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Abstract

In this paper we introduce the notion of a level grammar and a level
language. We define an extension to the extended definable sets and
we characterize AL.GOL -like languages, extended definable sets,

and extensions of those as languages generated by level grammars with
different Kinds of restrictions on the productions and the use of pro-
ductions. Finally we investigate some relations between the families

defined.




On Extensions of ALGOL-like Languages
by
Sven Skyum

1. INTRODUC TION

Ginsburg and Rice (1962) introduced the notion of definable sets
(ALGOL ~like languages), by using formal systems of equations used
to define constituent parts of ALGOL 60 (Naur (1960)). Ginsburg and
Rice (1962) showed that the family of definable sets coincides with
the family of context-free languages and they also pointed out that
significant classes of programs in ALGOL were not representable
as definable sets.

Rose (1964) then introduced the notion of extended definable sets,
obtained by a greater class of formal systems generating languages.
No characterization of extended definable sets by systems similar to
context-free grammars has been given up to now.

Also Herman (1973) has defined an extension of the definable sets,
the socalled simple recurrence languages, and shown that this family
coincides with the family of EOL languages (see e.g. Herman and Ro-
zenberg (1974)). - '

In this paper we introduce the notion of level grammars which is
defined as context-free grammars, except that production rules are
specified for all symbols (like for EOL -systems) and that the use of
productions is restricted by the association of a so-called level number
to each symbol In the sentential forms.

In this framework we are able to characterize the definable,
extended definable, simple recurrence, and extended recurrence lan-
guages by simple restrictions on the level grammars and the use of’
productions. The latter family, extended recurrence languages, is an
extension of extended definable sets in the same way as simple recurrence
languages are an extension of definable sets.

| Finally we investigate the relations between the families mentioned

above.




2. PRELIMINARY DEFINITIONS AND RESUL TS

The following five definitions define notions introduced by Rose (1964),

Definition 1

A (n-ary) format is any triple (Z; £; F) where I (the alphabet)
is a finite setof symbols, £ is a n-tuple (§,,..., & ) of symbols
(called variables) not in L, and F is a n-tuple (F{,..., F, ) of finite
subsets of (SU {&;,..., & )*.

Definition 2
The generating function Is-. £ E for a given (n-ary) format
? ?
(Zy &3 F) is defined thus:

For each n-tuple W = (W, ,..., W, ) of finite subsets of (TU {&,,..., & })*,

o5, ¢, (W)= (U oF.),..., U oF, ).
Y OERy £(w) OERs. £(w) |

where RE' W) is the set of all substitutions o such that, for each
?

X € X, 0(x) = }

(1=i=n)

x| and o(&;) is a subset of W, with at most one element

Definition 3

The approximating sequence E(k) = (E; (k), ..., E, (k) (k € 1)
for a given (n-ary) format (Z; £; F) is defined thus:
E;(0) =¢p (1 =i<n), and for all k> 0 E(k) = Iy £ F(E(k-] )). The
nh-tuple E = (\J E, (k),..., ), E, (k)) is said to E)e ;:)ener‘ated by
@ £; F). k=0 k=0

Definition 4
A language L € Z¥ is said to be extended definable if it is the

n'th coordinate of the n-tuple generated by some (n-ary) format.

We will denote the family of extended definable sets as KED'



Definition 5

The polynomial function Py £ F for a given (n-ary) format
? ?
(Z; &3 F) is defined thus:

For each n-tuple W = (W, ,..., W, ) of finite subsets of
(U {&,eeny &))F
w
W) = .o
Py, ¢y FW) = (S )0, 5, R )
where S is the substitution o such that, for each x € T, o(x) = { %}

and o(&;) =W;.

The following theorems belong to Rose (1964) and Ginsburg and Rice
(1962).

Theorem 1

A language L € Z* is definable (defined by Ginsburg and Rice
(1962)) if and only if it is the n'th coordinate for the minimal fixpoint
(mfp) of the polynomial function pz; £ F for some (n-ary) format

(X5 & F).

The mfp for pg. ;. isD=(Dy,..., D) =(UD(k),..., U D (k)

>0 >0
where Dy(0)=¢p (1=i<n) and for all k=1 K K

DIK) =Py, ¢, (Dlk=1)).

We will denote the family of definable sets by 3D.

Theorem 2

The family SD equals the family of context-free languages (SC
If we use the notion from definition 1 and 5 we can give the following
definition of the simple recurrence languages introduced by Herman

(1973).

Definition 6

A recurrence system is a 4~tuple R = (Z; £; F; o), where
(Z; £; F) is a(n-ary) format ande = (&t ;. .., & ) is a n-tuple of

finite subsets of ¥ .

=),




We define the simple recurrence language L(R) of R by

L(R) = U by (k)
k=0
where DYk) =(D{ (k),..., D!(k)) is defined inductively by
D' (0) = (o ,..., 0, ), and for k = 1 DYk) = Py, &, l:(D'(k—l ).

The family of simple recurrence languages is denoted by ESR'

As simple recurrence languages are an extension to the definable
languages, we will define an extension to the extended definable

languages as follows.

Definition 7
Let R =(Z; £; F; a) be a recurrence system. The extended

recurrence language I_E(R) of R is defined by

LeR) = U Elk)
k=0

where E'(k) = (E] (k),..., E!(K)) is defined inductively by
EYO)=(a; ..., 0 ), and for k =2 1 EYK) = Is. ¢. (E"(k-1)).

) &5 F
We will denote the family of extended recurrence languages by &

ER’

Proposition 1

For every recurrence system R = (Z; £; F; o) there exists a

recurrence system R = (Z; &; F; a) such that

i) For all 1 <i<hn, F; does not contain ),
ii) for all 1 <i<n, o does not contain A, and
i) Lo(R) = L(R)\ {A}.
Proof
LetR=(Z; & ,.0.,6 3 Fyyeee,Fny @ ,...,0,) be an arbitrary

recurrence system and let E'(k) = (E! (k),...,E!(k)), k€ 1, be defined

as in definition 7.




For k= 0, let
m(k) ={i | X € E}(K)}.

If m(k, ) =m(ky ) then m(k, +1) = m(ky+1). This follows because, if

i € m(k,+1) then there is a word x inF,; such that x=§&; & ... & ,
m= 0, where A € E} (ky) for 1 = j=<m. Now if m(k,) =T;(k:) thenm
AEE! (ky) for1 = ,i_ m which means that i € w(k,+1).

Since?n‘(k) < {1,...,n}, there must exist ak, and a k, such that

m(ky) =7(ks) and k, F k.

Let p and g be integers such that 0<p < q and 7(p) =m(q). Let d = g-p.
Now let R = (Z; El,...,gndﬂ; El,..., I_:-nd+1; &'1,...,&“”) be the

recurrence system defined as follows.

(1) For 0=i<n-~1, Eid+1 :=U U(Fi+1)\{)\}'
gEMy

(i) For2=j=d, 0=i=n-1, Eid—!—j =U 0(F1+1)\{M'

(iii) Foa+r ={€(n“1)d+1""’gnd}'

where M, , 1 = r < d, is the set of all substitutions ¢ such that, for
each x € T, o(x) = {x} and o(&,) is either E(i ~ya+r OP XA (X only if
i € w(p+r-1)).

(iv) For0<i=sn-l, ta., =E!'.(p)\ {A}.
(v) For0<is=n-1, 2<j<d, 521d+3 =Q.

n-1

(Vi) Ghas =_LJ1 END)\ {A}.
l._—..
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The following equations hold true for 0 is<n-1, 1 <j<d,

and 0 < r. (See table 1.)

(1)

Elqqs;(rdti-1) = E} ., (ptra+i-1)\ {A}.

We show (1) by induction on k = rd+j =1, where 1 < j's d.

Assume that j =1 and r = 0.

For 0= i< n-1 we then have Ei'd+1(0) =0ias1 =Ei+l(p)\ {xt.

Assume that (1) holds true for k = r; d+j, . Then there are two possibilities:

a)

b)

ji =d, and therefore k+1 = (r; +1)d+1.
Then for 0 < | < n-1

W€ Elg 4, ((ry+1)d)

iff

there exist a word ngild Wy gied .o .gikdwﬁzL inFiq4+, Where

w, € Z¥ for 1 < m<k+l, and words w, € E} 4(r, d+d-1) for
n

1 =m=Kk, such thatw, =w, ifiy =1i, and
— — — L 2 1 2

W = Wy Wy Wo Wa oo o Wie Wiy g

iff

there exists a word Wl &, Wi&, ... & wl,, inF,,, \ {A where
1 2 k

wl E(ZU{E ,oea, bt \ {gil,...,gik})* for 1 =m< k+1, and

A € Ef (p+ry d+d-1) if £, occurs in some of the words w!, and there

exist words w, =w, ifi, =i
1 2 1 2

and W = W, Wy Wy Wy o0 o Wy 4y

where w, is the word we obtain by substituting A for all occurrences
of &4, 1T=t<n, inw].

iff

w € Ef,, (pHry+1)d) \ {A}.

i1 < d, and therefore k+1 = r,  d+j, +1.
Then for 0= i < n-1 we can show that
Elgey 41 (Prdtiy) = Ef L (ptry dtip )\ X} in a similar way.
1
nd

Because of equation (1), Elq., (r) ={J El(r-1)forr=1,
i=(n=-1)d+1
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n-1

and El4.,(0) = \U E!(i) we have that LE(R) \ (X} e

(R).
i=0 E

To show the other Iinclusion it suffices to show that for
0=sisn-1,1=j<d,0=r, 0<s<d, and 0=t = rd+j-1-s

the following inclusion holds true.
(2) -E—i|d+j(t)§—E-i'd+j(l"d+J'—7 ).

For i € I let W(i) denote the n-tuple (E! (rd+j-1),... JEL ~ 4y s (rd+j-1))

where | = prd+j-1, and 1 < j = d.

Letr20,1=<j=<d, 0<s<d, and 0=t = rd+j-1-s.
Then

(Bl (0),ee v, Bl myans+1 (0)) = (@, ,0) = W(s)
and therefore because of the construction of R

(Elea(1),eve, Bl -1yasssa (1)) S WistH)

(Ef (d-s-1),..., El4(d-s-1)) € W(d-1)

(E'(rd=-s-1),..., Els (rd=-s-1)) € W(rd-1)

.

(EJ(rdti=s=1),..., El~1yq4;(rdtj-s=1)) € W(rd+j-1).

This inclusion is equivalent to inclusion (2).

Corollary
For a given recurrence system R it is decidable whether

LE(R) contains A or not,

Definition 8

An EOL -system is a 4-tuple G = (V, P, w, Z), where V (the
alphabet) is a finite set of symbols, P (the productions) is a finite
subset of P((V, V¥*)), such that for every A € V/, there exists a
x € V¥ such that (A, x) is in P, w (the axiom) is a word in V+ (it

is no restriction to assume that w € V), and X (the terminal alphabet)
is a subset of V.
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Definition 9
The EOL ~language L(G) of an EOL~system G = (V, P, w, X) is

L(G) ={x€Z* | wa" x|

G
¥ . ; defined b
where = is the transitive and reflexive closure of = erl %
G G
z =y Iff there exist u;,..., uy iNVandvy,..., v, in V¥ such that
Z=W.eeole, Y=V ..., and(u;, v;) is in P for each 1 < j < k.

The following theorem belongs to Herman (1 973).

Theorem 3
The family gSR equals the family of EOL ~languages (350[_).
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3. LEVEL GRAMMARS AND LEVEL L ANGUAGES

Definition 10

A level grammar is a 4-tuple G = (V, P, S, Z) where
V is the alphabet,

P (theproductions) is a finite subset of fP((V, V¥*)),
S € V is the start symbol, and

Z € V is the terminal alphabet.

Definition 11

We say that w(A, n)w! directly yields W(Al,n+1f. AAG N )W I G
(w(A , n)w! (:3> WA, T ) (A, T )w!) if w, w! € (V, 1)* and
(A, Ay .. A )E P. é is the trinsitive and reflexive closure of 8 .
As usual we will write = and = if itis clear which grammar G is

involved.

Definition 12

The level language L(G) is generated by a level grammar
G =(v, P, 5, ) if

L(G) =h({w € (v, 1)* | (S, 0)5 w})nz*

where h : (V, 1)*¥ » V¥ is a partial function only defined on strings,

where all variables are associated with the same level number n € 1.

More specifically h is defined as follows:

(1) hx)= .

(2) Forall Aj,..., A €EVandn€ I, h({A ,n)...(Ac,n)) = A ... A,
(3) For all other strings in (V,I)+, h is undefined.

We have that
*
L) = U [h(iw e (v,n* | 6,00 2 w}) no* 1] = U L(G,n).

=0 n=0

We say that L(G, n) is the language of level n generated by G.
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Example 1

Let G =({S, a, b}, {(sS, ab), (a, aa),(b, b),(b, bb)}, S, {a, b}).
Then

L(G,0) =¢p

L(G,1) = {ab}

L(G, 2) = { aab, aabb)

zn"‘l . _
L(c,n) ={a® b'|1sis2*71}
Le) =U LG,n) ={a? b'| n=0,1=<i<2}
n=0

The family of level languages will be denoted by EL_L'

It is easy to check that the following theorem is true.

Theorem 4

F ., =3 (=3

L EOL SR)'

Definition 13
Let G =(V, P, S, Z) be a level grammar.

We write w; (A, n)w, (A, n). .. we— (A, n)w, Do Wi WWs Wa o Wy -y WW
ifw, € ((V, D\ (A,n)* (1 <i<k)and(A,n)= w. :’fp is again the
transitive and reflexive closure of =>P. N

We say that w derives w! in parallel if w=_ w!,

P

Definition 14

The parallel level language I_P(G) generated by a level grammar
G=(v, P, S, X)is

Lo(G) = hifw € (v, ¥ | (s,o):*fP wh) n ¥,

Again LP(G) =L _(G, n) where

P

Lp(G,n) = hilw € (V,n)* | (5,00 3 w})nz# .
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Example 2
Let G be the level grammar from example 1. Then
L(G,0) =g,
Lo(G,1) = {ab}
LP(G, 2) = {aab, aabb}
I_P(G,3) = { aaaab, aaaabb, aaaabbbb}

n— 1 i—-1
Lo(G,n) = a2 "p2 |1 <isn}

n i
Lo(e) = U L (G,n) =a® b% | 0= i=n)
n=0

The family of parallel level languages is denoted by EPLL'

We will now give a normal form for a level grammar,

Definition 15

A level grammar G = (V, P, S, Z) is said to be in hormal form
if there exists a special symbol # in V\Z such that

1) P is a finite subset of TP((N,N*UZ ))U TP(ZU {#} , ¥). and
2) S€ N, where N =\\Z U {#}.

Proposition 2

For every level grammar G there exists a level grammar G!

in normal form such that L.(G) = L(G') and LP(G) = LP(G').

Proof

Let G=(V, P, S, I) be an arbitrary level grammar.
LetD! = { Al | A€ Z} be disjoint from V.

Ty =X A1 X ee -1 Ap—q %, Where A; € T (1 < i< k-1) and
x; € (VAZ)* (1 = i< k) then we will denote Xy Al X oo e X Al =) X by vl



16

Now define G! = (!, P!, S!', L), which will be in normal

form, as follows.
Vi=VUZtU {# (#EVvUuI).

(1)  For all (A, x) € P,(A, x') € P';

(1) For all A€Z, (A", A)€ P! and (A, #) € P!

(1) (#, #) € p'.
Only those ordered pairs are in P! which are defined to be there in
virtue of (1) to (I11).

We will prove that LP(G) =L_(G'). The equation L(G) = L(G!') is

P
proved in the same way.

Let x € LP(G), then there exists a sequence wy ,W; ,...,w, of words
in (V, 1)* such that wy = (S, 0), w; 2p Wi for 0< i< k-1, and

h(w, ) = x. Because of (1) and (11) above we then have that there exists

a SEqQUENCE Vo, Vi 5+« 5 V43 OF words in (V', 1)* such that vy = (S', 0),
Vi Zp Vi1 for 0< 1< k+j=1,h(v ) =h(w )" = x" and h(vg, ) = x.

This proves that L.P(G) c LP(G‘).

Now let x € L_P(G'), then there exists a sequence Vo,V 5 ...,V Of
words in (', 1) such that v, =(S', 0), v, 2P Vit1 for 0 < i =< k-1

and h(v, ) = x. Assume that v € (Z,n)*. Then there exists a sequence
Vvd,..., v} such that v§ = (&', 0), v =2 p Vi for 0= i < p-1,

v} € (Z',n-1)* and h(v}) = x'. Because of (1) and (11) above we then have
that there exists a sequence Wy ,...,W, such that wy = (S, 0),

Wy 2p Wiy for 0= i < p-1, and h{w; ) = x.

Theorem 5

*pLL T¥ER"
Proof

LetR=(Z; &1 ,.005803 Fpyeeey,Fpy 0 ,...,0 ) be an arbitrary
recurrence system, and LE(R) = U E! (k) the corresponding extended

k=0
recurrence language.

LetZ!' = {A' | A€ Z} be disjoint from Z U (€ yeeesbnls
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Because of proposition 1 we can, without loss of generality, assume

that for all 1 =i<n A is neither inF,; nor inqa,.
We now define G = (V, P, S, Z) as follows.
V=ZUZ'U{&,&,...,6]} Ui#H.

(1)  Forall A€ZU {#}, (A, #) is in P
(1) For all A€ Z, (A!, A!') and (A!, A) are in P;
(1) Forallt<i<nandy €F,, (&, y') is in P;
(IV) Forallt=i<nandy €oa , (&, y)isinP;
These are the only productions in P.
S =¢, .

Forl1=<i<n, let G =(V, P, &, Z).

We prove by induction on | that, for 1 < i< n

(1) LG, j) =E[(j-1).

pl
Assume that j = 1. Then
WELL(G, 1) Hf weTT A (L, w € P Iffwe o, iff we E}(0).

Assume that (1) holds true for all j<mand 1 <i<n.
Then o

w € I_P(Gi , m+1)

iff
there exist a production (§; , A/ Al...A!) €P where
Al €Z'U {gl,gg,...,gn} and words w, , 1 =< q< k, such that
wy, =A IfA €2, w, € LP(qu’ m) if Aly =giq, Wo =W
it Al =A ,andw=w, wy...w

iFf ' °
there exist a word AjA,... A, €F,; and words w,, 1< q< Kk,
such that wy = A, ifA €Z, w, € E] (m-1)ifA =¢&, ,
Wy =w ITA =A, ahdvv=w1w2q...w1c :

- 1 2 1 2

w € Ei (m).

This proves that SER c gPI_L.‘
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To prove the other inclusion consider an arbitrary level grammar
G=(v, P, S, X).
We know that there exists a level grammar G! in normal form such

that LP(G) =L_(G'). We can assume that

o
G'= (€1, £asnvny &) UT, P, &, T).

Now define a recurrence system

R=(Z £108 50583 FoyeeesFas 0y 00)
where Fy = {w € (V\Z)¥ | (&, W)€ P'} anday ={weZU@| (& ,w) € P},

For1=<i<n, let G} =({&, ,&,...,&} UZ, P', &, I).

We prove by induction on j that, for 1 <i=n

(2) LGl i) =ElG-1).

Assume that j = 1. Then
w € LP(G{ , 1) iff (£, , w) is in P'and w € Z* iff wEa, iff w€ EJ(0).
Assume that (2) holds true for all j<mand1=<i<n.

Then
w € L_P(G{ , mt1)

iff
there exist a production (§; ,& &, ... & ) in P! and words
1 2 k
w, 1 =g=<k such thatw, € I_P(Gi' , ml, w, =w, if§ =¢&
q 1 2 q q .-
and w = Wy Wy .. . W, 1 2
itf
there exist aword§; & ...§; inF; andwordsw,,1 =qg=k,
12 k
such that w, € Ef (m=1), w, =w, if§ =§& ,andw=w,wy...w,
a 1 2 a, q
iff 1 @

w € E,; (m).

This completes the proof of theorem 5.
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As a consequence of the constructions in the proof of theorem 5

we have the following corollary.

Corollary 1

For every recurrence systemR = (I; £; F; &) there exists a
recurrence system R' = (I; £'; F'; a') such that F!' = (F},...,F/}) is
a n-tuple of finite subsets of {gl' yeeey &1 ¥, andfor all 1 =i <n

af is empty or consists of a single element in Z, and LE(R) = I_E(R').

Remark

It can be shown that corollary 1 remains true if we write L(R) =
L(R') instead of LE(R) = LE(R‘). This is indeed already pointed out
by Herman (1973).

Definition 16

A restricted level grammar G =(Vv, P, S, Z) is a level grammar
as defined in definition 10 with the restriction that for all A € E,
(A, A)E P.

Proposition 3

If G =(Vv, P, S, ) is a restricted level grammar then there
exists a grammar G! = (V', P!, S', I) such that for all A€ I, (A, A)
is the only production in P with A as the first component, L(G) = LL(G')

= !
and LP(G) Lo(G ).
Proof

Let G =(V, P, S, I) be an arbitrary restricted level grammar.
Define G' = (V'!, P!, S!, Z) as follows.

Vi={A'| A€V} UZ,

(1)  For all (A, x) € P, (A!, x') € P!,
(11)  for all A€ Z, (A', A) and (A, A) is in P'.
These are the only productions in P!.

We will prove that L(G) = L(G'). The equation LP(G) =L _(G') is

proved in the same way.

P
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It is clear from the definition that L(G) < L(G'). Now let x € L(G'),
then there exists a sequence wy ,Ww; ,...,w, of words in (V!, 1)¥*

such that w, = (S', 0), w,; Wi, for 0<i=<k-1, and h(w.) = x.

z';’I
If we remove the markers ir?all the words w; then we get a sequence
Vosee.,V Of words in (V, 1)¥ such that v = (S, 0), v; = v;,, for
0= i< k-1, (this is trivially true if the production used is defined

in (1). If a production defined in (I1) is used it remains true because

we know that (A, A) € P for all A€ Z .), and h(w ) = x.
This completes the proof.

The family of restricted (parallel) level languages is denoted by
3RLL_ (3RPI_L_)'
Theorem 6
FoLL = Fcr (5 3p)
Proof

Easy to check.

Theorem 7

& &

RPLL ~ “ED"

Proof
Let(Z; & ,...,6,3 F1,...,F, ) be an arbitrary (n-ary) format,
and E(k) = (E, (k),...,E, (k)) the approximating sequence.

We define G = (V, P, S, XZ) as follows.

V=ZU{& 8,581,

(1) For all A€ Z, (A, A)is in P
(11) for all1=i<n, and y€F;, (&, y)isinP.
These are the only productions in P.

sS=¢.

Forl1<i<n, let G, =(V, P, &, Z).
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We prove by induction on | that, for 1 <i<n
(3) L-P(Gi , i) =E; (j).
Assume that j = 0. Then

L_P(Gi , 0) = =E, (0).

Assume that (3) holds true for j<mand 1 < i< n.

Then
w € I_.P(Gi, m+1)

itf
there exist a word AjA;... A, in V¥ such that (§;, A A,...A )¢ P,
and words w; , 1 = g= k such that w, = A, if Aq €,
wg €L (G , mifA =&, ,w, =w ifA, =A,, and
P a 1 2 1 2
W = Wy Wo e o W
iff
there exist a word Aj/A,...A inF,; andwords w, , 1 = g=k
such that w, = Ay ifA; €Z, w, € E; (m)ifA, =¢& ,
q q
wg =w, ifA; =A; ,andw=w, wy...w
5 1 2 1 2
i

wE E; (ma+1),

This proves that gED c &RPLL'

Now let G = (V, P, S, L) be an arbitraty restricted level grammar.

We can assume that V = {£,,..., §,} UZ and S = ¢, .

If S €I, then L (G) = {s} e
for S.

ep Pecause (S, S) is the only production

Define an n-ary format (Z; &, ,...,& 3 F1,...,F, ) where

F, ={w | (&, w)isinP}.

Now we can use the same proof as above to show that
LGy, iY=E/(j)forallj 20, and1 <i<n.

This completes the proof of & = .
ED = ¥rpL L
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4, SOME RELATIONS BETWEEN THE FAMILIES

F L FpLr Ry @9 9gp

Theorem 8

FreL L
Proof
From Theorems 6 and 4 we know that 3RI_I_ = gCF and
3|_|_ = 3EOI_' The theorem follows now from the fact that
ECF ou &EOI_ (see e.g. Herman and Rozenberg (1974)).
Theorem 9
FrLL T FrpLL
Proof
We know that ERL_I_ = ED and 3RPLL = SED from theorems 6 and 7
respectively. From Rose (1964) we know that 30 o EED which com-

pletes the proof.

Theorem 10

L% e

i

Proof

Let G =(V, P, S, Z) be an arbitrary level grammar in normal
form.

Let t=maxi1wl[3 A€V :(A, w)eP].

Define G' = (V!, P!, S!, Z) as follows.

vi= U (A A2 s
AEAD
(1 If (A, A/A,...A,) is a production in P where 0 < k=1
and A; € V\Z for 1 = i<k then, for all1 =i=<t,
(A(I), Ag ), Aéz). . .Algk)) is a production in P!,
(1) 1 (A, B)isin Pand A€ \V\Z, B € U then, for all 1 =i<t,
(A(I), B) is in P!.

(1) 1f (A, B) is in P and A € T then (A, gl )) is in P!,
These are the only productions in P!.
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We can now show that

(4) L(G) =L (G") (=L(G").

o

For each A € V define

G, =(v, P, A, Z),

A

and for each A € V! define

Gl = (V', P!, A, 2).

Now we prove by induction on j that, for all 1 = i< tand all Agc V

(5) L'(GA, J) = LP( (i)’ J) (= L(G"A\(l)’ j))

G!
A
Letj=1. Then

w € L(GA, 1)

iff
wEZF ANA, WEP
iff
wezt A (A Wy eptforalt it
i

) (Awe€E L(G!

wE€L_(G .
P A(l

Now assume that-(5) holds true for j=m=>=1 and1 <i<t.
Then
w € L(G,, mH)

iff
there exist a word Aj A,...A, € (V\Z)* (G is in normal form)
such that (A, A/ A,...A) € P, and words w, € l_(GAq , m),
1 = g= Kk such that w = w; Wy ... W

iff
there exist a word Aj A,...A¢ € (V\ Z)* such that for all
1=i< t,(A(i), Ay )Ag(z). .. Algk)) € P' and words

( Wy EL.(G"A\(q), m), 1 < g=<Kk, such that w = w; Wy ... W,

iff 4

w € L(G,‘A(i)’ m+1) for all 1 < i< t)
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iff
there exist a word Aj A,...A; € (VAZ)* such that for
all1 = i<t (A('), Ail)Ag(z)...Aék)) € P' and words
w, € L(G! (q)’ m) 1 < g <k such that w, =w, if qul) =qu2)
Aqq 1 2 1 2
(this can never happen!) and w = Wy W oo o Wy
iff

- 1 :
w E LP(GA“), m+1) for all1 <i<t.

(4) is now established by

Lic)=UL(a, n) =UL(GS, n) =UL(G' (1) n)=UL(G} n) =L(G")
N S n

n n
(=L(c")
m 2"
The inclusion is proper because the language L, = {(ab ) |m,n = O}

is not in the family 82!_!_ (Herman (to appear)) but is parallel generated

by the following (restricted) level grammar

=({s,B,a,b}, {(s,59), (S,a),(s,aB),(B,bB), (B,b),
(a’a) bb)},S,i }).

Theorem 11

& QEP

RPLL LL-®

Proof
The inclusion is true by definition. That it is proper follows
from the language

Ly, ={a"a" | n= 1}

which does not belong to SPRI_L (= &ED) (see e.g. Rose (1964)) but is

parallel generated by the following level grammar in normal form

G =({A,A",B,B',a,b,#,5},
{(A, AA), (A, a), (A", A, (A a),(B,BB"),(B,b), (B!, B!),
(B',b), (a,#), (b, #), (#,#), (S, ABA)} , S, { a, b}).
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Theorem 12

The families gl_l_ and & are incomparable,

RPLL.

Proof

The language L, from above belongs to & and L,

RPL.L.\gl_L
belongs to gLL\:}RPLL'

Theorems 8-12 can be summarized in the following diagram:
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