A PASCAL ENVIRONMENT MACHINE (P-CODE)

by

Bent Brun Kristensen
Ole L.ehrmann Madsen

Bent Bak Jensen

DAIMI PB-28
April 1974

Institute of Mathematics University of Aarhus []

DEPARTMENT OF COMPUTER SCIENCE —

Ny Munkegade - 8000 Aarhus C - Denmark - T
Phone 06-1283 55

=
i

A PASCAL ENVIRONMENT MACHINE (P-CODE)

by

Bent Bruun Kristensen
Ole L.ehrmann Madsen

Bent Bak Jensen

Abstract:

This paper describes the architecture and instruction set
of a machine to support PASCAL. This so-called P-code
machine is designed both to be emulated on microprogram-
mable computers, and to be an intermediate step in code
generation for traditional computers. Furthermore, an
interpreter on CDC 6400 and a microprogrammed version
of P-code on a minicomputer system are described. A
precise description of all P-code instructions and examples
of PASCAL. programs with generated P-code are shown

in appendices.

CONTENTS

ABSTRACT
1. INTRODUCTION
2. PREMISES

2.1 Easy code generation
2.2 Correct code
2.3 Procedure oriented

3. RESOURCES

The runtime stack
The address stack
The evaluation stack
The display

The code memory
The backing store

WWwhwwohw
o wiy

4, PROGRAM AND DATA FORMS
4.1 The procedure description
4,2 The global constants
4,3 Instruction format
4,4 Calling sequence

5. IMPLEMENTATION

5.1 General

5.2 CDC 6400 implementation

5.3 The RIKKE/MATHILDA implementation
6. EVALUATION

APPENDIX A

APPENDIX B

REF ERENCES

N NN

W

OO O0vn (6,1 POWOOWWOW

©

© O

11

12

19

27

1. INTRODUC TION

In January 1973 it was decided to implement the language
PASCAL [5] on a microprogrammable minicomputer system named
RIKKE/MATHILDA 1, 2] presently being built at our department.

It then became natural to define a machine (P-code) to support
PASCAL., and microprogram this machine on RIKKE/MATHILDA. A
compiler which could generate code for this machine was implemented
using a SLR(1) parser generator [11].

As well as being intended to be a total runtime environment for
programs transliated from PASCAL, the P-code machine is designed

to satisfy the following requirements:

1. It should be possible to microprogram an efficient

emulator on the RIKKE/MATHIL.DA system.

2, It should be possible to write code generators from :
P-code to other machines, P-code thereby becoming
an intermediate language in the process of compiling

PASCAL. programs.

The first of these requirements has been the main goal of the
project. The second is to ensure portability of the compiler in the

same way as has been done with BCPL and O-code [8].

2. PREMISES

2.1 Easy code generation

In order to make the code generation easy and natural, the
P-~code machine became a stack machine. For the ease of storage

allocation it is a block structured machine.

2.2 Correct code

P-code is designed using the philosophy that the compiler always
generates correct code, and that no programmer will ever program

directly in P-code.

2.3 Procedure oriented

The unit in P-code is a procedure, which consists of a code
segment and, for each activation, a data segment. To each procedure
is assigned a name, a block level number, and a record describing
the procedure. The address of this record is referred to as the ad-
dress of the procedure. The procedure descriptions are placed in
a special data segment. Variables in a data segment are accessed via
the block level number (BN) and an ordinal humber (ON) within the

data segment.

3. RESOURCES

The runtime environment consists of a runtime stack, an ad-
dress stack, -an evaluation stack, a display, a code memory and

a backing store.

3.1 The runtime stack

In the runtime stack are found: a segment which describes
all procedures, a global vector of constants, and one or more
data segments for each activated procedure. RUSP points to the

next free element of RUST.

3.2 The address stack

The address stack (ADST) is used to hold temporary values
in the performance of address calculation and integer arithmetic

on '"small! integers. ADSP points to the next free element of ADST.

3.3 The evaluation stack

The evaluation stack (EVST) is used for evaluation of real
and power set expressions. ''Long" integers will also be operated
here. Fields from packed records are packed and unpacked here.
EVSP points to the next free element of EVST.

3.4 The display

The DISPLAY is a vector which contains elements which point
to data segments in the RUST. DISPLAY[O] points to the segment
describing the procedures. DISPLAY|[1] points to the global vector
of constants. DISPLAY([2].....DISPLAY[DISP-1] point to the data
segments of the procedures which are visible from the currently

active procedure, using the normal scope rules of PASCAL. As

seen, the block numbering starts with 2. When entering and leaving

a procedure, the DISPLAY is automatically updated.

3.5 The code memory

The code memory (CM) is the place where the code segment of

a procedure resides for execution. A code segment is a unit consisting

of purely re-entrant code. One can only leave the segment by: using

special enter and exit instructions. In particular, one cannot jump to
locations in other segments. CM is byte oriented in the sense that one
cah address down to each byte in the segment. All jumping is relative

to the instruction counter (IC), making the code completely reallocatable.

3.6 The backing store

The backing store (BS) is used to hold a P-code program, i.e.,
a compiled PASCAL. program.itconsists of blocks of bytes, and every
block is directly accessible. [t contains information to start execution
of each P-code program. A copy of all code segments is kept here. At
entry to a procedure its code segment is transferred to CM. A procedure
may have a value segment in BS, used to initialize part of the data seg~
ment on entry to the procedure. BS also contains the procedure des-
criptions (data segment 0) and the global vector of constants (data seg-
ment 1). The first block of BS contains information about the number of
procedures, and pointers in BS to data segment 0 and 1. At execution
start, data segments 0 and 1 are transferred to the RUST, and execu-

tion starts with the procedure described at address 1 in data segment 0.

4. PROGRAM AND DATA FORMS

4.1 The procedure description

Data segment O is a vector of records. Each record describes

a procedure. The following information is kept in each record:

PNAME

BN

PRESENT

ENTRY

SEGLENGTH

SEGADDR

DATALENGTH

VALUELENGTH

VALUEADDR

VALUESTART

PARAMETER
DESCRIPTION

the name of the procedure.

the block level of the procedure.

a boolean variable, which is true if the code

segment of the procedure is present in CM.

it PRESENT, absolute address in CM of the

code segment.

number of BS blocks occupied by the procedure.

the address of the code segment in BS.

iength of the data segment in RUST.

number of BS blocks occupied by the value

segment.

address in BS of the value transfer.

start address in the data segment of the value

transfer,

for each parameter there is a variable indicating
whether it is a const, var, procedure or function

parameter.

4,2 The global constants

The data segment at level 1 is used to hold long constants, i.e.,

long integers, reals,powersets and string constants. Small integer con-

stants are stored as arguments of the instructions.

4.3 Instruction format

All instructions consist.of one or more bytes. The operation code
always occupies one byte. The instructions of the P-code machine can
be divided into three groups, depending on whether they have no argument,
one argument or two arguments.

The first group consists mostly of stacktop operations, such as
plus, minus, mult, etc.

The second group consists of jump instructions and a special
version of the boolean, relational, and arithmetic dyadic operations,
which operate on a stacktop element and the instruction argument. The
argument occupies one or iwo bytes.

The third group is load/store instructions, where the first ar-
gument (one byte) is the BN, and the second argument (two bytes) is
the ON. There also exist instructions with two one-byte arguments.

A precise description of all instructions is found in appendix A.

4,4 Calling sequence

To enter a procedure the following sequence of instructions must

be performed:

MARK

evaluation of actual parameters

ENTER N

The first instruction reserves a word on RUST to contain return in-
formation. Next the actual parameters must be evaluated and placed
on RUST, and at last the entering takes place. N is the address of
the record in data segment 0, where the procedure is described.

The mark will contain the following information:

DYN a pointer to the data segment of the calling procedure.

STAT a pointer to a data segment of the surrounding pro-
cedure In the static nesting in the PASCAL. program.
It points to the data segment which is accessible from

the entered procedure.

RETURN return address in the code segment of the calling
procedure.

PDADDR the address in data segment 0 of the calling pro-
cedure.

The ENTER instruction allocates a data segment immediately after
the mark. This means that anything pushed on RUST after a MARK
operation will be the first locations of the data segment (i.e. ac-
tual parameters).

Part of the data segment will be initialized with the value segment
(if it exists) from BS.

If the code segment of the called procedure is not in CM, it will be
transferred from BS.

Finally the DISPLAY is updated.

Four exit instructions exist.
EXIT normal exit. The data segment is popped off RUST.

Return is made to the procedure described in the

mark on top of RUST. The mark is also popped.

EXITF as EXIT, but location 1 in the data segment is pushed
on ADST.
EXITFEV as EXITF, but location 1 is pushed on EVST.

EXITL BN, ADDR all data segments above DISPLAY[BN] are
popped off RUST. Execution continues in address ADDR
of the code segment corresponding to "the data segment
pointed at by DISPLAY[BN]. (1 < BN < DISP-2).

It is possible to pass a procedure as a parameter. For this purpose
a word describing the procedure must be established. The instruc-
tion GPPW N (N is the address in data segment 0) generates such

a word and pushes it on RUST.

The parameter word contains:

PADR the address in data segment 0 of the procedure

being passed as parameter.

STATIC a pointer to the accessible data segment of the
procedure surrounding the procedure passed as
parameter. (Used to update the DISPLAY when activ-
ating the parameter.)

The following sequence of instructions will activate the procedure:

MARK
evaluation of actual parameters
ENTERP BN ON
The address couple (BN, ON) must be the address of a word generated
by a GPPW instruction.

For further explanation the reader is referred to the examples in

appendix B.

5. IMPLEMENTATION

5.1 General

The P-code machine has a structure which makes it relatively
easy to write interpreters for it in high level languages. It is more
difficult to say anything about microimplementations because the
structures and microlanguages differ from machine to machine.

We have not yet iried to write a code generator from P-code
to machine code of traditional machines. On the other hand, a P-code
program is much like a reverse Polish form of the PASCAL program,

hence standard techniques can be used [9, 10].

5.2 CDC 6400 implementation

An interpreter for the P-code machine has been written in
PASCAL on CDC 6400 with the purpose to gain experience, and to
experiment with modifications before the actual implementation on
RIKKE/MATHILDA. Such an interpreter can be implemented very
quickly and it is an easy way to get a PASCAL compiler. It will be
slow, but fast enough for small student programs.

It was absolutely necessary for us to have the interpreter because

it was the only way we could test the compiler,

5.3 The RIKKE/MATHILDA implementation
RIKKE is a 16 bit minicomputer with a 16 bit memory. MATHILDA

is a 64 bit version of RIKKE, and is going to act as a fast functional
unit for RIKKE. A 64 bit memory (wide store) controlled by RIKKE is
connected to RIKKE/MATHILDA. For further details the reader is
referred to [1, 2].

The structures of the P-code machine are realized as follows:

1. The RUST resides in the wide store.

2. The ADST is a register group of 16 registers in RIKKE.
The EVST is a register group of 16 or 256 registers In
MATHILDA.

4, The DISPLAY is a register group of 16 registers in RIKKE.

5. CM is placed in the 16 bit memory of RIKKE.

10

6. A byte is 8 bit, (i.e. only 16 bit integers are implemented).
7. It is the least significant bits of a 64 bit word that are used
in transfers between ADST and RUST or EVST.

The idea of this implementation is that RIKKE shall do the instruc—
tion decoding, address calculation, integer arithmetic, etc. Com-
plicated operations are performed in MATHILDA. It is the
idea to experiment with advanced floating point systems. Several
proposals by Peter Kornerup and Bruce Shriver exist [3, 47,

The standard floating point instructions in the first version of

P-code will be a subset of an instruction set implemented by Kaja L.ando.

11

6. EVALUATION

The work of designing a stack machine for supporting PASCAL
has been quite valuable for the authors because the instruction set
was not a manifest set at the beginning of the compiler writing.

Every instruction, which was not obvious, was discussed in detail
before any decision of including it in P~code was taken. Several
instructions, found in earlier versions, have been removed from

this (so far) final version, some new instructions have been created
and some are not yet used. But for the ease of developing the com-
piler further and for the sake of completeness, the instructions were
included in P-code. Only a few of the P-code instructions have been
difficult to implement such as the enter and exit instructions. They are
quite complicated.

The P-code machine does not support all the changes to PASCAL
mentioned in [7] . No facility to support the dynamic allocation of the
class variable exists. However, it is intended to extend P-code to
cover this new facility when the new PASCAL. compiler becomes better
known.

Because of the P-code machine and a parser generator, the work
of writing a PASCAL. compiler has been concentrated to semantic
analysis, which is the interesting part of the compiler writing.

The authors want to thank their advisor Peter Kornerup who has
had great influence on this project. They also want to thank
Robert F. Rosin who read the manuscript and gave valuable comments

and critisism.

12

Appendix A

The following pages contain. a precise description of all P-code
instructions. The description consists of (1) the symbolic name of
the instruction, (2) the argument(s) (in brackets the number of bytes
occupied by each), (3) a PASCAL description and (4) an English

description.

In the PASCAL description the following abbreviations are used:
IC instruction counter of the P-code machine

® MARK | address of the current active mark

ACP address in data segment 0 of the current active procedure

The term "procedure N'"' means the procedure described at address N

in data segment 0.

1.3

SYMBOL.IC -
NAME ARGUMENTS FUNCTION COMMENTS
EXIT IF EXITF THEN These instructions will re-
EX|TE BEGIN turn the control to the calling
EXITFEV ADST| ADSP]:=RUST|[DISPLAY[DISP-1]+1]; procedure. The data-segment
ADSP:=ADSP+1; is popped off the RUST and
END ELSE the DISPLAY is restored.
IF EXITFEV THEN EXITF also pushes location
BEGIN 1 of the data segment on
EVST|EVSP]:=RUST[DISPLAY[DISP-1]+]; ADST. EXITFV pushes loca~
EVSPi=EVSP+H tion 1 on EVST.
END;
RUSP:= o MARK;
o MARK:=RUST [RUSP].DYN;
N:=RUST[a MARK]. PDADDR;
DISP:=RUST[DISPLAY[0]+N]. BN+ ;
P:=q MARK;
Q:=DISP-1,
REPEAT
DISPLAY[Q]:=P;
Q:=Q~1;
P:=RUST[P].STAT;
UNTIL. DISPLAY[Q]=P;
IF «(RUSTIDISPLAY[0]+N]. PRESENT) THEN FETCH (N);
IC:=RUST[DISPLAY[0]+N]. ENTRY+RUST|RUSP].RE-
TURN;
ACP:=N;
EXITL BN(1) ADDR(2) |Q:=DISPLAY[BN+1]; All data segments above DIS~
WHILE Q # DISPLAY[BN] DO Q:=RUST[Q].DYN; PLAY[BN] are popped off
ACP:=RUST|Q]. PDADDR; RUST. Execution continues
IF = (RUST[DISPLAY[0]+ACP]. PRESENT) THEN in address ADDR of the code
FETCH (ACP); segment corresponding to the
RUSP:=Q; data segment pointed at by
@ MARK := DISPLAY([BN]; DISPLAY|BN].
DISP:=BN+1; (1 < BN < DISP-2);
IC:=RUST [DISPLAY[0]+ACP]. ENTRY+ADDR,;
COPAL.| BN(1) ON(2) N:=RUST[DISPLAY[BN]+ON]. PADR; This instruction is used when
L=ADST[ADSP-1]; evaluating variable parameters
ADSP:=ADSP-1; for a formal procedure. It is
IF {parameter no. "' of procedure "Nl is g "CONST! not possibie to see, whether
parameter] THEN such a parameter is a "WVAR!!
RUST|RUSP]|:=RUST|[ADST| ADSP-1 13 on "CONST" parameter. See
ELSE RUST|RUSP|:=ADST[ADSP-1]; "COPALAM,
ADSP:=ADSP-1; RUSP:=RUSP+H1;
COPALA N(1 or 2) 1=ADST| ADSP-17; This instruction makes it pos-,

ADSP:=ADSP-1;
IF {parameter no. """ of procedure "N" is a "CONST!
parameter} THEN
RUST|RUSP]:=RUST[ADST| ADSP-11]
ELSE RUST[RUSP]:=ADST| ADSP-1 |;
ADSP:=ADSP-1; RUSP:=RUSP+1 H

sible to avoid "FORWARD'"de-
clarations of procedures. In a
call of a procedure it is not
indicated whether a variable
parameter is a "WVAR!" or g
"CONST" parameter (shall
the address or the contents of
the variable be passed as the
parameter). The instruction
checks this on run-time. Of
course this instruction can be

avoided in a multipass com-

piler,

14

SYMBOL.IC
NAME ARGUMENTS FUNCTION COMMENTS
GPPW N(1 or 2) B:=RUST|DISPLAY[0]+N]. BN; A parameter word is genera-
RUST|RUSP]. STATIC:=DISPLAY[B-1]; ted for the procedure des~
RUST[RUSPT. PADR:=N; cribed at Address "N'in da-
RUSP:=RUSP+1; tasegment 0. The instruction
is used when the procedure is
passed as a parameter. The
parameter word contains the
descriptor-address (N), and
the first element to be used in
the static chain, when N ac-
tually is called.
MARK ADSTIADSP|:=RUSP; ADSP:=ADSP+; Reserves a word on RUST to
RUST[RUSP].DYN:= o MARKj contain return-information,
RUSP:=RUSP+1 save old value of RUSP on
ADST.
ENTER N(t or 2) DISP:=RUST|DISPLAY[0]+N]. BN; The instruction is used to en-
S:=DISPLAY|DISP-1]; ter the procedure described
ADSP:=ADSP-1; at address "N" in data seg-
a MARK:= ADST[ADSP]; ment 0. The display is updated;
RUST [a MARK]. PDADDR:=ACP; if the procedure is not in mems-
RUST[a MARK].STAT :=S; ory, it is fetched from BS.
RUST [0 MARK]. RETURN:= Part of the data segment of thg
IC+1 -RUST[DISPLAY[0]+ACP]. ENTRY} procedure is possibly initial-
DISPLAY|DISP]:=a MARK; ized.
DISP:=DISP+;
IF - (RUST[DISPLAY[0]+N]. PRESENT) THEN FETCH(N){
INITBLOCK;
fVAI_UE LENGTH, VALUE START, DATALENGTH and
VALUEADDR in the description record are used to trans-
fer a block of data from BS to initialize part of the proce-~
ACP:=N; dure's data segment.
IC:=RUST[DISPLAY[0]+N]. ENTRY;
ENTERP BN(1) ON(2) N:=RUST|DISPLAY| BN|+ON]. PADR; The instruction is used to en-

S:=RUST[DISPLAY|BN]+ON].STATIC;
DISP:=RUST[DISPLAY[0]+N]. BN;
ADSP:=ADSP-1;
o MARK:=ADST[ADSP];
RUST [MARK . PDADDR:=ACP;
RUST [o¢ MARK]. STAT:=S;
RUST o MARK] . RETURN:=
IC+1 -RUST[DISPLAY[0]+ACP]. ENTRY;

DISP:=DISP+ ;

Pi=a MARKj;

Q:=DISP-1;

REPEAT
DISPLAY[Q]:=P;
Q:=Q-1;
P:=RUST[P].STAT;

UNTIL DISPLAY[Q]=P;

IF ~(RUST[DISPLAY[0]+N]. PRESENT) THEN FETCH(N);
INITBLOCK; {see ENTER]}

ACP:=N;

IC:=RUST|[DISPLAY[0]+N]. ENTRY;

ter a procedure, which is a
formal parameter. "BN", "ON
is the address of a word con-
taining a description of the prg
cedure, which is actually to bg
entered. The instruction
GPPW must be used to create

such a word.

ENTERP does essentially the
same as ENTER, except that
updating of the DISPLAY is

more complicated.

15

SYMBOLIC
NAME ARGUMENTS FUNCTION COMMENTS
FI_OATC c{1) EVST{EVSP]:=FLOAT(C); The constant C is floated to
EVSP:=EVSP+1, real which is placed on EVST
SETBIT EVST{EVSP-1]:=EVST{EVSP-1] V [ADST[ADSP-1]] 8it no. ”ADSTIADSP\—i s
ADSP:=ADSP-1; set to one in the top element
of EVST. The V is meant as
set-union.
TESTBIT ADST| ADSP-1 |:=ADST[ADSP-1] IN EVST|EVSP-1]; If bit no. "ADST[ADSP-1 "
EVSP:=EVSP-1; is one in the top element of
EVST, a true value is put on
ADST, else a false value.
TESTBITC c(1) ADST]ADSP|:=C IN EVST|EVSP-11; If bit no. C is one in the top
ADSP:=ADSP+; EVSPi=EVSP-~1; element of EVST, a true val-
ue is put on ADST else a false
value.
DOUBILE ADST[ADSP|:=ADST[ADSP-1]; The top element of ADST is
ADSP:=ADSP+1 duplicated.
DELETE ADSP:=ADSP-1; Top element of ADST is deleted
SWITCH 1:=ADST| ADSP-1]; The two top elements of ADST
ADST| ADSP-1|:=ADST[ADSP-2]; are Interchanged,
ADST| ADSP-2]:=1;
SWITCHEV SI=EVST|EVSP-1]; The two top elements of EVST
EVST|EVSP-1 |:=EVST[EVSP-2]; are exchanged.
EVST|EVSP-2]:=S;
NOOP 3 No operation.
MSKIN 1) () EVST[EVSP—-ZLW_I’ W_I_J+T>:=EVST1EVSP4 -|<J—~I o> EVST is assumed to contam»
W+1 bits per word. EVST/[1]
EVSP:i=EVSP-1; evsT(1] means bit
f<m, n>
n,n+l,...,mof EVST[I].
The instruction is used to pacH
a field into a packed record.
MSKOUT Hr) J(1) EVST|EVSP-1 |:=EVST[EVSP-1]<W-],W—I—abs(J}+l S Is used to pack a field out of
IF J<0 THEN perform sigh extension. a packed record. If Jis negaH
tive then the field is treated
as a signed number.
INCL EVST[EVSP-2]:=EVST[EVSP-2] < EVST[EVSP-1 ; The powerset operation < (set
EVSP:=EVSP-1; inclusion} is performed on the
two top elements of EVST,
EXCL. EVST[EVSP-2]:=EVST[EVSP-2] = EVST[EVSP-1]; The powerset operation 2 (set
EVSP:=EVSP-1; inclusion} is performed on the
two top elements of EVST.
NON ADST[ADSP-1]:= 1 ADST[ADSP-1]; The boolean value of the top
element of ADST is negated.
oDD IF ODD{ADST| ADSP-1]) THEN ADST[ADSP-1 1:=TRUE If the top element of ADST is
ELSE ADST[ADSP-1] :=F ALSE odd, it is replaced by a TRUE
value, else by a FALSE value
LN N{ 1or 2) ADST{ADSP]:=N; Push the constant "N on

ADSP:=ADSP+

ADST.

16

SYMBOL.IC
NAME ARGUMENTS FUNCTION COMMENTS
EQ ADST|ADSP-2]:=ADST{ADSP-2]| = ADST| ADSP-11; "EQUALM on ADST
ADSP:=ADSP-1;
NE ADST[ADSP-2]:=ADST[ADSP-2] # ADST{ADSP-1]; INOT EQUAL! on ADST
ADSP:=ADSP-1;

LTC Cc(1) ADST[ADSP-1]:=ADST|ADSP-~1] < C; The relational operation
"ESS THAN" is performed
between the top element of
ADST and the argument C.

GTC c(1) ADST| ADSP-11:=ADST[ADSP-1] > C;

LEC c(1) ADST|ADSP-1 |:=ADST|[ADSP-i | < C;

GEC c(1) ADST|ADSP-1 |:=ADST[ADSP-1] = C;

EQC c(1) ADST[ADSP-1]:=ADST|[ADSP-1] = C;

NEC Cc(1) ADST[ADSP-11}:=ADST[ADSP-1] # C;

LTEV ADST| ADSP]=EVST|EVSP-2| < EVST[EVSP-1; The relational operation

EVSP:=EVSP-2; ADSP:=ADSP+1; "_ESS THAN! is performed
between the two top elements
of EVST(real values).

GTEV ADST[ADSP|:=EVST[EVSP-2] > EVST[EVSP-1]; "GREATER THAN" on EVST

EVSP:=EVSP-2; ADSP:=ADSP+1;
LEEV ADST[ADSP]:=EVST[EVSP-2] < EVST[EVSP-1]; "ESS THAN or EQUALM
EVSP:=EVSP-2; ADSP:=ADSP+1; on EVST
GEEV ADST[ADSP]:=EVST[EVSP-2] 2 EVST[EVSP-1]; "GREATER THAN or EQUALY
EVSP:=EVSP-2; ADSP:=ADSP+1; on EVST
EQEV ADST[ADSP]:=EVST[EVSP-2] = EVST[EVSP-1]; "EQUAL'" on EVST
EVSP:=EVSP-2; ADSP:=ADSP+I;
NEEV ADST[ADSP|:=EVST[EVSP-2] # EVST|EVSP-1]; "NOT EQUAL'" on EVST
EVSP:=EVSP-2; ADSP:=ADSP+1;
EQV N(1 or 2) BOO: =+ ALSE; The vectors of length "N
Ji=ADST| ADSP-1]; K:=ADST[ADSP-2]; starting at addresses "J'' and
ADSP:=ADSP-1; K" in RUST are compared.
FOR [:=0 TO N~1 DO If they are equal a TRUE
IF RUST[Jt+1] # RUST[K+1] THEN GOTO 1; value is pushed on ADST,
else a FALSE value is pushed
BOO:=TRUE;
1: ADST| ADSP-1]:=B00;
NEV N(1 or 2) BOO:=TRUE; The vectors of length "N
Ji=ADST[ADSP-1]; K:=ADST[{ADSP-2]; starting at addresses '"J! and
ADSP:=ADSP-1; "K' in RUST are compared.
FOR 1:=0 TO N~1 DO If they are not equal, a TRUE
IF RUST[J+1] # RUST[K+1] THEN GOTO 1, value is pushed on ADST,
else a FAL.SE value is pushed
BOO:= ALSE;
1: ADST[ADSP-1 1:=BOO0;
ANDEV EVST[EVSP-2]:=EVST[EVSP-2] A EVST[EVSP-1]; Intersection (logical and)
EVSP:=EVSP-~1; between the two top elements
of EVST.
OREV EVST[EVSP-2]:=EVST[EVSP-2] V EVST[EVSP-1; Union (logical or) between the

EVSP:=EVSP-1;

two top elements of EVST

17

SYMBOL.IC
NAME ARGUMENTS FUNCTION COMMENTS
MULT ADST[ADSP-2]:= ADST[ADSP-2]*ADST| ADSP-11; Integer multiplication on two
ADSP:=ADSP~1; top elements of ADST
Div ADST[ADSP-2]:=ADST[ADSP-2]DIV ADST[ADSP-11]; Integer division on two top
ADSP:=ADSP-1; elements of ADST
REM ADST[ADSP-2]:=ADST[ADSP-2]MOD ADST|ADSP-1]; Remainder by integer division
ADSP:=ADSP-1 of two top etements of ADST
FLOAT EVSTIEVSP:FLOAT(ADST [ADSP-1]); Top element on ADST is
EVSPI=EVSP+1; ADSP:=ADSP-1; floated to real and moved to
EVST
Fix ADST[ADSP]:=TRUNC (EVST[EVSP-1]); Top element on EVST is trunc
ADSP:=ADSP+! ; EVSPI=EVSP-1; ated to integer and moved to
ADST
NEG ADST|ADSP-1]:=-ADST[ADSP-1]; Sign change on top element
of ADST
ABS ADST{ADSP-1]:=ABS(ADST[ADSP-1]); The top element of ADST is
changed to its absolute value
PLUSC Ic(1) ADST[ADSP-1]:=ADST[ADSP-1]+C; The constant C is added to the
top element of ADST
IMINUSC IC(1) ADST[ADSP-1]:=ADST[ADSP-1]-C; The constant C is subtracted
from the top element of ADST
DIVC C(1) ADST| ADSP-1]:=ADST[{ADSP-1] DIV C; The top element of ADST is in-
teger divided by the constant C
REMC c(1) ADST[ADSP-1]:=ADST[ADSF-1] MOD C; The remainder from integer
division of the top element of
ADST by the constant C is
placed on ADST
PLUSEV EVST|[EVSP-2]:=EVST[EVSP-2]+EVST[EVSP-1 |; Floating point addition of the
EVSPI=EVSP-1; two top elements of EVST
MINUSEV EVST[EVSP-2]:=EVST[EVSP-2]-EVST[EVSP-1]; Floating point subtraction of
EVSP:=EVSP-1; the two top elements of EVST
MUL TEV EVST[EVSP-2]:=EVST[EVSP-2]% EVST|EVSP-1]; loating point multiplication of
EVSPI=EVSP-1; the two top elements of EVST
DIVEV EVST[EVSP-2]:=EVST[EVSP-2]/EVST[EVSP-1 |; Floating point division of the
EVSP:=EVSP-1,; two top elements of EVST
NEGEV EVST[EVSP-1]:= ~-EVST|EVSP-1]; Sign change on top element
of EVST
ABSEV EVST[EVSP-1]:=ABS(EVST[EVSP-11]); The top element of EVST is
changed to its absolute value
LT ADST[ADSP-2]:=ADST[ADSP-2] < ADST|ADSP-1]; The relational operation
ADSP:=ADSP-1; "LESS THAN" is performed
on the top elements of ADST
GT ADST[ADSP-2]:=ADST[ADSP-2] > ADST[ADSP-1]; "GREATER THAN!" on ADST
ADSP:=ADSP-1;
LE ADST[ADSP-2]:=ADST[ADSP-2] < ADST[ADSP-I J; "LESS THAN OR EQUAL" on
ADSP:=ADSP-1; ADST
GE ADST[ADSP-2]:=ADST[ADSP-2] = ADST[ADSP-1]; "GREATER THAN OR EQUAL!

ADSP:=ADSP-I;

on ADST

18

SYMBOL.IC
NAME ARGUMENTS FUNCTION COMMENTS

SAD! BN(1) ON({2) RUST |DISPLAY|BN]+ON]:=ADST| ADSP-1 |} indexed store in RUST
ADSP:=ADSP-1 from ADST

LADI BN(1) ON(2) ADST[ADSP]:=RUST[DISPLAY| BN]+ON]; Indexed load from RUST
ADSP:=ADSP+ to ADST

LAD ADST[ADSP-1]:=RUST| ADST[ADSP-11]; Absolute load from RUST to

ADST

SAD RUST|[ADST| ADSP-2]]:=ADST| ADSP-1 |; Absolute store in RUST
ADSP:=ADSP~2; from ADST

SEVI BN(1) ON(2) RUST[DISPLAY|BN]+ON]:=EVST[EVSP-1]; Indexed store in RUST
EVSP:=EVSP-1; from EVST

LEVI BN(1) ON(2) EVST[EVST]:=RUST[DISPLAY[BN]+ON]; Indexed load from RUST
EVSP:=EVSP+ to EVST

SEV RUST[ADST[ADSP-1]]:=EVST[EVSP-1]; Absolute store in RUST
ADSP:=ADSP-1; EVSP:=EVSP-1; from EVST

LEV EVST[EVSP|:=RUST[ADST{ADSP-1]]; Absolute load from RUST
EVSP:=EVSP+1; ADSP:=ADSP-1; to EVST

LA ADST[ADSP]:=EVST[EVSP-1]; Top element of EVST is
ADSP:=ADSP+1; EVSPIi=EVSP-1; moved to ADST

SA EVST[EVSP]:=ADST[ADSP-11; Top element of ADST is
EVSP:=EVSP+!; ADSP:=ADSP-1; moved to EVST

LADR BN(1) ON(2) ADST[ADSP):=DISPLAY [BN]+ON; The absolute address of BN,
ADSP:=ADSP+ ON in RUST is pushed on ADST

SADV N(1 or 2) D:=ADST[ADSP-1]; S:=ADST[ADSP-2]; N elements in RUST are
ADSP:=ADSP-2§ topied to another place in
FOR 1:=0 TO N-1 DO RUST
RUST([D+ 1:=RUST[S+l];

MVADRU RUST[RUSP]|:=ADST[ADSP-11; The top element of ADST is
RUSP:=RUSP+1; ADSP:=ADSP-1; moved to RUST

MVEVRU RUST[RUSP|:=EVST[EVSP-11; The top element of EVST is
RUSP:=RUSP+1 ; EVSP:i=EVSP~1; moved to RUST

JMP IC:=IC+ADST| ADSP-1]; Jump to a computed address
ADSP:=ADSP-1;

JMPU K(1 or 2) IC:=IC+K; Unconditional jump

JMPF K(1 or 2) IFADST[ADSP-1]=FALSE THEN IC:=IC+K; Jump false
ADSP:=ADSP-1;

JMPT K(1 or 2} IF ADST| ADSP-1T= TRUE THEN IC:=IC+K; Jump true
ADSP:=ADSP-1;

JMPFN K(1 or 2) IF ADST| ADSP-1|=FALSE THEN IC:=IC+K Jump false and keep a false

ELSE ADSP:=ADSP-1; on ADST
IJMPTN (1 or 2) IF ADST[ADSP-1]= TRUE THEN IC:=IC+K Jump true and keep a true
ELSE ADSP:=ADSP-1; on ADST

PLUS ADST[ADSP-2]:=ADST[ADSP-2]+ADST[ADSP-1]} Integer addition on two top
ADSP:=ADSP-1; elements of ADST

MINUS ADST[ADSP-2]:=ADST [ADSP-2]-ADST[ADSP-1 ; Integer subtraction on two top

ADSP:=ADSP-1;

elements of ADST

19

Appendix B

Following are two examples of PASCAL. programs run on the compiler
based on P-code. After the body of each procedure, the P-code which

has been generated for that procedure is listed.

A few instructions concerning input/output not mentioned in the P-code

description appear in the listing.

INCH ININT OUTCH OUTINT

Preliminary 1/O instructions from paper tape reader to ADST and
from ADST to printer. INCH reads a char, OUTCH writes a char,
ININT reads an integer, and OUTINT writes an integer.

The number listed before each instruction is the byte address inside

the code segment.

Example 1

PROCEDURE P(B % BOOLEAN ¢ PROCEDURE Q) 3
VAR X3§ INTEGER}

PROCEDURE R 3
BEGIN »BODY OF Ry

Xi=X+13
ENDS
0 2 LADI 3
4 2 PLUSC 1
b % SADI 3
10 82 EXIT
?RY
BEGIN e»BODY OF Pe
X:=0%
IF 8 THEN Q ELSE Q(TRUE,R)
WRITE(Z Z,X,EOL)
END?
0 & LN 0
2 ¢ SADI 3
6 % LADT 3
18 2 JMPF 14
14 ¢ MARK
15 & NOOP
16 & ENTERP 3
20 2 JMPU 14
24 2 MARK
25 ¢ LN 1
27 % MVADRU
28 § GPPHW 9
30 %t ENTERP 3
34 ¢ LN 45
36 & QUTCH
37 ¢ NOOP
28 ¢ LADI 3
42 ¢ QUTINT
43 2 LN D
45 ¢ OUTCH
46 2 EXIT
PPy
BEGIN pMAIN PROGRAMY
P(FALSE,P) 3
END.
0 2 MARK
1 % LN 0
3 ¢ MVADRU
4 2 GPPW 5
6 ¢ ENTER 5
8 2 STOP

¥EFEE POBS P-CODE SIMULATION »x*¥x¥

o

[]

20

21
Example 2

» REDJWHITE AND BLUE IS READ INTO ARRAY A. THE ARRAY IS THEN

SORTED IN THE ORDER RED,WHITE AND BLUE +
CONST

N=203
TYPE
COLOUR=(RED,NHITE,BLUE);
VAR
A% ARRAYIi..N1 OF COLOURS
CH 3 CHAR:
V 3 COLOURS
I,RsWyB SINTEGER}S

PROCEDURE SWAP(I3JSINTEGER) $
VAR
C ¢ COLOURS
BEGIN » BODY OF PROCEDURE SWAP +

Ci=A0J]

ALJI3=ALI13

A[I]-=C;

END3J

0 ® LADI 3 2
4 3 LADR 2 0
8 % PLUS
9 3 LAD
10 & SADI 3 3
i4 ¢ LADI 3 2
18 & LADR 2 g
22 ¢ PLUS
23 3% NOOP
24 2 LADI 3 1
28 % LADR 2 i
32 &t PLUS
33 ¢ LAD
34 ¢ SAD
35 3 NOOP
36 3 LADI 3 i
40 2 LADR 2 3
44 3 PLUS
45 3 NOOP
46 ¢ LADI 3 3
50 % SAD
51 8 EXIT

22

FUNCTION COL(I% INTEGER)® COLOUR}
BEGIN » BODY OF FUNCTION COL ¥
COLs=A[I1;

END 3
0 ¢ LADI 3 2
4L & LADR 2 tH
8 3 PLUS
9 % LAD
10 3 SADI 3 1
14 ¢ EXITF

PROCEDURE RESULTS
BEGIN »B0DY OF PROCEDURE RESULT v
FOR It=1 TO N DO
CASE A[Il OF
RED #% WRITE(Z REDZ) 3
WHITE?: WRITE(=z WHITEZ) 3
BLUE 3 WRITE(=Z BLUEZ) S
END;
WRITE(EOL) ¢
END3S

i‘“&.“““”””“”“““““”“““”“““

.'“Obﬂfl'ﬂ“““M’AO‘“““““”““”““n““uu““““ﬂ““

LN

DOUBLE

LEC
JMPF
SADI
LADI
LADR
PLUS
LAD
MULTC
LN
PLUS
JMP
JMPU
LN
OUTCH
LN
OUTGCH
LN
QUTCH
LN
OUTCH
JMPU
LN
OUTCH
LN
OUTCH
LN
OUTCH
LN
OUTCH
LN
ODUTCH
LN
OUTCH
JMPU
LN
OUTCH
LN
OUTCH
LN
OUTCH
LN
QUTCH
LN
OUTCH
NOOP
JMPU
JMPU
JMPU
JMPU
LADI
PLUSC
JMPU

DELETE

LN
OUTCH
EXIT

20
107

74
45

18

58
45

23

20

36
45

12

21

16
~58
-4b
-28

-108

23
23

23

23

24

BEGIN » MAIN PROGRAM +
I3=03
WHILE I < N DO
BEGIN READ(CH) § I3=I+1}
IF CH = ZRZ THEN A[I1:=RED

ELSE
IF CH = ZWZ THEN A[I1s=WHITE
ELSE
IF CH = =ZBZ THEN A[Il3=BLUE
ELSE I8=I-13
END 3

R$3=13 W3=Nj Be=N3}
WHILE W2R DO
BEGIN
Vi=COL (W)
IF V=RED THEN
BEGIN
SWAP (R, W) ; R3=R+13
END
ELSE
BEGIN
IF V=BLUE THEN
BEGIN
SHAP(W,B) 3 Bs=B-13
ENDS
Wi=W-13
END 3
END 3

RESULT S

END.

10
12
16
47
18
22
26
28
32
36
38
42
L6
50
51
53
5
58
62
64
68
72
76
77
79
80
8
88
90
=T
98
102
103
105
106
110
114
116
120
122
124
128
130
134
136
140
144
148
149
152
153
155
156
160
161
163
164
168
172
174
178
179

u“"“”“"“"@.”““M“”n“““n“ﬂ“”n”““ﬂ““““““0“““..u‘.“.ﬁ“”““”.0”00“““..“”“"%“““

LN
SADI
LADI
LTC
JMPF
INCH
NOOP
SADI
LADI
PLUSC
SADI
LADI
EQC
JMPF
LADI
LADR
PLUS
LN
SAD
JMPU
LADI
EQC
JMPF
LADI
LADR
PLUS
LN
SAD
JMPU
LADI
EQC
JMPF
LADI
LADR
PLUS
LN
SAD
JMPU
LADI
PLUSC
SADI
JMPU
LN
SADI
LN
SADI
LN
SADI
LADI
LADI
GE
JMPF
MARK
LN
MVADRU
LADI
MVADRU
ENTER
NOOP
SADI
LADI
EQC
JMPF
MARK
NOOP

nN -
NS ON N NN

fow]

66

23
20

W

E i~ B AV AN

23
23

21
23

23
21

23

23

24
25
26

25
24

25

22
22

25

26

180 3 LADI 2 24
184 ¢ MVADRU

185 3 NOOP

186 % LADI 2 25
190 % MVADRU

191 ¢ ENTER 5

193 % NOOP

194 ¢ LADI 2 24
198 & PLUSC 1

200 ¢ SADI 2 24
204 3 JMPU 50

208 ¢ LADI 2 22
212 3 EQC 2

214 3 JMPF 30

218 % MARK

219 § NOOP

220 3 LADI 2 25
224 3 MVADRU

225 % NOOP

226 8 LADI 2 26
230 3 MVADRU

231 ¢ ENTER 5

233 2 NOOP

234 3 LADI 2 26
238 % PLUSC -1

240 % SADI 2 26
244 % LADI 2 25
248 % PLUSC -1

250 % SADI 2 25
254 ¢t JMPU -114

256 3% MARK

257 3 ENTER 13

259 & STOP

¥¥¥%¥ BOBS P-CODE SIMULATION **¥¥x»

RED RED RED RED RED WHITE WHITE WHITE WHITE WHITE WHITE WHITE WHITE WHITE

BLUE BLUE BLUE B8LUE BLUE BLUE

27

REF ERENCES

(1] "A Description of the MATHILDA System!, Bruce Shriver,
DAIMI PB-13, April 1973.

[2] "RIKKE-1 reference manual', Jgrgen Staunstrup,
DAIMI MD (to appear).

[3] "A proposal for a unified number representation giving
normalized, unnormalized and interval arithmetic!"

"A unified numeric data type in PASCAL!' , Peter Kornerup,

DAIMI (unpublished papers).

[4] "A small group of research projects in machine design for
scientific computation', Bruce Shriver,
DAIMI PB-14, June 1973.

[5] "The programming language PASCAL!", N. Wirth,
ACTA INFORMATICA 1, 35-63 (1973).

[6] "The design of a PASCAL compiler", N. Wirth,
SOF TWARE-PRACTICE and EXPERIENCE, vol. 1,
309-333 (1971).

[7] "Planned changes to the programming language PASCAL!,
N. Wirth, June 1972,

[8] "The portability of the BCPL compiler!, M. Richards,
SOF TWARE - PRACTICE and EXPERIENCE, vol. 1,
135-146 (1971).

[9] "Compiler construction for digital computers!, David Gries,

John Wiley & Sons, Inc., 1971,

28

0]

"A compiler generator', W.M. McKeeman, J.J. Horning,

D.B. Wortman, Prentice Hall, Englewood Cliffs, 1970.

[1 1] "A short description of a translator writing system
(BOBS-system)!", Bent Bruun Kristensen, Ole Lehrmann
Madsen, Bent Bak Jensen, S¢ren Henrik Eriksen,
DAIMI PB~11, February 1973,

	20050913120746.pdf
	20050913120831.pdf
	20050913120900.pdf

