 enable interrupts

DOIO 34 initiate 1/0

Figure 3. 5-1
Short Operators.

Their format is:

62.

Literal
Cali 12~bit signed constant
L.ocal new word location ;hew

. byte
Branches .

. addr
B-reg B-reg displacement
References number on the B-reg

P — S — L —— >

Figure 3. 5-2 lists the twelve long operators, but their explanations

are deferred to later.

3. 5.3 Summary of Opcode Structure.

s e s (s e ot o S s e T e S B . . S i Y S e P P S S $om S S

Figures 3. 5-1 and 3. 5~2 imply the following complete opcode structure:

-12-

1 Txx

D y €mm O

B-register
References

LLITC and local
branches

short
operators

It should be noted that 16 B-regiaters and 256 displacements are pro-

vided by this design, in agreement with the comments in [3.2].

Mnemonie
VALC
NAMC
LITC
STC
STP
BU
BGE
BF/BZ
BT/BNZz
BLT
BUN
PRDC

Opcode (dec)

0

1
2
3
4
5
6
7
8
9
0

1
11

Figure 3. 5-2

lL.ong Operators

63.

Description

value call

name call

literal call

store and clear TOS

store and preserve TOS
branch uncond. {same page)
branch TOS GE 0 "
tmoonnononon EQ O 1"
nmononouon NE O (tpue)n

[S S R I) LT O 1]
branch uncond. to new page
predecessor call (1 level

dereference)

64.

3. 5. 4 Code Siream Maintenance Registers

The following registers are used to control the execution of the code

stream :
CPBASE absolute address of current code page base,
WDCTR absolute address of current instruction word,
SYLCTR location of current operator within the instruction
word (range = 0,1,2,3),
CPMAX absolute address of the end of current page,
CPLA [s, d] address of the current code page (for con-

struction of relocatible return addresses).

3.5.5 Local Branches,

The local branch operators (BU, BGE, BF/BZ, BT/BNZz, BLT) place
the low order two bits of their immediate field into SYLCTR, and add
the top ten bits to CPBASE to yvield a new WDCTR. Before commencing
execution, the new WDCTR is checked against CPMAX and an interrupt

is forced if the bound is exceeded.

3.5.6 Non-local Branches.
Branch Unconditional New Page (BUN) interprets its immediate field to
be a [b,d] and branches to the implied location, including following

pointers eic.

3.6 Procedures and Parameters.

Close support by the PC of the procedure mechanism is demanded by the
requirements previously established:recursion, call by name (ON-con-
ditions), call by value. This support will be reflected by a detailed dis=
cussion of the PC operators which support procedure entry, parameter

passing, parameter accessing, and exit.

3.5.1 Disabled and Enabled Code.

It is anticipated that most object code in the PC system will be disabled
i.e. it is not tenabied! to allow entry thereto except by direct invocation
e. g. branches to or !'called by! an explicit procedure call. In contrast,

enabled code can only be invoked indirectly i.e. on a load or store. The

65.

enabled code construct was originally invented to help out the compiler
when compiling 'name! parameters - it automates the 'thunk! mechanism
of [13] and works as follows: when a load or store operation encounters
a code descriptor (through whatever devious path of pointers etc.), it
ascertains whether ornot the code descriptor is enabled or disabled; if
disabled an error interrupt is forced. If enabled, a procedure entry is
automatically forced to the code page under the assumption that it is a

procedure.

Whenever the hardware forces a procedure entry (including interrupt),
it passes a count of the number of parameters being passed. Thus if en-
abled code is encountered by a load operation, a count of 1 (the count
itself is a parameter) is passed; if encountered by a store operation, the
item to be stored, which is known to be on TOS, is passed as well, causing
the count to be 2. The count is Included as a debugging aid and to allow
the enabled code body to determine if it is to load or store. The presump-
tion made by the compiler is that the enabled code procedure will return
a value (to TOS) if called by a load operation, and store the value away
if called by a store operation; thus enabled code is assumed to be the
ttail! of the invoking instruction and the instruction counter is advanced
as usual, and the return address constructed by the hardware points to

the next instruction.

Enabled code has greater uses than call by name, however. It can be used
to implement data structures not directly supported by the hardware e. g.
gueues. In this application, an enabled code procedure could be used to
place values into an array and another to retrieve them, using queue dis-
ciplines; maintenance of the queue parameters and error checking are

part of the code body.

Enabled code can also be used to effect a dynamic branch i.e. direct the
path of subsequent program execution under program control. This is ac~-
complished by performing a branch within the code body to whatever other
point in the program is desired. Indeed, since a (block structured)entry
is made to the enabled procedure, the procedure may do anything it

pleases, even recurse the entire program or itself.

66.

The discerning reader will realize that enabled code is a means by

which binding time is deferred to the ultimate limit: execution time. Use
of enabled code to build complex data structures and effect dynamic
branching allow the compiler to avoid the decisions involved at compile
time. The possible uses for enabled code are limited only by the imagina-

tion e. g. array elements which are expressions, variable tracing.

3.6, 2 Preparing to Enter a Procedure.

Whether enabled or disabled procedures are involved, the following se-

quence of actions is required to enter a procedure:

(1) specifying the destination address and other set-up,

(2) supplying the parameters,

(3) preparing a return address,

(4) branching to the procedure code page,

(5) entering the procedure (in the block structured sense).

This paragraph discusses the first of these - the preparatory actions.

The first instruction which is executed is a hame call (NAMC), which is
a single address instruction having a [b,d] as its immediate field. The
[b,d] is converted to an [s,d] (actually, a code pointer) and pushed
onto the stack.The pointer is assumed to point to a path to a code refe-
rence word, which points to a code descriptor. At thispoint the stack looks
like:

TOS ———memmmm + proc address
XXXHAIXXKXXNXK

The next action is to 'mark the stack! (MKSK). This operation pushes
the current contents of the mark stack register { MKST) onto the stack

(in pointer form). The purpose of the MKSK operation is to reserve a
slot in the stack in which will later be placed the pushed down B-register
(418 NTRB). The true reason for the need for the MKSK operation was
discussed earlier: the fact that procedures allow variables that are other-
wise invisible (because of scope rules) to be referenced within a proce-

dure. While parameters are actually being passed, the B-register envi-

67.

ronment must allow them to be referenced as usual, yet they must be
placed on the stack in such a way as to be 'in! the procedure!s block
when it starts executing. By reserving a slot on the stack underneath
the parameters, we remain in the current environment, yet allow a B-

register to be pointed io the beginning of the block.

The MKSK operation must push (i. e. save) the current value of MKST
because at the current time, we may be half finished entering another
procedure e.g. CALL P(Q(R)). At the conclusion of the mark stack op-

eration, the stack looks like:

TOS, MKST —mm—m e + old MKST value

code ptr to code ref word

HAHEHKAHKAKKKEKXAKHKAKKXXKXKAKXXX

3:%.3 Supplying the Parameters.

This phase of procedure entry must consider whether the parameters

are to be passed by value or name (reference being an easy case of name).
The compiler is responsible for generating the appropriate code i. e. code
which will place either values or pointers on the stack. The former case
is no different from normal expression evaluation, but the latter requires

special consideration.

At first glance one might think that a simple NAMC on the variable would
be sufficient to build a pointer to that variable. However there is the
consideration that if the variable is itself a parameter, then a NAMC

will create two levels of indirectness (pointers) between the called pro-
cedure and the actual variable. In fact, every successive time a variable
is passed as a parameter, another level of indirectness is interposed. Ex~
ecution time could become intolerable. Clearly, changing NAMC to mini-
mize the length of pointer chains nullifies its original purpose -~ the build-
ing of pointer chains. The resolution of the dilemma is to coin a new (sin-

gle address) operator !predecessor call! (PRDC).

PRDC converts its [b,d] to a pointer ([s,d]) and examines that location.

68.

If the location is also a pointer, it pushes a copy of it, otherwise it

pushes the original pointer, onto the stack.

Thus PRDC looks only at the immediate predecessor in most cases, and
the way it works is such that no matter how deepiy a simple variable is
passed as a parameter, the number of indirects is exactly one. In the
case of a procedure passed by name, the reader should convince himself
that the enter/exit mechanisms described below have the desired effect
of saving/r‘estoring the appropriate environment. Another way of de-

scribing PRDC is that it performs a single level de-referencing [L1 :|

At the end of the parameter passing phase, the stack looks like:

TOS ————- 2 value param if call-by-value

pointer param if call-by-name (built by PRDC)
MKST ————m 3 old MKST

code ptr

XXXXXXX

3:6. 4 Entering the Procedure.

Once the stack has been marked and parameters stacked, the last step is
to perform the transfer and adjust the B-registers to reflect the entry
into the block which is the procedure. Since the hardware cannot know
which one of these is to be modified, a parameter is necessary. Thus the
evell field of the code pointer supplies the necessary information. One
other job of NTR is {o restore the value into MKST which was saved in
the slot that now holds the old value (in pointer form) of the designated
B-register. NTR also packs the current value of CLVL into the index

field of the slot and replaces it with the level found in the code pointer.

At the end of NTR, the stack now looks |ike (see also Figure 3. 2-5a):

69,

TOS ~~—mem -+ value
pointer
old B-reg. value

return address {code ptr)
XXX KHKKRXKX

3.6.5 Exiting a Procedure,

Once the procedure has finished its job, control must be returned to

the point of call with appropriate readjustment of the environment (B-
regs). Two short operators, XIT and XITV, accomplish this change ,
which is considerably simpler than the entry process; the two operators
differ only in that XITV moves whatever is at TOS to the new TOS after
all the procedure entry related items have been cleared off. Figure 3. 2~

5b gives an algorithm for XIT.

3:0.6 Summary of Procedures and Parameters.

Figure 3. 6~1 shows an example of the code generated by the (extended)
XPL compiler for the PC for procedures. It should be noticed that no
matter how subtle the semantics involved, the code generated by the com-

piler for both the caller and the callee is very straightforward.

3.7 Overall Structure of the Programmable Computer,

Sufificient information has now been given to present Figure 3.7-1, which
shows how all the pieces previously mentioned fit together. A number of

loose ends can now be tied together.

3.7.1_Tasks and Blocks,

The figure shows the stack of the operating system and the stack of a

task (job). We have heretofore talked about the relationship between blocks
and tasks, but the figure clearly shows the B-registers pointing into two
different stacks - the same B-registers which we have discussed only in
the context of blocks, The fact that the interpretation of the B!s does not
differ whether or not they are used to point to blocks or tasks solidifies

the previously theoretic relationship.

The function of the Stack Number Registers alluded to earlier now is re-

begin integer N;

procedure P(X, C); value C;

procedure X; integer C; begin

begin
procedure R
begin
N:=N+C;
X
end;

if C 7 N then X else P(R, C+1);
end;
end;
procedure @ ;
N:=N-+1

end

(a) This program is program SAM from[J1], slightly
modified. The resuit is N=5, is explained in detail
in [M2].

Figure 3. 6-1
Sample Procedure and Object Code.

70.

LITC 0 ; declare N code page main
NAMC 0,2 ; declare P

NAMC 0,3 ; declare @

LITC 2 ; assign 2

STC 1,1 ; toN

NAMC 1,2 ; bointer to P

MKSK ; ready to enter P

PRDC 1,3 ; first param

LITC 2 ; second param

NTR 2 ; enter P

HALT ; end program

END ; end main
NAMC 0,4 ; declare inner block(l.B.) code page P
NAMC 2,3 ; pointer to [.B.

MK SK ; ready to enter I.B.

NTR ; enter inner block

XIT ; finish P

END ; end P
VVAL.C 151 ; fetch N code page Q
LITC ; fetch 1

ADD ; add 1 to N

sSTC 1,1 ; and assign to N

XIT ; finish @

END ; end Q

NAMC 0,5 ; declare R code page inner block
VAL.C 2,2 ; fetch C

VAL C 1,1 ; fetch N

GCT ; compare C and N

BF 16 ; if not (C)N) then goto 16
NAMC 2,1 ; pointer to X

MKSK ; ready to enter X

NTR ; enter X

XIT ; finish 1. B.

NAMC 1,2 ; pointer to P

MKSK ; ready to enter P

PRDC 3,1 ; first param

VALC 2,2 ; fetch C

LITC 1 ; add one to get

ADD ; second param

NTR ; enter P

XIT ; finish 1.B.

END 4 end inner block
VAL.C 1,1 ; fetch N code page R
VALC 2,2 ; fetch C

ADD ; add N and C

STC 1,1 ; and assign to N

NAMC 2,1 ; pointer to X

MKSK ; ready to enter X

NTR ; enter X

XIiT ; finish R

END ; end R

FIN ; end program

Figure 3.6-1 (cont).
Object Code for the Program.

PO QP s ooe e o

QO =

72.

CPBASE
CPMAX
WDCTR
SYLCTR

CPL.A | code pir \
user stack
user
LOS |~ data
Tos > page 1
BOS
data desc.
: code desc.
‘*\3 T user code
: : page(active)
0. s. stack stack
: ldescriptors
. interrupt
14| data desc. procedure
: code
_/J 1{data desc. page
0| data desc.
14 data desc. ="
4] R stack vector
code desc. >
Stack Display
regi- registers ‘ s
sters TT— —

MAIN STORE

Figure 3.7-1

Overall Picture of the PC Architecture.

73.

vealed: since a given B-register can point into an arbitrary stack,

the ability to form a (reloctible) [s, d] out of the absolute address in

the B hinges on knowing the absolute address of the base of that stack.
[Recall that the !'d! in [s,d] stands for displacement, the distance be-
tween the location itself and the base of the stack in which it resides .
Given the stack number, the hardware need only consult the stack vec-
tor (see below) to find the necessary information. It can also be observed
that pointers with their [s, d]'s can as easily point to data in parallel

tasks as its own or its parent.

3.7:2 The Stack Vector.

The stack vector is a one~-dimensional array of ordinary contiguous data
descriptors which describe all the stacks in the system, the reader
noting that a stack and a task are now synonymous. The stack vector jt—
self has a descriptor which resides in [b,d] = [0,2], which fact is
known to the hardware. Since the elements of the stack vector are them-
selves descriptors, they have a presence bit which can be turned off,
which allows the System to easily page out jobs, even the parent of sub-
tasks, without great trouble or side effects; any reference to data or

code in the missing stack will be signalled by a presence bit interrupt.

The stack vector has another salutory effect on the System. Since the
stack vector descriptor and the elements of the stack vector are ordinary
data descriptors, a reference to Sv[i,j] constitutes a reference to the
jth location in the ith task. This fact can be used to advantage since the
System can store all task related data e. g. priority, queue list links,
etc. with the job itself, thereby minimizing the size of System tables

and freeing the System from any inherent limitation on the number of jobs

(aside from the fact that the descriptor length field forces a limit of 1024).

The interrupt procedure (code) descriptor is known to the hardware to
reside at location [b,d] =[0, 1], and interrupts (as mentioned before)
are treated as entries to this procedure and the interrupt type informa-

tion as parameters. This scheme has two interesting effects.

One: The System stack, after dead start, will probably never be used

74.

for actual execution since work will be done by the system subtasks
thus rendering the parent stack inactive. Therefore interrupts will
occur while some job is executing (i. e. its stack active) and the inter—
rupt procedure entry will be built on the user stack. The result is a
very well defined path from the user into the System. If the system rou-
tines encountered should decide to swap tasks, it makes no difference
to the interrupted user, who when reactivated will wend his way out of
the system without any special attention, using the normal procedure

return mechanism.

Contrast this scenario with the events which transpire in an ordinary
(register) machine. Upon occurrence of the interrupt, the state changes
from 'user mode! to 'supervisor mode!, which on many machines e. g.

360 implies saving all the registers. Next some number of system rou-
tines are entered and the return addresses carefully saved away in
temporary locations. If at this point a task switch is desired, it is very
messy to accomplish, and even if accomplished, to allow the user task 7
to once again find his way out of the system using those (saved elsewhere)
return addresses is more difficult yet. Worse, this machinery would

find most of its use in processing supervisor calls, the most common

type of interrupt.

Two: The reader may have noticed that there is no instruction to 'change
state! from user mode to supervisor mode. This is made possible for the
reasons stated in [2. 1. 3] and the closing paragraphs of [1.3.2]. The
effect of the state change (among other things) is to change the address
space for subsequent execution. The analogous event in the PC would be
to change stack vectors! Normally, the user communicates with the Sys~

tem by directly invoking the desired procedures, but if he had his own

stack vector, he would be totally insulated from everything else in the

system.

This speculation has two benefits:

(1) It sharply dilineates the difference between computers
which use global states to isolate jobs from the system.

The difference shows clearest when one considers the

75.

vastly different software implied such as discussed

in One.

(2) It intrigues the mind as to what use such a scheme might
have, since it represents an even higher and thicker wall
between users, and between users and the System. Such
walls are for isolation and protection, but what could re-

quire so much isolation? Perhaps a different system ?

3.8 Virtual Memory and Paging.

The availability of virtual memory is essentially a bonus dividend of de-
scriptors. The fact that even the system stack and the stack vector are
both themselves pages described by descriptors emphasizes the point
that everything in the PC!'s memory (except unused memory) is a page.
Thus theoretically the only parts of the System that need be present are
the interrupt handler and the paging module. The fact that virtually the
entire system can float leads to a more rational approach in that design-
ers of a system are not burdened with the requirement that a system to
do thus-and-such must not take more than N words of memory. This type
of constraint leads to monolithic code modules which sacrifice gener-
ality by their nature. Even with a non-virtual memory computer, the
operating system must allow for transient code e.g. 0OS/360!'s A and B

transients [I1].

However, even having a virtual memory does not spell the end of the de-
signer!s problems, but merely their movement to a different locale. In
the case of virtual memory, the problems arise in the paging module:
garbage collection, compaction, thrashing, etc. The logic applied in the
PC!s design was that a virtual memory facility (especially variable
length pages) without some hardware support for managing it would suc-
ceed only in accumulating mountainous overhead. But the issue of exactly

how to support it is not obvious.

Given the volumes of literature on paging strategies e.g. [D1], [B1],

76.

[K1], [K3], the decision was made to support the following:

(1) Hardware maintained list of availble space (LAVS),

singly finked in order of size.

(2) Hardware maintained list of pages in use, doubly
finked.
(3) Hardware compaction of memory.
(4) Hardware flagging of every page that is accessed during

program execution.

These features are realized through three short operators:

(1) GETPAGE - given the address of the potential page!s
descriptor, LAVS is search on a first-fit strategy. If a
page is found, the space is removed from LLAVS and the
page linked into the in—-use list. The in-use list also con-
tains a back pointer to the descriptor which describes it
(corollary: there is a one to one correspondence between
pages and descriptors). If no space is available, it re-
turns a failure flag.

(2) RETURN PAGE - given the address of a descriptor, the
page described is linked back into LLAVS in such a fash-
jion that LAVS will never contain entries for contiguous
blocks.

(3) COMPACT - given a base memory address, all in-use
pages above that address will be compressed, resulting
in all available space being colliected together in one

big LAVS cell at the top of memory.

To aid the System in deciding whether or not to compact, a time consuming
process, the LAVS head cell contains the total amount of available space,
however scattered. If compaction still will not gain the needed space, the
System must choose a page to write on disk, and to aid in the selection

of a page, the hardware turns on a bit in the second link word of every
page whose descriptor is accessed, whether by read, write, or branch.
Every time a page is thrown out, the System can clear the usage bits in

anticipation of the next choice point. The memory overhead for this mem-

77.

ory management system is one word per LAVS cell and two words per

in-use cell.

Clearly it would be superior to flag reads and branches versus writes
to save the system from writing out an unmodified page (assuming therel!s
already acopyondisk)li would also be helpful to have several in-use
lists of varying priority. Hardware |limitations and practical considera~
tions precluded a more elegant approach, some of which are discussed

in [L2], [L3].

3.9 Semaphores.

Three types of semaphore~like constructs are supported in the hope that
convenience will encourage use. All are double-word (64-bit) constructs
with the first word being identical (except for tags) to the non-semaphore
counterpart, and the second word containing ithe semaphore fields and

lcontinuation! tags. Figure 3.9-1 shows the format of these constructs.

3:9.1 Semaphore Code Descriptor.

This mechanism is restricted to procedure entries to code pages (as op-
posed to branches, to avoid the 'honor system! of using critical code,
which can result in someone forgetting to unlock and thus blocking the
system). The locking of the code page is done upon entry (NTR) and the
unlocking upon exit (XIT, XITV) and is not under programmer control
except insofar as he specifies the use of a code semaphore in the pro-

cedure declaration.

This construct is expected to be more convenient than the semaphore
pointer (below) since it is very automatic. Consider short sensitive
(since they may manipulate absolute addresses) routines

which are used frequently yet are of sufficiently minor
strategic importance not to warrant explicit queueingmechanisms in the
System. In fact, the automatic queueing of other tasks on the semaphorels
wait list can be easily pushed down into the hardware. However, whether
done by hardware or software, such wait-queues can use the ready-list
link found in the base of each task!s stack. See[O1] for a description

of this elegant structure.

t
Tags=5 |P ype 1%

length

abs addr.

Tags=4 current user

stack number of

stack no. of 1st
waiting task

(a) code semaphore

© gt
Tags=5 |P ype index

displacement

stack 3

Tags=4 |Jcurrent user

stack number of

stack no. of 1st
waiting task

(b) pointer semaphore

t
Y
P Pe I X

Tags=5

length

abs adr.

Tags=4 Istale! index

resh! index

not used

stack no. of 1st
waiting task

78.

word 1~same as normal
code descriptor

word 2

word 1-same as normal
pointer

word 2

word 1-same as normal
data descriptor

word 2

word 3

(c) data (producer/consumer or circular buffer) semaphore

Format of Semaphore Constructs.

Figure 3.9-1

79.

3:2:2 Semaphore Pointer.

The semaphore code descriptor provides a means of locking code, and
could therefore be used as a gatekeeper for data shared between tasks.
This carries with it however considerable overhead for such a simple
need. On the other hand, the semaphore pointer can lock out anything
to all tasks save the one that locked the semaphore. The beauty is that
once the semaphore has been locked, multiple accesses can be made to

the referenced object with only the price of an indirect.

This beauty has its beast however, in that if the semaphore pointer is
used to lock out code, the code is locked out to other tasks, but reentry
by the same task is not. This is the price paid for the efficiency of the
access and the fact that the locale of the access can be far removed (i. e.
not restricted to be in the procedure) from where the LOCK was made.
The semaphore pointer also has the disadvantage that the honor system

is used to ensure that what is LLOCKed is eventually UNL.OCKed. The
field in the semaphore which contains the stack (task) number can be used

by the system to remove a job which has violated its honor,

3.9.3 Semaphore Data Descriptor.

This semaphore construct'!s intent is to allow shared access to data in

an automatic fashion, while the intent of the previous two semaphores is
to restrict shared access. The principle usage of the semaphore data
descriptor is foreseen to be producer-consumer applications, and it
therefore is realized as an automater of circular buffering, with the pro-

ducer supplying fresh items and the consumer removing stale ones.

The price paid for the convenience is that neither producer nor consumer
have access to the fﬁesh and stale buffer pointers, and hence every ac-
cess to the circular array updates one index or the other. Every load
(VAL.C) from the buffer causes the stale pointer to be advanced and eve-
ry store (STC, STP) causes the fresh pointer to be advanced. Thus the
programmer, if he wishes to !'see! a buffer item for longer than the one
event in which it is moved to {(or from) TOS must save it away in some

other location.

80.

phore emphasizes the automatic sharing, but probably makes it more
difficult to undo a deadly embrace, since the embracees are not there-

in reflected.

3. 10 Generators.

As any former 1PL-5 [Nz] programmer will tell you, the generator con-
structs are. an extremely useful programming tool. With this in mind,
the PC supports its own version of generators which is adapted to the
linear (or other yet to be implemented) data structures of the PC instead
of only list structures. Figure 3. 10-1 shows the logic of the generator
mechanism, which has two variations implemented on the PC: generation
of elements off a single structure, and generation of pairs of elements

from corresponding structures.

Figure 3. 10-2 gives an illustrative example of the use of a double gene-
rator to compare two strings for equality (which could actually be done
more efficiently using a loop). A better example might be a generator
driving a lexical analyzer which drives a parser, but the principle point
is that, like semaphores, generators automate a common process in pro-
gramming and therefore encourage cleaner programs and improved over-

all logical structure.

3. 11 Support of Sub-emulators.

Section 1. discussed the necessity for microcode extensions to be sup-
ported as inner, rather than disjoint, blocks in a system; the reasoning
behind. this conclusion is to allow these microcode extensions to avail
themselves of existing global software structures such as the operating
and file systems. It is important, however, to merge this capability into
the PC architecture without destroying its inherent cleanliness and ge-—
nerality. The technique described below accomplishes this by defining

a new type of descriptor and structually consistent operators for entering

and exiting the microcode.

3.11. 1 Emulator Storage Descriptors.

The first aspect of the sub-emulator problem we will attack is that of

structure

processor names

caller

item(s)

-

generator

jé._,___

normal /abnormal

termination flag

Figure 3. 10-1

Overall Generator L.ogic.

processor

continue/stop

generation flag

82.

COMPARE: procedure(item 1, item 2) boolean;
‘ declare item 1, item 2 character;
if item 1=item 2 then
return true; /* stop generating®*/
end COMPARE;

declare string 1(100), string 2(100) character;
if generate (string 1, string 2, COMPARE) then

/* strings are identical*/ ———ee- ;

else /* strings were different */

Figure 3. 10-2

Use of Double Generator to Compare Two Strings.

83.

storage for it and the object code it is interpreting. One must describe
where the emulator itself is - in Main Store (MS) or Control Store (CS);
the code to be interpreted will be assumed to always reside in MS. The

resulting descriptor, is

_ El MS L.ength Absolute
tags= 6 =
1| CS (words) Address
where
P = presence bit

Il

E/I

MS/CS = the storage described is located in Main Store or

emulator code or interpretable code

Control Store.

An emulator is treated, formally, as a procedure requiring one parame-
ter: the location of the code it is to Interpret. Thus the sequence is ana-

logous to that of normal procedure entry,

3.11.2 Entering an Emulator.

Given that an emulator treated formally as a procedure, we can see
therefore that the entry sequence is

a. NAMC on the emulator storage descriptor which describes
the location of the emulator;

b. MKST;

C. construction of an emulator storage descriptor which de-
scribes the location of the code to be interpreted. In the
interests of efficiency, the storage for the descriptor
should be allocated and initialized before the next step;

d. NTR the emulator (which also builds a return address to
the PC code).

Step (d) above is the critical one in preserving the architecture. It is

B4.

crucial that the emulator be viewed as a block nested within the system,
and thus a block-structured entry (via NTR) must be made. 3. 11.3 onln-
'put/Outputgives a good illustration of why this is necessary., Another

dividend is that the emulator can use the stack for scratch storage, thus

paving the way for reentrant use of emulators.

3.11.3 Life within an Emulator.

Having entered the emulator, we next examine what goes on while the
emulator has control. Most likely, the first thing the emulator will do

is to transfer the absolute addresses locating its code to some Local
Store (LS) registers. It then proceeds to fetch and interpret instruc—
tions in the usual fashion. Two things can happen which disturb this
happy scene, however: (1) the necessity of perhaps accessing data items
non-local to it, e.g. in PC's semantic space; and (2) the necessity of

invoking non-local object code e. g. the operating system.

Both of these problems have in common the characteristic that reference
to code in the PC!'s emulator (or hardware) is implied. In the simpler
case of data accesses, the emulator must construct PC-type addresses
and feed them as parameters to the e.g. VALC instruction. The result
is the appearance on the top of the stack of some datum which must, in
the general case, be converted to a form compatible with the emulator!s
data types. Thus the emulator must contain routines which convert in

both directions between the two sets of data types.

The case where the emulator wishes to contact PC object code is a lit-
tle trickier, since a transfer of control impacting PC'!'s semantic space
is involved. However, the problem is considerably clarified when we
remember that the emulator is really an inner block, and we wish to call
an outer block. Thus what is necessary is for the emulator to build and
execute (perhaps using single invocations of PC instructions) a block
structured entry to the appropriate PC procedure. Exit from the PC
procedure, by implication, thus requires PC!s XIT operator to be cogni-
zant of the fact that it is exiting to an emulator instead of to PC code,

and transfer machine control appropriately.

85.

lnput/Output can be expected to pose problems, as usual, but these
are, in this context, manageable, It is first necessary to postulate
the existence of an 1/O nucleus which is in charge of doing physical
/O, whether to/from the PC machine or a subemulator. Given that
I/O is accomplished within the semantic confines of the particular e-
mulator, it is clear that the nucleus must already be made aware of (1)
which 1/O events are of interest to which emulator, and (2) MS acces-
sing routines for each emulator. These two items are !"givens! in a
multiemulator environment. The only mechanism which is missing is a
means for the 1/O nucleus to invoke the PC (i. e. the ruling machine)
for interrupts of interest to it, Thus it is additionally necessary for
the nucleus to be aware of the subemulator routine which accomplishes
entry to the PC machine. This mechanism fortunately already exists,

as described in the preceding paragraph.

3.11.4 Exiting an Emulator,

We have now discussed how one enters an emulator, and how one, from
that emulator, can enter and return from the PC machine. What remains
is to exit from the sub-emulator, but this can now be seen to be an ap-
plication of the same principles. What is necessary is to construct a
block-structured exit, at the same time returning control to the PC ma-
chine. But this is really the same mechanism as returning from the PC
to a sub—emulator. The unifying concept is to assume that the PC has
all the appearances of any other emulator - it is distinguished only by
the fact that it is the 'boss! machine i. e. the machine on which the bulk

of the system executes,

3.11.5 Some Final Observations on Emulators.

The foregoing discussion leads one inevitably to consider a multi—-emu-

lator system to be structured as shown in Figure 3.11-1,

The structure shown in Figure 3, 11-1 accommodates all the mechanisms
postulated in the preceding paragraphs. It also demonstrates a pleasing
symmetry wherein individual instructions are viewed merely as procedure
calls, Most important, by its very form one can see the (previously es-

tablished) necessity and utility of recognizing a subemulator as a block.

begin

end;

86.

array MEMORY [0:flex ;
procedure SWITCH EMULATORS; —-——-—-

procedure PC(location of code to be interpreted)

do case OPCODE-FIELD (MEMORY/(location counter));

end PC machine;
procedure SUB-EMULATOR 1(location of code to be interpreted);

do case OPCODE-FIELD (MEMORY(location counter));

end SUB~Emulator 1;

/O NUCLEUS

Figure 3. 11-1

The Structure of a Multi—-Emulator System.

87.

Only by accepting this recognition can one achieve the necessary
generality to accommodate multiple emulators. Furthermore, if one
cares to make a final 'leap of faith!, one can say that once more block
structure has demonstrated its stubborn consistency in reflecting the

structure of the things we want computers to do.

3. 12 Input/Output.

The design criteria established in [2.7] imply:

(1) Interrupts should not be time dependent;

(2) l/O channels should be cognizant of thememory structures
e. g. buffer limits;

(3) i/O should if possible make use of the Dijkstra coordi-

nation primitives.

The first of these is satisfied by (a) arranging l/O requests such that
only error and completion interrupts are allowed, both of which are
non-time-critical, and (b) stacking all interrupts, even multiple occur-
rences of the same interrupt type, up to some limit. The former requires
that channels be rather intelligent so they can be given the specifications
for the entire I/O operation and perform it without central processor
supervision. The latter requires that the hardware contain some amount
of local memory in which to accumulate interrupts until they are reena-
bled e.g. one !slot! for each device plus a number of slots based on the

expected number of active tasks.

The second and third design criteria, channel recognition of the PC's
memory structures and semaphores, is accomplished by postulating that
channels will use the non-TOS related portions of VALC and STC as
subroutines in connection with semaphore data descriptors. The use of
semaphore data descriptor buffers implies recognition of buffer limits,
automated maintenance of buffer pointers, semaphore-based coor*dination
of the 1/O process, and the ability of the 1/O-requesting task to achieve
a producer-consumer relationship (if needed) to optimize transfer rate.
The only exception to this scheme is the disk, whose transfer rate is

sufficiently high soasto cause the use of circular buffers, to be

88.

such that the Fresh and Stale pointers are updated at the end of

the transfer.

The only I/O instruction is DOIO, which expects the following informa-

tion on the stack:

Input or Output
Device number
Transfer count

Buffer (desc) address

As stated above, the buffer is a circular one, and the transfer count
can also achieve the value infinity for such devices as teletypes, which
can initiate input independently. The infinite count serves to keep an

open pipeline between the buffer and the device.
One other instruction, FIO (function 1/O) is a catch-all for testing de—
vice status, both logical and physical, although most of the traditional

'function! operations are automatically taken care of by the channel.

3. 13 Summary of the PC Design.

The preceding sections have described an architecture which attacks
the problem outlined earlier. The architecture rests on three major
concepts, and like a three~legged stool, it coliapses if any one of them

is missing. These concepts are:

(1) Self-identifying 'Datal i. e. tag bits, code and data de-

scriptors, pointers, semaphores.

(2) Hardware-known Scratch Storagei. e. the stack, which

allows expression evaluation, interrupts, and enabled
code.

(3) Block Structured Addressing, which confers memory

protection, easy translation, and close runtime support

of a source language.

The interdependencies can be summarized:

(3)

89.

There is a little need for hardware known scraich stor-
age without self—identifying'data;

Block structured addressing and dynamic storage alloca-
tion without a stack is nearly meaningless;

The generality of e. g. VALC with its address couple is
lost without self-identifying data; most generated code
consists of VALC, LITC, and STC.

The discussion which surrounds the introduction of each of the PC!s

constructs contains the rationale for it .and the manner in which it ap~

proaches the design objectives of [3. O:I. Rather than repeat the dis-~

cussion, we here reproduce those objectives and ask the reader to
judge if the PC will :

(1
(2)
(3)

(4)

Ease program creation via HL.L.!s;

Ease debugging;

Recognize the relationship between block structure
and multiprogramming;

Recognize the Dijkstra coordination primitives both
between co-tasks, and between the central processor

and the 1/O processes;

or as restated immediately thereafter

(1)

(3)

The PC!s instruction repertoire shouid be !close! to

the languages which execute thereon, thus allowing easy
compiler generation, efficient code, and execution time
diagnostics relatable to the source program;

The PC!s hardware should automatically oversee all pro-
gram execution (including the System), and trap all ques-
tionable semantics. This implies the existence of primitive
features which allow the hardware to distingguish among
different data types, code, and addresses;

Hardware support of the Dijkstra primitives implies an
explicit hardware recognition of task structures i. e.

block structure.

90.

4. 0 COMPARATIVE ANAL YSIS OF THE PC.

This section analyzes the architecture of the PC with respect to two
existing computers: the IBM 5/360 and the DEC PDP-10. The former

was chosen because of its wide distribution, and the latter because

it has a rich instruction set including simple stack manipulation ope-

rators.

4. 1 Rationale for the Comparison.

The general argument which has been made in the previous chapters

is qualitative and runs;

A.

Multiprogramming has been demonstrated to be an ef-
fective method of increasing the throughput of a com-
puter system.

Even in a batch system, the presence of l/O activities
represents a multi-process environment.
Multiprogramming and block structure give rise to iden—
tical data and control structures.

Therefore a machine architecture which directly sup~
ports these (block structure) data and control struc—

tures will yield superior performance (throughput).

This chapter will also yield the same conclusion, via the following syl-

logism:
A.

B.

C.

Certain primitive data fetch and transfer of control ope-
rations must be accomplished in any multiprogramming
(i. e. block structure) system.

The tcost! of these operations is generally lower for
the PC than for the S/360 or PDP-10.

Therefore the PC will yield superior performance.

In a sense, the !cards have been stacked! for the PC in this argument

because a number of the primitive operations measured (e. g. block entry)

have been the object of optimization in the PC architecture. The counter

argument to this objection is that:

91.

A. The PC performs equivalently to the standard archi-
tectures in the non-block structured areas.

B. The PC would perform very poorly in an environment
which was contrary to block structure. (It is the author!s
contention that such an environment is rare compared to
the complement.)

C. It is therefore fair to compare PC to other architectures
in those atiributes where they differ and which also see

wide multiprogramming application.

4.2 The Criteria and Data for the Comparison.

The first criterion for the comparison is that it be independent of the
ingenuity of the hardware engineers e. g. speed. Clearly such devices
as faster logic and memories are capable of making any comparisons

based thereon vacuous.

A second criterion is that the comparison be independent of the ingenuity
of the programmers and of the overall software environment in the com-
puter. This is much more difficult to accomplish than hardware independ-
ence, and some amount of personal judgement was involved in deriving

the data presented below.

On the basis of these criteria, it was decided to measure the amount and
number of cycles of main store required to accomplish various primitive

operations.

While the '"number of MS cycles!' measurement is reasonably intuitive,
the "amount of MS required! deserves further clarification. In essence,
it is the number of bits residing in MS which are required by the hard-
ware to accomplish the given operation; the measure thus encompasses
the bits in the instructions, tags, pointer words, etc. It does hot, how-
ever, include the bits in the manipulated data item(s) encountered by
the hardware, since these do not directly affect the semantics of the

hardware operation.

With respect to the data actually gathered, several of the data reference

92.

and transfer of control operations were drawn from constructs usually
associated with Algol i.e. block structure. The two bases for this de-
cision are (1) the PC by its nature has only block structure oriented
operations and therefore this representents the only common ground for
comparison with other architectures, and (2) given the underlying pre-
sumption of multiprogramming and the identity of the data/contr‘ol struc-
ture arising in Algol and multiprogrammed environments (as discussed
in chapter 2), measurement of operations within such a structure is

meaningful.

With these considerations in mind, the block structure related operations
in PC are associated with their counterparts in the Algol runtime pack-

ages of the $/360, PDP-10, and the measurements derived from examina-
tion of the assembly code. In order to make the comparisons valid, certain

conventions were established:

For "Amount of MS Required!!

1. All data items are normalized to 32 bits (e. g. pretend
that PDP-10 data is 32 bits, not 36).

2. All MS word addresses are normalized to 16 bits. (Thus
the S/360, with byte addressing, has an 18-bit address
field; the PDP-10 instructions are therefore 34 bits(not
36) since they have an 18-bit word address field).

3. Defaulted registers such as base registers used (always)
for relocation purposes are not included.

4, Only those bits directly needed for the operation are in-
cluded; fields, instructions, or registers used for error
checking or detection (e. g. the length field in a PC de~
scriptor), or formally unused (blank fields in a word) are

excluded.

For "Number of MS Cycles Required!.

1. . Any necessary set-up has been done e. d. registers al-
ready loaded or saved, indices stacked.

2. MS cycles for instructions are biased by the number which
can be packed into a word on the machine in question e. g.

on S/36O a BR instruction is 0.5 cycles. This bias is not

93.

applied to data packed into a word since unlike an in-

struction word, the remaining contents of the data word

will not be used.

3. Any object code not directly concerned with accomplish-

ing the function e. g. testing for error conditions or oth-

er cases, is not Included.

Example: Data Fetch via Simple Dijkstra Semaphore.

[Assume that the semaphore will be found "unlocked!.]

IBM s/360

o oFow

Instruction to load semaphore
word into register.

Load the sem word itself (only
the 18-bit address counts sem-—
antically).

Instruction to add 1 to sem wd
Instruction to test sem #0
Instruction to stere sem back
into memory

Store the sem word to memory
Instruction to load the datum

Load the datum into register

DEC PDP-10

Instruction Replace Add 1 and
Skip if£0.
Instruction to load datum

Load datum into register

Hbits FMS
{0 rep cycles
26 1
18 1
13 .5
13 .5
26 1

- 1
26 1

- 1

122 7
34 2

34 1

68 4

94,

PC
1. Instruction to load a datum 16 .5
2. Sem tags (=4)+ ptr type (=3)+
[s,d] address (=17) 24 1
3. L oad the sem wonrd — 1
4, Replace the sem word - 1
5. l_oad the datum - 1
6. Push the datum — 1
40 5.5

4,3 Comparison of Data Fetch Operations.

Table 4-1 lists the measurements for the three machines with regard

to data fetches. lt should be noted that any judgemental considerations
in these derivations were biased to show the $/360 and PDP-10 to
their advantage. Figure 4-1 is a graph of the '"bits to represent!" versus
the "number of MS cycles! from the table, and characterizes the differ-

ences among the three architectures.

The graph shows that the two register machines require generally more
bits to accomplish their function, while the PC pays for its compactness
with generally more memory references. The PDP-10!s rich instruction
set allows most operations to be accomplished with only a few instruc-
tions, but this flexibility is achieved at the expence of a huge menu of
instructions and having only full word operators. The S/360 exhibits a
more 'middle of the road'! approach and appears to pay for its compromise

in both bits and storage cycles for most nontrivial operations.

An ideal computer would have all of its data points as near as possible to
the origin i. e. taking as little memory and memory cycles as possible. A
simple computing of the center of gravity of each machine's graph about
the origin yields 110, 252, 257 for PC, S/360, and PDP-10 respectively.
One could therefore naively conclude that the PC is about twice as close
to the ideal as the others. If, for example, the lesser used reference

types (nos. 3, 6, 7) are weighted a tenth as much, the moments are 76,

1.Data Fetch

~-via pointer

2.Data Fetch

-simple (word)

3.Data Fetch

~-via semaphore

4, Data Fetch
-8 bit byte

5. Data Fetch

-via indexing

6. Data Fetch
-via double

indexing

7.Data Fetch
-1 bit byte

8. Data Fetch
~simple (value)

parm ref

9. Data Fetch
~simple (name)

parm ref

PDP-10
bits # cycles

95.

*best estimates — data not available

76.

55

61

PC S/360
* bits # cycles # bits # cycles
40 3.5 122
16 2.5 26
40 5.5 122
41 4,5 26
39 4,5 44
62 6.5 120
41 4,5 130
16 2.5 792
42 3.5 536
Table 4-1
Data Fetch

Measurements for Several Machines.

122

34

122

68

50

152

68

687%

136%

57‘(-

nplti= pPC

S/360
npi= PDP-10

ngn

Figure 4-1 96.

Memory Cycles us. Memory Bits:

Data Fetch Operations.

©
ol

D1
128 144 160

112

48

P7, P5, Pl

Number of MS Cycles Required

Number of Bits Required

97.

152, 167. Figure 4-2 shows the moment relationships as this weighting
factor moves from 1.0 to 0.0, and we can therefore see that such "un-
usual!t operations have no real effect on the relative comparison scale:

the factor of two still remains.

Another way of looking at the significance of these data is to decide on
the importance of consuming storage versus consuming storage cycles.
Figure 4-3 shows the effect on the moment depending on this relative im-
portance from which we can see that for the quadratic cost function con-
sidered here, once again the relative rankings of the machines remains
unaffected until minimization of storage cycles becomes of paramount

importance.

At this point one might raise the objection that the particular cost func-~
tion used [r‘elating storage and siorage cycles] is not necessarily the
'correct! one 1. e. perhaps some other cost function would exhibit strik—
ingly different behaviour. Therefore a number of other possible cost
functions were tried, with their only common characteristic being that
the increase in favor of minimizing storage cycles be complementary to
the decrease in weight on storage bits. The results, displayed in Figures
4-4abce....h, indicate that these cost functions exhibit almost exactly the
same characteristics as themore intuitive second moment used in Figure

4-3.

Summarizing the various considerations of the preceding paragraphs, we
see that:

1. The PC has a generally more compact representation
for the various types of data reference.

2. This compaciness advantage remains even after the less
common data reference types have been eliminated.

3. The issue of storage versus storage cycles indicates
that one must place all emphasis on minimization of stor-
age cycles before the relative distances between PC and
the other machines changes.

4, Regardless of the outcome of #3, PCl!s virtual memory
tends to eliminate pressure for storage, but more im-

portantly, since it should by now be clear that the vast

)

|

Pointwise Weight Factor (W

1.0
9
8
.7
Rs)
5
R4
3
2
R
' ol w cOst
0 25 50 75 100 125 150 175 200 225 250 275
n
Cost = hn X sc =1 Wi f@M.z +B.7
|="] | |‘
where
n = number of points
W =y 1 i=1{1,2,4,5,8,9}
k/10 otherwise and k = 0,1,2,...... 10
sc = point-weighted cost
Figure 4~-2

Movement of Centroid for Data Fetch Operations

(with varying weight on less common operations)

PDP-10

98.

99,

PC S/360 PDP-10
bits most 0
important 1.
.9
.8
<
2 .7
2
n .6
o
2
S .5
z
.4
.3
.2
.1
cycles most
important 0] - - - . o . .- . o ——» COSt

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Cost Function =Z VAXZ + (1-A) Yiz
i 1 N

bits cycles

Figure 4-3
Centroid Movement for Data Fetch Operations

(with varying weight on storage vs. storage cycles)

100.

PDP-10

Bits 1.0
most
impor‘tant‘9
B8
7
Re)
<
¢ .5
I
Q4
1L
3 .3
@)
2
AN
Cycles
most . . . >cost

important g 25 50 75 100 125 150 175 200 225 250 275 300

Movement of Cost Function = Z(Axi + (1-A) Yi)
, o

Figure 4-4a
Movement of Cost Function for VVarious

Types of Cost Function.

101.

bits most .
important PC S$/360 PDP-10
1.0
.9
8
7
.6

Merit Factor (A)
End

3

.2

N
cycles 0 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160
most
" cost
important

N

2
Movement of Cost Function =\/Z(Axi2 + lA Yiz)
. i

Figure 4-4b

102.

bits most PC S/360 PDP-10
important 1.0
9
- 8
z
3 7
2,
T
N 6
o
~
o .5
9
= 4
k R
3
2
K
cycles most I - * —?cost
important 0 10 20 30 40 50 60 70 80 90 100 116 120 130 140 150 160

T

2 2
Movement of Cost Function = Z:(Axi + Yiz)

Figure 4-4c

103.

PC S/360 PDP-10
bits most 1.0
important
.9
.8
=
] .7
3
P!'. 6
—n .
)
Q .5
e}
)
o 4
22_1
.3
.2
.1
Y cost

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0
cycles most
important 2
Movement of Cost Function = Z_:(Axi +Y)
i

Figure 4~4d

bits most
important

(v) “o1oe - 11don

cycles most
important

PC

S/360

104.

PDP-10

9

10

11 12 13

14 15 16

s
Movement of Cost Function = (A><i + 1 vY.)

Figure 4~4e

i A i

bits most
important

(V) Jo1oBeH 11401

cycles most
important

1.

- s .

PDP-10

7 8 9 10 11 12 13 14 15 16

\, cost
7

17

2
Movement of Cost Function =\/Z(Ax.+(1—A)Y.)
i 1 [

Figure 4-4f

105.

106.

PC S/360 PDP-10
bits most 1. 01
important
.9
.8
.74
.6
<
C .5
2
9 .4
L
= .3
I
3]
2 .2
L4 1
cycles most
important 0 . R A X \

. . 2 cost
70 90 110 130 150 170 190 210 230 250 270 290

2
Movement of Cost Function= VZ.(AX. + ,la\ Y.)
[i [

Figure 4-4g

107.

PC S/360 PDP-10
bits most

important

(V) J4o10Bd 11d9|N

cycles most
important

. . . N - N . . " NEKY
* > cost

0 25 50 75 100 125 150 175 200 225 250 275 300

2
Movement of Cost Function =/\ Z(Axi+Yi)
i

Figure 4~4h

108.

majority of data references (perhaps 99%) are to the
user's stack, movement of the current stack to a cache
memory would immediately relieve contention for stor-
age cycles. The reader should also note that moving a
single stack to a cache is considerably more straight-
forward than a generalized cache such as found on
S/360.85 .

4. 4 Comparison of Transfer of Control Operations.

Table 4-2 lists the measurements derived for various types of transfer

of control operations, from simple branches to block entry. Figure 4-5
graphs {(once again) "MS cycles! versus '"Number of bits to represent

the function'' on log-log axes. Even with this compression, the quantum
jump previously noted in Figure 4-1 is quite evident as the function moves

from the very simple to the complex.

Both the PDP-10 and S/36O are highly optimized for those functions which
minimally impact the environmental context (see [4.6]). The PC exhibits
about a 50% greater compactness for these same operations but a slightly
higher storage cycling rate due to the indirect referencing through the

code page descriptor.

The major point of interest is the PC short (local) branch which uses only
16 bits and 0. 5 MS cycles. Empirical data gathered by Saal [SZ] using
a 7094 emulator on an IC-6000 establishes that 70% of all branches are
+ 32 words from the current point of execution, and virtually all branches
are within about 250 words. One can interpret this phenomenon to mean
that code bodies tend to represent a localized function and the longer
branches are only used to move the locus of execution from one function
to another. Hence the PC is nicely optimized to take advantage of this

characteristic of program behaviour.

If we once again consider that the origin of Figure 4-5 represents the i-
deal of no storage and no storage cycles for any function, then Figure
4-6 shows that the migration of the center of gravity of the architectures

as the less common transfer types are weighted less in such that PC is

109.

PC S/360 PDD-10
bits # cycles # bits # cycles # bits # cycles

1. Block/Proc
Entry 105 3.25 368 40.5 175% 5%

2. Block/Proc
Exit 105 3.25 224 17 175%

3.l.ong Branch
(unconditional) 43 1.25 64 1 50

4, Short Branch
(unconditional) 16 .5 48 .5 50

5. Simple Subrou-
tine Entry 33 2.25 48 .5 50

6. Simple Subrou-
tine Exit 33 1. 25 48 .5 50

* best estimates — hard data not available

Table 4-2

Transfer—-of-Control Measurements for Various Machines.

padInboy so|0AD AJdoWdW L0 Joaquinpi]

501

40|

3019

204

109

54

44

3.

11
/
/
0/12
, aD1,D2
7
;0
21, P2
%
4 /
/
- _’,M_Dj,é;:Sﬁ' 13
P4 . —14,15,16
e T . —— . ,

0 15 20 30 40 50 60 80 100 150 200

70 90

Number of Bits Required

Figure 4-5

Memory Cycles vs. Memory Bits:

Transfer of Control

250

300 400
350 450

40108 4 1YBISAA 9SIMIUIOH

-1

)

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

Cost

n = humber of points
Wi =1 i=1{3,4,5,6]
. k/10 otherwise and K =0,1,2..... 10

sc = point-weighted cost

Figure 4-6

Movement of Centroid
for Transfer of Control Operations.

(with varying weight on less common operations)

112.

again closer to the ideal by a factor of two. As we did for data refer-
ences, we can examine the movement of the moment based on the rela-
tive importance of storage versus storage cycles; the results of this

exercise are comparable to those of Figures 4-4abc..... h, but not shown.

4,5 Information Theory Approach.

Information theory concerns itself with [among other things] the proba-
bility of occurrence of certain events as opposed to their meaning. In the
case of computer architecture, we can consider the instructions to be
events ("messages!!), and now we can examine the redundancy of these
messages. Clearly, an architecture which minimizes this redundancy
will show superior utilization of memory, and spend less time performing

memory fetches.

In view of the fact that at the time of this writing, sufficient code bodies
by which to measure the necessary parameters for the PC do not exist,
we will now summarize a similar analysis performed by Wilner [W3]

for the Burroughs 1700 computer [B2, W2].

The implementations of a number of different types of processors on the
B1700 were subjected to an information theoretic analysis, with the re-
sult that the emulated instruction repertoires were found to be nearly
minimally redundant. This compaction was achieved by Huffman coding
traded off against consideration of instruction decoding efficiency, and
some rather impressive performance improvements were noted: "From

a set of twenty ANS! COBOL. programs of diverse application and varying
size, we have concluded that COBOL programs tend to occupy 70% less
memory on the B1700 than they do on a 5360/30. Such a drastic reduc-
tion in the memory also improves running speed, which averages about
60% faster than the 360/30. The B1700, when interpreting its COBOL
S-machine, even seems to out-do the B3500 system, whose hardware was
designed to execute and compile COBOL. programs. Program storage re-—

quirements are 60% less, and execution times are comparable'. [W3].

The graphs and arguments of the preceding section take on added signifi-

cance in the light of this analysis.

113.

4.6 The Environment Pointer (ep).

The environment pointer {(ep) is a conceptual construct [\H] which en—
compasses all the addresses which together define the data accessing
environment at a particular point of execution in a program. When com-
bined with the ip (instruction pointer), the ep + ip completely define the
execution state of a program. This section analyzes the ep concept with

respect to the three architectures.

The starting point of the analysis is to calculate the size of the ep for
each of the three machines. For the PC, theendeavoris straightforward:
the display regisiers plus TOS and MKST for a total of 18 registers
times 16 bits/register = 288 bits. However the S/360 and PDP-10 pre-~-
sent a more difficult problem since most of their registers do not have a
hardware defined function. Clearly, any registers used as base registers
belong to the ep, but in general the usage to which the general registers
are put by the programmer or compiler is unpredictable. If all the regis-
ters are indeed used to hold data area base addresses, then the entire
register file belongs to the ep, and on this basis, the ep for 5/360 is

18 b/r x 16r = 288 bits; for the PDP-10 it is this same 288 plus the user

level relocation registers = 304 bits.

It §hould be intuitively apparent that the richness and extent of the data
accessing environment formed by the registers has a direct effect on
program structure and efficiency. Pursuing this thought, it follows that
the ability to manipulate the environment in a meaningful and efficient
manner is also important. Returning to the Y"ep size'' calculations, it
would appear that all three machinespossessabout the same size ep. How-
ever this is true only if all the general registers are used for the ep,

a situation which would heavily impact the efficiency of the PDP-10

and S/360. Hence the effective ep for these machines is much smaller
than the PCl's, yet the manipulation of this ep in a multiprogrammed
environment, i.e. , block entry, is much poorer. Figure 4-7 illustrates

this situation by charting a function we call the "environment function'!,

F1 (size of env)XF2 ("cost!" of maintaining this env)

Il

Env Fcn

f (#bits in env, # MS cycles to update, #bits to specify
update).

114,

bits in env.

S40 4

LILE

3oy

(assumes al!l general registers used
for ep).

»~ T bits to specify
update

Figure 4-7a

MS cycles to Environment Function for PC, S/360, PDP-10
update env.

bits in env.

40

450 . . N .
(assumes 8 general registers used for

ep on S/360 and PDP-10).

ko

. F# bits to specify
You 506 Update

HMS cycles
to update
env.

Figure 4-7b
Environment Function for PC, S/360, PDP-10

115.

Clearly the ideal situation is to have an immense ep which costs noth-
ing (in cycles or bits) to update. When we examine Figure 4-7 with
this reasoning in mind, we can see that the PC comes much closer to
achieving this ideal than either the S/360 of the PDP-10. It would also
appear that the PDP-10, on this point at least, represents a better set

ofarchitectural decisions than S/360.

4,7 Conclusion.

This chapter has compared the PC architecture to those of the IBM
S/360 and the DEC PDP-10. This comparison was based on data derived
from examining how each of these machines accomplishes data referen-
cing and transfer of control, particularly in a block structured environ-
ment. This type of environment was selected because (1) it is the only
common ground between PC and the other machines, and (2) it is the same

environment as that required for multiprogramming.

The argument made is that efficient operation in a block structured envi-
ronment is desirable, and the PC exhibits superior performance in both
data referencing and transfer of control. This superiority is maintained
even when the less common and generally more complex operations are

not considered; and also when memory space is traded off against memory

cycles.

The third point was that if one considers an instruction to be a message
and measures the redundancy of this message, significant gains in speed
and storage can be achieved by minimizing said redundancy. The PC
design embodies this concept in two ways: (1) instructions with zero-
address and no register fields, and (2)[b, d] address which are shorter
(vet capable of addressing the same or larger space) than the address

fields of $/360 or PDP-10.

The fourth area of analysis was that of data access environment. As in
the preceding arguments, the concept of an ideal computer which con-
sumes no storage or storage cycles was postulated. The PC'!s generally
larger ep was shown to be much closer to this ideal than either the

S/360 or the PDP-10 when one consideres the cost of maintaining the ep.

116.

5. 0 MAJOR CONCL.USIONS AND FUTURE DIRECTIONS.

The preceding chapter presented an abstract argument in favor of

block structured as opposed to (traditional) general register computer

architecture. The data presented showed that block structured archi-

tecture has distinct advantages in the basic areas of data reference,

transfer of control, and data access environment.

One should not lose sight, however, of the other features of this type of

design, in addition to these measurable aspects. The presence of auto-

matically reentrant code, efficient recursion, architecturally supported

debugging aids, logical and time independent /O, the semaphore con-

structs, and variable-size-page virtual memory argue strongly in favor

of the PC!s being an excellent host machine for contemporary (i.e. com-

plex) software systems. Construction of an (enhanced) XPL compiler

and an operating system {in XPL) for the PC have benefitted greatly

from the architecture, as evidenced by the compactness of their code

and general design cleanliness.

On the other side of the coin, however, there are several facets of the

PCls architecture which require further development:

1.

Pointer Structure. The (i, s, d) relocatable pointers are

adequate as long as pointers into only zero-or one-dimen-
sional structures are needed. However, the current de-
sign does not support pointers to elements of multi-dimen-
sional structures, and extension of (i, s,d) to (i1, i2,.....
in, s, d) does not seem very attractive on the basis of both
storage and storage cycles. Whatever design is proposed
will have very direct impact on the virtual memory manage-
ment as well.

Stack Discipline. The PC currently supports only the tra-

ditional LIFO stack discipline, and such concepts as based
or heap storage, retention of storage after block exit, and
pointer reference counts are at present not supported by
the architecture. A generalization of the role of the stack
vector may provide a solution to the problems, and indeed

such generalization is not obviously incompatible with the

117.

stack-cum-retention strategies outlined by [B8] [B7].

3. 1/O and Interrupts. The PC logical time-independent and

memory-structure dependent l/O, and the handling of in-
terrupts as global (block structure) procedure entries,
seem to be a step in the right direction. There is still
room for improvement in the direction of integrating 1/0
more completely into the 'event structure! as described
in [O1] and implemented in the PC and B6700 operating
systems.

4, Multiprogrammed Emulation. The Enter/Exit Emulator in-

structions described in Chapter 3 represent only a first
step in this direction. At the current state of development,
the PC architecture seems to be amenable to the inclusion
of this type of function, but only further development will
solidify or destroy this feeling. One matter which is clear
is that the structure of the various microcode subsystems
must be very well thought out if such capabilities are to
be supported.

5. In spite of the object code compactness demonstrated in
the previous chapter, there is still room for improve-
ment. The minimal coding technigue of the B1700 (and
the underiying hardware strategy which made it possible)
should be viewed as major developments in the tuning of
the hardware to meet software (instead of hardware)needs.
There is also room to better tune instruction sets to fit
the languages, examples being the B1700 and Doran'!s Tree
Machine [D5].

5. 1 Acknowledgements.

My sincerest gratitude to extended to my advisor and friend Prof. Robert
F. Rosin; to Prof. Gideon Frieder for his many helpful ideas; to my
colleagues and coworkers on the PC (alias Buffalo Stack Machine) pro-
ject Mike L.utz, Rowan Snyder, Herb Kleinberger, Mike Brenner, and
Denis Lynch; to the National Science Foundation; and to my former
wife Bobbi who cared for and supported me through much of this work.
Special mention should also be made of Arne Tolstrup Madsen and Edel

Jensen without whose help this paper would never have been printed.

BIBLIOGRAPHY.

118.

B1.

B2.

B3.

B4,

B5.

B36.

B7.

B8.

Di.

D2.

Da3.

D4.

119.

Belady, L. A.: A study of replacement algoritms for virtual

storage computers. IBM Syst.Jour. 5,2 (1966), pp. 78-101,

Burroughs B 1700 Manual.

Burroughs Corp., Detroit, Michigan.

Burroughs B 5500 Information Processing System Reference
Manua! (1964)

Burroughs Corp., Detroit, Michigan.

Burroughs B 6500 Information Processing System ESPOL. Re-~-
ference Manual

Burroughs Corp., Detroit, Michigan, 1970.

Burroughs B 6500 Information Processing System Reference
Manual (1969)

Burroughs Corp., Detroit, Michigan.

Barton, R.S. ldeas for Computer Systems Organization: A
Personal Survey. Software Engineering, Vol. 1, 1970.

Academic Press, N. Y.

Berry, etal. On the Time Required for Retention. ACM-IEEE
Symposium on High Level Language Computer Architecture,
SIGPLAN/SIGARCH/IEEE-TCCA Nov. 1973,

Bobrow, D. G. and Wegbreit, B. A Model and Stack Implemen~
tation of Multiple Environments, CACM 16, 10. Oct., 1973,

Denning, P.J.: Virtual Memory. Computing Surveys, vol. 2,
no. 3, sept. 1970.

Dijkstra, E. W.: Cooperating Sequential Processes. Techno-

logical University. Eindhoven, 1965.

Dijkstra, E. W.: The Str‘ucture of the THE-Multiprogram-—
ming System. Comm. ACM 11, 5 (May 1968), pp 341-346.

Dent, B.A. : Personnel Communication.

D5.

F1.

G,

Hi1.

H3.

Ha.

J1.

120.

Doran, R.W.: A Computer Organization with an Explicitly
Tree-Structured Machine Language. Australian Computer
Journal, Vol. 4, No. 1, February, 1972, pp 21-30.

Feustel, E.A.: On the Advanteges of Tagged Architecture,
IEEE Transactions on Computers, vol. C-22, no.7, July 1973.

Gries, D.: Compiler Construction for Digital Computers. John
Wiley and Sons, Inc. New York-London-Sydney~Toronto,
1971 pp 247-251.

Hansen, P.B.: A Comparison of Two Synchronizing Concepts.

Acta Informatica 1, pp 190-199, Springer-Verlag 1972.

Hauck, E.A.and Dent, B. A.: Burroughs' B6500/B7500 stack
mechanism. Spring Joint Computer Conference, 1968, AFIPS,
pp 245-251.

Haberman, A.N.: Prevention of System Deadlocks. CACM 12,7
July 1969, pp 373-377.

Hager, K.: Organization of Central Registers—A Comparison

of Code Length Quality. ACM Conference Procedings 1970.

IBM System/360. 360D-05. 2. 005 CP-67. CMS Program L.ogic

Manual.

Iliffe, J.K.: Basic Machine Principles. MacDonald~L.ondon

and American Elsevier Inc. -New York. 1968.

Ingerman, P.Z.: Thunks - a way of compiling procedure sta-
tements with some comments on procedure declarations. Comm.
ACM 4,1 (Jan. 1961), pp 55-58.

Johnston, J.B.: The Contour Model of Block Structured Pro-~

cesses. Proc. of a Symposium on Data Structures in Pro-

K1.

K2.

K3.

L1.

L2.

L.3.

M1.

M2.

N1.

N2.

121.

gramming Languages. Ed. Tou and Wegner. ACM/SIGPL AN
Feb. 1971.

Knuth, D.E.: The Art of Computer Programming, vol. 1, Addi-
son-Wesley, Reading, Mass., 1968, pp 435-455.

Knuth, D.E. and Merner, J.N.: Algol 60 Confidential. (9. An
Innerproduct Procedure). Comm. ACM 4,6 (June 1961), p 71.

Kuck, D.J. and Lawrie, D.H.: The use and performance of
memory hieraachies: a survey. Software engineering(ed. Tou),

vol. 1, 1970, pp 45-77.

Lindsay, C.H. and van der Meulen, S. G.: Informal Introduc-
tion to Algol 68. North-Holland Publishing Co. Amsterdam,
L.ondon. 1971.

Lutz, M. J. and Manthey, M. J.: A Microprogrammed Imple~-
mentation of a Block Structured Architecture. Fifth Annual
Workshop on Microprogramming (ACM-SIGMICRO). 1972.

Lutz, M. J.: The Design and Implementation of a Small Scale

Stack Processor System. AFIPS vol. 42, 1973.

McKeeman, W.M.: l_Language directed computer design. Fall

Joint Computer Conference, 1967, AFIPS.

Manthey, M. J.: Execution Snapshots of Program SAM.

SIGPL AN Notices Vol 8,7 July 1973.

Naur, P.: Some uses of Jensen's device for Algol 60 proce~
dures. Automatic Programming Information, no. 7(May 1961),

pp 12-13.

Newell, A. etal: Information Processing Language -V Manual
2nd Edition. The Rand Corporation. Prentice-Hall Inc. 1966
pp 68-72.

O1.

R1.

R2.

Si.

S2.

wi.

Wwa2a.

W3.

w4,

WS5.

weé.

122.

Organick, E.l.: Computer System Organization-The B5700/
B6700 Series. Academic Press, New York, London. 1973.
(ACM Monograph).

Randell, B. and Russell, L. J.: Algol 60 Implementation.

Academic Press Inc. -New York, 1964,

Rice Computer—-2, General Specifications, Dept. Electrical

Engineering, Rice Univ., Houston, Texas, Sept. 1970.

SIGPLAN Notices, vol. 8, no.5, 1973 July, pp 4-20, (letter
by Mike Manthey).

Saal, H.J. and Shustek, L. J.: Microprogrammed Implemen-
tation of Computer Measurement Techniques. Fifth Annual

Workshop on Microprogramming (ACM-SIGMICRO). 1972.

Wegner, P.: Programming L.anguages, Information Structures
and Machine Organization, McGraw-Hill Book Company, New
York, 1968, p 18.

Wegner, P.: Programming LLanguages, Information Structures
and Machine Organization, McGraw-Hill Book Company, New
1968 2, pp 8-23.

Wilner, W. T.: B1700 Memory Utilization. Fall Joint Compu-
ter Conference, AFIPS, 1972, pp 579-586.

Wilner, W. T.: Design of the B1700. Fall Joint Computer Con-
ference, AFIPS, 1972, pp 489-497,

Wirth, N.: On Multiprogramming, Machine Coding, and Com-
puter Organization. Comm. ACM 12,9 (Sept. 1969), pp 489-498,

Wirth, N.: Stack vs. Multiregister Computers. SIGPL AN
Notices, March 1968, pp 13-19.

	PB-031_Page_001_Image_0001.tiff
	PB-031_Page_002_Image_0001.tiff
	PB-031_Page_003_Image_0001.tiff
	PB-031_Page_004_Image_0001.tiff
	PB-031_Page_005_Image_0001.tiff
	PB-031_Page_006_Image_0001.tiff
	PB-031_Page_007_Image_0001.tiff
	PB-031_Page_008_Image_0001.tiff
	PB-031_Page_009_Image_0001.tiff
	PB-031_Page_010_Image_0001.tiff
	PB-031_Page_011_Image_0001.tiff
	PB-031_Page_012_Image_0001.tiff
	PB-031_Page_013_Image_0001.tiff
	PB-031_Page_014_Image_0001.tiff
	PB-031_Page_015_Image_0001.tiff
	PB-031_Page_016_Image_0001.tiff
	PB-031_Page_017_Image_0001.tiff
	PB-031_Page_018_Image_0001.tiff
	PB-031_Page_019_Image_0001.tiff
	PB-031_Page_020_Image_0001.tiff
	PB-031_Page_021_Image_0001.tiff
	PB-031_Page_022_Image_0001.tiff
	PB-031_Page_023_Image_0001.tiff
	PB-031_Page_024_Image_0001.tiff
	PB-031_Page_025_Image_0001.tiff
	PB-031_Page_026_Image_0001.tiff
	PB-031_Page_027_Image_0001.tiff
	PB-031_Page_028_Image_0001.tiff
	PB-031_Page_029_Image_0001.tiff
	PB-031_Page_030_Image_0001.tiff
	PB-031_Page_031_Image_0001.tiff
	PB-031_Page_032_Image_0001.tiff
	PB-031_Page_033_Image_0001.tiff
	PB-031_Page_034_Image_0001.tiff
	PB-031_Page_035_Image_0001.tiff
	PB-031_Page_036_Image_0001.tiff
	PB-031_Page_037_Image_0001.tiff
	PB-031_Page_038_Image_0001.tiff
	PB-031_Page_039_Image_0001.tiff
	PB-031_Page_040_Image_0001.tiff
	PB-031_Page_041_Image_0001.tiff
	PB-031_Page_042_Image_0001.tiff
	PB-031_Page_043_Image_0001.tiff
	PB-031_Page_044_Image_0001.tiff
	PB-031_Page_045_Image_0001.tiff
	PB-031_Page_046_Image_0001.tiff
	PB-031_Page_047_Image_0001.tiff
	PB-031_Page_048_Image_0001.tiff
	PB-031_Page_049_Image_0001.tiff
	PB-031_Page_050_Image_0001.tiff
	PB-031_Page_051_Image_0001.tiff
	PB-031_Page_052_Image_0001.tiff
	PB-031_Page_053_Image_0001.tiff
	PB-031_Page_054_Image_0001.tiff
	PB-031_Page_055_Image_0001.tiff
	PB-031_Page_056_Image_0001.tiff
	PB-031_Page_057_Image_0001.tiff
	PB-031_Page_058_Image_0001.tiff
	PB-031_Page_059_Image_0001.tiff
	PB-031_Page_060_Image_0001.tiff
	PB-031_Page_061_Image_0001.tiff
	PB-031_Page_062_Image_0001.tiff
	PB-031_Page_063_Image_0001.tiff
	PB-031_Page_064_Image_0001.tiff
	PB-031_Page_065_Image_0001.tiff
	PB-031_Page_066_Image_0001.tiff
	PB-031_Page_067_Image_0001.tiff
	PB-031_Page_068_Image_0001.tiff
	PB-031_Page_069_Image_0001.tiff
	PB-031_Page_070_Image_0001.tiff
	PB-031_Page_071_Image_0001.tiff
	PB-031_Page_072_Image_0001.tiff
	PB-031_Page_073_Image_0001.tiff
	PB-031_Page_074_Image_0001.tiff
	PB-031_Page_075_Image_0001.tiff
	PB-031_Page_076_Image_0001.tiff
	PB-031_Page_077_Image_0001.tiff
	PB-031_Page_078_Image_0001.tiff
	PB-031_Page_079_Image_0001.tiff
	PB-031_Page_080_Image_0001.tiff
	PB-031_Page_081_Image_0001.tiff
	PB-031_Page_082_Image_0001.tiff
	PB-031_Page_083_Image_0001.tiff
	PB-031_Page_084_Image_0001.tiff
	PB-031_Page_085_Image_0001.tiff
	PB-031_Page_086_Image_0001.tiff
	PB-031_Page_087_Image_0001.tiff
	PB-031_Page_088_Image_0001.tiff
	PB-031_Page_089_Image_0001.tiff
	PB-031_Page_090_Image_0001.tiff
	PB-031_Page_091_Image_0001.tiff
	PB-031_Page_092_Image_0001.tiff
	PB-031_Page_093_Image_0001.tiff
	PB-031_Page_094_Image_0001.tiff
	PB-031_Page_095_Image_0001.tiff
	PB-031_Page_096_Image_0001.tiff
	PB-031_Page_097_Image_0001.tiff
	PB-031_Page_098_Image_0001.tiff
	PB-031_Page_099_Image_0001.tiff
	PB-031_Page_100_Image_0001.tiff
	PB-031_Page_101_Image_0001.tiff
	PB-031_Page_102_Image_0001.tiff
	PB-031_Page_103_Image_0001.tiff
	PB-031_Page_104_Image_0001.tiff
	PB-031_Page_105_Image_0001.tiff
	PB-031_Page_106_Image_0001.tiff
	PB-031_Page_107_Image_0001.tiff
	PB-031_Page_108_Image_0001.tiff
	PB-031_Page_109_Image_0001.tiff
	PB-031_Page_110_Image_0001.tiff
	PB-031_Page_111_Image_0001.tiff
	PB-031_Page_112_Image_0001.tiff
	PB-031_Page_113_Image_0001.tiff
	PB-031_Page_114_Image_0001.tiff
	PB-031_Page_115_Image_0001.tiff
	PB-031_Page_116_Image_0001.tiff
	PB-031_Page_117_Image_0001.tiff
	PB-031_Page_118_Image_0001.tiff
	PB-031_Page_119_Image_0001.tiff
	PB-031_Page_120_Image_0001.tiff
	PB-031_Page_121_Image_0001.tiff
	PB-031_Page_122_Image_0001.tiff
	PB-031_Page_123_Image_0001.tiff
	PB-031_Page_124_Image_0001.tiff
	PB-031_Page_125_Image_0001.tiff
	PB-031_Page_126_Image_0001.tiff
	PB-031_Page_127_Image_0001.tiff

