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Analysis of Numerical Solution of the Stefan Problem.
by

Ole @sterby

Abstract

A Stefan problem is a problem involving a parabolic
differential equation with a moving boundary. We study one
particular one-dimensional, one-phase Stefan problem and two
numerical methods for solving it., The first method which has
been published by J., Douglas and T. M, Gallie is a finite
difference method with variable step size in the t-direction.
We supply a convergence proof for the iteration which, at each
time step, is needed to determine the size of the step. _We
also derive certain estimates which we use subsequently to
obtain bounds for the solution functions of the original
problem., We also discuss stability of the method showing
partial results but without being able to prove stability.

We prove that the boundary curve of the particular Stefan
problem in question is monotone increasing with a derivative
that tends to zero as t tends to infinity. Furthermore,
we show that the temperature at the t-axis, u(0,t), goes
asymptoticly like 2 s t% .

Returning to the numerical method we go into a thorough

investigation of the discretization error. Without being able




to‘arrive at a definite proof our conjecture is that the
discretization error is of the form Ilwl + h2w2 + s
where Wy and w, are continuous functions and h is the
step size.

The second numerical method, which is due to A. Wragg,
is a Chebyshev—series method for which we conjecture a
similar form of the discretization error but also here
without a proof,

In an appendix we discuss a particular parabolic boun-
dary value problem with a boundary condition containing
a combination of normal and tangential derivatives. We
give a uniqueness proof for solutions to this type of problem
subject to certain conditions on the coefficients involved
in the boundary condition.

We include a listing of an AILGOL program for the Douglas-

Gallie method and we give numerical tables of the solution

functions of the Stefan problem.
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Chapter 1.
Introduction.

This thesis is devoted to a close study of one particular
Stefan problem and two numerical methods for solving it. The
work has essentially followed two pathé: 1, a study of the
analytic properties of the solution functions, and 2, a
detailed analysis of the discretization error when an approxi-
mate solution is sought using one of two numerical methods
for solving the problem,

The aim was to prove that the discretization error in
the large could be expressed in the form: hm& + h2w2 + eee
where h is the step size used and Wl and w, are conti-~
nuous functions, One is particularly interested in results
of this type because they open the possibility of using
Richardson extrapolation on the results that are obtained
from the numerical method using several different step sizes
in the difference schemes., In this way it is possible to
combine, say, three runs of a first-order method into one
third-order method,

Several difficulties have arisen along the way, however,
making it impossible at the present time to complete the
analysis in the manner desired. Still we hope that this
thesis will be valuable in posing problems - although it
provides incomplete answers to these - in pointing to possible

directions of research, and in partially paving the way for




future investigations on this problenm,

In chapter 2 we state the general Stefan problem, as
well as define the particular (one-dimensional, qne-phase)
problem with which we shall deal., In addition, we give a
brief survey of literature pertaining to this subject, such
as papers on existence and uniqueness theorems and various
numerical methods for approximate solution of parabolic
boundary value problems of this type.

One particular numerical scheme, due to J. Douglas and
T.VM. Gallie {71 4is discussed thoroughly in chapter 3,
The method is an implicit difference method and is perti-
cularly interesting because it avoids interpolation at the
moving boundary by introducing a variable step size in the
t~-direction., In the original, and most efficient, form of
the algorithm which is discussed in the paper, an iteration
is necessary at each time step in order to determine the size
of the step. The authors supplied a convergence proof for
this iteration only for the interval O < t < tl , Wwhere
y(tl) =1, y Dbeing the boundary curve. Jim Douglas has
later mentioned that this restriction can be waived, but
without supplying a proof [6]. In Theorem L of chapter 3
we give a proof which is valid for arbitrarily large t.
Certain estimates for the t-step which we derive in this
chapter are useful in the succeeding chapters and this is
the reason for discussing the numerical method before deriving
analytical results for the solution functions of the Stefan

problem (chapter 4),




The above-mentioned iteration will exhibit an extremely
slow convergence for large t, but, as we point out in section
3;4, a very effective acceleration is at hand, and that is
what makes this method one of the most effective ones for the
Stefan problem.

The last section (3.6) of this chapter is a discussion
of stability of the method against small errors. Although
computer results has shown no indication of the contrary,
it has not been possible for us to present a satisfactory
préof of stability. Douglas and Gallie claims that they have
given a stability proof, but it is not completely clear what
their result (Theorem 5 of [7]) actually implies. 1In this
section we present the results which we have derived in the
hope that they may be of use for future investigations,

Chapter 4 is devoted to theoretical results on the
solution functions and their derivatives., Based on results
of Trench [22], DeVogelaere [24], and Cannon and Douglas [2]
we derive a number of results, stated as Lemmes 5 - 8 and
Theorem 9. The last result is probably the most interesting
one, It points at asymptotic results for the boundary curve,
y(t), although the Vt -behaviour of u(0,t) places it
between the two cases in Theorem 7 of ([25]. Various results
indicate that the boundary curve, y(t), increases faster than
t% ’ i.e. that t-%-y(t) tends to infinity, although probably
very slowly.

The discretization error of the Douglas-Gallie scheme




is the subject of chapter 5. Assuming that the numerical
method yields mesh functions which can be expanded in powers
of h: W=u +11wl + h2w2 + oo @nd Y =y + hql + haqa + oo
we derive the equatidns to be satisfied by the functions Wy
N1+ Wos and Moo These functions satisfy parabolic boundary
value problems of ﬁépecial type which we discuss in Appendix A,
In section 5.4 we focus our attention on the ...-term in the
expansions for W and Y, defining functions V and X by
h2V =W-u -hw - haw2 and h2X =Y -y - h'ﬁ.' haqz.
From the equations which we have obtained we have not been
able to show boundedness of the functions V and X.

In chapter 6 we study a Chebyshev approximation method,
due to A, Wragg (23], with main emphasis on a study of the
discretization error. Just as before, we divide the study
into two steps. Firstly, guessing at the form of the error
term (which we assume to be similar to the one for the
Douglas~Gallie method), we obtain equations which the auxiliary
functions Wy ”1’ LY and o must necessarily fulfil. The
resulting equations are very similar to the corresponding ones
of the preceding chapter and they are also covered by the
considerations of Appendix A. With these functions given
we then seek estimates of the remainder terms of the expan~
sions., Just as for the Douglas-Gallie method, our results
do not match our intentions. It is hoped, nevertheless, that

the present work will prove valuable as a starting point for

future investigations,




As already mentioned, Appendix A contains a brief
discussion of the existence and uniqueness of solutions
of one particular type of parabolic boundary value problem
where the condition on the moving boundary involves a com=~
bination of normal and tangential derivatives. We give a
uniqueness proof for solutions to one such systemn,

In Appendix B we give a listing of an ALGOL program
for the author's modification of the Douglas-Gallie method
and in Appendix C we give numerical tables of the solution
functions.

The list of references contain certain papers which are
not essential to this work. They have been included, partly
because of their contents, partly because of their biblio-
graphy, as an aid to the reader in tracing back to other
papers on the Stefan problem or related problems.

One such paper is the one by Ruoff [181 whose main
contribution is an exact solution to the problem which we
have called Stefan problem B (sec 2.2)., This result,

however is a rediscovery of a result by Stefan [2117.



Chapter 2.

Definition of the Stefan Problem,

2.1 The genersal problem,

The name Stefan is used in connection with a wide variety
of free boundary problems of parabolic type. These problems
appear in the mathematical treatment of various diffusion
problems, for example in the description of systems involving
heat conduction together with a phase change, such as the
melting of a solid. The original paper by J. Stefan [21]
was a study of the formation of ice in the arctic seas. It
should be mentioned here, however, that‘free boundary problems
have been mentioned in the litterature before Stefan. We refer
to Brillouin [1] for further information.

To illustrate the one-dimensional Stefan problem consider
the following system: A horizontal rod of ice is kept
initially at the freezing point, 0°c. If the rod was of
finite length, all the ice might eventually melt, and the
resulting system could be described by a boundary value
problem with known boundaries, Ve shall therefore assume
the length of the rod to be infinite. It is enclosed in a
tube with non-conducting walls, and we shall not take into
consideration the change of volume, occurring during melting,
Now supply heat to one end of the rod (or keep this end at a
specified temperature which may vary in time). The problem is

to determine the position of the ice-water interface as a



function of time and to find the temperature distribution
of the water as a function of time and the distance from the
heat-source,

Mathematically this can be formulated as

(L o(zuxx = Uy, t >0, 0<x <ylt),
(2) uw(x,0) = ¢(x), 0<x<b,
(3) u (0,t) = -g(t), t >0,

() uly(t),t) = 0, t >0,

(5) G - xu (y(1),0) >0,

(6) y(0) = b > 0.

«2 and k are positive constants and b 1is a non-

negative constant.
In case of the alternate formulation, where one end of
the ice is kept at a prescribed temperature f(t), equation

(3) should be replaced by
(Ea) u(o,t) = f(t) ] t .>_ 0.

In this formulation we have made provision for there
being initially some water to the left of the ice with a
temperature distribution ¢(x) (to be assumed non-negative).
u(x,t) is the temperature of the water at time t and
distance x from the end of the rod, and y(t) dis the

distance to the ice-water interface at time t.




A solution of (1) - (6) is a pair of functions
u(x,t),y(t), where y(t) dis defined for t > O and

u(x,t) dis defined for t > 0, 0 ¢ x < y(t), and such that:

d . . .
a. E% exists and is continuous for t > O, and

y is continuous at t = O3
b. u, exists and is continuous for t > 0, 0 < x < y(t);

C. U, and Uy exist and are continuous for t > O,

0 < x < y(t);
d. the equations (1) ~ (6) are satisfied.

Since there is no heat diffusion in the ice, this
problem is referred to as a one-phase Stefan problem., If
the temperature of the ice was initially less than OOC,

say given by
(7) v(x,0) = %(x), b<x<ow,

then heat diffusion would occur in both phases and we would
have a two-phase Stefan problem, In this case equation (5)

should be replaced by

(5a) )k u (r(6), 0+, v (y(8),8)

and we would have additional equations for v, the temperature
distribution in the ice, similar to (1), (3), and (k).
We shall not discuss two-phase problems here, but just

mention, that they have been treated by Li-Shang [1h].




Problems involving more than two phases have been discussed

by Oleinik [16].

2.2 Stefan problem A,

We shall in the following restrict ourselves to a

simplified version of problem (1) - (6) in which

ae The heat supplied is assumed constant;
b. There is initially no water in the system, i.e. b = Oj

C. By suitable transformations all constants involved are
2

equal to 1, i.e. « =k =1, g(t)=1.
The resulting equations are
(8) u . - uy = 0, t >0, 0<x<ylt),
(9) ux(O,t) = -1, t>0,
(10) u(y(t),t) = 0, t>o0,
(11w ly(e),t) = -fwggl y t>o0,
(12) y(0) = 0.

Tnstead of equation (11) we shall often use the relation
y(t)
(13 y(t) = t = § ul(x,t) dx
0
which is eaquivalent to (11) given (8) - (10).
In the following we shall refer to the problem defined in

(8) ~ (12) as Stefan problem A, Similarly, the problem

defined by (8) = (12), replacing (9) by u(0,t) = C,



10

where C 1is a constant will be referred to as Stefan

problem B,

263 A short review of earlier work.

Although the Stefan problem is a fairly old problemn,
not much work seems to have been devoted to it until 1947.
Since then it has been attacked by several mathematicians,
and many papers have been published. Numerical methods
have been proposed by Crank [3]), Douglas & Gallie [7],
Trench [22], and Wragg [23] awnong others. ZExistence and
uniqueness proofs, other than those that are derived from
the numerical methods above, have been published by Sestini

[19], Douglas [5], Evans [9], Friedman [10], and Li-Shang
[14] among others.

It can be mentioned here, that an existence proof,
valid for all t, is a consequence of the results of section
3.3 together with aréuments given in [7], but we shall not
pursue this further, We shall assume the existence, unique-
ness and differentiability (as proved in above-mentioned
papers) of the solution functions u(x,t) and y(t) for
the Stefan problem A, and on this basis begin the study of

the properties of these functions.

2.4  Properties of u and y.

For the system which is described mathematically by
Stefan problem A it is intuitively clear that, as time

passes, more and more ice will melt and that the temperature
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of the water at any particular point will increazse. We should
like to give the exact mathematical results corresponding to
some of these intuitive feelings and in addition give answers
to some other questions, for which we may not have ready
answers, such as:what is the rate of melting or the rate of
increase of temperature for large t.

We shall here just state some of the most elementary
consequences of eguations (8) - (12) and postpone a more
detailed analysis to chapter L4,

From (11) and (9) we get
(14) y'(0) = 1.

Equations (8) - (10) together with the maximum principle

[15] yield

(15) u(x,t) > 0, t>0, 0<x<yt),
and

(16)  u (y(t),t) & O, t> o0,

and (11) immediately gives

(17) y'(¢) > 0O, t> 0.
(13) together with (15) dimplies that

(18) y(t) < t, t> 0.

From equation (17) we see that the distance to the

ice-water interface is a non-decreasing function of t.
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This result is not the best possible since it is true that
the distance is a strictly increasing function of t, but
in order to show this we shall first study a difference

scheme for the numerical solution of Stefan problem A,
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Chapter 3.
The difference scheme of Douglas and Gallie.

el Deserintion of the method.

Several finite-~difference methods have been proposed
for the approximate solution of the one-dimensional Stefan
problem. Among these the most efficient one seems to be the
method described by J., Douglas and T, M, Gallie ([7]. Being
an implicit method it is not subject to the condition
Aot < %llxz, and furthermore the eguations are simplified
considerably by letting At vary as the computations proceed.

If fixed step sizes h = Ax and At are chosen, and a
corresponding grid constructed, interpolation is necessary to
determine the position of the moving boundary. If, on the
other hand, only the step size in one direction is fixed, then
the other one can be determined such that the boundary curve
will pass through one grid point on each grid line, and
interpolation is avoided, It seems most practical to keep
the step size in the x-direction, h, fixed and compute the
successive t—steps A’cl, Atz, o

A drawback of this approach is, of course, that the
calculated function values correspond to non-equidistant
values of the independent variable, t, such that a final
interpolation is necessary if a table with equidistant
entries is desired for presentation or comparison of results.
It is our opinion, that this is a minor inconvenience

compared to the effectiveness of the method.
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Notation,
n
(1) x, = dh, bt = 2 At ,
=1
(2) Wy = w(xi,tn), i=0,1, voeyn; n=0,1, ...

w denotes the solution of the difference equations
and is a function of two variables, defined on the grid
points. The boundary curve, as computed using this scheume

is determined by the points (xn,tn), n=20,1, 2, ...

Equations,
(3) WOO = 0.

At the n-th step an iteration (on 1r) is performed

j.. = O, l, LA BN nc AtiO) Can

to find At and w, _,
n i,n
be chosen arbitrarily but positive, and wgrz)w. are the
]
solutions of
w(.r) —2w(.r) + w(.r) \v(.r) - W,
(5) A2 W(r) - _34l,n i,n i-l,n _ "i,n i,n=l
x i,n 2 - (r)
h At
n
j.:l, 2, ¢ e 0 g n"l; I‘:O, l, ¢ 0y
() () }
(6) Moo " LI h, r=0, 1, ...,
r
(7) V’fl,; = O . r = O, 1, LR ]

The next approximation to Atn can now be found from

. n
(8) P SRR G o Wgr?a Yeh -t o

n 0
i=1 !
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The iteration is continued to a certain point, say r = g,
when we presumably are close to the limit value. We then

delete the superscript (r) and the replace n by n+1,
Remark., A discretization variant is discussed in Appendix D.

Remark. The Atn in [7] corresponds to our Atn+l'

Remark. Equation (8) is the discretization of (2.13).

Another possibility is to discretize (2.11) to

(9) Atff‘”l) - w2t

n-l,n

This leads to a scheme which, if the iteration on r
is convergent, will give almost identical results,
since equations (9) and (18) (see section 3.2)

become identical in the limit 1 = oo,

The solution of equations (6) - (8) for n =1 is given
in (4)., The solution of equations (5) - (7) for n =2 can

also be written explicitly:

(r) (r) (r) (r)
(10) Wy o "2V 5t Wy o _ 1,2 " "1
n® At(zr)
(r) (r) (r) _
(11) Moo T Vo = h, w5 = o,
(r) h (r) (r)
(12) w = s W = W + h.,
1,2 14 hZ/Atér) 0,2 1,2
From equation (8) we now have
(13) Atéﬂl) = (2 + w(lf;)-h -ty = (14 ng)z)oh.

We can solve (12) - (13) by iteration starting with
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At(ao) = h or use directly

(14) Wi,2 5T + o+ \’h + 1/ .

Renark, Calculations show that the sequence Atl, Atz, eoe

is increasing, and hence a reasonable starting value

(0)
At

for is Atn_l. An even better value is

289 oAt
n

n Atn-2 as indicated by Lemma 7,

-1 "
for if the bound (49) is reasonably good, then t(x)
behaves somewhat like a quadratic function, and the

third difference of +t, which is equal to the second

difference of At, will be close to O,

3;2 Elementary properties of solutions.

Introducing the notation

(r)
At
(r) n
(15) M = =
(r) )
(16) Vin T wi,r_l -~ Vi n-l'
(r) (r)
(r) i.n " Viil,n
(17) mi,n = h ,

Douglas and Gallie proved (for n =2, 3, eeo)

(18? Sz(ar) =1+ s;r-l)o(l - m;f'l']"zl) , r>1,

(19) 0 < mif; <1, r>»0,i=1,2, «o., n-1,
(20) 0 < wif; < (n=-1i)eh, r>0,i=0,1, ..., n-1,
(21) MERIN 1, r>1,
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(r)
m m m
. 12 n-1,n n,n+l 2 (r)
O 4 ¥ e e 0 e L 1 Ar
< m;.n{-'(—q-j- ' v (q) 0 (1) }i Ax“i,n+1
32 s s
n n+1
m nt (r)
12 n-1l,n nen+l
22 < ~T~* oo 3 }
(22) < max{ - K , s(q) . s(r) } < 1,
2 n n+l
rzo,izl,a,onq’n’
Wi,n > wi,n-l s r>0, i=1, 2, +0., n=1,

%63 Further proverties.

The result in (19) can be improved somewhat, and this is
important for the proof of convergence of the iteration on .
First we shall need a few preliminary results.

From (16), (19), and (23) it follows that

(24) O <V§f31<h, I‘_)_O, i:O, l, CAC R A ) n""lu
(0) _
1. Lemnma. If Atn = Atn-l then
(0) .
(29) L W1, n-1 0, i =1, 2, esey n=1
and
(26) Atir“"l) > Atir) , r> 0.
. 5 (r) _ (2
Proof: Introduce the function Zi,n = Wi,n - Wi-l,n—l'
We have z(r) = 0 and
n,n
(r) _ (1)
(27) Z)n = Vi, " h< O,

Furthermore
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w{r) - W -V
(28) A2 zgr) _ _d,n i,n-1  "i-l,n-1 i=l,n=2
o Atir) Z‘&tn--l
(r)
z, | -2,
_ _d,.n i,n=1 ( 1 1
= €) (W el "V, 02 Ty T
AR Atn Abn-l

For r = O the last term vanishes, and we can use the

maximum principle of Theorem 1 of [7] such that

(0)y _ _(0) .

(29) Zi’n - Wi,n bad Wi"l,n-l s_ O 9 1l = 1, 2, ¢ e 0 g n"’l .
Now
(r+1)
Aty - Atn-l
n-1 (1) n-2

(30) = h{l * §(“’i,n " Wipe) T é(wi,n—l - wi,n~2)}

- (r) (r)

= Aty (1 - mn»l,n) - Z'H:rl—-l(l - mn-—Z,n-—l)q

.

(r+1) (r) (r) _(r)
(31) At - Ar 7 = At - Ay em

-1 'mn~2,n~1 n-l,n

Set r = O and use (29) to get A’cgl) > Atio), and

(26) now follows immediately from section 5 of [7].

2., Lemma, > (2 +h) 7, r, n> 0.

Proof: For n = 0O we have from (&) and (17) that

mq = 1. By induction on n we now wish to find

(r) > §

positive numbers & = S (h) such that n,n+l = °n

for r, n> 0., We already have 60 = 1., Now assume

that m . .2 § 4> 0. From (5), (15), and (17)

we derive
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() ()
r n,n+1
(32) Ax n,n+l (r)
Sn+l
and
(r) o (r) ey o)
(33) mn-1,n+l B mn,n+1 + he Ax n,n+l T n n+1<:L * Z )
n+l
Furthermore
(r) (r) () (r) (r)
n+1A el nel = n+le n,n+1 7 "nel,n+s1 T ™n-1,n
(34)
NG
= M, ne1(2 * (r)) “ Mhal,n
Sn+l
or
(r) ,2_(r)
(35) (I‘) _ "n-1,n n+1Ax n-1,n+1 “n-1,n dn-1
nn+1' > 2 2%n 2 Zin
+
(r)
Sn+l
such that by induction
(36) nlt) s 5 = (2477, r, n> 0.

n,n+l - “n

3., Lemma, If At;l) > Atl(qm then for r, n>1
(37) 0 < At(r+1) Atir) S (1 - (I‘) )(At(r) ‘Atirul))'

If At;l) < Ath) then for r, n>1
(38) 0 > Af(”l) _At;r> > (1 - (r) )(At(r) _Atflr-l)>.

Remark. A similar but somewhat weaker result was proved

by Douglas and Gallie [7, Theorem 2].

Proof: From (18) we get
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sgr+1) - s;r) = (s;r) - sgrnl))(l - mgfi n)

(r=1), (r) (r-1)
" S (mnml,n - mn«l,n)'

Douglas and Gallie showed, that Atl(ql) > Atio)
implies At;r+l) > Z&tir), r > 1, and furthermore

that under this condition

_ (r) (r«l)
(L0) Zpel,n = Il(mnul,n - mn—l,n) > 0, r>1,

which together with (39) gives (37). (38) is

proved similarly.

L, Theorem, For arbitrary n we have: lin AAtir) and
T oo

(

1lim w,
1
I =

r . . o
; , 1 =0, 1, 400y 1 exist and are finite.
?

Remark, This theorem is an extension of Theorem 2 of [7],

which only holds for n-‘h < 1.

Proof:

lim At;r) - Atr(lm + (Atil) - At;O)) F o
(l%l) Y =» 00
s eadm D ATy

Using Lemmas 2 and 3 the above series is majorized by
a geometric series with quotient g =1 - (2 + <1

and is therefore convergent., Similarly

1lim w(r> = W(O) + (w(l) - W(O)) +
(12} N i,n = i, i,n i,n
2 P OO
+ (wgf;l) - ng;) F oeee
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(r)

and this series is majorized by the series for 1lim At
r ~>c0

We shall, from now on, assume that the limit of the
iterations have been reached for each n, and z}tn, LA
halh J

etc., will denote the limit values.

5. Lenma,

m m
(43) 0 < B=lal o A2, X2 g,
s - X i,n = s
n 2
Proof: It follows from Lemma 1 that
(L&) Atl < Ata < eee & Atn-—l < A’cn
a ‘o (0) A ,
under the condition ‘Atj = tj-l’ J=1, 2, eoeey N,

Since the limit value does not depend on the starting
guess, once convergence is established, we can leave
this condition out.

In the limit (r -» o), equation (18) reduces to

(L45) s_em =1,

n n-1l,n

such that by (4k)

(46) My o> My 3> eer > >m

m
n-l,n n,n+l

and (43) now follows from (22).

-n
6, Lemma. My nel > (1 +h) n=1, 2, «..
Proof: Use Lemma 5 on the left hand side of equation (34)

(for r =)
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m m
n-l,n

Nel N
> s >
A él 1+ h

n

(L7) m

and the result is immediate.

The following estimate which we shall use later in
chapters 4 and 5 is derived from Lemma 6 together with

(21) and (45)

(48) 1 <s, < (1+ py2-1,

Another result which has several applications is given

in Lemma 6 of {[7] and is stated slightly more generally as

7. Lemma,
(49) neh < t < neh +-%(nnh)2, n > 2,

Proof: The left inequality follows from (21) and the
right inequality follows from (8) and (20) which

in the linmit give

n

t o= (n+ ;Z: Vi n Yeh
i=1

= 2

< nh+ o (n-i)eh
i=1

< neh + +( n‘h)2 .

As a consequence of Theoren L, the results of sections
6 and 7 of [7] now extend to any interval O £ x £ X,
where X is arbitrarily large. In particuler, a pair of

functions (t(x), u(x,t)) exists for 0 < x <X,
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t(x) € t < t(X) = T. The function +t(x) dis continuous
and monotonicly increasing and therefore has an inverse
function y(t), and the pair (y(t), ul(x,t)), 0< t < T,

0 < x < y(t) 1is the solution to the Stefan problem A,
Furthermore the solution functions of the difference scheme

will converge uniformly to that solution as h - O.

3,4 Accelerating the convergence.

The result of Theorem 4 indicates, that the convergence
of At;r) may be rather slow, but the comparison with a
geonetric series also suggests a possible way of accelerating

it. We could expect, that an acceleration of the form

(1) (0)
At - At
= I o + Atio)

(50) Atacc
n
1-q
where
(2) (1)
At - At
(51) 5 2

W E (0)
Atn -Atn

would be efficient, and empirical evidence supports this
strongly. Actual computations have been performed with

h = ,1 and using as initial guess Atgo) = 2Atn_l -Atn—Z .
At n = 20 the values of Aﬁt;r) for r»r =0, 1, 2 gave

a value of g = .71 corresponding to a rather slow con-
vergence, Since the value for zﬁtio) was a fairly good

guess there was an agreeuwent between zﬁtiz) and the limit

value Zﬁtn to 4 significent figures. lﬂt:cc and zﬁtn,

however, agreed to 6 significant figures. It would take
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more than 5 iterations to reach a comparable agreement
without acceleration. TFor larger n the iteration exhibits
a slower convergence, (g approaches 1), whereas the accele~
ration is equally effective and therefore reduces the
computation time by considerably more than the 60 % dindicated

here.

3.5 Space and time reguirements,

The space needed for storage of data arrays is propor-
tional to n, and because of the estimate (49) the size
of these arrays is proportional to 1/h. The number of
arithmetic operations is at each step proportional to the
current h, sueh that the time reguired for a full run is
proportional to h-a. These are estimates of the space and
time reguirements for computations up to a fixed T as
functions of h.

It might also be of interest to know how space and time
depends on T for fixed h. Actual calculations show that
the upper bound for tn in (49) 4is the more realistic one,
i, e. that t(x) for large x behaves like a quadratic
function. With this assumption we see that the space needed

1
for calculations up to time T increases like T and that

the computation time increases linearly with T for large T,

3,6  Stability.

We have seen that the difference scheme (5) = (8)

converges in r, and that it for swmall h gives a solution
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which is close to the solution of Stefan problem A. In
order for the method to be useful, however, it must be
stable against round-off (or other small) errors.

We shall now consider the effect of errors, introduced
at one particular time step, say +t = tp, upon tn, z&tn,
and Wi,n for n > p, assuming thaﬁ no more errors are

introduced in the calculations. TLet t), zﬁt*, and w,*
n n i,n

denote the perturbed values and set

(52) 6i,n = w;ﬂ1~ L
(53) §, = max Iéi,n‘ .

We shall use the notation § n to denote the column vector

with components Si n? i=0, 1, +voey n.
b

Douglas and Gallie showed that

(54) 6y p= 8y g v B8, -8t AZw s ATATS,

i,n i, n- n“x "i,n

il

n-1
(55) At; -Atn h gl 5i,n - (tn-l - tn-l) ’

n-1
*»
(56) tp - ty=n géi 6i,n '

and using this they were able to prove stability, for fixed h

and provided n.h <1,

Although actual calculations have shown no sign of
instability even for large t and x (we have data up to
t & 64, y(t) 216, with h = ,1), we have not been able to
arrive at a proof of stability. We shall here just give

some resulis on the effect of small errors.
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From (54), (55), and (56) we get

Nl
* * : 2.
At - At = n (At - At) %Axui’n
n=1 2
(57) +hAt;§:AXé>i 0
izl !
o 2
= Aty -Ar ) - mn~1,n) - Ténml,n
or
At-ﬁ 5 A‘ti
8 L . . -ntn<lyn 271
(58) At = At - Wmnml,n SﬂAtn 8n-1,n
or
* Atn
(59 - At]= :
1+ sn‘snul,n/h

TLet us take a closer look at (54) writing Aiéi 0
> b

in full, divide by éi , @nd multiply by hZ/At;.

'

2 .
h (l - 61,1’1-1) - "At én-lzn AEW.
At* O n §. X 1i,n
(60) n i, i,n
N i-l,n _ > 63..-!-1!11 .
i,n ‘Si,n
Set 1 = n-1 and rearrange
& 2
(61) Shm2.R L p Ly 1.0 % > 2,
&n-1,n Sk \
i=n-2 gives
S, é,- S,
n-5,n - 2 - nl:n+At nlznAZW
$ § n X n-2,n
(62) n=2,n n-2,n n=2,n
2
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which is > 3/2 if the last parenthesis is non-negative.

) .

2
In any case lén—a,n' < max(]én_z’nwll‘ §I6n~3,n!

Continuing along these lines we conclude, that 6i n
9

for i close to n=2 has the same sign as én—l,n and
is of larger absolute value.

The first relative maximum for ]éi,nl as 1 decreases
from n-1, is accompanied by a decrease in absolute value as

compared to &. as is easily seen from equation (60).

i,n-1"
This is also the case for all other relative maxima for

).

“Si?n" for which sign(éi’n) = sign(&n_l,n
From eguations (55) and (56) it would appear, that

the most unfortunate case would be the one where all §'s

viere of the same sign. Ironically enough, in this case

a stability proof follows directly from the considerations

above, At t = ¢t we shall of course expect errors that

are randomly distributed with respect to sign (and magnitude),

but it appears from experiments that the operator that maps

6.’nn1 onto 6.,n has certain smoothing properties, such

that after a few steps all 8's will have the same sign.

We have already seen indications of this for i close to n-2,
When considering the effect of small errors on the

computations one should keep in mind that our grid-points

change with tn. Therefore 6i,n as defined in (52) is

a difference of values of two functions at two different

points. In order to compare function values at the same

point, let us introduce W, = w(i-h, t¥) end study
iyn n




W‘,n - %1,n = 6i,n T ¥in T "l,n
W, - W,
(63) : é:L,n + (- t;) 9nAthn“l
nel ’
= 61, mhizz%én,n"a Yi,n

where we have used a truncated Taylor expansion and approxi-
mated a derivative by a first difference. We notice a
built-in compensation in the case where all d's are of
the same sign since a (partial) cancellation will occur,
and thus the effect of round-off errors on W is to
‘4

some extent counteracted by the effect of the same errors
on t_.

n

It is possible to express explicitly the operator
that maps & onto & and in order to do this

o,n”l .’n

let us turn to the systems of eguations for LA and
4

i,n
Set
2 2
h h
(64) €= =5 , €= il
ty Aty
1 -1 ] [ n T
-]l 24+4¢ =1 &wl,n
=1 2+& -1 £w
_ 2,n
(65) An = - ) . bn = .
-1 Ewn#l‘;n
-1 2+¢€ eEw
L J " "n,n

and similarly for A; and b;.

We now have




(66) A w = b and AT w = b"

el n-1 n .,n n-1°
Subtraction gives
~ # * . » -
(67) Az é,,n ¢ ( A An) LI b1 = b1

Application of (58) gives the following

*
(68) % - & = _ﬁi.ﬁ*ﬁi - foﬂ;lffﬁ = &
* - *‘ - -1
Aty Aty Aty Aty Amtafl
such that
#* . '
(69) AL - A = dlag{(L 6n—l,n’ én~l,n’ ooy én-lﬂl} .
The first component of both b and b* is h.
: n=1 n=l1
1 . ) . * _ .
The d4-th component (i®1) of bn—l bn—l is
* . - - * * .
£ L2 swi,n-l = £ 6i,n-1 + (& £) i nel
(70)
T
= £ 6i,n~1 * wi,n-lén-»l,n ‘

We shall add eguation number O in (67)
(71) 5 - b = 0

to eguation number 1

)é

¥
=%t (2+€%) 6l,n - b2,n + (Wl,n - n-1,n

0, [ yn=]

(72)

= €%, 14

and end up with the following system of n-1 equations for

the n -1 unknowns al,n’ 62,n’ e bn—l,n:

(For typographical reasons we shall write e for €%.)
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tre -1 v1,n él,n 5l,n«l
-1 2+e¢ -1 v2,n éa,n 62,n-1
=1 24+e =1 é S
(73) ° v?’n 2L 3,n-1
-1 2+e '1+vn~2,n &n~2,n éan,nul
| -1 2+e+vn—l,n_ ?nul,n, 5n«1,nu1

or in short

! A -
(74 A 6.,n = ¢ 6.,n-1‘

Set B =41 and compute the elements of B using
Gaussian elimination on the ne-1 sets of equations with

the right hand sides egual to the n~1 unit vectors:

(75) A.B = 1.
Introduce
diq
(76) dl = Vl’n . di = Vi’n + )‘Ii~l 3 1 = 2, 3, Y n-l;
1
N = l+e, Ny = 2+€ ~ , 1 =22y, 3, 006y =2,
i1
(77) .
n = 2+€ = + R
n-~1 Npeo Ne
1 if i> k,
(78) By = .
7/ n. otherwise ;
=i Y
1 if j <k,
(79) v, ={
Jk 0 if 3> k.

After triangularization the coefficient matrix A has

the following appearance:
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rIl "1 O eo o dl 1
o p, -1 d,
(80) . :
7n-3 -1 dﬂ-}
Mpa2 "1t 4no
| vee 0 qn-l ]

and the unit matrix on.the right hand side has been transformed

into a matrix C the eleuments of which are given by

Vs
(81) c. . = =t
ij H, .
j,i-1

8, Lemma, The elements bij of B are given by the formula

n=1 . 1 n=2
(82) H, .b,, = Uik eedsnel S x|
Jon-1733 = By ke =1 Hix

Remark. The lower summation index in the first sum can be

changed to k = max(i,j) and the factor »Bk can then

be omitted.

Proof: (by induction on i), For i = n-1 we have
Cn-1,4 i,n=1
8 b = = i 1= or H, b .= V. =1
(83) n-1l,j Tn-1 Hj,n-l - Tj4n=1"n-1,J jen=1
in agreement with (82),
Suppose (82) is true for b, . (1< i < n=2), then
i+41,] -7 =
H, n-1
= a7 . . . . - .4,
Byn-1Pij 71 { i3 * P141,5 T Pn-1,; 1}
1 {YiHn1 . 2 Ve e 2 %
(84) =“{Jr“"+z - 2 g
i jyi=1  k=i+l “i+l,kel  k=i+l "i+l,k

n-1 y.. H n=2
.5 e § G Q.E.D.

k=1 Hi,k;l =1 Pix
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With availsble bounds for the guantities in (82)
it has not been possible to arrive at useful estimates for
6i ,+ For the guantities 1w, of (77) we have the
9

following
9. Lemma,.

2
(85) If ny 2 1+ o« then w, ,> 1+ e+ o -,

(86) Ny € My < eee <Ry o &1 % + Ve \|1 + % .

Proof: If Vi > 1 4+ o then

1 2
(87) Mie1 = 2 + e m'HT > 2+e-(1 - o +x ).
i
In particular 541 s 1+ e if 0 < x < 1,

If the 7, approach a limit n as 1 increases,

then we must have n = 2 + e =~ % or
e e e evVe
(88) q=l+-2-+\l-e_ 1+T;_<.l+\re-+-é+-—-8-—‘

Since we are only interested in roots that are greater
than 1 we have discarded the negative square root.

Observe that (since e > 0) 1< 7 <N and furthermore

1 1 n=7n
(89) M= M = 2 + €& = ; - (2 + & =~ ;;) = mﬁjz;m

and (86) follows.
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As h -0 the matrix A will tend to the tri-diagonal
matrix which has 2's on the diagonal and <1l's on the
side diagonals, This matrix has all its eigenvalues between
O and 4. For & it can be shown that the eigenvalues
lie between &% and L + £%, This gives rise to finite
bounds for &, n for any finite region although it does not

]

prove that the method is stable.
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Chapter 4.
Theoretical results.

4,1  Some bounds for u and y.

We are now ready to continue the investigations which we
began in chapter 2. We shall consider two problems both
related to Stefan problem A,

First let y(t) be a function satisfying
(1) y(0) = 0, y(t) > O, t > 0,

(2) 0 € y(ty) = (b)) by =y, 0Lt <ty

With y(t) satisfying (1) - (2) there exists a unique

function, u(x,t), satisfying

(3) uxx(x,’c) = u (x,t) 0<x<ylt), t>0,
() ux(O,t) = =1, t> 0,
(5) u(y(t),t) = 0, t > 0.

With y(t) as above there is also a unique function,

v(x,t), satisfying

(6) vxx(x,t) = vt(x,t) . -y(t) ¢« =z <y(t), t > O,

i

(7) v(zy(t),t) = y(t) , t > 0.
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1. TLemma., (Trench [22]) The solution of (6) - (7) is

given by
(8) vix,t) = ulx,t) + x, 0<x<y(t), t >0,
(9) v(~x,t) = vix,t) , 0<x<ylt), t >0,

Proof: v(=x,t) also satisfies (6) and (7) so we
have (9) Dby uniqueness, Therefore vx(O,t) = 0,
such that v(x,t) - x satisfies (3) - (5)., By

unigueness (8) follows.

Using the maximum principle [15] on v, remembering

that y dis non-decreasing, we get
(10) 0 < vix,t) < y(t), x| € y(£), t > O3

and from (8) and (2.15) (which holds for the solution

of (3) = (5)) we have

(11) 0 < ulx,t) < y(t) - x, 0<x<ylt), t>o0.
2., Leuna, If uéx,t) is the solution of (3) - (5), then
(12) 0 < u (x,t) <1, 0<x<ylt), t>0.

Proof: TLet At > O and define

v(ix,t +At) - vix,t)
AT ’

(13) Qlx,t) = ~y(t) < x < y(t), t >0,

where v(x,t) dis the solution of (6) - (7).
Q(x,t) is continuous for -y(t) < x < y(t), t >0,

and satisfies the heat equation in the interior of this




(1h)

(15)

(16)

%6
domain., By (8), (9), and (5)

uly(t) . t+A%L)

Qly(e),t) = e ' t > 0,
end by (2) and (11)
o‘<MiﬁtLt)g3ﬂt““2;'ﬂt)gl, t > o,
From the maximum principle it now follows that
0 < Qx,t) <1, t > 0.

From the definition of Q(x,t), and the fact that
vt(x,t) = ut(x,t), (12) now follows by letting At

tend to O,

Remark, The results of chapter 4 up to this point are due to

W. Trench [22].

3., Lemme, The boundary curve, y(t), of Stefan problem A

satisfies (1) anda (2).

Proof: Formula (1) and the left ineguality of (2) follow

(17)

immediately from equations (12), (14), and (17) of

chapter 2. As a consequence of the considerstions

of the last part of section %.3, we have that the

boundary curve, considered as a function of x, t(x),

is differentiable. The inverse function, y(t), is

therefore also differentiable, and because of (3,21)
h

ha _h . s ol
we ve tﬁtn < 1 which dimplies

yr(t) < 1, | t > 0,
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and in turn the right inequality of (2).

As a corollary we have that (11) and (12) hold for

the solution of Stefan problem A, Since uxx S

we also have that ux(x,t) is an increasing function of x

and since u _(y(t),t) = ~-y'(t) we have
(18) v ) (y(t) - %) < ulx,t), 0 <x<y(t),
Consider the estimate (3.49):
4 2
tn < n*h+ 3+ (nh )"

Tetting h tend to O we get an estimate for the

boundary curve t(x) = 1lim t(x,h) :

h-0
(19) t(x) < % + +x°,
or
(20) < y(e) + 3(y(eN?,
or

(21) y(t) > Jz~t +1 -1,

Summarizing, we now have the following bounds :

(22) Va't +1 -1<cylt) <t

(23) yr(£) e (y(t) - x) < ulx,t) ¢ y(¢) - x,

Os_XSY(t)’

t > 0.

x>0,

t >0,

t > 0.
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10

Fig., 1.

The boundary curve

y(t).

y(t)
Vot +1 -~ 1
' > t
1
!
y(t)
vzt +1 = 1
> t
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L,2 On the derivatives,

Notation. We shall to some extent use operator notation
in the following, D shall denote the differentiation
operator, and we shall indicate partial derivatives

by subscripts

d
Dy:'a%z'Y'o

ou i ot
ox
Dlu = %%, etc.

I denotes the identity operator such that for instance
w(y,D(t) = uly(t),t) .
The following result is due to R, deVogelaere [2b4]

4, Temma, Let =z = Dy and g; = Dz‘u(y,I).

The g, can be obtained by the recurrence relations:
(2h) g, = 0 By =~2%,

(25) gn+l = Dgn-l - gn’z . n = 1, 2, e e

Proof: (24) follows from (10) and (11) of chapter 2.

i

_ J . - -
Tet fij = Do]%ﬁu(y,l). Then fij = fi+2j,o = 84,03 and
Dfys= F501,52 % F1 5010
Dgiipg = Biy2541°% * Biioge2 14235 = 0, 1, v..
I
gn+1 = Dgnwl - gnoz ' n = 1, 2, o e
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In particular we have

(26) uxx(y,I) = gy = 22,
(27) uxxx(y,I) = g3 = ~-(Dz + 23),
(28) uxxxx(y’I) =g = 32Dz + 24,

As a corollary we can determine the behaviour of the
boundary curve, y(%t), near the origin from the Taylor expan-
sion of ux applied from the boundary curve down to the line
x = 0:

- ok 2
(29) -1 =uU(0,1) =izno~:f;-gi+1= By - VB, + Y By - n

Take derivatives and evaluate at O :

(30) 1 :-gl(O) = z(0) ,
(31) 0 = (Dgy - Dygy)(0) == (Dz + 2°)(0) ,
2 2 2
(32) 0 = (D%, = 2Dy-Dg,~ Dy g, + (Dy) -gB)(o)
= - (D%z + 62°Dz + 22)(0) ,
such that
(33) yr(0) =1, y"(0) ==1, y™m(0) =535 ...

These results have also been found by Evans, Isaacson,

and McDonsld [8].
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5o Lenua, y'(t) > 0, t >0,
Proof: TFrom (3.48) we have
2 - n _ nhyn n«<h

(34) 80 S (L + )7 = (1 + 59" e T

Since neh = x we see that the derivative of t(x)
is bounded away from infinity for finite x. The deri-
vative of the inverse function is therefore bounded

away from O,
6. TLemma, utx(x,t) < 0, 0<x<ylt), t>o0.

Proof: u,cx(y,l) = B gB(O) = 0; Dg3<o) = -2 < 0
implies utx(y(t),t) < 0 close to the origin,
Suppose Uy becomes positive eventually. Because of
the maximum principle and the fact that utX(O,I) = 0
utx(y,I) must then change sign, Tet T Dbe the smallest
value of t such that utx(y(t),t) = O,
Since utx(x,T) <0, 0¢x«<y(T), we have

utxx(y(T)’T) > 0, but then
Dg,(T)= (2 2Dz)(T)= (u, (ysT) ez + u, (7, DT> 0
2
Dz(T)> O
but then by Leuma 5

- u, (y(T),T) =+ (Dz + 223(T) > 0,

contradicting the existence of T.
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7. Lemma, If 0 ¢ t. < ta and O < %y < %, < y(tl),

1
then for tz sufficiently close to tl we have
(35) u(xl,ta) - u(xl,tl) > u(xg,ta) - u(xa,tl).

Proof: Let t be arbitrary, positive, and let x

1 1

and X5 be arbitrary but fixed such that

1y 5 w =
0<%y ¢ %, & y(tl). By Lemma 6 we have
(36) ut(xl’tl) > u (x,,t,) .

Furthermore, since the function (@) = ut(xl,r) - ut(xa,f)

is continuous for 7 > tl’ and ¢(tl) S > 0, it is true

that for sufficiently small g'
(37) u,(x,,7) - u, (x 7')>§— t, < T < t, o+ g,
t 1 t 2! 2"’ 1~ - 71

uy satisfies a Lipschitz condition in the t~direction

near (xa,tl):
(38) Iut(xa,Tl) - ut(x2,72)|5 17’2 - rl[«K, t, € T Tl + e,

Now choose § = min{g', &y ﬁ%}, and we have for

arbitrary t2 such that tl < t2 < tl + £

u(xl,ta) - u(xl,tl) - u(xz,ta) + u(xa,tl)
(29) = (t,- tl)'{u‘t(xl'Tl) ~uy (x5, 7)) +u ey, 73) - ut(xz’ra)}
§ b é
z(tzmtl)O("é’-E) :(ta—tl)"& > 0.

The existence of Ti and 7é between tl and ta
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follows from the mean value theorem, and (37) and

(38) give the estimate,

We have already learned, through the estimate (22),
that y(t) >0 as t = o0, a result that also can be proved
directly, using (2.13) and (11). But y(t) does not
approach any straight line as follows from the following :

é. Lemma., lim y'(t) = O.
t-'foo
Proof: Suppose y'(t) > «x >0, t > 0. Let t, > £, >0
with ¢ so close to t that Lemma 7 holds, and

2 1
let o' = y'(t,) > e, Set y, = y(t;) and y, = y(t,),

Fig. 2. u(x,t) as a function of x, (tl =1, t; = 2).
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Let Al denote the area below the curve u(x,tz),

Y, £ X £ Vo and let A2 denote the area between
u(x,ta) and u(x,tl), 0 <& x<vyq. (See Fig., 2)
Using Lemma 7 and the fact, that u, is an increasing

function of x, we get
(LPO) u(o,t ) - u(o!tl) > u(y]_’ta) - u(yl,tl) > o("(b'a"yl).
Using this and equation (11) we get
(1) 8, >t (y, - y)°
1 =~ 2 1

and

(42) A

v

o 2 o' ¥y (¥, -7y

From (2.13) we have

1]

T1 T2
(43) Vo= Y1 to=ty - JO {u(x,tz) ~-ulx,t )}dx -‘f u(x,ta) dx

2
I

ta"tl - (A2 + Al)a
Combining we get
(4h) to=ty = Ay Ay 4y, =Y 2 (yz-yl)o{l + to! (y2+yl)}

or

Yo =¥y 1 1 1

S ¢ < — < .
t,-t, = 1+ 3o (y2+yl) = l+o'yy 1+oy,

(45)

For any o > O there exists a 1., since y(t) = oe

1
rm———— o(.
as t -> o0 , such that 1 [4 ‘3

This contradicts the assumption,.
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L,3 An a priori estimate,

Cannon and Douglas [2] have discussed the following

problem, which is related to the one we have defined in

(2,1) - (2.6):

(u6) uxx(x,t) = u,(x,t), 0<t<T, 0<x<y(t),
(47) u(x,0) = ¢((x), 0 < x < y(0),
(48) u (0,t) = =g(t), le(t)l< M, 0 <t T, M>o0,

(49) u(y(£),t) = f£(¢), 0<tcT, £(0) = @(y(0)),
(50)  w (y(£),t) = (%), 0<tg<T, (0 =¢'(y(0)),

where y, @, g, £, and % are given, differentiable functions.

Introducing the Neumann function for the half plane {x > O}
(51) N(x, t,}y?’) = K(X, t,E’T) + K('-x’ t’§9r)9

where

. ex {-(x-?)a T<t
YU ) )

(52) K(x, t,%,7)
27 (4 -7)7?

it was shown that the solution, u, of (46) = (50) could

be written as a sum of five integrals involving the functions
K, ¥ ¢, &, £, and %. If we restrict ourselves to a problen
related to (2.8) - (2.12) by setting y(0) = 0, g(t) = 1,
f(t) = 0, and %(t) =-y'(t), only two integrals remain:

t
u(x,t) = J N(x,t,0,7)e g(T) a7

(53) 0

t
- JON(x,t9 T, ) ey (1) v

1
=3
i
=
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where

t
I, (x,t) = S N(x, t,0,7)d7
(54) 0

-3 (" -7 -x°
7t So(tné) exp{mm}dto

In particular

(55) Il(O,’c) = 277"%{3', t >

and since f = O:

(56) I, (y(e),8) = I(y(t),%), t >
Furthermore

(57) I,(x,t) ¢ 1,0(0,%), 0 ¢<xcylt), t>

and

(58) I(x,t) > 0, 0<x<ylt), t»>
From (53), (55), and (58) we deduce

(59) u(0,t) < 27?‘-%1:%, t >

In order to get further information about the behaviour
of u(0,t) for large t, we shall first prove the following

theorenm.

0,
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9, Theoren, If y(t) 4is a continuously differentiable

function, defined for t > O, such that y(t) > O,

0<y'(£) <1 for t >0 and 1lim t%y'(t) = O,
t -0

where O < o < 4, then 1lim t““%.Ia(O,t) = O, where

T =»oo

Ia(x,t) is defined as in (53) wusing (51) and (52).

Proof: We shall prove, that to any € > O there exists
s (= '12" *
a t* such that t Ig(O,t) <& for t >1t7.
So let € > O be given., According to the assumption
there exists a T such that to(y'(t) < £/2V%; for
t > T, Introduce for convenience a = (y(T))2/4 and

consider only t > T.

% 2
. “’% 1 = 2 8 - (T)N”
(60)  I,(0,t) =7 joy (1) (6 =) exp { TR 25y | a7

Divide the interval of integration into two: [0,T]

and [T,t] and estimate the integrals:

- T i - {7 2
7 zg y' (T)e (£t -7T) 2 exp{-—r;%-i-‘-g-;—)-} ar
(61) ©
T : _
< Tf-%S (t-'r)"'%dri ﬁ"%aT%t«-T)"%,
0
which is less than &/2 for t > t' =T + g( %-)2.

The second integral is estimated using the Beta function:

1 M(m)« M(n)

IHEIR
x MNim +n) K

)n-l

(62) B(m,n) = X (1-x ax =

0

and we get
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1 ¢t - _ 2
x STy'(r)-(t-'r) z exp{—;—%} ar

t =T
< E“;—{_X r'“(t-'r)'% a7 = -2%,S (t-x)’“x”}dx
(63) T 0
ca-d 41 Sl-'I‘/t

o)

(1-2)"%2% az

ot

< £t %ag1 -0,

When « increases from O to 4, the value of

B(4,1 ~«) will increase from 2 to 7, and we
£,,F -« A

have the bound E-t for this integral., We

conclude that
(64) t“-%-Ia(O,t) ¢ £.4%7 +§2- < €
for t > t* = max(t',1).

10, Corollary. If u(x,t) is the solution function for the

Stefan problem A, then 1lim t"% u(0,t) = 2%’%.

t 200
Proof: follows from Lemma 8 and Theorem 9 (with o« = 0)

together with equations (53) and (55),
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Chepter 5.

The discretizetion error.

5.1 Expansions in powers of h,

We shall now return to the difference scheme of Douglas
and Gallie. In order to study the discretization error
connected with this scheme we introduce a function W = Wh(x,t)
which dgpends on the step size h and which by definition
coincides with w, the solution function of the difference
scheme, on &ll mesh points (i-h, tn), i=0,1, ¢vey nj;
n=0,1, ... » Similarly we introduce the function Y = Yh(t)
which satisfies Y(tn) = nehy, n=0, 1, ... .

From a numerical point-of-view it is very useful to know
whether the functions Wh(x,t) and Yh(t) can be expanded

in powers of h, for instance like

(1) W=nus+ Ilwl + h2w2 + O(ha),

(2) Y=y + 1171 + haqz + O(hz),

where Wys W M9 and h, are continuous functions, inde~
pendent of h, with domains of definition identical to those
of u and 7y, and where O(hP®) denotes a function which
after division by n? is bounded as h - O. Equations (1)
and (2) should be satisfied wherever W and Y are defined,
i. e. on the mesh points.

A wmain reason for an analysis of the discretization error

along these lines is that a proof of the vealidity of expansions
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such as (1) and (2) would imply corollaries of theoretical
and practical interest., Firstly, the continuity of the
functions involved implies the uniform convergence of the
solution of the difference scheme to the solution of the
Stefan problem for h - O in any bounded region. Secondly
Richardson's method of extrapolating to the limit [17]

can be applied to the solution of the difference scheme

in such a way that we can combine calculations performed
with different stepsizes and obtain methods of higher order

than the original method.

Suppose that (2) holds with remainder term Iﬁzx(t,h):

Y=y + 1171 + heqa + h2X

and that we have performed calculations with three values

of h: h, h/2, and h/hk. Using the formula

= 8

Y

* 3

Wi

h/2
we get

T=y+ hz{%x(t,%) - %—X(t,-}%) + %—X(t,h)} .

We can estimate the remainder term, R = Y - y either as

IR| < hPmax |X(t,.)] . I= [%,h]
I
or
|R| < -é%;thaxl%%] , I:[%,h].

I
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Unless the X-~function behaves very wildly a considerable
improvement is noted as the result of the Richardson extra-

polation as coupared to say Yh/&' A similar result holds

for W,

Since the time reguired for computing Wh and Yh is
proportional to hna, the time for Yh/4 is 16n° compared
to ?_lh-2 for acguiring the data for a Richardson extra-
polation,

5.2 The eguations for W, and U

In order to obtain information about the functions W

Wos Mo and N, We shall first asgume that

2 3, b L
(3) W=u+ Ilwl + h7w, + h vy hiwy, + o(h") ,

(k) T=y+ hy, + hanz s hon, + o(hs),

3
where (u,&) denotes the solution of Stefan vroblem A,
WB, Lo and w, are differentiable 1, 2, and 3 times
respectively, and (2 and N are differentiable 1 and 2
times respectively. Wy, and 73 are continuous and o(hp)
denotes a function which, after division by hp, tends to O
as h - O, Under these assumptions we shall obtain equations
for Wis My and o N5 and then, using that information,
we shall return to the study of (1) and (2).

We shall assume that for each n we atfain the limit
in equations (3.5) - (3.8), and we shall not use equation
(3.8) as it stands, but rather eguation (3,9) which in the

limit becones
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w

-1l,n h
(5) Ll KR .
h Atn
We shall use the notation
5| - 3 - one
(6) W, = W(:Lh,‘Ln), Y o= Y(tn),

and in cases where functions of one‘and two variables occur
in an expression, such as for instance  y(t)-ul(x,t)
we shall write in short (y-u)(x,t).

As in chapter 4 D shall denote the differentiation
operator and partial derivatives are indicated by subscripts
0 and 1.

The eguations we must satisfy are thus

(7) Wi+1,n -2wi,n * Wi g0 = -An-—l%(wi,n - Wi,n_1> ’
i=1,2, +0ey n~1,

(8) Wo,n - Wl,n = h,

(9 o = 90

(10) wn-l,n = Z};_Z’

(11) ¥, = neh.

First note that, since W__ = w(0,0) = 0 and y(0) = O,
we can take wl(0,0) = ql(o) = wa(o,o) = qa(o) = 0.

Using Taylor's formula on (3) and (&) we get




Wit1,n

(12)
Wi,n-l

(13)
Yn-l

(1%)
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2D2u s %h3n3
(o]

(uihDou+%h

+h2 1

3.2 +
hwl- D°w1+%h Dowl-

h2 + h3

+ Lo
W, £ h”D >

L 2
> ow2+%hDow

hl*D w
o

4

3

= BV

- AtnDlu + FAt

2.2
- hAtnDl W, o+ %hAtn Dl 1

2 3
-~ h AtnD1w2 +h w3

( v+ hql + hzqe + h393 -AtnDy -

1
Ou+.é-1;h

w

2 1,.3.3
Dlu - GAtn Dlu + hw

W, +h2w

b b

o)

L 3
zh Dy

3

+ hl*wj_} + o(hl}) )(ih,tn) ,

1

2

+ o(h) )(ih,t )

hAtanl

2.2 2 2.2
+ $hAt D7 n, - h"At Dn, + At Dy

- %AtiDBY + o(n) )(tn) .

We shall furthermore assume that Atn can be written

on the form

(15) Atn
Since

(16) Y

and Yn - Yn-l

equate terms :

ch+ch2+ch3+o(h3) )(tn).

( 1 2 3

(y + hng + heqa + h3773 + o(hs))(tn)

= h we get by combining (14) - (16)

and
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(17) 1= ( chy)(ﬁn) s
(18) 0= (c,Dy + ¢, Dn e-;‘-?ay)(t)
2 1 1 ] '
2
O:(CBDy+c2Dql+cliDrzewcloaDy
(19)
TN 1T SR

and from these equations Cys Cos and c3 can be determined,
(if we know My and '72) knowing that Dy > O.

Using (12) we get

1 <
ha(V’i+1,n =2W; v Wiy n)
(20)
= ( D2u + hDaw + -w-hz’Dq + h2D2
(o] o] o]

1 12 + o(ha) )(ih,tn)

hF!

and using (13) we get

A , ~ 4 2 1,,2.3
(Wi,n Wi,n-—l) = (Dlu ,-g-AtnDlu + gAtn DJu

(21)

+ hD, w. -~ +hAt Daw + h2D W, + o(hz) )(ih,tn) .

171 n"11 172

Using (7) and (15) and equating terms we get the

following relations

(22) 0 (Diw +%~c Du-D }(1ht),

1"

1 b 2 2.3
O_(lZDou+DO! +%c D u—gchlu

(23)

2 ]
+ F ¢y Dy wy ~ Dy Wy, Y(ih, tn) .

We shall return to these eguations after having treated

the boundary conditions.
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Equation (8) together with (12) 1leads to

_ _ e ol o - 2 _ 1 2.3

h = Wo,n len = he( Dou %hDou Eh Dou

(2k)
2.2 2 2
- hDowl - %h D, Wy = h D W, + o(h™) )(O,tn) .
Equating terms and remembering that Dou(o,t) = =1
we get
2

(25) 0= ( +D_u + Dowl)(o,tn) .

1.3 2
(26) 0= ( ZDou + %Dowl + D W2)(O’tn) .

The difference between the true boundary point and

the one that results from our computations is

yn - Yn = y(tn> « neh
(27)
2
= ( -hnq - by, - }13113 + o(n?) )(tn) .
Furthermore
w(nh,t ) = (C u+ (h +h2 -:»h3 YeD u
'"n’ T 1 2 ’13 o
(28) + *( hzni + 2h3qlq2)~})§u

+ %hBWiDzu + o(hB) )(yn,tn) .
Similar expressions hold for Wi Vo, and w3 and we

shall use these in

(29) 0 = Wn,n =(u + hw + h2W2 + h}w3 + o(hB) )(nh,tn) .

We equate terms to get
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o
1t

(30) ( w; +1M,D u )(yn,tn) R

o
H

2.2
(31) (wy + gD wy + 9D w+ Fn D ul(y ,t ).

Remark. In the derivation of equations (30) - (31)
we have implicitly assumed that neh < T, such that
u is defined at the point (nch,tn). In order to
treat the case n<¢h > Yo i.,e, the computed boundary
point is above the true boundary point, we shall assune
the function W to be extended between the mesh points
as an (at least) three times differentiable function

of x and t. Using (27) and (3) we then get

2.2
O:Wn’n=(W+(Y-Y)D°W+%(Y"Y) DOW

+ 3 - 97020+ o0 Ny ,t)

(u+hw +h2w +h3w

L]

+ (hrzl + hzqa)(Dou + hD_w, + haDowa)
+ (4852« pPqn (02w s nolw)
+ %hBr)%Dzu + o(h3) )(yn,tn)

which leads to equations (30) - (31).

Finally, from equation (10) and equation (28)

applied on W instead of u, we get
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h™ = Atn'(wn---il.,n - Wn,n)
) 2. 2. 1.3.3% 3
- . - o L £} 7
= At ( hD W+ 2h"D W ~ Zh” DIW + o(h ))(nh,tn)
(33) ,
- . _ 2 24 h.2 2.3
= At «(-hD W~h(hny + k') D W - 5h D W

2.2, 2 1
+ +h D W + +h hrzlbiw o gh3pg‘w + olh”) )(yn,tn).

Using formule (3) and equating terms we arrive at

~

W

=
N
=
i

( - cq D u )(yn,tn) .

2 2
(35) 0= ( -c D u + clo(--Do w, - nyDgu + %Dou))(yn,tn) .

2 2
= = ¢\ - i - 4-
0= ( czDou + ¢, ( D Wy = My Dou + 2D u)

2 2
(36) + cl.(--ZD(_)W2 - (nl—%) Dow, = NP u

R ICHER N LA DI ICAL

Bguation (34) contains no new information, but in

(35) and (36) we use (17) (19) to get, after division

by Cq
(37) D + D2u+ D w, = ¢ D2y + %Dzu at (y_,t.)
2 1 * 1Y% 01 7% o n'n’
2 2
Dn, + anou+DoW2=cl-(%chy-Dnl)'
(=D +0D2y-Dw - (v —%)Dzu)
11+ % o1 11 o
(38)
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The relationships which we have found for y, u, N9

Wl’ 72’ and w2 hold only at grid points., We shall now,

however, impose the extra conditions on the functions Mys Vips
oo and Wo s that the relationships found also be satisfied in
regions between the grid points. More precisely, with (u,y)
the solution of Stefan problem A, the following are the
equations for (Wl,ql) (see (22), (25), (30), (37)) :
(39) Diwllewlz-%cl})iu, 0 <x<ylt), t >0,
2
(L0) Dowl=—%Dou, x = 0, t > 0,
(41) w, - n, Dy = 0, x = y(t), t » 0,
2 Dy 2

(42) D71+71D0u+])0w1=%1)y +%Dou, x=y(t), t > 0,
(43) w,(0,0) = n,(0) = 0.

N, cen be eliminated from (42) wusing (41). We shall

now prove a slightly more general result which we shall use

several times in the following.

1, Lemna, TLet y be a twice continuously differentiable

function with y'(t) > 0, t > 0. Let n(t) and w(x,t)

be continuously differentiable functions satisfying

(L4 (w=neDylely,I) = £,

g s

1]

(45) (D + peo + Dow)°(y,I)

where o, £, and g are continuous functions of t

and



in addition « > O and f is continuously differentiable.
Then » can be eliminated from (4k4) - (45) and the

resulting equation for w is

2
Dy
((o Ty Jw + 2Dy D W + Dlw)o(y,I)
(46) 2
= . . - 42—1
gDy + feax + DT f Dy

Proof: Differentiation of (44) gives

Dy = D %o(y,l) - Dﬁfy.
(47)
D.w 2
= (D W+ =— - w2l Yo(y,I) - D = .
o Dy (Dy)a Dy

Insert this in (45), use (44), and multiply by Dy

to get (L6).

Lemma 1 can be used on (41) and (42) by setting

i

2
f=0, g=+4D"y/Dy + %Dixﬂygl), and Ditﬂy,l) = (Dy)2> 0

by formula (26) and Lemma 5 of chapter &4 :

> 2

(DTu - %}I)wl + 2DyD wy + Dywq %Dzb’ + %(DY)B’

(o]

(48)
x = y(t), t > O.

Equations (39), (40), (43), and (hé) define a boundary
value problem (with known boundaries) for Wy Since a combi-
nation of normal and tangential derivatives are present in the
boundary condition (48), no general existence and unigueness
theorem for solutions to parabolic equations can be applied
directly. We refer to Appendix A for a short discussion of

this topic.
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For the functions w2 and o we have a similar set of

equations (see (23), (26), (31), (38)):

2 1 b 2.3
Dowz-Dlwa:-i-éDo -}c D u+6-ch1u
(49)
- 3-01 ]_ Wy, 0 ¢ %< y(t), t > 0,
(50) D_w, =-2D u 402w , x =0 t> 0
o2~ 6% 1 == ’
(51) L2 - 75Dy =-4;D, %qlD u, x = y(t), t > 0,
2
(52) Dy + pyDou + D w, = g(t) , x = y(t), t >0,
(53) Wa(0,0) = 72(0) =0,

where cq and ¢, are given by (17) and (18), and where

g(t), as seen from (38), depends on u, ¥, W, and and,

under the assumption that these are known functions, is a

known function of t.
As before it is possible to eliminate 75 from (51)

and (52), Iemma 1 can be used with o« = Diu(y,I) as before,

f=- w, - +n Ditz(y,l), and g dis given by the right

712
hend side of (38).

We thus arrive at a boundary value problem for Wy which

is very similar to the one for LA The considerations in

Appendix A apply to this problem, also.
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565 The relation between n and h,

The significance of the independent variables =, t,
and h is apparent from the previous sections. However,
one extra variable, n, plays an important role. n is not

independent of t and h, but coupled by
n
(54) t, = tlnyh) = %Atk(h)

such that, for given h, we could choose either t or n
as our fime variable. Since we want to compare W and Y
to u and y respectively it seems natural to keep t
as the independent variable,

Formulae (1) and (2) will hold in a certain region
of (x,t,h)=space and in order to be useful we should like

this region to be of the form

O <h<h 0<tcet 0 < x < y(t),

1! 1’
with hl > O and tl > O and tl independent of h,

But when h decreases to zero n must increase like h_l
in order to keep tl independent of h, for we have from

Lemma 7 of Chapter 3
4 2
(55) neh < tn < neh + 2(n-h)™ .

We should therefore consider n.h constant as h -+ 0O

in the considerations to follow.
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5.4 The stepwise approach.

We shall not go directly to the proof of formula (1)

by setting W=u+hw, + haw2 + V and proving that

1

V o= O(ha), but rather divide the proof into three steps.

For the first step we define functions ¢ =y , V=V, =
n in

V(ih,tn), and X =X = X(tn) by the relations

At = yh, n = l, 2, ooo;
W = u + V, X = ih., 't = tn, n= 0, l, oog; i = O’l, cn,n;
Y=y + X, t:tn,n=0, 1y ea

h is the step size in the x~direction, At :Atn is the

step size in the t-direction at time ¢ (ulx,t),y(%))

n-1"*
denotes the solution of Stefan problem A, and (W,Y) is the
solution of the difference scheme (7) - (11).

For the second step of the proof we introduce three
similar functions, and because of their profound similarity
with the Y, V, and X above, we shall keep the same names,
indicating their different origin with an occational super-
script (2) which we shall usually omit, though, since it is

most likely to be a source of confusion rather than a help.

The equations that define ) vV, and X of the second

step are
2
A‘t-——hcl’{”h y, n=1’2g0¢l;
W:u-{-hwl+hv, n:O,J.,aoo; i"—"o,l,oao,n:
Y =y +}171 + hX, n=0,1,...
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Finally at the third step we are aiming at formulae
(1) and (2). Again we introduce three functions Y, V,
and X which can be given superscripts (3) +to distinguish
them from the ones above if there is a fear of confusion.
In the next section we shall in a systematic way state the

properties of these functions.

5.5 The equations for vy, Vv, and X,

The functions for each of the three steps are defined by

Step 1, Step 2.
(56.,2,1=2) At = hy At = hey + hay
(56.b.1=2) W=u+V W=u+hw + hV
(56.c.1-2) Y=y +X Y=y + hy, +hX

Step 30

2 3
(56.2.3) Dt = hey + hey, + B7Y
(56.b.3) W=u+hw + h2w2 + h2v
2 2

(56.¢.3) T=y+hpg +hn,+ X
(56.&) Y= yn n=l,2’oc¢;
(56.b) =W, = W(ih,t ) n=0,1,...5 1=0,1,...,14
(56.0) Y = Yn = Y(tn) n=0,1,...;

The equations for 19 Coy Uy Wyy Woy Ty My and N

are repeated on the next page for easier reference




64

MY Lqa Mqa 4
(57.a., 2) ¢, Dy = 1
(57.b.1=2) Dau-»Du'"O Daw mDv1~~%cDu
T o 177 o1 1717
(57.¢,1=~2) Dyu =~1 D v = -%D*u
(57.d4,1=2) u= 0 w, = 7Dy = O
(57.e.1-2) Dy+Dou:O Dnl+qlD2u+Dw -}cha-v}-Diu
(57.£.1-2) | y(0)=u(0,0)=0 7,(0) = w (0,0) = 0
Cos Yoy o
(57.2.3) ¢, Dy = %~02D2 - ¢.D
<G 2PV EEC YT 76PN
2 I 2., 1203
(57.b.3) D w, =Dw, = -35D u- %02 1 +€ch1u-%chlw
2 o
(57.c.3) Dowa= -g-Du-é o Y1
(57.4.3) w, - 9Dy = - 90w - #ni0lu
G 2 " Y= 1
: 2 2
(57.e.3) D W, + 0D u + Dhy, = ( -Dyy +¢,D7y =D w, (ql D u)
2 1.2
cln( %ch y-Dql) + %ch 71 -z DBy
2 2 1
- (=) DJwy - %(ql-ql+3—)nou
(57.£.3) n,(0) = wy(0,0) = O
(57.a) t >0,
(57.%) 0<x<ylt), t>0,
(57.¢) x = 0, t >0,
(57.8-e) x=y(8), t >0,
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We shall use eguations (7) = (11) +to derive the
eguations to be satisfied by Y, X, and V. First we shall

find an eguation for X corresponding to step 1 using

(56.c,1) and (56.a.1) :
h=%Y =Y :X"Xn~l+hYnDy§'

The subseript ¥ indicates that we shall take the
derivative at some intermediate point ( between tn 1 and tr).
d 1

For step 2 we get from (56.c.2) and (56.a.2) :

: 2
h = Yn o Yn-—l = h'(Xn - Xn-l) + (hc1 + h"yY) Dy

- % (ney + B°Y)PD°y, + hehoy + n7Y) Dy

Again subscript % indicates that the derivative should
be taken at some intermediate point, and not necessarily the
same point for the two X's. Dy is to be evaluated at t =t
but since this is rather clear from the context we have not
indicated the argument in the formula., Similarly ¥ should be

(2)

evaluated at argument n., Note that the formula relates X

o Y.

For step 3 we get in a similar fashion, using (56.c.3)
and (56.2.3)
2 2 3
h=Y -Y ,=h (Xn - Xn-l) + (hcl-+h c,+h y) Dy

_%(...)BDZy +%(...):6D§y)g + h(...)D)yl

2., -2 2
=3 ) D+ BT ) D
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(ee.) dindicates (hcl + h202 + h3y) and the earlier
remarks about arguments for the functions involved still apply.
For each of the three steps we can now solve for Xn - Xn 1

using equations (57.a.-) and we give the results in the

following table

Xn - Xn-l:
(58.1) - hyDy, + h
(58.2) - hyDy + $h(cy + hy) 2p2 yy =h(ey + bY) Dy
(58.3) - hyDy » #(8%- B D%y - 2nEDly

2.2
- (E - ¢)) Dy, + ThED 7,y - hEDR, «

. 2
with E = c1 + h c2 + h 3n

FTor the following equations we shall just state the
results of the computations in tables similar to the one
for equations (58.-) remembering that the numbers 1, 2,
and 3 indicate the three steps in the process. This way
of writing has been chosen, not only because it is coupact,
but also because it clearly exhibits the close similarity
between corresponding equations.

We shall now in turn use equations (7) = (10) :
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Step = <A§_ - At) wi,n
1. (D2 =AY LA =5 b 21)4115 + $nynlu,
2, h(AimAt)Vi,n+-i%h2D2u§+%h(cl+h3/)D‘l?u
- %ha(cl + hy) Diug
+ h{Diwl - Dywy o+ —%2-}121)1* tg + Fh ey +hy)D wlg}
3. hg(Ai‘At)Vi,n lthD“u+~%—-hl“D§ 1o + $REDSu
- %haEaDiu N —5}:11%%3 ug + h{Di wy = Dywy
+ -i]-"é-thgwl + %hEDi iy = %hEEEDiwls}
+ ha{Di W, - D]-W2 + -i}é-h?])g Woy %hEDi WZE}
Solving for V gives
- (Ai -At)vi,n:
(59.1)  4hyDug + $55D uy
(59.2) %hyDiu+%§hDI;u§~%h(cl+hy)DJB_u
+ %h(c + hy) Dl 1e t 1 hZDf;F " x
(59.3)  tnyplu - (8% - D u+—v[;hE3Dl{ g+ T3 BDL Wy
+ 2(E - cl) Di W, - %hEaDiwlg + -%hEDi Vox
+ B%GhaDiung 112}121)11L Wo g
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Next consider the houndary condition on the t-axis:

Step - %( i 1,n " Wo,n) :

1. %(vl’n RES o+ #h D us

2. (Vl,navo,n) + Dou +4h D§u+ »é-hal)gu3 +h D vy + % haDi g
3. h(Vl,n-«Vo’n)+Dou+%hD§u+%haD‘zu +~é]-};h51)§u3

22 . 1.33 1302
+ hDowl + +h Do w, ot F h Do Wi * haDowaJr% h DOWEE
which gives
Vo,n - vl,n:
(60,1) #1702 u
1.2.3 2 2
(60.2) Zh DT u, + + 1D Lo

(60.3) 2Fh Dg + %-h 3w + %h?Dzwag

The boundary condition on the woving boundary leads to

Step O=Wn,n:
1. v + X Du
n,n no g
2 hV + h( +X)Du+%h2(q +X)2D2u+hw
‘ n,n 71 o 1 ok 1
+ h(l’g1 + X) Dowl‘s
22 1. 3.3.3
3, havn,n + hED_u + 3 0%F D2u+ 070D ug + hwy
2 ] ; 252 w2 35D v
+ h FDowl+ }h FOD_wyy + DTW, 4 h”F D v,y

with F o= »71+ hr12+hX.

Solve for V :
n,n
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-V .
n,n
(61.1) X D u
no g
(61.2) XDu+ 2h(n, + X)%D%u, + by, + X) D w
n o 1 o 3 71 0 1%
2 2 2 1 3.3
1. - nl -
(61.3) X, Dou + (7 ql) D u + ZhF7 Dluy + (r ql)Dowl
2.2
+ +hF Do o o+ hF Do’”ag

Furthermore we shall note that because of (57.f.-)
our approximations are correct at the origin such that we

can set

(62) X =V =0

for all three steps.

5,6 Boundedness of X and V.

An inspection of equations (58.-) -~ (61.-) reveals
common properties of the functions involved which we shall
summarize below., Since the functions y, u, ql, etc., are
bounded and have bounded derivatives for t bounded we

can state

2., Leuna, There exist bounded functions fl’ fa, eeesy f7,
where f3 and fh are functions of x and t, the

others only of %, and all are bounded for t bounded,

such that
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(58) X =X

i
jo s
—
-]
’.—J
+
<
h
n
p—3

i
=
N
.,-’,
W
+
°<
4
g
~

(59  (AZ- DYV, .

2
(60) Von -V, . = BTEg,
(61) vn’n = X fg + hi,,
(62) X =73 = 0,
o] 0,0

3, Lemma, If y= y%(x,t,h) is bounded in a region
of (x,t,h)-space for n - oo then the solution
functions X and V of (58) - (62) are bounded

in 0O n {t £T} for any finite T > O,

I, Corollary. The functions X and V of step 1 are

bounded for t bounded,

Proof: For step 1 we have from formula (48) of
chapter 3% :

At

n n nh.n nh
yn=T<(l+h) =(l+-ﬁ-) e

and nh is bounded by max{V(t)} = ¥(T) < T for t < T.

Proof of Lemma 3: is divided into four parts.
1. A bound for X,
If M(n) 4is a bound for ‘y&|, i=131,2, ¢eey, n and
Fj(n) are corresponding bounds for jfjl, G =1y 2y seey 7

we prove by induction
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(63) txnl < nh(Fl +PF) .

The assertion is clearly true for n = 1 and assuming

that it holds for n-1 we get

Xn = Xn-l + h( fl + yf2)n,

X1 € I, _q| + 5(Fy +[F,) < nh(F, +IF,) .

n

In order to arrive at a bound for V we shall use the

principle of superposition and consider V as & sun of
three components, each solving the system (59) - (62)

with only one of the right-hand sides non-zero. We

shall use superscripts (a) - (¢) for these couponents.

2 (a) _
2. (Ax- At)vi,n = h(f3+yf4)n,
va) _yle) ooyl g,
o,n l,n n,n
For V(a) we shall prove by induction
(a) 2 nh
(64) lvi,nl < nh M (F L TF)

We shall omit the superscript in what follows since we

(a) for this part of the proof.

are only looking at V
First consider n = 2., We have Vll = V22 = 0, V02 = VlZ’

and equation (59) is thus reduced to

1 1.
"Vla(;l”a’"f‘A"‘ta) =h(f3+yfl{.)’
At
[Vip| £ B(F5 MF), ), b e & 2h2e2h(F3 s T FL) 5

h 4~£§t2
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Suppose the

Since V =
nn

' Vin l

72

expression is true for n-1 and consider n.

0O and Von = vln the maximum value for

occurs for some i satisfying 1 < i < n-~1,

Without loss of generality we can consider a (positive)

maximum for

. 2 .
8 . < his
Vin‘ In this case gg}{Vllx <€ 0 for thi

particular i and
mz.x Vin = Vip £ V5 pog ¥ At b £y + yf,) )
¢ anfe™ (P, PR,
since At < et
Vg?; - ngfi = w5,
Mi-ét)"gi’i = 0, v;",’; = 0.

For this component we shall use a modified version of

Lemma 2 in

If (Afc - At> L7

then 0O < w,

In our case
equation wit

through, wor

[7] which can be stated in the following way:

=0, w - W = h, Ww = 0,

n 0,1 1,n

- W, < h i=1, 2 ne-2yxl
i,n i+l,n ! L A ‘

we shall replace the h in the second

h h2 fs. The proof can still be carried

d for word, and yields

(b) (o) 2 . 1
|vi’n-vi+l’n| < n°Fg, i=0,1, ¢0., n-1.
Usi (v) _ . -
gsing that Vn n = 0 we get immediately
¥
|V(b)| < nn®F. .
o,nt =~ 5
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. 2 . .
Solutions of (Ax - Ay Vi,n = 0 satisfy a maximum
principle (Theorem 1 in ([7]), therefore the maxinmum

(b)‘

value of IV is taken on the boundary, i.e. for

i=0 or i = n, and we have therefore

(65) |v(b)| < nh2F5 i=0,1, +e., n=l,
() _ + &
b, Vn,n = an6 + h f7,
2 (e) _ (e) _ yle) _
A)':""At)vi,n—o’ vo,n ln' 0.
V(C), too, satisfies a maximum principle, therefore
max lV(c’)' is attained for i =0 or i = n. But

(66)

(67)

a maximum can not occur for i = O Dbecause from

Vo,n > Vo,n-l together with vo,n-l = Vl,n-—-l s
2
Vo,n = Vl,n , and (Ax - At> Vl,n = 0 follows
h2

-V + V :W(V -V

1,0t V2,m T AT Ti,n 1,1’ >0

such that VO " is not a maximum, (A gimilar argument
9

holds for negative minima,) But then we have, using
the bound for X from part 1:

lV(C)' < max |V<C)t < (hF
j<n

7+nh(F + T, )I )

Summarizing the results of parts 2, 3 and L4 we have,

for bounded functions F8 and F9,

Vi o1 € ah(Fg +TFy)

o 11

which together with (63) shows that X and V are

bounded.
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It is apparent that the estimates (63) and (67)
are not the best possible, for from formulae (56.-) we
read off the conjecture that V end X (of steps 1 and 2
at least) are O0(h) and not just bounded., With the tech-
nigues used here it does not seem possible to arrive at
better bounds and this is a reason for the failure of our
attempts., The estimate for X is crucial here in the sense
that if we could somehow prove that X were O(h), then
a similar estimate for V would follow from the proof of
Lemma 3, the estimates (64) and (65) being good enough
already, and (66) Ybeing repaired by the better estimate
for X,

Another 'missing link' is the transition from step 1
to step 2, and from step 2 to step 3. It is possible that
the eguation h2 = At W which we have not used in

n nel,n

this section might be of value providing starting estimates

for y(a) and };3).

5,7 The heat equation in a rectangular strip.

The techniques which we have used in this chapter were
not too succesful on the complicated problem of a moving
boundary. For siupler problems, however, our method yields
good results which we shall demonstrate now,

Consider the heat equation in a (semi-infinite) rect-

angular region of width 1.
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u_= 0
x =1 x
u=20 uxx = Uy
x =0 4 = -1 S
x
Fig. 3.
(68,2) Diu(x,t) = Dlu(x,t) ' O<x<l1l,t>0,
(68.b) u(.x,O) =0, 0< x <1,
(68.¢) Dou(O,t) = -1, t > 0,
(68.4) D u(1,t) = 0, t > 0.

We shall use an implicit difference scheme similar to
the one of chapter 3, and furthermore we shall choose
At = Ax =h = % where P is a positive integer, such
that p steps in the x~-direction will take us from O to 1.

The difference eguations are

(69.2) (AfC - Ay Wi’n = 0, i=21,2y000, P~1; n=1,2,...
(69.%) Wio® 0, i=0,1,004, D}

(69.¢) Wo,n - ‘gl,n = h, n=1,2400.
(69.4) W i = 0, N=1,2y000
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Assume the existence of an expansion similar to (3) :
2 4 4
(70) W=u+hwl+hw2+h3w3+hw,++o(h)

where w3, LY and w, are differentiable 1, 2, and 3
times respectively and L is continuous.
Application of equations (69.-) 1leads to the following

equations for w and Lo

1
71.a) (Do-Dl)Wl =%D1u, O0<x<1l, t >0,
(71.b) w, = 0, 0<x <1,
¢ 2
71.c¢) D Wy = -~%D011, x =0, t >0,
( 2
71.4d) D w = $DSu, x=1, t >0,
2 L 3. u 2

(72.a) (Do-Dl)w2 _-(%DO+D1)€-+%D1W1, 0<x <1l, t>o0,

. w - ’ < x < 9
(72.0) 5 =0 0 1
(72.¢) D w, = -%Diwl-%‘-Dzu, x=0, t>0,
(72.4) D°w2 = %Diwl - %Dgu, x=1, t > 0.

The derivation of these eguations follows exactly the same
1ines as described in section 5.2 and we shall not go into the

details.

Now define the function V by the following identity

(73) W= u+hw1+h2w2+h2V

where W

1 and LA satisfy (71.-) and (72.=) respectively.
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In a similar way as in gection 5.5 it is shown that V

satisfies

(74,a)

(74,1)

(74.¢)

(74.4d)

where the

bounded.

the difference equations :

2 .
(Ax - A“L) Vi,n = hfl’ i=1,25.00,p-13 n=1,2, ..
Vi’o = O, i=o’1,019 p;
v -V = h2 £ =1,2
o,n l,n ~ 2° B=dLaey oo
V-V = nl n=1,2
Pyn p-l,n 37 Tt

functions ¢f fa, and f are bounded for t

1’ 3

5. Theoren, If V satisfies equations (74.-) then

V is bounded as h - 0 for t < T,

Proof:

The proof is divided into three parts. We shall

use the principle of superposition and consider V as

a sum of three components, each solving the system

(74,-) with only one of the right-hand sides non-zero.

We shall use superscripts (a) - (d) for these components,

1.

(Ai - At)V:(L?; = hfli

V(a) _ V(a) - v(a) _ v(a)
o,n l,n p,n p-l,n

A positive maximum for V§ai (n fixed) corresponds to

d
2 4(2) T
AV, 0 = : . +hf, <0
x i,n - h 1 -
R P TR £ o L SN V(.a; < henheF,

i,n - “ign-l 1 i,
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where ¥, is a bound for l(fl)i, for i =1,2, ..., n.

1
(e) (e) 2
2 vo,n - vl,n = h iy,
2 (e) _ (e¢) (e¢)
(Al - At>vi,n = 0, vp’n -«vp”l’n = 0,
Define
- el
mi,n = 2 h = kY i:o,l, LRI p"l

Since '(132 - AL)m, = 0 we have a maximum principle
X t7 7i,n

for m. = 0O we have
i.,n

and from n
s o)

= hf2,

! mp-l,n

lm heF where F is a bound for [(fz)i|,

il £ 2 2

i = 1, 2, e ey n, BTOV?

Vo) = Vit + nALVY
= |V§f;‘ < 'ng;-l' + hea¥y
= |v§f; < nehe2F, .
3, Identical to Part 2.
Conclusion: |V(x,t,h)| < t.F(t),

where F dis & bounded function.
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Chapter 6.

The Chebyshev-series method of A, Wragg.

6.1 Definition of the method.

Besides the Douglas-Gallie scheme several other numerical
methods have been devised for the approximate solution of the
Stefan problem. We shall study one of these: The Chebyshev-
series method of A. Wragg [23] and perform an analysis of
this method similar to what we did for the Douglas-Gallie
method.

We shall now outline the numerical method. We refer to

[23] for further details.

Notation, Tet k= At be the step size in the t-direction,
and assune that Uo(x) and Ul(X) are approximations to
u(x,to) and u(x,tl) where t, =t + k. Furthermore
let (xo,to) and (xl,tl) denote points on the computed
boundary curve, i.e, X and x, are approximations to
y(to) and y(tl), respectively.

Discretization of equations (8) - (11) of chapter 2

now yilelds

(1) DZU, (x) - £(U (%) = U () =0,
(2) DU, (0) = -1,
(3) U (%) = 0,
Xl - Xo
(W) DUO(XO) = e .
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Instead of (4) a symmetric formula might be suggested:
' 1 ¢ = wp  Seemeetmr——
(ha) 'Q{DUO(XO) + DU (x)} = .

One would expect a smaller truncation error when using
(4a) instead of (4), the price for this being more compli~
cated equations for x, and Ul(x). We shall, however,
not pursue this matter,

We shall assume that xo and Uo(x) are known and that

Uo(x) is a polynomial of the form

n+l % om
mn=0 e}

In order to obtain a similar expression for Ul(x):

n+1l % .m
(6) PIOIEIPIRLNC i

we shall replace (1) by the perturbed eguation

>
n+l

2 1 = X ; X
(7) D Ul(x) - k( Ul(x) - Uo(x)) = TlTn(xl) + 75T (xl),
where T; denotes the n~th Chebyshev polynomial of the
firat kind over the interval [0,1].

Equations (4) and (2) now give, using (5) and (6):
(8) X, = X_ =~ X ma_ 3 b, = ~-%X. ;
= g 1% "

and (7) and (3) now lead to a system of n+3 linear

4 5 ] b}
equations for bo, b2’ b3, cov bn+1, Ti, The We refer to
[23] for the exact form of these equations which we shall

not use here, since our further investigations are based
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directly on equations (2), (3), (&), and (7).

As mentioned by Wragg this numerical method might not
be optimal near the origin, and therefore a special starting
procedure might be useful for obtaining values up to a cer-

tain time To‘

6.2 The discretization error,

We shall study the discretization error, connected with
the numerical scheme outlined above, in a similar way as we
did in chapter 5 for the Douglas-Gallie scheme, First let

us introduce W = Wk(x,t) as a function of k, x, and t,

which coincides with Uo(x) on each meshline t =1t =T + ik,
n+l (i) *®, X

(9) Wix,ik) = »_ ¢, T3, i=0,1, 2, ¢s.
; J 3R,
j=0 i

where cgl) denote the coefficients of the expansion (5)

rewritten in terms of Tg, and Xs is the corresponding
calculated boundary point, which was called xo in (5).
Similarly introduce Y = Yk(t) as a function of k and t,

such that

(10) Y(ik) = x; , i=0,1, 2, ¢oo

The use of a special starting procedure up to time t = To

leads to an assignment of values for W and Y@
Y(To) =Y*, W(x,To) = ¢(x) , 0<«<x<Y".

Considering formulae (11) and (12) below it appears

to be desirable to let the starting procedure depend in some
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way of the chosen step size k., These considerations are
somewhat similar to the ones put forward in (k] for an
ordinary differential equation. To make the following
analysis simpler we shall, however, from now on assume
T, =0 and w(0,0) = Y(0) = O.

Proceeding as in chapter 5 we shall now assuume that

W and Y can be expanded in terms of Lk

2
(11) We=u+ kw + kv, + kBWB + o(kB),

1]

i

(12) Y =3+ ky, + kaqz + o(ka),

where (u,y) is the solution of Stefan problem A, and
where Vias Vo, and w are twice differentiable, (! is

3

differentiable, and 75 is continuous.

Remark, The functions W, Y, Wiy Vo WB, (IE and N5

are different from the ones of chapter 5.

The coefficients of the perturbation term in (7),

7! and 7! are now functions of t and k and we shall

1 2
assume that they also can be expanded in powers of k:

2 2
1] —
(13) Ty = Tyt k ?3 + k Ts + o(k™) ,
(14) 7L = T, + k7T + K27, + o(ka)
2 2 L 6 ‘
Now, let t_ = ieky %y = (i +1)+k, and use equations

(11) - (14) din (7) :
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U, (x) = U () Wz, b)) - w(x,tl;k)

k ) k

(15) (Dlu + k( Dlwl - %Di u)

.
+ ka(D W, - %Daw + "'DBu) + o(ka))(x,t ),
172 17178 1

1

2 2
D Ul(X) D W(x,tl) =

(16)

( D2u + kDZW + 1{2D2w
o o o

L + ok ) (x,ty) .

2

The perturbation term on the right hand side of (7)

now becones

2 » X
(Tl + 1«:7‘3 + k TS)(tl)'Tn(m)

(17) ,
e (7, + Ty, 4 K278 (i) + o(K®)
2 b 67 "1 “n+l thl) ' :
Combining (15), (16), and (17) and equating terms
we get
_ 2 _ » *
(18) 0= (Dou - Dlu)(x,tl) = 'Z‘l(tl) Tn + Ta(‘tl) Tn+l y
(19) (02w, - Dow + $D2u) (x,t)) = 7,(8,) % & 7, (£) T
o 1 11 1 YT "3 71" 'n LY "1/ "n4l?
2 2 1.3 _ . »
(20) (DOW2 - fDlW2 + %Dl Wy - B'Dlu)(x,tl) = T5Tn + T6 Tn+1 ,
. X * »
where we have omitted the argument (ﬁTEIT) of T ' and T~..

Equation (18) gives Ty =T, = 0.

Using (2) we get

-1 = DUl(O) = Dow(o,tl) =

(21)
2 2
( Du + kD w, + KD w, + o(k™) ) (O,tﬂ)
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which yields
(22) Dowl(o,tl) = 0, Dowz(o,tl) = 0.
In order to apply (3) we first note that

X,

141 " y((i+1)+k) = (¥ - y)(ty) =

(23)
(g + Kony + olk)) (5)

and we now have
0 = W(xi+l, (i+1) k) =

2 2 .
(u+kw, + k Wy + o(k™) ) (Xi+l’ (i+1l) k) =

1
(24)

2 2 2.2

(u+(kﬁ.+ngD&1+%kthou+kwl

2 2 2
+ k7p D wy K w, + o(k™) )(y(tl)’tl)’

which gives

1]

(25) 0= (g Dou+ w) (y(t9),t9) »

2.2
1 \
( szou +~gqlD011+ 71Dowl + wz)(y(tl),t ) .

(26) 0

Remark. The derivation in (24) is valid only when

X.

141 < y(tl) , i.e. when the calculated boundary point

1ies on or below the true boundary curve., If, however,

W is assumed twice differentiable, then we have

. 2
0 = W(xi+l,(1+l)-k) = (W4 (kpy + & n5) D W

(2ha)
» 35792020 4 o(x%)) (y(8) %)
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Using (11) and eguating terms we again arrive at
equations (25) and (26) showing that these equations
hold also when the calculated boundary lies above the

true boundary.

Finally we shall consider equation (4) :

X - %, Y(to+k) - Y(to)

1 2
k ) k - (DY+kD)7l+kD'72
(27)
+ %—kDay + %kaDaql + %kan3y v o(x2)) (b)) )
O
DUO(XO) = DOW(xi,to) =
2 2 2 2.3
(28) (Dou+ (kg + K7p,) Dow + k77 DJu + kD wy

2 2 2 2
+ k ’leowl + k DOW2 + o(k™)) (y(to),to) .

Combination of (27) and (28) wusing (4) yields

(29) 0 = (Dql + %Day + 71Diu + Dowl)(y(to),to) ,
0 = (an + %D2721 + %DBy + aniu + -%qiDzu
(30)
2
+ rleo Wy D°w2 ) (y(‘to),to) .

According to the derivation the ecuations (19), (22),
(25), and (29) are to be satisfied by (wl,ql) for t = i-k,
i=0,1,2, «oo 3 0« x < Y(%t), We shall now impose the
extra condition that they be satisfied for a2ll t > O, and at
the same time we shall adjust the x-intervals to coincide
with those for u(x,t). In other words, given u(x,t), y(t),

7‘3(’c), and Th(t) we now define wl(x,’c) and ql(t) by
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e 2 b'd x
D 2. . D « = o A (1 el * -
o™ 11 ZDEL*%EJNM)+TM%Q%TSM

(31)
0 ¢x <« ylt), t »o0,
(32) Dw, =0, x = 0, t > 0,
(33) w, =y, Dy =0, x = y(t), t > 0,
(34) Dn, + qlDiu + D vy = -%Dzy , x = y(t), t > 0,
(25) n,(0) = w,(0,0) = 0.
nq can be eliminated using (33) and (34), a result

that follows directly from Lemma 1 of chapter 5. With

o = Di uly,I), £ =0, and g-= -—}Day we get
2 D2 2
(%36) ( (Dou - -5%) w, + 2Dy D w, + Dlwl)(y(t),t) = -%Dy D y(t).

Equations (31), (32), (35), and (36) now define a
boundary value problem for wl. We refer to Appendix A for
a discussion of existence and uniqueness of solutions to
boundary value problems of this type where a combination of
normal and tangential derivatives occur in the boundary
condition,

Once w

1
equation (33),

is determined N1 is easily found from

It can be mentioned in passing that the effect of using
(4a) dinstead of (4) 4is that the term containing Day

disappears from the right hand sides of equations (34) and

(36).
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Based on equations (20), (22), (26), and (30) we

shall now in a perfectly similar way define wa(x,t) and

qz(t) by
2 1.3 2 . .
D w, - Dyw, = ZDju -%Dlwl + 15Tn+ Te T oy
(37)
0 <x <y(t), t >0,
(38) D w, = O, x =0, t > 0,
(39) w, - Dy--%zDau- Dw x=y(t), t >0
2 " M2PY = mFN %% T 13 HRAREE ’
2 2 2 2
Dy + npDiu s Dywy = -0y - 070w - ny D Wy~ FDy
(4o)
x=y(t), t » O,
(41) n,(0) = w,(0,0) = 0.,

Also here n, can be eliminated by Lemma 1 of chapter 5
and we can get a boundary value problem for vy similar to

the one above and thereafter determine n, by means of (39).

6,3 The equations for V and X.

Now, with (u,y) given as the solution of Stefan problem A,
with (W, Y, 73, 75 ) given as solutions to (2) - (&), (7),
interpreted by means of (9) and (10) and extended between
meshlines (resp, meshpoints) as twice differentiable functions
of x and t, and with (wl,ql,wz,qa) defined as the solutions

to (31) - (41) we shall now define functions V = Vk(x,t)

and X = %, (t) by
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(h2) Wo=uor kw + kawa v KV ,

2

(43) T=y+ kny + kaqa + kK°X,

The perturbation term of (7) causes considerable
complications in the analysis so we shall for the moment
assume that it is absent.

Let t = i+.k for some i, and O < x < y(%)

(4h) PPy = Diu + kDiw

2
o + DOV’),

2 2
1+ k°( DoWZ

W(x,t) - Wix,t-k)
k

= ( Dlu + k( Dlwl - %Diu)
+ kz(Dlwz - »}wal N %Dfu)
(45)

* kB(;z%Dl{us * %Diwn - %Diwas) ) (x,t)

+ k(V(x,t) -~ V(x,t~k) ).

Subtraction yields

(46) D2 V(x,t) - V(x,t) ‘kV(X’t"k') = ox) ,

where we have used (31) and (37) and discarded the
perturbation term.

Differentiating (42) with respect to =x, setting x = O,

and using (2), (32), and (38) gives
(47) D_V(0,t) = O.

Now, setting x = %, = Y(t)
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2 2.2 .2
0 = W(xl,t) = k V(xl,‘t) + (u + kF D u + Fk°F D u

2 2
(48) + kw, + KFD w, ok wa)(y(t),t)
3,1.3.3 2.2 ?
+ k (gF Do U+ ¥ Do Wig * FDosz)
with F:ql+k72+kX.

Formula (48) holds whether the true boundary is above
or below the computed boundary.

Using (33) and (39) we get

-V(xl,t) = (XDou + £(F7 - ) Dju + (F -9y Dowl)(y(t),t)
(4%9) _
+ k(%’FB Dg u, 3F° Di wyg + FD W) .

Finally we shall use equation (4) and therefore compute

Y(t+k) - Y(t)
k

= k(X(t+k) = X(t) ) + (Dy + kDpy
(50) + k2D, + $RD7y « $EODOn + 2K D7Y) (%)
D_W(T(t),t) = kzDoV(Y(t),t) + (D u+ kF Diu + kD wy

2 2 2. .2 2
(51) + $X°F Dzu + XPF DS W+ KOD wy) (y(£),t)

L

3,13 2 3 2
+ k (EF Dou§+ FF°D +FDowZE)'

o "%

Combination and use of ecquations (34) and (40) gives
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X(t+k) ~ X(t)

-DOV(Y(t),t) -

k
(52) (XDiu NG qi) Dgu + (F - py) Diwl)(y(’c),t)
+ k(%’-FBDguE + %FZ Diwl3 + FDi w2§) + 0o(k) .

Finally we have from (35) and (41) that
(53) v(0,0) = X(0) = 0.,

The equations for V and X here are considerably more
complicated than the similar ones in chapter 5. It is not
clear whether we can prove boundedness of V and X as
h =+ 0, from equations (&6), (47), (49), (52), and (53),
Furthermore we must remember that these equations correspond
to the sinmpler problem where the perturbation term of (7)

iz set equal to 0.
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Appendix A.

On & special boundary value problen,

Tn chapters 5 and 6 we have encountered parabolic problems
that are not covered by general existence and uniqueness
theorems because of a special type of boundary condition (see
(1.c) below). We shall in the following give a uniqueness
proof for solutions to a certain class of such problens.

Consider a parabolic boundary value problem of the form

(1.2) (w =-w)(x,t) = £(xz,t), O<xcy(t), t>0,
(1.p) , wx(o,t) = - g(t), t >0,
(1.¢) (aW4~b%c+cwt)CﬂtLt)= act), t>0,
(1.49) w(0,0) = 0,

where a, b, and ¢ are positive functions of t, and

y satisfies

(2) y(0) = O, y(t) > 0, t > 0,
(3 y'(0) =1, y'(%) > 0, t > 0,
and furthermore

(&) b(t) > yr(t)ec(t) , t > 0.

Suppose Wy and w, are two functions satisfying (1l.-).

Then w = wl - Wa satisfies
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(5.2) (wxx-wt)(x,t)=0, 0<x<ylt), t> o0,
(5.b) » w (0,t) = 0, t > 0,
(5.¢) (aws+ bw_+ cw )(y(t),t) =0, t > 0,
(5.4) w(0,0) = 0.

The function w = O is a solution of (5.-). We want to
prove, by contradiction, that no other solution exists,

So assume that w solves (5.~) and that (x_,t,)
such that w(xo,to) > 0. (The case W(xo,to) < 0 can be
treated in a similar way.)

Because of the maximum principle and of the condition

(5.,b) a maximum must be attained on the upper boundary, i.e.
3t1 > 0 such that w(y(t,),t;) > 0.

Let tl be chosen such that O < tl < to and

max {w(y(£),0)} = w(y(ty),t,) .
[0,t]

At the point (y(tl),tl) we must have either w_< O
or w, < O because of (5.¢).

t

1., But wx(y(tl),tl) < O implies
w(y(t) -8, &) > w(y(t), tq)

for & positive and sufficiently small, contradicting

the maximum principle.
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Now, assume Wt(y(tl)’tl) < 0, Let £, &> 0 such that
0 < y(ty) - & < y(ty -€).

w ( y(tl) -6, t; -€) - w(y(ty), )

]

C»ﬁwt - éwk)(y(tl)’tl) + second order terms

(-€ew, + %( aw + cwt)(y(tl),tl)

t
=(s2w - (g - 8g)w) (y(x),t) .

If & and & are sufficiently small and satisfy
c
E> & o

then (7) will be positive which is another contradiction.

Now the condition (6) is identical to




ok

(9) 8> y(t) - y(t =€) = £+y'(t)-1€7y"(@)

and (8) and (9) can be satisfied at the same time,

provided
b
. ] o e
£y (tl) < E°
which is the condition (4).

In chapters 5 and 6 we had

!

a=u_ (y,I) - %7 ;
b=2y',
C=l,

such that % =2y' > ¥' (t > 0).

Furthermore, by (4,26)

a = 22 - %? > 0 & Dz « 23.
But from (301”4) Ati < Ati+1’ i = 1, 2’ e e e

which implies that the boundary function, y(t), has a non-
positive second derivative, and since 2=Dy >0 we
therefore have a > O,

The question of existence of solutions to the system (1.-)
is open at the moment, We shall at this point only suggest a
few techniques that might be used in the search for an existence

proof:

1. A convergence proof for the solution of an approximating
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difference scheme may imply existence of solutions to
the original problem,

An & priori estimate for & problem together with duality
theorems for Hilbert space may imply existence of

solutions to a related problem.
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Appendix B.
An ALGOL program for the Douglas-~-Gallie method,

Actual computations have been performed on the CDC 6400
computer at the University of California Computer Center,
Berkeley and on the GIER computer at Aarhus University, Denmark,
On the following pages is listed the ALGOL program which resul=-
ted from the experiments.

The number of iterations, g, is an input-variable, If
acceleration, as mentioned in section 3.4, is used, a value of
g = 2 is recommended for 7 decimals' accuracy in the compu-
tations.,

We have used a number of step sizes ranging from h = ,1
to h = ,06125,

When preparing tables of the functions w(x,t,h) with
equidistant entries an interpolation in t dis necessary.

A standard 4 point method has proved satisfactory in many
cases although not accurate enough near the origin.

Output statements have not been included since we have
desired to give a description of the program as close to the
reference language AIGOL 60 as possible, Furthermore we want
to avoid here the practical considerations =~ concerﬁing the
width of the paper, the number of lines per page, printer
control characters and special characters, and the general

lay-out of the tables -~ which are largely irrelevant to the

numerical problem.
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Also, the specific form of the output statements often
differ from one computer installation to the other such that
an installation manual is needed to define the exact action
of the statements.

The input statements have been included, however, since

they are self-explanatory and clearly demonstrate what input

is needed.



begin comment Stefan problems

integer n, nn, 1, i1, 12, q, r3
real h, t, delt, 42, 43, diff, x, x1;
QB: nn := readinteger; h := readreal; q := readinteger;
comment nn = number of time steps, h = step size,
q = number of iterations;
if nn < O then go to QX
11 := (nn + 2)x(nn + 1)/2 - 13
begin array A, C, D[0:nn], W[0:11];
comment & procedure for performing interpolation for use whea
preparing an output-tsble may be inserted heres
p[0] := O3
for i := 0 step 1 until 11 do W[1] := O3
for 1 := 0 step 1 until nn do A[1] := C[1] := 03
W[1] := D[1] := t := a2 := delt := hj
comment initialization of variables has just been performed,

now comes the main loop;

for n := 2 step 1 until nn do

begin 12 := (n + 1)xn/2; 11 := 12 - n; r := 0;

comment r counts the iterations, i1 and 12 are
pointers in the array ¥ vwhich contains the
values w(ixh, t[n]), arranged linearlys;

QF: x := hxh/delts

comment the tri-diasgonal system for w(i,n) has A
as diagonal and C as right-hand side
and -1-8 in the side-diagonals;

for 1 := 1 step T until n - 1 do

begin A[1] := x + 2; C[1] := W[11+1]xx end;

A[0] := 1; c[0] := h3
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comment Gaussian reduction (backwards);

for i :=n - 2 step -1 until O do

begin x := 1/A[1+1]; A[1] := A[1] - x;
c[1] := c[1+1]xx + C[1]

end;
c[o] := c[o]/a[0];
comnment substitution;
for 1 := 1 step 1 until n - 1 do
c[1] == (c[1-1] + c[1])/a[1];
comment equation (3.9) 1s used here instead of (3.8);
d3 := hxh/C[n-1];
if r = 1 then
begin comment acceleration, see section 3.h4;
x := (@3 - delt)/aife;
d3 := dir£/(1.0 - x) - @iff + delt
end elgse Aiff := 43 - delt;
;;]jt—;:dS; r :=r+1;i_1f_r_<_q}h_en_§_g_§_gQF;
comment D[n] contains t(n), delt is deltat[n],
end d2 1is deltat[n-1];
D[n] =t := t + delt; x := delt;
delt := deltx2 - @23 42 := x3
for 1 := 0 step 1 until n - 1 do W[12+1] := C[1]

ends
_c_;ment output of tables of +t(x,h) and W(x,t,h)
can be performéd here;
£ o @
end;
QX:

end

———

FU————
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Appendix C.

Numerical tables.

On the following pages are given tables of the solution
functions of Stefan problem A, The numerical values of t(x)
and u(x,t) have been obtained by the Douglas-Gallie method
with Richardson extrapolation. We have used step sizes
h =.1, .05, and ,025 and for the region 0 < x < 1.0,

o

in

t < 1.3 a check has been performed with step sizes

h .05, .,025, and ,0125.

"

The values have been checked against results obtained by
the author using the method of W, Trench [22] and as far as
possible with the power series expansions (see e.g. Evans,
Isaacson, and MacDonald [8]). Coefficients for these have
been calculated by the author on the CDC 6400 computer at the
University of California Computer Center, Berkeley. The
results indicate that the series have very small radii of
convergence (possibly 0), but they can still be used to give
results to 4 decimals or better in the interval 0 < t < .1.

The values of t(x) have also been compared with those
given by A, Wragg [23]. When Richardson extrapolation is
applied to his results (Table 2 of [23]) with At = .0k, .02,
and .01 the results agree with those given on the next page
up to round-off.

The values for y(t), which is the inverse function of t(x),

have been obtained using Newton-Raphson's method together with
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b-point interpolation in the table of t(x). For the interval
O0<t< .l, though, the values have been obtained from the
series expansion for y(t).
A1l our computations have been performed to at least
7 decimals relative accuracy, such that round-off errors
should be negligible compared to the discretization errors.
The computation time as a function of h dis given in
the following table, The values given are CP seconds on

a CDC 6400 computer.

h n sec
ol 20 .36
.05 4o 1,42

.025 80 5.62
.0125 160 22.25
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Table of t(x), x = .00 (,05) 2.00

x t(x) X t(x)
.00 .0000 1.00 1.3646
.05 .0512 1.05 1.4484
.10 <1047 1.10 1.5335
.15 1604 1.15 1.6198
.20 .2180 1.20 1,707k
.25 .2776 1.25 1.7962
.30 .3390 1.30 1.8862
«35 4022 1.35 1.9775
o) JA671 1.40 2.0699
L5 5337 1.45 2.1636
.50 .6019 1.50 2,2583
.55 .6716 1.55 2,3543
.60 .7429 1.60 2.4514
.65 .8157 1.65 2.5h96
.70 .8899 1.70 2.6490
.75 .9656 1.75  2.749k
.80  1,0427 1.80  2.8510
.85 1.1211 1.85 2.9537
.90 1.2009 1.90 3,057k
.95 1.2821 1.95 3.1623
1.00  1,36L46 2,00  3.2682
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Table of u(x,t), t = ,00(,01) .30, =x = .00 (.05) y(t),
Table of y(t), t = .00 (,01) .30.

> x .00 .05 .10 .15 .20 .25 y(t)
.00 .0000 . 00000
.01 .0099 .00995
.02 .0196 .01981
.03 .0292 .02957
Ok .0385 .03925
.05 L0478 .0L884
.06 0568  ,0079 058326
.07 0658  ,0169 06779
.08 L0746 ,0257 .07716
.09 0832  ,0343 .08645
.10 0918  .0428 .09567
.11 .1002 .,0513  ,00kk .1048
.12 .1086  ,0596  .0127 .1139
.13 1168  ,0678  .0209 .1229
b 1249 .0759  .0289 .1319
.15 .1329 .0839  ,0369 .1408
.16 1409 ,0918  ,0L48 .1497
.17 L1487  ,0997 .0526  .0075 .1585
.18 .1565  .1074 ,0603  .0151 .1672
.19 .1641 ,1151 .0679  .0227 <1759
.20 1717  ,1227 .0755 .,0302 .1845
.21 .1792  .,1%302 .0830 .0376 .1931
.22 .1867  ,1376  .0904  ,04k50  .O0O01kL .2017
.23 .19%0  .1450 .0977  .0523  .0087 .2102
2k ,2013  .,1522 .1050 .0595 .0158 .2186
.25 ,2086  .1595 .1122 .0666  .0229 .2270
.26 .2157  .1666  ,1193 .0737 .0299 .235h
.27 .2228  ,1737  .1263 .,0807  .0369 2437
.28 .2298 .1807 .,1333 .0877  .o438  .0016 .2520
.29 .2368  .,1877  .1k03  ,0946  .0507  .0O8L .2602
.30 2437 L1946  ,1472  ,1015 .0575 .0151 2684
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Table of u(x,t), t

.0 (.1) 3.0, =x=.,0(.2) min{y(t),1},

Table of y(t), t = .0 (.1) 3.0.

) x .0 2 oL .6 .8 1.0 y(t)
.0 .0000 .0000
.1 .0918 0957
o2 .1717 .1845
3 2437  .0575 .2684
b .3099  .,1226 .3483
.5 .3715  ,1834  ,0188 248
.6 294 L2407 L0741 . 4986
.7 4843 ,2950  ,1268 . 5700
.8 .5365 3467 ,1771  .0272 .6393
.9 5865  ,3963 ,2254 ,0736 .7067

1.0 6345 4439 ,2720  .1183 772k
1.1 6807 . 4898  ,3169  ,1617  .0235 .8366
1,2 .7254  ,534k2  ,3604  ,2038  ,0637 8994
1.3 .7687  .5772 . hko26  .2hkhk7  ,1028 .9609

1.b .8107 .6189  .4436 L2845  ,1411  ,0128 | 1.0212
1.5 .8515  ,6595 . 4835  ,3233 .1784 0483 | 1,080k
1.6 .8912  .6990 .s5224  .3%612 ,2150 .0832 | 1.1386
1.7 .9299 .7375  ,5604 ,3983  ,2508  .1174 | 1,1958
1.8 L9677  ,7752  .5975 L 43zhs ,2858  ,1510 | 1.2521
1.9 1.0046 ,8120 ,6338 .4700 .3202 L1841 | 1.3076

2,0 1.0408 8479 .6693 . 5048 . 3540 2165 | 1.3622
2.1 1.0762 .8832 . 7041 .5389 .3871 L2485 | 1,4161
2.2 1.1109 .9177 .7383  ,5723 4197  ,2799 | 1.4693

1.1449 ,9516 ,7718 .6052  .4517  .3109 | 1.5218
1,178%  .9849 8047  .6376 4832  ,341k | 1.5736
1.2111 1.0176 .8371 .6693  ,51hk2  ,371hk | 1.6248
1.2433 1,0497 ,8689 ,7006  .5448 k010 | 1.675h
1.2751 1.0813 .9002  .7314 .5749  .4303 | 1.7255
1.3063 1.1125 .9310 ,7617 .6045  .4591 | 1.7750
1.3370 1.1431  ,9613 .7916  .6338 4875 | 1.8239
1.3672 1.,173%% ,9912 .8211  .6626  .5156 | 1.8724

e ° *® & & o
QO O &~ O\ oW
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of ulx,t), = 1.4 (,1) 3.0, x=1.0 (.2) y(t),
of y(t), = 1.4 (,1) 3.0,
> 1.0 1.2 1.4 1.6 y(t)
1.4 .0128 1.0212
1.5 0483 1,080k
1.6 .0832 1.1386
1.7 L1174 1.1958
1.8 .1510 ,0295 1.2521
1.9 1841 L0610 1,3076
2.0 .2165  ,0920 1.3622
2.1 2485  ,1225 0087 1.4161
2.2 .2799  .1526  ,0373 1.4693
2.3 .3109 .1823  .0656 1.5218
2.k 3414 L2116 .0935 1.5736
2.5 .3714 205 ,1211 ,0126 1.6248
2.6 L4010 L2691 L148Lk L0387 1.6754
2.7 L4303 ,2973 .1755 064k 1.7255
2.8 4591 ,2251 .2022 ,0899 1.,7750
2.9 4875 .3526 ,2286  .,1151 1.8239
3.0 5156 .3798  .2548  .1ko2 1.872k
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Appendix D.
A discretization variant.

It is of interest to note, that instead of using the
rectangular rule to approximate the integral (2.13), and a2
first order approximation for the boundary condition at the
fixed boundary (2.9), we could use the trapezoidal rule for
(2.13) &and a second order approximation for (2.9), without
changing in an essential way, the conclusions of the thesis.

In particular, the basic relation between the successive

(r)

o, + namely (3.18), remains

iterates for the time step At
unchanged:

The approximations (3.8) and (3.5) being replaced by

; n
(1) Atflr"'l) = (n + -}wgle + 3;_'1 w(if;)- h - tn-l
and
(r) (r)
(2) '-l,n - '1,!1 =2h ’

we have, using (3.5), (3.15), and (3.17),
(r), () (r)
(3) 5n (mo,n -1 = #( Yo,n=1 " wo,n) ‘

If we sum the relations (3.5), for i=1, 2, ..., n-1,

and use (3,17) we obtain -

: n-1
(li') sir) ( m(ox,'zl - m(r) ) = Z ('(r)

ry - 'c e
n-l,n ¢ i,n i, nel
1=1 s 9
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Using (1) and (1) at the limit for the preceding

step, namely

n-l
Aty = (2 -1+ %wo,n-l + g wi,zz--l)h = the2 o
we obtain, because of (3)
(r), (r) (r) 1 (r+1) h _(r)
sy (mgy 5= mn-l,n) = g (8t - nh- 2%,n * th1

-Atn_1+(n-l)h+ t

Ew - )
2 o,n~l n-2

s(r+1)

1 s+ B(r)(m(r) - 1)
n n o,n

which gives (3.18) with r replaced by r+1.
The corresponding changes to be made in the ALGOL

program are:

a) Replace the initialization statement (line 15 of

page 98) by

W{1l] := sqrt(2=xh + 1) ~ 1;

D(1] :

t := d2 := delt := (W[1]/2 + 1)=h;

b) Replace the last line of page 98 by

A[O] := x/2 + 1; C[O] := Wlillxx/2 + hj
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