PROPOSAL. FOR A NUCLEUS 1/O SYSTEM

by

Robert F. Rosin

DAIMI PB-23
January 1974

Institute of Mathematics University of Aarhus []

DEPARTMENT OF COMPUTER SCIENCE —
Ny Munkegade - 8000 Aarhus C - Denmark sanl]

=
=

Phone 06-1283 55 v L

PROPOSAL FOR A NUCLEUS i/0 SYSTEM

Abstract

Since the typical so-called microprogrammed system
provides only hardware oriented input-output facilities,
it is highly desirable to supplement this with a nucleus

of software supported i/o routines.

A proposal is set forth for such a nucleus system to
be implemented at the lowest level of a multi-level

computer system.

Although the proposal is of a general nature, specific
reference is also made to the Rikke-~1 hardware being
developed in the Computer Science Department at Aarhus

University.

CONTENTS:

|

Vi

Abstract

BACKGROUND AND PURPOSES
1.1 Purposes of the proposal
I.2 Purposes of the system

1.3 Historical footnote

CONCEPTS UNDERLYING THE SYSTEM
1.1 Alternative

Generalized

Low-level

Block-transfer

Word-oriented

Interrupt-handling

N OO W0N

Multi-purpose

BASIC SYSTEM CONCEPTS
111.1 Devices
It1.1.1 Classes of devices
IH1.1.2 Naming of devices
Il1. 2 Interrupts

I11.3 Calling and return sequences

DETAILED DESCRIPTION
IV.1 Physical interrupt simulation

IV.2 Logical interrupt processes

IV.3 Function i/o (non-transfer) operations

IvV.3.1 Functions of devices

IV.3.2 Functions of Pending Requests

IV. 4 Begin i/o operations
IV.4.1 Responses

IV.4,2 Parameter table entries

IMPLEMENTATION NOTES
V.1 General Comments
V.1.1 Devices
V.1.2 Timing
V.1.3 Strategy for Successful

Implementation

V.2 Implementation on Rikke-1

CONCLUSIONS
APPENDIX

—

M WN

©C VW O N O ;B

12

12
14
14
18

20
20
22
22
22
23
24
24
25

28

28
29

30
31

33
34

. BACKGROUND AND PURPOSES

Most computer hardware systems seem to be designed from
the bottom up. As a result the i/o facilities of most systems tend
to be device oriented, require much concentration on timing consid-
erations, and usually are not at all directly suited to the needs of
users who tend to take a top—-down approach to their applications.
Therefore, almost all computer systems are equipped with a layer
of software, "which might be considered cosmetic in function, upon
which all other software is built. For example, it is generally
impossible for users, or even system programmers, to write code
which directly exercises the i/o facilities of System/360 or
System/370. These operation codes are executable only in
"supervisor state!', and non-supervisor programs access i/o only
through a software interface which is specified as part of the
operating system.

There Is no reason not to expect the same to be true for
almost any other system. In fact, however, there is another
possibility brought about by the rather recent access of users to
multi-level systems, where one level is usually called micro-
programmed. It is quite possible to provide a microprogrammed
implementation of the preferable user-oriented i/o system, which
can be accedded by all user and system programs, such that the
""hardware!' appears to support a rather suitable (from the top-
down point of view) set of input-output ""instructions".

It is this kind of interface which is suggested in this
report. In the paragraphs which follow the purposes and non-
purposes for such a system are discussed. Later sections of the
report are directed toward the basic concepts and organization of
such a system, detailed descriptions of the proposed system, and
finally some notes with respect to implementation strategies both

in general and with respect to possible implementation on Rikke-I,

However, before going on to discuss the purpose of such
a system in greater detail, it must be made very clear that this is
merely a proposal. As such it cannot be accepted as it stands, but
needs evaluation, criticism and modification. It is suggested that
the most vital method for achieving these ends is through attempted
use of the facilities proposed. Although a more abstract and
philosophical evaluation will also be useful, nothing can replace
the experience and evidence which can be gained from attempting

to apply the suggested routines.

I.| Purposes of the proposal.

The task undertaken has been to develop specifications for a
low level input-output system which might be built for Rikke-I. It is
clear that one must know what is needed, and for what purposes,
before implementation is considered. Therefore, we have not
concentrated particularly on matters of implementation or on.. the
Rikke-1I itself.

On the other hand, just as a proof is never developed in
the neat way that it is finally expressed, so have these ideas been
developed through discussicns at many levels, one of which
certainly included some thoughts about implementation in general,
and another level which concentrated on the facilities of Rikke-I.
Therefore, the final section of this proposal addresses some of
these matters, but only in an incomplete manner,

It may be that the system finally specified in the last
iteration of this proposal cannot be built on Rikke-! or on a
number of other machines. From this it might be concluded that
this reflects as much on those machines as it does on this
proposal, or even more so. On the other hand, there is no
evidence at this time that this system is incompatible with any
given hardware system, nor is such a result expected. It may be,
however, that implementation of the proposed nucleus on one system
or another may demand more hardware resources, both storage

and time, than a group of users may wish to relinquish to such a

facility. ‘Again, that is a matter of evaluation which goes far beyond

the puposes of this proposal.

1.2 Purposes of the system.

We begin by listing a set of purposes to which the proposed
system is not directed. It is not supposed to:

l. Provide a totally device independant system.

2. Provide a totally character-oriented system.

3. Provide a resources-management system which, for
example, decides when a calling program should be put into a
"wait" state.

4, Provide a monitor routine, let alone a multiprogramming
supervisor,

Instead the purpose is to provide a set of facilities in

which all of the above and more can be implemented in a manner far

more convenient than if the nucleus system were not available.
That is, rather than offering a finished system, the intention is to
provide a set of tools which will allow the construction of a wide
variety of potential systems, hopefully without any limitations not
already imposed by the host hardware. In particular the system
should: |

I. Provide a uniform method of control of and access to
i/o resources, including coordinated treatment of interrupts.

2. Provide a well defined software interface which can be
relied upon to remain largely unmodified in spite of future hard-
ware adjustments or implementation strategy decisions.

3. Provide a system much more closely matching the
needs of the user than does the host hardware.

4, Offer access to all system resources at a low level
when this ‘might be useful, for example, when requested, but only
when requested, to have control transferred to a particular
location upon occurrence of an interrupt.

5. Provide a system which, at the veryleast, has the
capability of supporting O-code, P-code, and Nova emulaters, when

and if these are fully implemented, on Rikke-I.

.3 Historical footnote,

Many of the ideas contained in this proposal are based on
similar concepts which appeared in a scheme adopted by the
microprogramming and emulation research group at SUNY at
Buffalo in early 1972. The principal author of that proposal was
William C. Hopkins. Some of those ideas were, in turn, taken
from the i/o system which was in use at the University of Michigan
on the IBM 709 and 7090 computers between approximately 1960
and the time that the system was replaced by an IBM 360/67.
That system was mainly the result of the efforts of Robert M.
Graham.

Unfortunately (both for us and for them) the Buffalo
group never had the opportunity to implement their proposal, so
the final demonstration of its suitability fo support, for example,
the Nova i/o instruction set, was never made., On the other hand,
they made considerable simulated use of the system and were

quite convinced that it indeed met its goals.

[I. CONCEPRPTS UNDERLYING THE SYSTEM:

This system can be described as being an alternative/
generalized/low-level /block~-transfer/word-oriented/interrupt-
handling/multi-purpose input-output system. The paragraphs
which follow expand on each of the phrases found in that sentence,
and will help the reader in underatanding the motivation behind

the system which is to be described later.

[l. I _Alternative/ As stated earlier, most software systems

include an input-output nucleus which, for the user, replaces the
hardware input-output facilities of whatever machine he is using.
It Is necessary that the user not have the ability to exercise
directly the i/o facilities of the machine he is using when such a
system is in use, for to do so would surély result in a breakdown
of the complicated coordination functions which the nucleus performs
by removing needed information from the controlling data base.
For example, if a user takes control of a particular interrupt
without the system’s knowledge, then the nucleus will probably
find itself expecting an interrupt from some device even though
that interrupt has already arisen and been processed outside of
its domain. Any later attempt to use that device via the nucleus
will show that it is '"busy!" with an interrupt expected.

Most contemporary sin gle-level hardware systems allow
for the isolation of the nucleus from users by putting i/o instruc--
tions in a special class; for exampie in the class which can only
be executed when the machine is in a so-calied supervisor state.
In other systems, the integrity of the nucleus can only be enforced
by the willingness of users to comply with a self-enforced set of
conventions. In a two-level system such as Rikke-|, the integrity
need only be voluntarily supported at the micro-code level,
because the emulators residing in control store can and should
guarantee correct use of the lower level system by routines at
the higher level, That is, the emulators must observe the con-
ventions voluntarily while they are enforced by the nature of the

emulators themselves at the higher level(s).

For all intents and purposes, correct use of a nucleus
is identical with a redefinition of the computer being used. The
input-output instructions of the system, say Rikke-I, disappear,
and their functions, or a related set of functions, are supplied
instead by a set of routines which for all intents and purposes
become elements of the hardware. Therefore, we might call
this machine Rikke-I.5 and prepare ourselves to work with

this alternative.

I.2 Generalized/ If the world of real systems is characterized

by device-dependancy, then ideal systems would re quire pure and
complete device independance. For example, any device should
have a well defined interpretation of such functions as rewind,
seek, and empty print buffer. Although this ideal is achieved to
some extent in particular high-level, file~oriented systems, the
system proposed here is intended to be realistic and cannot and
will not pretend to offer such purity.

On the other hand generality suggests that the nucleus
should deal with physical devices, but allow the user to consider
them to be logical devices. There is no reason that those
- functions which are common to all devices, or to a subset of those
devices attached to some system, cannhot be initiated in exactly
the same way, independant of device peculiarities. The user
need not be concerned with the '""handshaking'' hecessary.. to
communicate with many terminals, or the fact that the buffer
emptying function for two output devices differ Significantly. By
developing a standardized calling sequence and a standardized
set of functions which the system recognizes and supports, the
task of the user, which is hopefully of‘gr‘eater‘ interest than to
exercize a set of i/o devices, can be far more easily accomplished.

Furthermore, the nucleus can very effectively serve to
provide interpretation for actions which the devices themselves
may treat ambiguously, and protect against accidental trans-
mission of messages which effectively paralyze the system; for
.example, transmission of a character whose definition may be to

cause the printer to "go down."

Generality also implies some insulation from the timing-
dependant nature of many typical i/o operations. This can be
extended to include help for masking the timing characteristics
of the several storages which typically are found in a multi-
level system such as Rikke-I. For example, it became apparent
during the development of this proposal that a nucleus could allow
(if not support) the specification of a wide variety of data transfers
not normally categorized as i/o. With some restrictions one can
conceive of device-to-device and memory—-to-memory transfers
being included along with the more traditional memory-to-device
operations.

The logical rather than physical nature of the devices seen
by the user through the nucleus interface should certainly extend
to naming. There seems to be no good reason for the particular
physical connection between a device and the computer to deter-
mine its logical name, any more than the particular bit pattern
that rewinds a tape should determine the name of the routine the
user employs to initiate that function. Furthermore, logical
naming allows aliases which, for example, can be used to provide
two distinct names for the printer, depending upon which charac-
ter graphics are available on the pr‘i‘nt chain currently mounted.
This idea a_Iso can be extended into the realm of character- versus
word-oriented transfers on such devices as tapes. This general

topic is further treated in the appendix.

1.3 Low-level/ A high-level system is designhed with a particular

set of applications and goals in mind, and more importantly with
the idea that no other applications are to be considered. By
"low-level system' is meant one which has at best a very broad
set of applications in mind (see section Il. 7 below) and the
further hope that other applications, not presently being considered,
will not be excluded by the design.

With respect to an input-output system this means thét the

nucleus should make as few decisions as possible and conceal the

smallest amount of information manageable, while still being able
to carry out its functions. Such information as the status of a
requested i/o transfer, the availability of a particular device, and
the number of words transferred before an error arose, must all
be available. Furthermore, rather than putting a calling program
into a wait state when a request cannot be met, the nucleus
should reflect the appropriate information back to the caller, and
then provide the optional capability for the caller himself to
request that he be put into the wait state. Additional examples
of this aspect of the design will appear throughout this proposal.
More generally, the nucleus is not to protect the user but
to serve him. This implies, to take only one example, that not
only are deadlocks between requests not prohibited, they are
completely possible. The user bears the responsibility for their

avoidance, as In any other low-level system

1l. 4 Block—transfer/ It is recognized that i/o operations

typically take place one word at a time. This understanding becomes
even clearer in the environment of a two-level system, in which
the physical i/o buffers are quite visible to low level programs.
On .the other hand, there are many devices which operate most
effectively, and sometimes only, when processing a block of "
information. For example, although a printer is reached through
a one-word port, it actually stores characters in its own buffer
until it is instructed to print; and a disc,as well as magnetic tape
and higher speed punched paper tape devices, is almost invariably
expected to process a block of information, even though the data
must again pass through the one-word i/o port somewhere in the
process.

Of course it is possible to program a low-level system in
such a way that every transmission of a single word between the
outside world and a portion of the computer’s storage is made
painfully obvious to the user. Indeed, the attention needed to

manage such low-level resouces must be given, for there is no

""magic!" which makes this happen automatically. (The use of a
channel for such purposes is merely the assignment of such tasks
to a specially designed processor whose programs are tradi-
tionally unalterable, although the use of read/write control storage
in channel processors seems to be changing these concepts as

well, If one cares to do so, he may compare the nucleus system
being proposed here with an integrated channel implemented in
microcode.)

Finally it must be recognized that users see their programs
as working on sets of data, messages, arrays, and other such
items. It lis only at the lowest level of program refinement that
the idea of a computer word ever enters the picture, if even
then. Therefore, a block-oriented system appears not to detract
from what the user wants. Clearly a word-, character-, or even bit-
oriented system can be implemented in software on top of one
supporting block—transfer, as has been done numerous times in

practice.

II.5 Word-oriented/ Once the decision to specify a block-

transfer system has been taken, the nature of the information
being transferred still must be considered. With respect to
many devices there is no choice. Disk blocks contain words,
and only words. But there are many other devices which appear
to process characters only, and a larger number which seem to
be able to handle either words or characters. Line printers
expect characters to come across the interface, for example,
and a paper tape reader can be thought of as transmitiing

either streams of characters or streams of words, in which many
of the bits are zero.

The decision to choose a word-oriented nucleus is based
on the fact that a word-oriented system can always be programmed
to appear to be character-oriented, but the inverse is not usually
possible., For example, a character-oriented system should
recognize the end of message character on the punched paper tape
reader and ignore all following characters, rather than trans-

ferring them to the computer. However, in this case it would be

impossible to read programs in absolute binary form from that
tape, because there would be no way of assuring that the end-of-
message character would not appear as a binar‘ypatterh in some
instruction. The possibility for including escape characters to
overcome this limitation is, of course, recognized, but this
serves quickly to destroy the basic character-oriented nature of
such a system. The concept of a dual-mode system with a large,
homogeneous character set is treated at some length in the

Appendix and may be considered as an extension to this proposal.

Il.6 Interrupt-handling/ It has been generally recognized that

interrupt facilities can be used with great effectiveness in the
support of input-output operations. Although at some level a
polling system of sorts must exist, even if it is merely a hard-
ware device dedicated to sensing the presence or absence of
activity on some i/o line, even the lowest level computer-on-a-
chip devices support interrupts in most cases. Most micro-
programmed computers simulate interrupts at the target level,
whether or not they exist at the lower level. In order to provide
similar capability, the nucleus must provide interrupt capability
to those routines calling on it for service, whether or not
interrupts exist in hardware.

However, whereas some interrupt based systems
always reflect such events up to the level of activity which
initiates i/o, most systems allow the caller to specify '"don“t
care'' when initiating input/output operations. One application
of such a capability is to send messages to an output printer and
not bother to be interrupted when the message has been recejved
and the device is again available. If the caller sends a message
and the device is blocked, several alternatives might be considered,
but, consistent with the low-level criterion, the blocked nature
of the request is reflected back to the caller in this system rather
than, for example, stacking the request in a queue, But this
strategy requires that the system not only provide interrupts at the
caller’s level, but it must also have the capability of processing

those interrupts if the caller specifies that he does hot wish to

11

handle them himself. In any case, the caller must be
able to obtain the current status of any pending request, but
this becomes especially important in the case where the caller

desires to poll rather than accept interrupts.

1.7 Multi-purpose/ As implied in several of the preceding

paragraphs, the nucleus should be able to provide the user with
a wide variety of options as to its application, and more import-
antly limit as few options as possible. If one could guarantee
that no possible application were disallowed, then the system
could be called "general-purpose!', However, no such claim is
made here., On the other hand, there are not potential appli-
cation areas which are purposely excluded in this proposal.
It is more likely that Iimitations imposed by a particular imple-
mentation, especially when these reflect some basic limitations
of the host hardware, will be more detrimental to certain appli-
cations than would be the basic nature of the nucleus proposed
in this document.

There are several possible approaches
to applying the facilities of the proposed nucleus. One would be
merely to reflect each virtual i/o command down into the nucleus
by the emulator and to reflect all interrupts and other responses
back up to the emulated machine. Another approach would be to
emulate as precisely as possible, but most likely without regard
to timing, the i/o facilities of some particular computer, and
include this capability within an emulator for that computer, It
may also be possible to interject, in between nucleus and one or
more emulators, a very complex multiprogrammed or multitask
emulation facility, which partitions devices among a number of
active emulators and/or users, maintains consistancy of all
requests, and allocates system resources, such as storage and

cpu time as well as i/o facilities, among them.

11l. BASIC SYSTEM CONCEPTS

In this section we deal with the overall characteristics
of the system being proposed, whereas in the following section
specific proposed entries, parameter lists and values returned
will be presented. There are three topics to be covered in the
present section: devices, interrupts, and calling and return

sequences.

i, Devices

IHl. 1.1 Classes of devices

It is difficult to distinguish between input-output devices
and typical "fast" storage in a multi-level system such as
Rikke-1. For example, a wide store containing 64-bit words is
connected to an input-output port as though it were four logical
devices, one for each 16-bit field. Although there would be
some temptation to treat this as a ''"fast' store rather than an
i/o device, its presence on an i/o port requires that its use
be coordinated with that of the other devices on the same port,
lest the integrity of the nucleus be imperiled. Except for general
purpose working registers and the other registers, in a multi-
level system such as Rikke-| everything connected to it
appears in one way or another to be an input-output device.

The result is that information can be transferred only
between i/o devices and such registers, as is in fact the case
with the strict hardware definition. However, most i/o requests
in a typical single level system can be used to specify a transfer
of information between what appear to be one i/o device and
another in a multi-level system, a rather unconventional situation.
A decision to support this latter form of transfer in a mult-
level system leads naturally to the possibility of users expecting
storage-to-storage transfers also to be supported, in all of the
various possible combinations. This, in fact, is what the nucleus

is able to offer with only a few implementation defined limitations.

12

However, no matter how clever or contrived, it is
impossible to support this goal with complete generality. For
instance, because of the wide differences between hardware
limited word frequenceies for various devices, the nucleus cannot
support transfers such as those between paper tape and disk. In
a similar manner, although not logically impossible, nucleus
support of storage-to—~storage transfers at the same time that a
device~to-storage transfer is taking place can result in some
logical inconsistancies.

In order to compensate for these and other problems which
arise in this general framework, devices are divided into classes
based upon their speed and timing characteristics. In one class,
called "fast! devices!" (fd), are found the Rikke-1 Working
Registers A and B, Control Store, Main Store, and Wide Store,
none of which have physical limitations on their use such that
they _rp_t,_|§__g be read or written at a specified rate. Among the
"'slow devices! (sd) are found the Rikke-| input-output devices
such as paper tape reader and punch, line printers, keyboard,
and screen. Using this classification it can be stated that the
nucleus is capable of supporting sd-fd transfers, as is expected.
It should also be possible, however, to support fd-fd transfers,
and perhaps some subset of sd-sd transfers.

It will be the case, however, that requested fd-fd
transfers will be completed as soon as accepted by the nucleus,
without returning control to the caller, which precludes. the case of
the calling program being able to process an interrupt which
arises before completion of an fd-fd transfer. At the same time,
there should be no r‘estr;riiction on supporting one fd-fd transfer
simultaneously with one or more fd-sd transfers. Two fd-fd
transfers cannot be supported at the same time, but such would be
impossible to request given that fd-fd transfers are completed
before the calling program regains control, in any case. (See also
the next section in which interrupts are described in greater

detail.)

13

14

1il..:]. 2 Naming of devices

Each physical device has at least one logical name,
and only that name will be accepted as a parameter by the nucleus.
The user will be considered to have misused the nucleus if he
somehow takes advantage of any hardware-dependant aspect of
a particular logical name which might exist in some implementation;
for example, the possible inclusion of the Rikke~!| port number
as part of the logical hame of some device of that system,

For physical devices which have more than one mode of
operation and/or‘ alternative external representations of an
internal logical character set, these variations will be supported
by providing a distinct logical name for each separate set of
characeristics recognized for a single physical device. "Device
status" will clearly have to reflect the status of the physical
device upon which a particular logical device is supported.

Some other aspects of this facility are discussed in Appendix |

as part of a broader treatment of the character set problem.

I11. 2 Interrupts

The concept of interrupt can be realized on both levels
in a two-level system. At the lower level, the hardware either
provides an interrupt facility, or one can be simulated directly
at the hardware-level using polling. However, there is also a
level of interrupt which is simulated at the lowest level, from
the user point of view. Although it is the purpose of this propo-
sal to provide a nucleus in which the user has to know as little
as possible about the underlying hardware, certain problems of
resource allocation make it useful to mix the two schemes.

Figure | is a schematic representation of the nucleus in
relationship with a using environment. Note that the nucleus
is not aware of, and cannot be expected to compensate for, any
complex activities outside of its own responsibility. In parti-
cular, if a multiprogrammed system happens to be constructed
using the facilities of this nucleus, this is completely invisible

to the nucleus. There must be a scheduling and resource

15

* 1 2Jnbl 4

*Buipuad 1dnudolul UR S| 9Jay] LI SUWJBIBP 0} AJIUD SN3|ONN & 8] ||IM aJay] 910N %

B

*JpPpY 1dnudailu]

~
A

~

~

snajonN

!

1

!
dn uee|D

: 1eo 1
:mjm;OSZ: QUIINOY m
HQJ._,_EWC_ :
Joasn '
Vm !

aullnNodJ Jasn ||eo

__pA ON |
wmc_m,moa

HQJLLmuc/_/,

o YARTIIS
sJdojaweded afes

pldnadaiugy, 1B S3A

spuooes 1

N
% Adanzg

|

ana|onNu e M

O—m \

c e e Imm

Joie|nwg WAON O

WalsAs Jdoljuow Jadnp-uedng HO
SUlUDBIN 9P0d—=X JO} Jole|nw3g

16

management facility residing in the left-hand (user) portion of
the diagram, which is responsible for activitating i/o operations,
reflecting interrupts to various users, etc. The nucleus serves
merely to provide a convenient vehicle for addressing requests to
and receiving responses from the hardware input-output devices.
In order to preserve the integrity of the nucleus, all

hardware interrupts must be handled in the nucleus, and within a
short time after their occurence. However, and here is where the
system becomes mixed rather than pure in terms of level separation,
in order to allow an emulator in a particular environment to preserve
information particular to it and to release hardware resources
which are agreed to be available to all low level programs (including
the nucleus), hardware interrupts can be directed to a non-nucleus
routine. However, in this case, the routine must enter the nucleus
using the "interrupt!' entry point within an implementation defined
period of time after the interrupt has been detected in the hardware,.
The only difference, therefore, between the traditional approach
and using user-detected Interrupts Iis that the nucleus is in-
formed of the interrupt aﬂlittle later than it might be if this technique
were not used.

Of course, this approach to interrupt handling assumes
that the user follows exactly all conventions set down for safe
and correct use of the nucleus, including timing and resource
constraints. Of chief concern here is that the hon-nucleus code
must never assume the "meaning! of a particular interrupt nor
can it invoke an i/o transfer using the nucleus in the event of
an interrupt, but rather it must clean up its own affairs and
call the "interrupt! entry of the nucleus as soon as possible.
The advantages, in terms of smooth operation of the system and
placement of few restrictions on normal use of the machine, are
significant. It should be noted that on hardware systems where
resources can be easily partitioned among several {levels of)
uses, this mixed level technique can probably be avoided. But
on a system such as Rikke-1, where use of an arithmetic unit
may require preserving the contents of one or more registers,
etc., it seems to offer a workable compromise between restricted
use of resources by all users on the one hand and the lack of

an i/o nucleus on the other hand.

17

In a system where the hardware does not provide interrupts,
such as the early version of Rikke-I, the effect of interrupts
must be provided through the use of a polling scheme. Every
piece of low-level code, even within the nucleus itself, must
sample the appropriate hardware flags in order to simulate
interrupts at a frequency no less than that required by the nucleus,
in order to maintain smooth and consistent flow of input-output
information. Clearly this polling technique is completely con-
sistent with the mixed level interrupt scheme discussed above,
and can easily be replaced with a hardware interrupt facility
when available.

Since the nucleus provides a pseudo-machine for support
of input-output, it also defines an interrupt scheme for use by
its callers. However, as can be seen from the diagram, hard-
ware completion interrupts are reflected back up to the caller
only after appropriate processing in the nucleus, and hardware
word transmission interrupts are completely hidden from the
calling level. As will be seen later, each invocation of the
nucleus can be accompanied by a pair of user provided addresses
specifying locations to be branched to in case of logical interrupt.

(As noted, there may be many physical interrupts occuring before
a logical interrupt is delivered to the user; most low level
machines provide interrupts for each word transmitted to or
from a device, whereas a block oriented nucleus system provides
an interrupt only when an entire block of information has been
processed,)

It will be seen later in closer detail that in every case,
the nucleus requires that the routine receiving control after a
logical interrupt re-enters the nuclieus through the "rtn!" entry
in order to allow the nucleus to clean up its own affairs before
returning to the user program at the point at which the interrupt
occured. An alternative facility, called "remain' allows the
user to specify that control should return to a point other than
that where the calling program was logically interrupted.
Similarly, the nucleus provides a '"disable!'-!"enable' pair of

entries to control the processing of logical interrupts.

18

The nucleus will not reflect up to user level an interrupt
from a device which has not been requested for activation, |
All such interrupts will be lost. This implies that interactive
typewriter terminals and graphics devices must be activated by a
calling program through the nucleus, and an implementation
with a large number of potential terminals will have to poll its

inactive devices for signs of activity from time to time.

111. 3 Calling and return sequences

The next section of this document contains specifications
of entry points and paramenters. However, a few more general
comments are in order here. [t would be most desirable to
define a nucleus calling sequence such that it could be used
across a variety of particular implementations, but this is often
a difficult and illusory task.

However, it can be noted that a careful and sophisticated
use of a macro language and macro expansion can provide much
of what would be ideally desired. For instance, it may or may
not be the case that every nucleus entry named in the hext
section should be implemented as a separate physical entry
point in some routine; for implementation purposes it may be
best to concentrate them all into one entry with the specific
name being passed as a parameter. (One instance where such an
approach seems appropriate is in a three level system such as
the QM-1, where, . if each nucleus entry were a level-1 instruc~
tion, this would lead to a large number of nano-words merely to
support nucleus entry.) Similarly, it would be desireable, and
certainly best from the point of view of system integrity and
disciplined programming techniques, to allow access to dynamically
available status information only indirectly through the nucleus.
However, in most cases the cost becomes prohibitive, and the
alternative of giving the user access to this information through
direct access to the table where it resides can offer great
economies, Again, the use of macro techniques can disguise such
direct access, thereby offering a degree of protection otherwise

lacking.

19

Therefore, in connection with the implementation of this
proposed nucleus, it is suggested strongly that a sophisticated
macro expansion system be provided to disguise and regularize
its system dependancies. This technique has been used by many
people in many similar instances, and is the one suggested by
David Parnas in his discussion of modularization of programs.

Two other points are to be noted; first, the parameters
passed to the i/o invocation routine reside in a table provided
by the user. All status information, etc., provided by the
nucleus will be updated in that table, and the user cannot expect
to use that storage for any other purpose until the nucleus has
returned control with a completion interrupt for that invocation.
This approach is in keeping with the desire to provide a consistent
and secure system,but at the same time it Vdoes not consume large
amounts of hardware resources, such as storage, for tables.
The calling routine is, of course, free to store other information
relating to its processing of the invocation, provided that this
information does not physically overlap any used by the nucleus.
For instance, a multiprogrammed system built on top‘ of the
nucleus might put the identification of the user program re-
questing each i/o operation in an expanded version of the table.
Again, a macro implementation could be very helpful in reali-
sing such a facility without requiring heavy dependancy on a
particular format.

Secondly, it can be considered that this nucleus proposal
is, in a way, a proposal for a co-routine rather than sub-
routine facility. In particular, note in F-“igjur‘e 1 that the
transfer of control to a user routine for processing of logical
interrupts is a call, with parameter passing, etc., and that it
requires a "rtn' upon completion. The situation is, in fact,
far more complicated. The figure does not show:

that more than one nucleus process may be active at any
time,

that the user interrupt routine may call the nucleus and
initiate other i/o activity before returning control to the
nucleus, and

that information is passed from the nucleus to the caller

upon every return from the nucleus.

20

V. DETAILED DESCRIPTION

This section of the proposal contains a list of entry points,
parameters, and values returned for every rountine in the nucleus.
(The following section of the proposal discusses implementation-
dependant aspects of the nucleus when considered as a possible
software adjunct, with special attention paid to the Rikke-|
hardware. Therefore, discussion of word width, table format,
and particular encoding of various messages is not treated in
this section.) The logical structure of the nucleus is our subject
here,

There are four classes of entries to the nucleus:

Physical interrupt simulation

Logical interrupt processes

Initiation of transfer operations

Functional input-output operations (without
information transfer)

These are treated in turn below,

IV.| Physical interrupt simulation

"isinterrupt" - Although not necessary, depending upon
the physical system upon which the nucleus is implemented, an
entry Is provided which returns a truth value indicating whether
or not an interrupt is pending. This is particularly applicable
in those cases where the hardware does not provide a physical
interrupt mechanism, and where there is some advantage (time, space,
and/or security) in having a single routine to convert a physical

polling situation into a logical interrupt situation.

V.2 Logical interrupt processes

"interrupt!" - theentry to the physical interrupt handling
routine in the nucleus. This must be called within an implemen-

tation specific amount of time after a physical interrupt has been

detected in a user environment and/or after the user has polled and
found an interrupt pending. In the case of a system which
supports physical interrupts, the nucleus will provide a default
routine which calls "interrupt! when an interrupt occurs. In
every case, one parameter is passed: the location to which
control is to be transferred upon completion of interrupt pro-
cessing, normally the address of the instruction pending
execution when the interrupt arose.

"rtn" - the entry used to return control to the location
associated with interrupt currently being processed.

"remain" - same as return, except after re—-entry to the
nucleus, control is returned to the location following the call
to "memain'' rather than to the point of interrupt,.

"disable! -~ disable the reflection of logical interrupts up
to the user level until an "enable!" command is given. (In fact, this
this is an inhibit command, in that all interrupts occurring
while Mdisable!" is in effect are stacked rather than discarded,
pending an "enable'.) Upon entry to a user interrupt routine,
interrupts are automatically disabled for one instruction, such
that a call to ""disable!" can be processed without further inter—

rupt activity.

"enable!" - interrupts are enabled.
"wait" - control is given to the nucleus and not reutrned
to the calling environment until an interrupt arises. If no

interrupts are pending, then "wait" is equivalent to a dynamic
stop command. (!"wait" is also an option in the 'bjo! command,
and will also usually be automatically invoked for fd-fd transfers,)
Note that it is not necessary that user interrupts be pending

for reasonable use of "wait'', Rather; a nucleus request with the

21

"wait!" option can result in resumption of the user program at the in-

struction following that request upon completion of the operation.

(There is no provision in this system for interrupt
priorites nor for device-specific disable and enable commands.
These can clearly be implemented on top of the nucleus by
providing a common handling routine for logical interrupts. On
the other hand, if it is proven necessary, such a scheme can

be implemented at the nucleus level.)

IV.3 Function i/o (hon-transfer) operations

"fio! — the calling sequence includes passing a code to
specify the function requested, an identification for the device
or transfer to which the function is to apply, and in some cases

parameters containing additional information.

-IWV.321 Functions of devices

These refer to logical devices, but will be reflected to
physical devices where appropriate by the nucleus. There is
one code which can be applied to any device, and then a number
of device specific codes of which examples appear below., The
universal code is !'status!, which results in the return of the
following information with respect to the device:

not present

present but in use
present but inoperative
present and not in use

Device specific codes include:

rewind

backspace

clear screen

seek (where a third parameter would be used to specify
an address)

The use of these codes will result in the return of an information
word which could contain any of the alternatives listed for "status!
plus the alternative

invalid request

23

which might be offered in the case of an attempt to rewind a
disk or backspace a paper tape reader or punch.

In the case of some device-specific operations, the time
consumed might be so great as to suggest indicating their comple-
tion by logical interrupt rather than by waiting. In these instances a
fourth parameter containing an interrupt address would also
be required. (See discussion of interrupt address parameter

under 'bio'" below.)

1V.3.2 Functions of Pending Reqguests

The parameters associated with these functions are the
same as for device functions, except, of course, the functional
codes which can be specified are different. The transfer to
be affected must be specified, which (in the implementation scheme
suggested in section Ill. 3 of this proposal) can be the same as the
storage address of the first word of the block containing the
parameters for the transfer request involved. Although
the cases in which information is requested from the nucleus
could be satisfied by simple examination of the parameter table,
in keeping with the spirit of preserving the integrity of the
nucleus, this should be done only using these functions., A
macro implementation, of course, would be consistent with
supporting this approach without consuming execution time.

Three function codes are possible:

status
count
canhcel

The first returns the following possible alternatives

complete/normal
complete/abnormal/error code
incomplete

The second function reiurns the number of words transferred
so far in response to the '"bio!" request referenced. The

third serves to cancel the effect of the request referenced, at
the point which has been reached so far (but note that words
already transferred cannot be deleted, and some devices
require that only full records can be written),and to return the

same possible messages as status.

Note that a function specified for a transfer applies to the
current status of the parameter table for that transfer, and, in
particular, if the transfer is complete, a "cancel!! function has
no effect nor will the count change any longer. If the same area
in storage is used for many successive transfers, as will nor-
mally be the case, then a status inquiry for an earlier transfer,
which uses the same storage area as a later request, will result
in the return of information reflecting the status of the request
most recently initiated. There is no "invalid parameter!' return
for valid requestis referring to areas of storage not normally

holding nucleus parameter tables.

IV.4 Begin i/o operations

"bio" - This entry serves to request transfers of infor-
mation using the services of the nucleus. Parameters are passed
via a table, so that the only actual parameter for this nucleus
entry is the address of the table in the calling program’s address
space. Once the request has been accepted by the nucleus, any
change made to this table by the calling environment can result

in chaotic behavior of the nucleus.

IV.4. | Responses

"bio" returns a value to the calling program to indicate
one of the following:

request accepted

source device unavailable
destination device unavailable
nucleus too busy to handle request
invalid device pair

transfer complete

invalid parameter

The first of these is the '"mormal" response indicating that the
‘nucleus can meet the request with the resources available to it.
The second and third responses ('"unavailable!') suggest that the

caller may choose to use the device status !"fio!' to further

24

25

identify the reason for the nucleus not accepting the request.

"mucleus too busy! is a function of the implementation. In
some cases the nucleus may be implemented so that it handles only
one request at a time, and in others it may be capable of considerable
overlapping of transfers. In any case, use of the "wait" option
(see below) precludes the return of this response, since the
nucleus will retain control, processing interrupts, etc., until
this request can be satisfied.

The fourth response indicates that the source and
destination devices requested cannot be coi;p!ed together for a
nucleus transfer. In some cases, such as sd-sd transfers, the
response is mandatory, but the situation for other instances can
be the result of an implementation dependancy rather than a
physical impossibility. (see section I1.1)

The "transfer complete!' response will arise for accepted
and processed fd-fd requests and for other accepted requests
in which "wait" was specified. If the caller also specified an
interrupt location for successful and/or unsuccessful completion,
then control will already have transferred to that routine and
back through the "rtn!' entry of the nucleus before the '"transfer
complete!' response is given for the request.

Finally, "invalid parameter! is used to indicate that
some parameter, of unspecified nature, contains a value which

is inconsistent or otherwise unacceptable to the nucleus.

V. 4,2 Parameter table entries

Although expressed somewhat abstractly below, the
information to be passed to the nucleus will reside in fixed format
in a table in the address space of the calling program. These
parameters will, where appropriate, correspond in format and
contents with the completion codes used for "fio!" (section I1\/. 3. 2)
and other corresponding purposes.

One facility, not previously mentioned, must be presented

before going on to outline the "bio" parameters. In a block-

oriented system it is always possible to specify a number of
words to be transmitted which is fewer than the number in a
physical block on some device, in which case the device-depen-
dant aspects of the system define the results to be expected,
For example, transfers from the device have no unexpected
results, while transfers to such a device will generally result
in zeros being written. However, this does not account for a
large number of possible treatments of blocked devices in a
general system, so an optional skip-before-transmit is provided
in the nucleus. If the mode of transmission parameter is initi-
ally set to "no-transmit!, then the number of words in the '""no
transmit count! parameter will be skipped before actual data
are transferred. As in the case of incomplete blocks, trans—
mission from such a device will behave as expected, while
transmissions to such a device will be influenced by the con-
ventions imposed by the implementation dependant—-aspects of
the nucleus. In any case, the ability to process incomplete
physical records is useful in many applications of an input-
output system.

The following entries are contained in the "bio! para-
meter list:

status — the same information returned by the ''fio!!
status code request,

count — the same information returned by the ""fio!!
count code request.

wait — a truth value specifying whether or not control
should be returned to the user before com-
pl etion of the request, if possible.

source device name

destination device name

source device beginning address (where appropriate)
destination device beginning address (where appropriate)

no-transmit-count — humber of words to be skipped
before transmission

transmit-count - number of words to be transmitited

successful completion interrupt address - if zero, then
completion does nhot result in a logical interrupt

unsuccessful completion interrupt address - if zero, then
completion does not result in a logical interrupt

26

27

The first two parameters can contain arbitrary information on
entry, as can the device address fields where they do not apply.
The status and count parameters will be set by the nucleus to
reflect the current situation concerning the request before
control is returned to the user, in the event that the request is
accepted,

It is likely that each implementation will also require
one or more words of additional space to hold request-dependant
information during nucleus processing. In this way, the caller
rather than the nucleus can control the amount and location of

working storage needed for input-output processing.

28

V. IMPLEMENTATION NOTES

Two aspects of hucleus implementation appear in this
section of the proposal. The first centers on general questions
which have arisen in consideration of building an i/o nucleus,
independant of any particular system, other than that itis based on
a two-evel organization. The second part of this discussion
concerns some few specific suggestions and comments with

respect to implementation of the nucleus on Rikke-I.

V.|l General comments

V.I.l Devices

In implementing a scheme such as this, it is clear that
the traditional structures of device control blocks (dcb) and
request control blocks (rcb) will be needed. Note that device
control blocks will be of two types, logical and physical,
where each physical device may be represented at the user
level by a number of logical devices; for example, one for
character-mode input and one for word mode input from the same
physical paper tape reader. Therefore, each logical dcb will
contain a pointer to the dcb for the physical device it represents,
An rcb will contain pointers to the dcb” s for the devices involved
in the request., As mentioned earlier, it may make good sense to
specify additional space in the user-provided parameter table so
that it can also serve as the rcb after the nucleus has added
whatever information is needed to initiate and maintain the trans-
fer as requested.

Although not universally true, some devices can be bound
simultaneously to more than one request, and provision must be
made for treating these cases. For instance, main store can be
used as both a source (say, to the printer) and destination

(for example, from the CRT terminal) at the same time it is being

used as source and destination in a storage-to-storage move.
This is generally possible because of the wide disparity between

transfer rates of various elements accessible to a system.

V.l.2 Timing

In general, a large number of storage-to-storage
word transfers can be carried out in the time it takes to move a
single word, for example, from paper tape reader to storage.
On the other hand, the very hature of fd-fd transfers, along with a
desire to provide a system which is simple to use, leads to the
decision to process all fd-fd transfers to completion before
returning control to the caller. In a way this is not at all
different from the stipulaiion made in most systems that interrupts
can only arise between instructions. [f that were not the case,
then one would be faced with the perplexing question of how to
recover from an interrupt. Clearly, more information than an
instruction address must be saved, because one cannot be sure
at which point in its definition the instruction should be resumed,
based merely on a transfer of control,

This decision itself leads indirectly to the conclusion
that sd—-fd interrupts also cannot be reflected back to the user
until any concurrent fd-fd request is satisfied. If this were not
the case, then the interrupt routine would be free to request a
second fd-fd transfer, which violates the premise just stated.

Of course, careful use of values returned from "bio" (i.e., the
one indicating nucleus busy)and the "wait!" function could cir-
cumvent any potential deadlock, but the relative high speed of
fd-fd devices implies that any delays realized by the strategy
chosen will be minimal in any case.

In particular cases, where the data rate is within a
small factor of the hardware instruction rate, it may be neces-
sary to include rotational devices, such as disk and drum, in the
"automatic wait!' category in order to maintain their word trans-
fer rates. However, this in no way alters the preceding con-

clusions, except to point out that the nucleus must be capable of

30

maintaining careful control over all interrupt (or pseudo-
interrupt) information,even if this is not reflected up to the

calling program level.

V. l.3 Strategy for Successful Implementation

Although programmers are often tempted to respond to a
given challenge by stating how much time will be required to
complete the entire job rather than commenting on feasibility,

a more cautious approach is also more realistic and, in the
long run, more successful. The nucleus provides a case in
point. In order to have a system which can do something useful
as soon as possible, and also a system which is reliable as
soon as possible, the first step should be a measured one.
Step—-wise expansion is then possible along with the ability to
provide fairly reliable estimates for the time and resources
necessary to complete each successive step. The suggested
plan is this:

first - implement a nucleus which handles only fd-sd
transfers, limiting the range of possible device combinations, and
providing an automatic ""wait" for all requests. It may not run at
the full desired speed, but the simplicity inherent in having no
more than one process running in the nucleus may pay great divi—
dends for early users,

second - remove the automatic "wait" restriction for
those operations where timing appears to be easily managed.

third - extend the range of device combinations accepted
by the nucleus, most generally in the area of adding to the
spectrum of fast devices supported.

fourth - implement fd-fd transfers.

fifth - remove automatic "wait! in cases where the
timing Is more critical than in step two.

sixth - extend the range of slow devices by support of
other than word-mode transfers. (See the appendix for sugges-

tions for a character mode facility.)

V.2 Implementation on Rikke-|

At the time of this writing, the Rikke~| documentation
necessary to discuss the implementation of this proposal is not
available. Therefore, it is difficult to offer more than very
general comments. Of course, everything which is expressed in
the preceding section applies in the case of Rikke~I. In parti-
cular, it is strongly suggested that a step-wise implementation
be undertaken rather than one which attempts to accomplish too
much too quickly, and results in too little being available too
late.

The pseudo-interrupt technique will be mandatory until
a sat isfactory and correct interrupt facility is available on
Rikke-l. The latter implies a masking facility, an event indi-
cator which can be manipulated by a Rikke-| program, and an
interrupt recovery facility which is logically consistent.

According the information supplied by Bjarne Stroustrup
~and Ole S¢rensen, one can expect that an emulator Punning.on
Rikke~I| should be able to sample for "interrupt! flags at least
every 45 us, and give control to the nucleus within |. 5 us, if
an interrupt has occurred. These timings, developed while
they were developing on the 0 -Code emulator, indicate that
disk requests will always have to be completed before returning
control to the caller, but that all other requests can use over-
lapped i/o and cpu processing.

Since no conventions have been agreed upon for calling
sequences or similar software needs for Rikke-|, and since there
have not yet been established any conventions for the state of
Rikke~| registers when the machine is to be shared among
processes, very little can be said with regard to this concerning
the nucleus. However, since CS is not readable, it is clear
that working data (control blocks in particular) will have to
reside in MS or WA/WB, when i/o is in process. It appears that
fd-fd transfers and those involving disk, which do not return

control to the caller before request completion, will use WA/WB,

31

32

while for all others most of the data can be kept in MS, with only
intermittent use of WA/ WS,

It has been suggested by some people that the nucleus
itself should be coded in something other than the machine
(or hopefully, assembly) language of Rikke-I, and in this way a
large amount of CS, which would have to be devoted to the nucleus,
could be replaced with code in MS to be interpreted by an emulator
in CS. The savings to be gained, however, ér‘e illusory when one
realizes that the emulator for the language in which the nucleus
would be written would then have to reside in CS at all times,
and this, combined with that portion of the nucleus which would
of necessity be written in Rikke~I machine code, would probably

prevent any other emulators from ever residing in CS.

33

VI, CONCLUSIONS

There are not many conclusions to be drawn from a
proposal. Like any other proposed system, this nucleus would
have to be tested by the most strict examination of all, construc-
tion and use, before one could render a final judgement. It is
hoped that this happens.

When and if it can be concluded that there does exist a
design for a nucleus which possesses the characteristics pro-
posed in section I1, then the next step is to investigate the building
of such a system in hardware, and doing away forever with
input-output facilities whose basis rests in hardware possibili-

ties rather than software needs.

34

APPENDIX
Character mode input-output

A suggestion for circumventing the numerous problems
regarding character sets is found in the OS series operating
systems built by Stoy and Strachey (see Computer Journal,
1972). While their input-output philosophy is somewhat different
from that expressed in this proposal, their approach to this
one problem is nhot inconsistent with it.

Their suggestion Is to implement to logical union rather
than the logical intersection of the character sets available on
the devices attached to the system. Even if one hoped that the
ISO 7-bit character set could be the standard for some nucleus
implementation, it must be recognized that there will exist
graphics and control characters which do not lie in this set.
The suggested strategy is to support an 8-bit character set
which incorporates all of the various graphics and control
characters found on any device . attached to the system, rather
than the usual approach of supporting only those characters
found on every device in the system,

On input, each character would be translated into an
8-bit character within the nucleus standard (to be formulated
by DAIMI). On output each 8-bit character would be converted
into a 7- (or where needed a 6-) bit character for transmission
to the addressed device. Some 8-bit characters might not have
a function or representation on some device, and a device-
dependant decision must be built into the nucleus for that situa-
tion. For example, if the NOT sign (—1) were not available on
the printer, then it might be decided to represent it as _, or -,
or ~~ or blank or as an error refiected back to the system.

This implies the existence of a facility, somewhat like a

translate table, for each device. However, by merely using the

35

character value (i. e., numeric equivalent) to generate a word
index and shift amount, it would be possible to determine
whether conversion need be done for each character in a very
few microinstructions, and using very few words of storage.

If such a conversion were necessary, whether it be by simple
substitution or by execution of a microroutine, then additional
resources could be applied in those cases.

This scheme allows several very nice functions, especi-
ally since the user can assume a large number of characters
is available to him, and that all devices have the same control
characters,

There are two problems which remain in this context:
the use of non-character devices and the use of characters
which lie outside of this 8-bit character set. (Yes, the latter
is quite possible.) For the former, there are two cases:
where the device is purely word-oriented (e. g. , disk) in which
case no translation is ever done, and the case of a dual mode
device such as a paper tape reader. In the latter case, a
straightforward solution is to implement it as two logical
devices, one word-oriented, and one character-oriented.

In this way, the caller will determine by device name which
facility he chooses, i.e., word-oriented or character-oriented
transmission.

In the case of characters lying outside of the 256
supported, again two (or more) logical devices could be assumed.
For example, it appears that chemistry-oriented characters sets,
which involve characters outside of the 256 supported, can be
obtained for a line printer. The printer with that print chain
installed would merely have a different logical device name from
the printer with a "'standard!" chain installed. It would be the
user’s responsibility to know that the 8-bit code which normally
represents the symbol (will for that device only be used to
print the chemists” symbol for a benzine ring. Internally the

system would process it still as the (symbol.

