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PARALLEL CONTEXT~-FREE LANGUAGES




Abstract

The relation between the family of context - free languages and
the family of parallel context - free languages is examined in this
paper.

It is proved that the families are incomparable.

Finally we prove that the family of languages of finite index is con-

tained in the family of parallel context - free languages.




Introduction

It has been an open problem whether or not the family of context —
free languages is contained in the family of parallel context - free
languages( E. g. ,cf. Rosenfeld (1971) ;). By "parallel! we mean

that whenever you use a production A - a in a derivation you have
to use this specific production simultaineously for all occurrences

of A in the sentential form you are dealing with.

In Siromoney and Krithivasan (to appear) it is claimed that the inter-

section of the two families consists of languages of finite index.

The reason for writing this paper is that the proofs in Siromoney
and Krithivasan (to appear) contain so many serious gaps that it

seems appropriate to find alternative proofs.

In this paper it is proved that the family of parallel context - free
languages contains the family of languages of finite index but not the

family of context - free languages.

It is assumed that the reader is familiar with the basic notions con-
cerning formal language theory. For unexplained notions we refer to

Salomaa (1973).




The relation between parallel context-free languages and context-

free languages.

Definition
Let G=(V, T, P, S) be an ordinary context-free grammer.
The parallel direct yield relation g))G on the set (VU T)* is defined

as follows:

a L@G B iff

a=oc1Aa2A........Aock and B =0; WaW.euuo.. way , where

a;€ (VU TINU{AN* for 1 < i <k and A»w is a production ig) G. The
relation =>G * is the reflexive transitive closure of :G . OL:>G t B iff

there exists w ngs oni(g) (VU T)* for 0 < i <t such that
=00 P50 Tz Fg ceeeee. Poy = B.
The language generated in parallel by G is defined by:

The family of parallel context-free languages is the family of langua-
ges generated in parallel by ordinary context-free grammers.
The following example shows that the family of parallel context-free

languages contains languages which are non-context—-free.

Example
n
The language { a° | n = 0} is generated in parallel by the following

grammar. ({S}, {a}, {S*SS, S~a}, S).

Theorem 1
The family of context-free languages is not contained in the family of

parallel context-free languages.




Proof

lLLet L be the context-free language generated by the following grammar
G.

G=({s,A}, {0,1,(,),[, ]}, P,S) where P consists of the following
productions.

S-»SS, S~ (0A1], S~ 1,

A= 0AT1, A~)s][ .

L is very similar to the Dyck-set (over 0 and 1), but in L. you have
that corresponding groups of 0's and 1's are surrounded by paranthe-
ses and brackets resp.

Assume that there exists a grammar

H=(V, T, P, S) such that H generates L in parallel.

Let t be the number of nonterminals in H and m the length of the
longest righthandside of a production in H. Let m = rlogzrﬁ—l +. 3
{the least integer whichis greater than or equal, to logo;m plus one).
We assume that no nonterminal is useless in H and whenever nothing
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else is stated ® and =% are used instead of 0 and :H

Lemma 1
If A€V and A=% w w, then

4 (W ) < Folwy )™t and #Fo(ws) < 3 (wg)+mt.

Proof
Since A is not useless there exists a derivation of the form

S=>t' oy Adg St vi AVoA.. ... Avk =>%® VW, WaVo.euoo.. WL Wa v €L,
where t!, t"" < t, a; € (VU T)* for 1 =i <2, v € T* for 1 <1 <Kk,

Y an t .
wy wp € T¥*, and A=% w wy. Therefore Ivi( <m®" for 1 =i <k.




As for the Dyck set (over 0 and 1) we have that in any prefix of a
word in the language the number of 1's in the prefix is at most the
number of O's.

We have #; (v wy ) < #Fo(v; wy ) which implies that #; (wy ) < #5(w ) +

t

|v1 l < #5 + m°" . The same kind of argument used on the suffix

Wa V) gives that #o(wy) < 3 (wg) + m=" .

Define inductively Qi’ to be the languages.
@ = {(0")[1"] I n=1}, and for i = 1
Q=0 ww [1"] [ nz15 w, ws €Q].
We have Qi csL foralli=i.
Let w € Q_ be the word
A ‘ n n Moa-1 41
(0™ )(0™). ... (0")[17e (0 ). L.l [1"2 0 « )(0

Nyg=1 ’ —
1 2 H][]nl 1, where g = (t+2) m, n, = m° " +1,

Nga-1 +2)

and ni=n._ +1,2 =i =2%1, wwill be fixed in the following and let
' —

= = b fixed derivation of w
(1) S=wo>wW @ Wg = cuuuen. =w, =w bea

L.emma 2

If A occurs in Wi for some 0 < i < n and this occurrence of A derives
the subword WA of w in the derivation (1), then there exists integers
-2 < j<0and0 =<k such that #) (WA) = 2k+j. We will say that A in

that case is of degree k, if k=12, "
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Proof

Let w, be as above and let h: T* - {a,b}* be the homomorphism:




h())=a, h([)=b, andh (0) =h(1)=h (()=h(]) =*.
Let v, € {a,b}* be defined inductively by:

= A

0

=avivib, for i = 0.

Vier

We then have that h(w) = Ve and #a (vk) = zk—-l.

If h(w) = x a Vi V; by for some i and x,y € {a,b}*, then we say

that the underlined occurrences of a and b correspond to each other,
and we will use expressions as !'"'the occurrence of b corresponding
to the occurrence of a't 'in this case.

Now if | h(WA) | < 1.then 0 < #a ( h(wA))= #) (WA) < 1 which is of the
form 2k+j for some k=20 and -2 = j < 0.

Assume then that | h(WA) | > 1.

There are then 4 cases to consider, namely:

(1) h(WA) = .ava for somev € {a,b}*

(2) h(WA) = :. avb for some v € {a,b}*

(3) h(wA) = bva for somev € {a,b}*

(4) h(w,) = bvb  for some v € {a,b}*

Cases (1), (3), and (4) are all treated in the same way.

Assume e. g. that h(WA) = ava. for some v € {a,b}¥*, then Wy =

x(0°) z  where #,(z) = 0 and p > m*" which is contradictory to

Lemma 1.

Assume then that h{w,) = avb for some v € {a,b}*. There are again

A

more possibilities:
(1) The occurrence of b in h(w) which corresponds to the first occur-

rence of a in the subword h(w,) is outside h(w,). The situation is

A A

then that the last occurrence of b in h(wA) must correspond to an

occurrence of a inside h(w,). We then have that h(wA) = av'avivib

A




for some 0 <1 < g and V! € {a,b}*,
(1a) v! = vlig

Then w, = x (oP1)(oP?) Vi Y2 z for some x,z € T* and

vi,Yz € Qi' o ((Opl )(Ope))ﬁ Y2z) - #1 ((Opl )(Opz))ﬁ Y22) =
P +pp +o (2) = #, (2) 2 p, + #F4(2) > m®" which is contra-
dictory to LLemma 1.

(1b) v! = v!lb

i+

_Liv2
Then h(wA)= aViVibaViVib and #)(WA)\— 2 2 or

) = a\_/avivibavivjb for some 0 =i < g and \76{3, b}*
(lba) V=V a

The situation is then as in (1a).

This can not be the case because bavivibavivib can
not be a subword of h(w).

(Ibc) v =X

_ _ L2
Then h(wA)— aaViVibaViVib and #)(WA) 2 1.

(1c) vt = X

i+
Then h(wA) = aavivib and :ﬁ:) (WA) =2 !

(11) The occurrence of b corresponding to the first occurrence of a in

h(wA) is inside h(va). We then have that h(wA) = avivibv'b for

some 0 <i < q and v! € {a, b} *,OI" h(Wa)= a\/i\/ib and #)(Wa)=2'+1_1.

The former situation is quite analogous to the situation in (1).

Let (Cg,0ayeeee- ,0. ) be a g-1-tuple of functions mapping the words
w. into integers. onk(wi) is the humber of occurrences of symbols

in w; which are of degree k.



We have then

OLk(Wo) = 1 for k=q and 0 otherwise, and
a, (w_ ) =0 for all k.

Assume that k>m and ak(wi_l_]) =_ak(wi)—p for some 0 <i = g~-1 and
m m
p > 0. Then ;2——1 & k—r(wi+1) = @"—1 Ieap

To see that we observe that in i+1!'th step in the derivation (1) a non-

(Wi) + 2p.

terminal A of degree k must be rewritten as a containing no nontermi-
nal of degree k, but containing at !east two occurrences of nontermi-
nals of degree at least k — m and at most k—=1. This is because o. has
to generate at least zk—z rightparantheses and that the lenght of a is
at most m.

Finally we then conclude that there must exist an integer 0 <1 < n

(t+1)m
such that 2 a (Wi) =t + 1.

- g-r

r=o
This means that there in W, is more than t occurrences of nontermi-
nals generating at least 2 rightparantheses in w. This contradicts the

fact that there are only t nonterminals and that the number of O!s

between left—and rightparantheses all are different in the word w.
We have then proved that L is not a parallel context-free language.

Theorem 2
The family of context-free language of finite index is contained in the

family of parallel context-free languages.

Proof
L.et L. be a context-free language of index k and G = (\/, T, P, S) a con-

text—-free grammar of index k generating G.




Define G! = (V!, T, P!, S!') to be the grammar where
vi={A[i]| A€V, 1<i<k]},

P! contains all productions of the form
Alio]l = A [ ]xs Agfig]..... An[in] X1 where X € T* for
1 =1 £n+1,lsijskfor‘aIIOSjsn,and,

A A Xs As eveen Anxh+1 is a production in P.

It is now obvious that L(G) = L.(G'!), and that G! is of index k. This
means that we can choose derivations such that no nonterminal in
V! occurs more than once in every sentential form in these deriva-

tions. It is then clear that G' generates L. also in parallel.
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