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METHODS FOR UPDATING THE SINGULAR VALUE DECOMPOSITION

Linda Kaufman

Abstract

The linear least squares problem of minimizing HAg-—gilz
where A is an mxn matrix, m > n, may be solved using
the singular value decomposition in approximately 2mn3+4n3
multiplications. In this paper the problem of solving
HA'g-—QIIZ is considered where A' results from deleting
or adding a column to A. This might occur when a change
is made in the ‘model of a process. Instead of computing the
singular value decomposition of A' from scratch, the
singular value decomposition of A 1is updated. Since the up-
dating require about 6n3 multiplications the algorithms
are useful when m>>n. The problem of recalculating some
or all of the singular values of a matrix A', which is
obtained by deleting or adding a row or a column from a

matrix A, whose singular value decomposition is known, is

also studied.




Section 1. Introduction

The singular value decomposition (see Rao and Mitra [8]1) of

an mxn matrix A of rank r 1s given by
(1.1) A=Usxv?®

where U(mx m and V(nxn) are orthogonal matrices and X 1is
an mxn diagonal matrix with elements (01’02""’Or’0’0’0) where

o o,. The o's are called the singular values of A and

i-1 = %
are the positive square roots of the eigenvalues of ATA. The de-
composition (1.1) has many applications (see [ 5 ]and [8]),
perhaps the best known.of which is the solution of the linear least

squares problem in which given the matrix A and a vector b one

finds the vector X5 of minimal length which minimizes

Since HAg—gllz = HUZVT g—gllzll = Hiﬁfpg—UTkﬂ!Z, once can easi=-

ly show that

x = VZ+ UT b

where the pseudoinverse =t s given by



Golub and Reinsch [4] have given a numerically stable algorithm

which computes X5 in about (2n1n3+ 4n3) multiplications and

additions. Businger [2 ] has given algorithms which update Zo
when a new row is added or deleted from the system without recom-
puting the new singular value decomposition from scratch. His
algorithm requires about 6n3 multiplications and additions and
hence is useful when m>>n, the most common case in statistical
applications. In Sections 2 and 3 of this paper we will present
algorithms for updating x whena column is deleted from or added to
A. This might occur when there is a decision to change the model
for a process. Like Businger's schemes, the procedures are practical
when m>>n. The algorithm for adding a column is quite similar

to Businger's for adding a row, but the algorithm for deleting a
column is more similar to the approaches given in Gill, Golub,

Murray, and Saunders 14] which unlike Businger's scheme, avoids

complex arithmetic for real matrices.

Section 2. Adding a column

Let A'= [A;a] and assume the singular value decomposition
of A is given by

A=UsvVr.

If P and Q are orthogonal matrices, then solving
1 -—
Ha'z - blil,
is equivalent to finding %4 which minimizes

T

ez uTa et vlix - puT pliZ .



If P and Q are determined such that PT(Z:U?Q)Q is a diago-

nal matrix X', then

X = V()Z'+PTC where ¢ = UTQ .

~ ~

The algorithm for finding X' consist of 2 phases

(1) The reduction of L = (X: UTa) to a bidiagonal matrix

~

J using plane rotations as explained below.
(2) The reduction of J to X' wusing the second part of

the Golub—~Reinsch algorithm.

The matrix L has the form

X

X X X X X X X X

The first phase begins with the formation of the Householder

transformation P_ = I - uuT which zeros 1. for i> n+i1
o) i,n+1

when applied to L. Thus the matrix L' = P_L has the
form

X

X
X
X
X
X
X
X
X
X
X

The transformation PO is also applied to ¢. Reducing L' to
!
J reguires n major steps,of which the kth zeroes lk it
7 N
Each step consists of applying to L' a number of Givens trans-

formations Ri’ of the form

.th
c s -1 row




th

2 1. We show the k

where cz + g% = step which is typical.

At the beginning of the kth step, L' has the form

th

(2.1) X row

X X X Xoo
v
~

A Givens rotation Rk is chosen so that the (k,n+1)th element

of RkL' is zero. The matrix RKL‘ has the form
X X 0
X X 0
X X 0
X X X
X X

X

The unwanted (k+1,k)th element is chased up the diagonal using

column and row rotations in the following steps:

X X 0 X X 0 X X + O
X X + 0 x x & 0 X X 0
X X 0 + x X 0 ® x x 0
&) x X X X X X
X X X X X X
X X X
(1) (2) (3)
(2.2)
x x & 0 X X 0
+ %X X 0 ® x x 0
X X 0 X X 0
X X X X
X X X X
X x
(4) (5)

% eliminated element,

+ introduced nonzero element.




The main problem with this algorithm is the necessity of
having the U matrix handy. Unfortunately the Golub-—Reinsch algo-
rithm does not construct U or store sufficient information for
its construction. To modify their algorithm to save U would be
quite costly. However, the situation is not that bleak. In the

first part of the Golub-Reinsch algorithm the orthogonal matrices

0 and Z are determined such that

(2.3) A=0QJd%Z

where J is bidiagonal. The matrix Q is a product of House-
holder transformations, and although it is not explicitly con-
structed, it (and its transpose) can be easily reconstructed.
The information for its reconstruction can be stored in the
"zZeroed" portion of the A matrix. If the decomposition (2.3) replaces
the singular value decomposition of A, then our algorithm is
exactly the same with VT replaced by Z and L given by

T

(J: Q a)

th

At the beginning of the k step of the algorithm L' would

have the form

X X 0
XX O tn
X % X - k row
X X X
,x X
X
instead of that given in (2.1). The same sequence of Givens

rotations would reduce this matrix to bidiagonal form.



Section 3. Deleting a column

Assume that the singular decomposition is given by

A =UZV'Il
and that it is desired to find the minimal solution §1 of

(3.1) a'x - bil,

where A' 1is formed by dropping one column, without loss of gene-
rality the last column, from A.

If orthogonal matrices @Q and P can be found such that

v'lo
5.2) - (o2
o'
and PXIQ = diag(Si) = ¥ and the matrix U' 1is set to UPT and
' to I En-1’ where En—1 is the first n-1 columns of the
identity matrix, then because
VI O .
Z=PUTAVQ=PUT[A': al < > = (pUTA!VWpUT%),
011
it should be obvious that
Al —_ Ul zlvlT
is the singular value deéecomposition of A', Thus the solution
of (3.1) is given by
x, = vietuty

The problem reduces to determining P and Q which satisfy
(3.2). As in Section 1, the algorithm has 2 stages. 1In the first

stage orthogonal matrices P and Q_ are found such that

(3.3) vI g = ef

~T a ~




and (PaZ‘Qa)En_1 = J an mx(n-1) bidiagonal matrix. Equation

{3.3) implies that there exist a matrix V‘ and a vector g such that
vy ELT
vo, = ()

but since \ZQa is orthogonal, g~ =0 .

In the second stage‘the matrix J is reduced to diagonal
form by the second part of the Golub-Reinsch algorithm using row
rotations Pb and column rotations Qb. The matrices Q and P

are simply

Determining Pa’Qa and J requireg n-1 major steps. If

and Qk represent the product of row and column transformations

th th

up until the k step, then the k step is designed to zero
th

the k element of v(k)T = VT QK and to keep the bidiagonality of

~ ~T}

Jk = PkZQk

At the beginning of the i th step, X(k)T looks like
(0 -+« 0 ,xX X X X)
k-1
and Jk looks like
\
XX kulcohmm
XX\L
X X .
X

X

A column Givens rotation Rk is chosen so that the kth

element of v(k)TR is zero. When Rk is applied to Jk' the

k



result is a matrix whose form is

th column

X X
X X

X X X <«

X X X

X
To get rid of the unwanted (k+1,k)th element a row trans-
formation Rk is applied. This is followed by
another row transformation to zero the (k-1,k+1)st element. The

result is a matrix which looks like

X X
+ X X
X X

X X

The unwanted (k,k-1) element is chased up the diagonal as in
(2.2). Since none of the column transformations in the chasing

T
process affect the k+1st plane, the zeroes in z(k) Rk are not

disturbed.

Section 4. Updating the singular values

In this section we will consider methods for determining some
or all of the singular values of a matrix A which differs from
another matrix A, whose singular value decomposition is given by

A = UEZVT, by the deletion or addition of a row or column.




9.

Finding a few of the singular values via the Sturm Sequence Algorithm

1) Adding a row T
: a
i:[i{.
A
Since T T TT
1 0 a T 1 0 aa aaAvUu
Cron) (2] e = =] = G © ) = o
olu A 0lu U'Aa =¥

the singular values of A are the positive square roots of the

nonzero eigenvalues of D. Since the matrix D has the form

Tmt

one can easily determine its eigenvalues by the Sturm Sequence
algorithm (see Wilkinson and Reinsch [91) which requires the signs
of the principal minors of D-oI for various values of «.

If one sets

Coy = 1 5 di = di—a, e, = 1, b1 = 0 and
3 2
e = "die54F Pyc 4
c, =c, ,d
i i-171
then it is easy to show by expanding D=-alI by its ith row that
ey contains the ith principal minor.
2) Deleting a row
=<§J
aT
If an orthogonal matrix P is construacted such that P(UT gm) =S then

because of the orthogonality of the two matrices PUT has the form



10.

Thus

pysipl = pul ¢

which means that the singular values of A are the positive

square roots of the eigenvalues of

T T,T
(4.1) BE _4PII P E__,

These values can be ealculated very easily with a Sturm Seguence

approach if P 1is chosen correctly. The P matrix can be written as

P = Rm—']’ ,R1
where R is designed to zero the kth element of R -« R (UTe )
k k-1 1 ~m
and has the form
: ¢ s - kth row
k k
5k "%k
I
2 2 _ . . . _ oaa ~.th
and Cy + Sy = 1. Given a diagonal matrix D = dlag(di) the  k
principal minor of PDPT is the kth principal minor of
T T
Rk.. R1DR Rk
th s .
and the k principal minor of
k
T T
Ry_q--+R4DRy...Ry 4 = r=1di




1l.

The matrix

T T
R, _q--+RqDRy R _4
has the form

X a

kth row aly
Cxet1
[ .d
n

If Rk is applied to its left and right, its kth prin-
cipal submatrix would be
det< 5 5 > = Skdk+1det(X)
+ , :
Cx? CkY Tk y
+ c_2 n di

K i=1

Since det(X) is the k-1st principal minor, we can write the

following recursive for the kth principal minor e

-1
a

k
2 2
Sk xr1%%-17%% k
In our case we need the princpal minors of

T T, T T

EpqPZIP B _,-aE B , =
T < T _ T
E_q PLIE" -oI)P™ E__,
so that d, = ci—a for i < r and di = -« for 1i>r.

3) Adding a column

|
1}

)
T
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Since
T T | T AV

a a ala
(H)(Cr) @rm (519) = Crofom—) =0
0'v A V'A™al 7%
the singular values of A are the square roots of the eigen-

values of D and one may proceed as if one were adding a row.

4) Deleting a column
A = (A: g)

If an orthogonal matrix P 1is constructed such that

T

PV e = e , then
~n ~n T PUT - eT
~n ~n
and because of the orthogonality of the 2 matrices, E’VT has
the form
vi]o
011 ’
Thus KT
Ppxlisp = PVT<FaT> (R: a) V PT
- ()R @ a(%H9)
\o [1/\,T <\0 1)
_ <\7Z\T21\7 5\72\’1‘2>
TRV [gTa

and hence one may proceed as if one were deleting a row.

Finding all the eigenvalues by a Generalized Eigenvalue Problem

1) Adding a row.

T — ravT
Let A =UZXV and A = [A }.
Since aTa = v 3T xv,
H
‘vi(a: aT) BV = T E+ (V'a) (vTa)"




13.

which means that the singular values of A are the square roots
of the eigenvalues of D-+§3QT. Bartels, Golub, and Saunders [1]

have shown that solving the eigenvalue problem
(D+bp)x =hx
is equivalent to solving the generalized eigenvalue problem

(4.2) Ax = ABX

~

where A and B are both symmetric and tridiagonaland B 1is

positive definite and

A

It
=
(W]
=
+
=

W
Iiey
=

B = KK

where K is the bidiagonal matrix such that

0
b= (3)
0
b
n
Crawford [3] and Peters and Wilkinson [7] have recently given

methods for solving (4.2).

2} Deleting a row.

_ A
Let A = ( T).
2

Since
IV = VARV 4 vTa) (vTa) T

a

the singular values of A are the square roots of the eigenvalues of

D - bk

where D = 5Ty and R = VT%. As in the previous case these




14.

eigenvalues can be found by solving a generalized eigenvalue pro-

blem like (4.2). In this case

(4.3) A=KDK - (Kb) (Kb .

3) Adding a column.
Let A = (a: A).

Since

T
vT(a: &) (o = W) Tyt +xxt,

A

the singular values of A are the square roots of the nonzero

eigenvalues of problem (4.2), with D = sxT and b = UTg.

4) Deleting a colunmn.
Let A = (a: A).

Since

T
T)U = UTAATU+UT’6\1’~TU

the singular values of A are the square roots of the nonzero
T T

eigenvalues of (4.3) with D = XX and b = U"a.

We note that among the algorithms just presented there
exists an algorithm for finding the singular values of a matrix,
which has resulted from the deletion from or addition to a row
or a column of another matrix A, without requiring the U
matrix of the singular decomposition of A. Thus the Golub-

Reinsch algorithm,which does not compute U, can be used without

modification.
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