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I. DETERMINISTIC SYSTEMS

Summary

The use of nonterminals versus the use of homomorphisms of
different kinds in the basic types of deterministic Ol ~systems is
studied. A rather surprising result is that in some cases the use
of nonterminals produces a comparatively low generative capacity,
whereas in some other cases the use of nonterminals gives a very
high generative capacity. General results are obtained concerning
the use of erasing productions versus the use of erasing homomor-
phisms. The paper contains a systematic classification of the effect
of nonterminals, codings, weak codings, nonerasing homomorphisms
and homomorphisms for all basic types of deterministic OL~-languages,

including table languages.
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1. Introduction

The study of developmental languages has been one of the major
trends in automata and formal language theory during the past few
years. Developmental languages are generated by string manipulating
systems (L-systems, Lindenmayer-systems) which are applied in such
a way that at every step of a derivation a production is applied to every
letter in the string. L-systems have been investigated in a large number
of papers both from formal language theory and theoretical biology
point of view (See, e.g., [4], [5], [7], [8], and their references.)

The purpose of this paper is to make a systematic study on the
effect of two essentially different defining mechanisms for various types
of informationless L—-systems (OlL-systems): the use of nonterminals
and the use of homomorphic mappings of different kinds. In general,
consider a rewriting system G =<Z, P, w> with alphabet Z, set P
of productions and axiom w. Then the language L(G) generated by G

can be defined in two essentially different ways:

i) One specifies a subalphabet A of Z and defines L(G) to consist of
all words over A which can be derived from w using productions
in P.

ii) One introduces a homomorphism h and defines LL(G) to consist
of the images under h of all words derivable from w by pro-

ductions in P.

We refer to the first of these definitional mechanisms as ""defining
languages by the use of nonterminals" and, to the second, as ''defining
languages by the use of homomorphisms!t. Both mechanisms are fre-
quently used in formal language theory, cf. [8]. The distinction between
terminals and nonterminals is well motivated from the linguistic point
of view because nonterminals correspond to the syntactic classes of the
language. This distinction is not so well motivated in the theory of devel-
opmental languages in which the set of all strings generated by a re-
writing system is of primary interest. From the point of view of devel-
opmental languages, also the homomorphic mappings (especially those
in which a letter is mapped to a letter, the so-called codings) are of

considerable importance. The reasons for this are as follows. When we



make observations of a particular organism, and wish to describe it

by strings of symbols, we first associate a symbol to each particular
cell. We divide the cells into a humber of types and associate the same
symbol to all the cells of the same type. It is possible that the de-
velopment of the organism can be described by a developmental system,
but the actual system describing it uses a finer subdivision into types
than what we could observe. This is often experimentally unavoidable.

In this case, the set of strings generated by a given developmental system
is a coding of the "real' language of the organism which the given devel-
opmental system describes.

One of the basic facts which have made the use of nonterminals in-
teresting within the theory of developmental languages is that it was
established in [2] and [3] that, for the basic families of OL and TOL
languages, the use of nonterminals is equivalent to the use of codings,
as far as the generative capacity is concerned. Thus, the trade-off
between the two language definition mechanisms (i) and (ii) has become
a very interesting and well-motivated problem for L-systems. Codings
of OL languages have also been considered in [1].

This paper treats the trade-off between (i) and (ii) for all of the
basic families of OL languages. In fact, a finer subdivision of (ii) is
introduced by considering arbitrary homomorphisms (H), nonerasing
homomorphisms (N), codings (C), and weak codings (W), the latter being
homomorphisms where each letter is mapped either to a letter or to the
empty word. In the present first part, the attention is restricted to de-
terministic systems. We hope to return to the nondeterministic case in a
forthcoming paper.

After some definitions and basic lemmas, we study the effect of
the different operators E (allowing the use of nonterminals), H, N, C,
and W for the family of DOL languages. A similar study is made for the
families PDOL, DFOL, and PDFOL obtained from DOL by the propagating
restriction and/or' allowing a finite set of axioms. The corresponding
families obtained by using systems with tables are studied in the same
way. Whenever possible, the study is extended from language families
to the corresponding families of sequences. The paper ends with a dis-

cussion of a couple of open problems.



2. Definitions

The reader is assumed to be familiar with the basic notions and
facts concerning developmental languages, cf. the introductory
chapters of [41 whose notation and terminology we shall mostly follow,
Therefore, rather than giving the definitions of the different systems
in full formal detail, we will use a somewhat more descriptive way of
defining them.

We use the customary Kleene operators * and +. Thus, for an
alphabet Z, we denote by o (resp. Z*) the set of all nonempty words
over Z (resp. the set of all words over X, including the empty word \).
For a word x, min(x) denotes the set of letters occurring in x, and [x|
denotes the length of x, Consider words x over some fixed alphabet
= {aI yee e an} . By the Parikh vector associated with x we mean the
n~dimensional row vector whose i'th component equals the number of
occurrences of a; inx, fori=1,..., n. The partial order = for Pa-

rikh vectors is defined componentwise:

(bys---» B )= (bl,.

1A
<

iff b, = b}, fori=1,...,n. The relation v, < v, holds iff v

1 2 1

and \Z * Vo

By definition, an EOL -system is a quadruple G =<, P, w, A>,
where L and A are alphabets with A< 2, P is a finite set of context-
free productions containing at least one production for every letter of
2, and wE 2t The direct yvield relation= on the set Z* is defined as
follows: x= vy holds iff there is an integer k=1, letters a, and

words %y 1 i = n, such that

and a, o, is a production in P; for each i =1,...,n. The relation
=% is the reflexive transitive closure of =. The language L(G) gene~

rated by G is defined by

L(G) = { we A* | w=* wi.



The EOL ~-system is an Ol.-system iff A=2. It is deterministic

(abbreviated: D) iff there is exactly one production for every letter
of Z. It is propagating (abbreviated: P) iff the right side of every

production is distinct from the empty word A. We may also combine
these notions and speak, for instance, of PDOL - or EPOL ~systems.

By definition, an ETOL.~system is a quadruple G = <Z, f) , W, A>,
where L, w, and A are as in the definition of an EOL —-system and j)
is a finite set (whose elements are called tables) such that for every
P ¢ ?, <4, P, w, A> is an EOL -system. The direct yield relation
= means now that in the transition x= y only productions belonging
to the same table are used. The generated language is defined exactly
as before, using the reflexive transitive closure of the relation =.
Again, a TOL-system means that A=2. An ETOL -~ or TOL -system
is deterministic (resp. propagating) iff each of the underlying EOL.~
systems is deterministic (resp. propagating). Thus, we may speak of
PDTOL - or EPTOL ~systems.

We also consider generalizations of the systems defined above
obtained by replacing the axiom w by a finite set § of axioms. The
language generated by such a system consists of the (finite) union of the
languages generated by the systems obtained by choosing each element
w€ § to be the axiom. This generalization is denoted by the letter F.
Thus, we may speak of EPDTFOL ~-systems.

For any class of systems, we use the same notation for the family
of languages generated by these systems. E.g., EPDTOL denotes the
family of languages generated by EPDTOL ~systems. (In [ 4], the notation
J(EPDTOL.) is used. We have chosen the simpler notation because there
is no danger of confusion and the simpler notation is more convenient
in the diagrams and chains of inclusions. )

By a coding we mean a length-preserving homomorphism (often also
called a literal homomorphism). A weak coding is a non-length-increasing
homomorphism (i.e., a homomorphism mapping every letter to a letter
or to the empty word). The prefix W, C, H, or N attached to the name
of a language family indicates that we are considering weak codings,
codings, homomorphic images, or homomorphic images under nonerasing
homomorphisms of the languages in the family, respectively.

The purpose of this paper is a systematic study of the effect of the
operators. E, C, N, W, H on the families DOL, PDOL, DFOL, and
PDFOL, as well as with the same families with tables. More specifically,

we consider the families



DOL EDOL CDOL NDOL WDOL HDOL
PDOL EPDOL CPrDOL NPDOL WPDOL HPDOL.
DFOL EDFOL CDFOL NDFOL WDFOL HDFOL

PDFOL EPDFOL CPDFOL NPDFOL WPDFOL: HPDFOL,

as well as the same families with T added. Thus, all families we are
investigating in this first part are deterministic (D is present).

We make the following definitional convention: Whenever a
language L belongs to one of our families, then also L U {X} belongs
to the same family. The convention is made in order to avoid trivial
exceptions in the statements of many theorems.

Systems listed on the first two lines above define a unique sequence
of words. (This is not the case for deterministic systems where F or
T is present.) For them, we also consider the family of generated se~
quences which is denoted by S. Thus, S(EPDOL) is the family of se~
quences generated by EPDOL.-systems,

3. Basic lemmas

We shall in this section establish some results which will be used
frequently in the sequel. The results are called "lemmas! although they
might have some interest in their own right. Whenever reference is made
to a collection of language families, this collection is understood to be
a subset of the collection of the 48 families listed in Section 2. By pure
families we mean families whose name contains none of the operators

E, C, N, W, H. The first two lemmas deal with the effect of erasing.

Lemma 3.1.

Assume that X is not a propagating pure family (i.e., the name of

X does not contain the letter P). Then CX = NX and WX = HX.

Proof.

We prove the first equation, the proof of the second one being
quite similar. The inclusion CX < NX follows by definition. To prove
the reverse inclusion NX < CX , we consider an arbitrary language
L € NX. Hence, there is a language !_1 generated by an X-system G
such that L = h1 (L_1 ). A new

1

and a nonerasing homomorphism h]



X-sysiem G

consist of all letters obtained in the following fashion. Assume that

5 With L.(Gz)=l_2 and a coding h, satisfying

L,) will now be constructed. The alphabet of G2 will

a is a letter of G, and hI(a) = b1 bk’ where each bi is a

1
letter and k = 1. Then we include a, [b,],..., [bk] to the alphabet
of Gz. (Note that there is no distinction between terminals and non-

terminals in G,, since we are dealing with a pure family X.)

1
The coding hz is now defined by

ho(a) =b,, hyl[bJ)=b, i=2,..., k.

The axiom (resp. axioms) of G, is obtained from the axiom of G

(resp. are obtained from the axziorns of G1) by replacing every olcur—
rence of every letter a with the word a[b,] ... [b_]. (Thus, if for
some letter a we have k =1, the occurrences of this letter remain
unchanged. ) The same change is made to the right side of every pro-
duction of G1 . The left sides of the productions remain unaltered.

The definition of Gz is completed by adding the productions [bi] +» A,
for each bracketed letter. (These productions are added to every table if
we are dealing with a system with tables.) It is easily verified that Gz

is an X-system and that

Lemma 3. 2.
Assume that we are dealing with a family X =HY or X = WY,
Then:
(M) The family X is not altered if the letter P is added to or removed
from the name Y.
(ii) HY =Wy,

(iii) The family X is closed under union.

Proof
To prove statement (i), we note that the family ><1 with P is

included in the family X, without P, by definition. To establish the

2
reverse inclusion Xz < ><1, we consider a language L_] generated

by a Y-system G1 and a homomorphism (resp. weak coding) h1 <A




propagating Y-system G, is now defined by adding a new letter #,

2

replacing every production a—+ A in G, by a-# and adding the

1
production # - # (to every table if we are dealing with systems with
tables). The homomorphism (resp. weak coding) h1 is extended to
a homomorphism (resp. weak coding) h, over the new alphabet by

defining

hz(#) =), hz(a) = hj(a) for a * # .
It is immediate that hz(L_(Gz)) = h, (I_] ).

The statement (ii) is an immediate consequence of the statement
(i) and Lemma 3.1.

To establish (iii), we will prove that the language
h (!_(G1 N u hZ(L(Gz)) is in WY, for arbitrary two Y-systems G

1

and Gz and weak codings h1 and hz. This is obvious if F occurs

in Y. Hence by (i), it suffices to consider the cases Y = PDOL and

1

Y = PDTOL. We give the proof for the former case, since the latter case
can be established by repeating the same construction for every table,

Thus, assume that G, and G, are PDOL-systems

1 2

with alphabets %a yo o ,am} and {bl ye e ey bnf , respectively. Without

1
loss of generality, we assume that these alphabets are disjoint. (This
situation can be reached by a suitable renaming because we are inter-
ested only in the language h, (L(G, ))u hZ(L_(Gz)).) A new PDOL-~system
Gs3

equals

1

and a weak coding h will now be defined. The alphabet of G3

{ai, a;|1éi§m}u{b., bl | 1= 7 =n}.

The axiom of G, equals w,wl, where W, is the axiom of G, and

3 1 1

vv'2 is obtained from the axiom of Gz by replacing every letier bi with

b%. For any production a; -+ X of G1 and bi -+ Y of GZ’ a, -+ x} and
bi - y; are productions of G3. (Here x; and y'I are obtained from X
and Y; by replacing every letter with the corresponding primed one. )

Furthermore, G, contains the productions

3

a,}r»ai, for1 =i=m, andb;~>bi, for1 =1 = n.



The weak coding h is defined by

h(ai) =h1(ai), h(bi) =hébi), h(a;) = h(bJ’.) =X .

Clearly,
) = h (L(G;)) U hy(L(G,)).
This completes the proof of Lemma 3. 2.

Remark
We have stated Lemmas 3.1 and 3. 2 for D-families only, i.e.,
in the form needed in this paper. However, the lemmas are valid (and

the proofs the same) for the corresponding nondeterministic families.

lLemma 3.3
HDTOL € EDTOL and NPDTOL. € EPDTOL..

Proof
We prove the first inclusion. The second inclusion is established

by exactly the same method.

Assume that G is a DTOL.-system, h is an arbitrary homomorphism
and L = h(L(G)). We construct an EDTOL -system G, such that
L= L.(G1 ). Without loss of generality, we assume that the alphabet % of
G is disjoint from the target alphabet Zl of h. The alphabet of (31
equals, by definition, XU 21 and 21 is the terminal alphabet. The
is that of G. The tables of G

axiom of G are obtained from those of

1 1
G by adding to each table the production a; *a;, for every 3, € 21 ,
and by introducing one additional table

[{fa=»h(a)]| a€T}uU{a —*a1l a, €E1H.

1
Clearly, L = L(G1) and Lemma 3. 3 follows,
Our two last lemmas give examples of languages belonging (resp.

not belonging) to some families.
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Lemma 3.4
The language L = {a" | n= 1} belongs to the family CPDOL but
it belongs to neither EDFOL nor DTFOL.

Proof

The first assertion follows by considering the PDOL -system

<{a, a1}, {a] -faa,i, a- a} a]>

and the coding h defined by

To prove the second assertion, it suffices to consider any finite

number of EDOL.-systems (31 gesay Gk with terminal alphabet {a} and let

Assume that a . is the first terminal word in the sequence generated by
Gj’ for j=1,...,k, such that ij >1. Let p be aprime number greater
than max{ i | j=1,...,kl. Then aP ¢ L' and, consequently, L'# L.
This shows that L ¢ EDFOL .

Consider next an arbitrary DTFOL-system

G =<la}l, {[a~ ajlj,...,[a* a'e 11, {at, ..., a'% >. (Here the last

item is the set of axioms.) Let p be a prime number greater than

1A

max{in, j, |1 =nsk, 1 =t=m.

Then ‘api L.(G), which shows that L ¢ DTFOL.

L_emma 3.5

The language

belongs to the family WPDOL. but it does not belong to the family NDOL..
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Proof

The first assertion is an immediate consequence of l_emma 3. 2
(iii), Lemma 3.4 and the obvious fact that {azn | nz 1} is in WPDOL
(and even in PDOL). To prove the second assertion, we assume the
contrary: L. € NDOL. Then, by LLemma 3.1, L € CDOL.. Let G be a
DOL -system and h a coding such that L = h(L.(G)). Then the alpha-
bet of G can be divided into two disjoint subalphabets Ea and Zb
such that

h(c) = a, for c € Za ; hic) =b, for c€ Eb.

We now make use of the fact that any set of mutually incomparable
Parikh vectors is finite. (This fact is well-known and also easy to
establish directly. Cf. [6], where similar arguments are used.) Con-

sider the sequence

Wy =W, W, W

1 FIERRE

generated by G. Every word in this sequence is either over the al-

phabet Z)a or over the alphabet L _. There are infinitely many words

b’
over Za in this sequence. Consequently, there are natural numbers

m and n such that the FParikh vectors of Wm and Wm+n are com-

parable, and W and w are over Ea. Since L is an infinite lan-

m-+n

guage, the Parikh vector of Wi

are over Za’

must be greater than that of W

Since w and w
m m-+n

le+hI -
This implies that, for any i= 0,

> |

iwm+in‘ -

(*)

(Note that the Parikh vectors of all words w must be comparable. )

m+in
We now obtain a contradiction by considering words over Eb in

the sequence, Let t be the length of the longest right side among the

productions of G. Denote g = \wm]/tn. Consider any word vvj in the

sequence, where the index | satisfies



m+ in<j<m+ (i+1)n,

for some iz 0. Clearly,

7. |w.| =2 w
it 7 Tm+(i+1 )n”

From this we obtain by (*)

w | =z 2t

If we nhow choose a value iO such that

i0+1
2 q>m+(i0+1)n

12

it follows that {b’ |1 =j=m+ (io+1 )n} is not a subset of h(L(G)).

This coniradiction completes the proof of LLemma 3. 5.
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4, Systems without tables

In this section the effects of the operators E, C, N, W, and
H on the families DOL, PDOL, DFOL, and PDFOL are studied.

Theorem 4.1 DOL & EDOL..

Proof

The inclusion follows from definition and that it is proper is seen
from the finite language L = {abb, aacc} which is in EDOL but not in
DOL..

L € EDOL. L = L.(G1 ), where G, is the EDOL-system

1

G, =<{a, b, c, dl, {a» aa, brc, c+d, d- d, abb, {a, b, ¢} >

L § DOL.. Assume the existence of a DOL.~system
Gz =< {a, b, c}, P, w, {a, b, ¢} > such that L = L(Gz), then either

1) w=abb or 2)w= aacc.

1) w = abb. The deterministic production set of G, must satisfy

abb = aacc, otherwise L # L..(Gz). The only possible productions for the
letter b are b~ cor b~ X, which implies that the only possible pro-
ductions for the letter a are a- aa or a- aacc. In both cases aacc

will derive a word not belonging to L.

2) w = aacc. P must satisfy aacc = abb. But then either a-» A or
Cc + A, and in both cases the production of the other letter is impossible
to define in such a way that the above mentioned requirement to P is met,

This completes the proof of theorem 4.1.

Theorem 4, 2 EDOL ¢« CDOL,

Proof
Let G =<2, P, w, A> be an EDOL-~system. The follo wing describes

the construction of a DOL-system G =<X', P!, w', Z'> and a coding

h from Z' into A such that LL(G) = h(L(G")).
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Consider the sequence of words from XZ* generated by
G, W=w, Wy, Way oovn & There exist natural numbers n and m
such that min(wm) = min(wm+n), which implies that for any i 2 0 and

any j, 0=j<n:

(1) min(w J.) = min(

m+ wm+ni+j)‘

L.et d, denote the cardinality of min(w,

K ), 1 =k < m+n. Define

k

NA,—_{kEN | 1 <= k< mtn, min(wk)QA}.

For any k& N& introduce new symbols not in Z

kj]1sj§dk},

and define isomorphism 1’|< mapping rnin(wk) onto Ek’ where

fk(a) =a . iff a is the j'th symbol of min(w, ), k € N

Kj K A

Note that the fk's are defined for some fixed enumerations of the

sets min(cok‘). 2! is going to be the union of the above defined Ek's:

Define k1 and kz as the minimal and maximal elements of NA'

For any of the letters akj where k # k2 define production in P!':

where k! is the smallest element in NA greater than k and «

is the string derived from f:(a in (k'-k) steps in G.

kj)
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It follows from (1) that L(G) is finite if kg < m. If this is

the case then define for any j, 1 = j= dI< production in P!:
2

Otherwise, let ks denote the minimal element in NA areater than or

equal to m, and define productions in P! for any j, 1 <j< dk ,

2

for which f;' (ak J.) derives some string « € A% in (n-ky+k,) steps
{2 2
in G:
a .~ fF o
ko i ™ i, )
Note that the use of fk3 is well-defined since mm(wk2+(n—kg+k3)) =
min((.c)k ) (from the fact that k; = m and (1) above). Finally define
3
the coding h from Z' into A in the way that for every akj €
_ 1
h(akj) = fk (akj)' Then

L(G) = h(L(G"))

where G!'=<Z', P!, f ), Z'>, and this proves the inclusion of

K, @k,
the theorem. That the inclusion is proper is seen from LLemma 3. 4.

Theorem 4.3 CDOL. = NDOL

Proof

Follows from Lemma 3.1.

Theorem 4. 4 NDOL &« WDOL. .

Proof

Follows from Lemma 3.5 and Theorem 4. 3.

Theorem 4.5 WDOL. = HDOL .

Proof

Follows from lLemma 3.1.
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The effects of the E-operator and the various homomorphisms on

DOL -systems can now be summarized (Theorems 4.1 -4, 5),
(D1) DOL & EDOL ¢ CDOL = NDOL & WDOL = HDOL. .

Theorem 4.6 1) PDOL & EPDOL. .
2) EPDOL ¢ CPDOL. .
)
)

3) NPDOL ¢ HPDOL .
4) WPDOL = HPDOL. .

Proof

1) Follows from the proof of Theorem 4.1 and the propagating
example considered in this proof.

2) If the EDOL.~system considered in the proof of Theorem 4. 2
is propagating, then so is the constiructed CDOL ~-system, i.e., the
proof of Theorem 4.2 is also valid in the propagating case.

3) The inclusion follows from definition and it is proper by
L.emma 3. 5.

4) Follows from L.emma 3. 2.
Theorem 4.6 can be illustrated in a diagram corresponding to (D1).
(D2) PDOL ¢ EPDOL & CPDOL € NPDOL ¢ WPDOL. = HPDOL. .
Before we continue considering systems with a finite set of axioms we
shall briefly mention some results for the famiiies of sequences gene-

rated by systems considered so far.

Corollary 4.7

Theorems 4.1-4.6 are also valid for the families of generated

sequences.
Proof
Follows from slight modifications of the proofs in this and the

previous section.

Theorem 4.8 S(CPDOL ) & S(NPDOL ).
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Proof

The inclusion follows from definition. Obviously, the sequence
of lengths generated by any CPDOL.-system is non-decreasing, which
is not always the case for a NPDOL ~system. Consider as a trivial
example the PDOL ~-system G = <§a, bl , { a- b, b~ b} , @, {a, b} >

and the nonerasing homomorphism h, for which h(a) = aa and h(b) = b.

Corollary 4.7 and Theorem 4.8 are illustrated in the diagrams D3 and

D4.

(D3) S(DOL) ¢ S(EDOL) ¢ S(CDOL) = S(NDOL) ¢ S(WDOL.) = S(HDOL )-
(U4) S(PDOL) ¢ S(EPDOL ) ¢ S(CPDOL) ¢ S(NPDOL.) ¢ S(WPDOL) =S(HPDOL.)

And now we continue the line of this section, investigating the behaviour of

systems with a finite set of axioms.

Theorem 4.9 DFOL & EDFOL and PDFOL ¢ EPDFOL .

Proof
Both of the inclusions follow from definition.
Consider the EPDOL -system

G=<{a, b, c, d, e}, P, cab, {a, b, ¢, d} >

where P = {a -+ aa, bbb, c+d, d*e, e~ d}.

22n+1 22r1+1

Clearly, L(G) = {cab} U {da b o}

]
v

Assume that there exists a DFOL-system G'=<{a, b, c, d}, P!, w',
{a, b, ¢, d} >, such that L(G) = L (G'). The word dazbz occurs
somewhere in one of the sequences generated by G! (from one of the
axjioms of G'). The assumptions that this word derives itself or the
word cab lead both of them to contradictions, i.e., there exists an

Nn=z=1 such that

2nt+1 2n+1
dazbz = da2 bz ,

2N 2n

2 , b b2 } = P! (all other assump~

which implies that {d—v d, a—+ a

tions lead to contradictions). But then, no matter how the production
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of letter ¢, c W, is defined in P!, the word cab derives a word

of the form zzn zzn
w_a b , =1,
c

which is not a word in L(G).

This proves that both of the inclusions of the theorem are proper.

Theorem 4.10 EDFOL & CDFOL and EPDFOL. & CPDFOL .

Proof
lL.et G be a given EDFOL -system. Construct for each of the
gener ated sequences of G (one from each axiom) a CDOL.-system
generating the same sequence (according to the proof of Theorem 4. 2),
in such a way that the constructed CDOL -systems are working in mutually
disjoint alphabets. Let G'! be the CDFOL.-system for which the alphabet
is the union of the alphabets of these constructed systems, the production
set is the union of the production sets of the systems, the axioms are
the axioms of these systems, and the coding is the unique extension of
all the constructed codings to the alphabet of G!'. Then L(G) = L(G!').
If G is a propagating EDFOL -system then so is the constructed
system G', and this proves both of the inclusions of the theorem.

Lemma 3.4 implies that the inclusions are proper,

Theorem 4.11 CDFOL = NDFOL .

Proof

Follows from Lemma 3.1.

Theorem 4.12 CPDFOL = NPDFOL .

Proof

NPDFOL is included in NDFOL and by Theorem 4.11 it is then
sufficient to prove CDFOL < CPDFOL., which is true iff DOL < CPDFOL
(note that the composition of two codings is again a coding).

Let G=<X, P, w, > then be a DOL.~system, and let w, (w(ia))
denote the i'th word generated from w (from the letter a) using pro-

ductions from P. Define
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Ef={a621 {wga)] iz 0]} isfinite].

- «f .
Then for every a € Z there exist constants Ny My € N, ng, m_ = 1,

such that w(a) = w(a) , which implies that
ma ma—l-na

(2) Vi,OSi<na,vJ'€N;w(a) _ la)

m_+i m_+it+jn
a a a
Define p = II_(m_*n_), then (2) above implies that
iy a a
atx
VaEZ}f,iji :w(a)= w(‘a.) .
p plJ

Let s denote the length of the longest word derived from any letter

from Z in p steps using productions from P, so

S = max { ‘w(a)”
acy, P

Then clearly, there exists a constant g = 1, such that for any

ac€ Z\Zf (a deriving an infinite language), w(a)

() is of length greater

than s.

The idea is now to simulate G in a system, where an occurrence
of a letter a is replaced by information about the letter from which
this a was derived in G in p steps, say b, and the position of this

(b)

particular a in wp . The productions of the system will simulate the
behaviour of letters from G in steps of length pq.
Formally L(G) will be generated by a CDFOL -system G' with

coding h', where
G'=<ZU(Zx {1,2,...,s}), P!, {wi 0= i<pqgf,ZUEZx{1,2,...,s])>.

The productions of P! are defined as follows. For each a € Z, the
right-hand side of its P'-production is the string from (Zx{1,2,...,s})*
obtained from wpe; by replacing any occurrence of a letter, say b,
with the symbol (c,i) € Zx {1,2,...,s], iff the particular b is the i'th

letter (from left to right) generated (in p steps) from an occurrence of
(a)

the letter ¢ in W .
p(g-1)

=18

If wl(ijl) =)\ then a-+ A will be a production of
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For each (a,i) € Zx {1,2,...,s] for which i< lwi)a)\, if

the i'th symbol of wé?;ﬂ) is derived as the j'th symbol from an
occurrence of the letter b in w(a) , then (a, i)~ (b,j) is apro-

(a)l)

duction in P!'. For the symbol (a, |w , the right-hand side of

its production is the string from (Zx {1,2,...,s} )+ of length

(|w§36(111+1 )l - \wl(:)a)] + 1), where the i'th symbol is defined as the
symbol (b, j) for which the (]w(s)l -1 + i)'th letter of wi)é(lgﬂ)

derived as the j'th letter from an occurrence of the letter b in

(a)

wpq' Note that by the construction of p and q all (a,i)-productions

is

defined above are well-defined, and none of them are A-productions.

For all symbols (a,i) € ZTx {1,2,...,s] for which the pro-
ductions in P' have not been defined above, let (a,i) - (a,i) be in P
(These symbols will all be useless symbols in the sense that they will
never occur in L(G').)

Finally define the coding h! as follows:
M aél: h'(a) = a

Ma€en, 1<i< ]wf)a) | : h'((a, 1)) = b iff the i'th letter in
a)

co( isa b
P
Wacl, \wéa) | <iss: h'((a,i)) =a (a is a useless symbol).

From this construction it follows that L(G) = h'(L(G'")). Furthermore,
only the axioms of G' are over the alphabet Z, all other generated
words are over the alphabet Zx {1,2,...,s|, i.e., A-productions are
applicable only on the axioms of G!. But then define P'! as the pro-
duction set obtained from P! by replacing all a-productions by identity-
productions (a+ a for every a€ Z). Then L(G) = h'(L(G'')) where G"!
is the following PDFOL.~system:

G'' =<TU (Zx{1,2,...,s}),P'" {w|0=<i<pd Ulw | O0=i< pdf,

ZU (T« {1,2,---7S}>7

(w'i denotes the siring generated in 1 step from w; in G'). Note that
the original axioms from G' generate themselves in G'!, and the
words generated directly from the axioms in G!' are now included as
axioms in G''.

This completes the proof of theorem 4.1 2.



Theorem 4.13 WPDFOL = NPDFOL and WDFOL = NDFOL .

Proof
It follows from the proof of Theorem 4.12 and L.emma 3. 2

that it is sufficient to prove that WPDOL & NPDFOL..

Let G =<Z, P, w, > be a PDOL-system and h a weak coding,

h:Z~+ A

For every a € L, there exist constants m_» Ny €N, m_, Ny =1,

such that

a)

where w(i as in the proof of Theorem 4.12 denotes the i'th word
from Z* derived from the letter a, using productions from P. This

implies that

(a)

. < e . s
(3) V|,0_1<na,VJ€N.mm(wma+i

Define p =1i (ha . ma). Then by (3) above the following is true for
a€l

every letter a € X:

MJEN, j=1 : h(w(paj))# A
i
(a)
h(wp JE AL
Define
= ={a€eD| h(wéa))ik |

and a homomorphism f:Z -~ 21 , Where

a if aEZ}1
Vaéz:f(a)= )\.Ifa%zl
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Consider now the PDFCL -system:

)| OSi<p/\f(wi)¢)&§,21>

where w, denotes the i'th word generated in G, and P' contains
the productions a f(w[(:)a)) for every a€Z . If h! is defined as
(a))

the non-erasing homomorphism h': 21 + A for which h'!(a) = h(wp

for every act ! , then
h'(L(G))2 h(L@G)\ thiw) | 0=i< bl
Assume that 21 and A are disjoint, then consider

e -<z'ua, P, {Hw)|0=i<pl U (hiw)] 0= i<pl, o ua>

where P'! contains all productions from P! and identity—-productions
for all letters a € A. If h'! is defined as the non-erasing homomor -
phism ht': El U A= A for which h''(a) =h'(a) if act 21 and h''(a) = a
if ac A, then h''(L(G'")) =h(L(G)), which proves the theorem.

Theorem 4.14 WDFOL = HDFOL and WPDFOL = HPDFOL .

Proof

Follows from iemma 3.1.

We are now able to summarize Theorems 4. 9-4.14 in the following

diagrams.

(D5) DFOL ¢ EDFOL $§CDFOL =NDFOL = WDFOL =HDFOL..
(D6) PDFOL ¢ EPDFOL § CPDFOL =NPDFOL =WPDFOL = HPDFOL.
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5. Mixed diagram . and relations to the Chomsky hierarchy

In this section the effects of the P-restriction and the F -exten-
sion on DOL ~systems are studied in relation to the effects of the
operators E, C, N, W, and H, i.e., we investigate how diagrams
D1, D2, and D5 relate to each other. At the end of the section we also
relate all the families considered in the previous section to the

Chomsky hierarchy.

L.emma 5.1
—_————t oN

The language L = {(aba) | n= 0} belongs to the family DOL,

but not to the family EPDOL..

Proof

The first assertion follows by considering the DOL ~-system,
G =<1{a, b} , {a- aba, b~ Al , aba, {a, b} >,

for which L = L(G).

Assume that there exists an EPDOL -system G', such that L = L(G!').
Since G' is propagating, the word aba must derive in some number
of steps, say k, the word abaaba. But since G! is also determinis—
tic, then either a or b must derive in k steps the empty word,

which is a contradiction to the assumption that G' is propagating.

L_emma 5.2

The language

| n=z1}uUfct” | nz1}

belongs to the family DFOL, but it does not belong to the family NDOL..
Proof

That L belongs to the family DFOL is seen by considering the
DFOL ~-system:
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G=<{a,b,c}, {a- aa, b+ b, c~ cb},{aa, cb},{a,b,c}>

for which L = L(G).
The proof 'of the fact that L does not belong to the family
NDOL - follows the same lines as the second part of the proof of

Lemma 3. 5.

Theorem 5.3 DOL. ¢ NPDOL. .

Proof
A constructive proof of this theorem, originally due to

Jan van Leeuwen, can be found in [ 4].

Theorem 5.4 CDOL = NPDOL. .

Proof

CDOL. is included in NPDOL. by Theorem 5. and the fact that
the concatenation of a coding and a non-erasing homomorphism is again
a non-erasing homomorphism. NPDOL is included in CDOL by Theo-

rem 4, 3.

Theorem 5.5 PDOL ¢ DOL and EPDOL. & EDOL .

Proof
The inclusions follow by definition and they are proper by

L.emma 5.1.

Theorem 5.6
The families DOL. and EPDOL. are incomparable.

Proof

Foliows by Lemma 5.1 and the proofs of Theorems 4.1 and 4. 6.

Theorem 5.7 DOL. & DFOL and EDOL ¢ EDFOL .

Proof
The inclusions follow by definition and they are proper by

Lemma 5. 2.
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Theorem 5.8
The family DFOL. is incomparable to the families EDOL and EPDOL..

Proof
Follows by the proof of Theorem 4.9 and LLemma 5. 2.

Theorem 5.9
The families CPDOL and CDOL. are incomparable to the families
EDFOL and DFOL..

Proof

Follows by Lemmas 3.4 and 5. 2.

Finally we are able to summarize results from this and the pre-
vious sections in the following mixed diagram. The meaning of the
diagram is the following. If two nodes labelled X and Y are connected
by an edge (oriented edge), the node X being below the node Y, then
X VY (X&VY). If two nodes labelled X and VY are connected by a

broken edge then X and Y are incomparable.

HDOL = WDOL.
= HPDOL. = WPDOL
= HDFOL = WDFOL
= HPDFOL = WPDFOL
= NDFOL = CDFOL.
= NPDFOL = CPDFOL

~
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Before we start discussing systems with tables, we shall
briefly relate all families without tables to the families of the

Chomsky hierarchy.

Lemma 5.10

For any language L belonging to one of the variations of the OL -
families considered in sections 4 and 5, there exists a constant k € N,
such that for any n € N, the number of words from L of length n is

less than k.

Proof

A proof of the lemma for the family PDOL can be found in [7]
using the theory of growth-~functions. Since a coding is length-pre-
serving, this result carries over direcily to the family CPDOL, and
then, obviously, also to the family CPDFOL. This proves the lemma

(see the mixed diagram in Figure 1).

Theorem 5.11

All families of languages considered in sections 4 and 5 are
incomparable with the family of regular languages and the family of

context-free languages.
Proof

The smallest of the families considered, the family PDOL, con-

tains the non-context-free language

On the other hand, consider the languages

L, =1{a,bl¥
L, = {x € L, | #a(x) = #b(x)} .
L_1 is a regular language, L_2 is a context-free language, and none

of the two languages is in any of the considered families by Lemma 5.10.
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Theorem 5.12

All families of languages considered in sections 4 and 5 are

properly included in the family of context-sensitive languages.

Proof

A proof of the theorem for the family OL (and thereby DOL)
can be found in [8]. Since the family of context-sensitive languages
is closed under union and non-erasing homomorphism, then this result
carries over to the family NDFOL., and this proves the theorem (see

the mixed diagram in Figure 1).
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0. The table case

We first consider the effect of the operators E, C, N, W, H
on DTOL.~systems.

Theorem 6,1 DTOL €« CDTOL..

Proof

The proper inclusion follows from Lemma 3. 4.

Theorem 6,2 CDTOL = NDTOL. .

Proof

Foilows from LLemma 3.1.

Theorem 6.3 NDTOL = EDTOL. .,

Proof
The inclusion NDTOL < EDTOL follows from Lemma 3.3. The
reverse inclusion EDTOL < NDTOL is established by showing, using
the method of [3] that EDTOL € CDTOL. Indeed, this method is
applicable as such because the sets Contr (CE’T ) (cf. [3]) will be
singletons and, consequently, the resulting tables will be deter-

ministic.

Theorem 6, 4 WDTOL = HDTOL .

Proof

Follows from Lemma 3. 2.

Theorem 6.5 EDTOL. = WDTOL. .

Proof
EDTOL. ¢ WDTOL follows from Theorems 6.3 and 6. 4 and the
fact that NDTOL € HDTOL. WDTOL < EDTOL follows from LLemma 3. 3.

We have established the following diagram for DTOL -systems:

(D7) DTOL ¢ CDTOL =NDTOL = EDTOL = WDTOL = HDTOL .



Theorem 6.6 PDTOL & CPDTOL and WPDTOL = HPDTOL..

Proof
The proofs for Theorems 6.1 and 6. 4 are also valid for pro-

pagating table systems.

Theorem 6.7 EPDTOL = WPDTOL |

Proof
The inclusion EPDTOL < WPDTOL. s again established by the
method of [3].
The reverse inclusion is established as follows.
Let G =<2, ff), w, L> be an arbitrary PDTOL-system where

?={P],Pz,...,P and h:E+—DA*aweakcoding.

nl

First we will define some functions which we will use later in the proof.

Define for all S ¢ 2E the function g'S :'Z}+ + 2L* to be the weak coding:

Aif a€ s
aecx: Q'S(a) = a otherwise

and define 9g ¢ E+ ~» E+ U {#} to be the following function:

w) if gs(w) F A

+
W€z # otherwise
and finally f: {#]) Zy—b (Zx 2 )* {#] as follows:
SE.’Z.E a, a a € x%; f((a, a a),s)=(a,,S)Na,.,s) (a_,S)
» 8p8g--.8 J 192° - 8p)s 17 2020 ta,
f(#,S) = 4

We are now ready to define the equivalent EPDTOL ~system

Z

H=<ZX2UAU{#~X 5‘) X, &> (X ¢ Z

j)' is defined as follows:

Pr=py U ke where

1<icn 25’

Se 22
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1) P contains the following productions:
5 h(a) if h(a) + A and S < h™T ()
(3,8) €« 27 (a,8) {

# otherwise

Also,
F o H, XX and 0+ 06 for all 6 € A are in P.

2) P, g contains the following productions:
, S

(a,S') € Zx 2E : (a,8') f(gs(wa),S”) where a-w_ lisa
production in I‘—"i and

S't= s U U min{w, ) where b -—+w is a production in P..
. b b i
bes!

Also,

H# o 4, X f(gs(w),S N min(w)) and 0 + 6 for all 0 € A are in P o
H

We now have that h(L(G)) = L(H) because we can show the inclusions
in both directions with the following argument.

Assume that aja,...a_ € L(G).
w1:~w‘2:> ..... = W, T a,a8,...8

=
F’i F’i P. P.
1 2

Define k+1 sets Agy,...,A  where Ai c min(wi) in the following

k
way:

AO is the set of symbols in Wy which derives a subword of

k
o).

where at least one symbol belongs to Z\ h~

aEAi, =1, iff

1) There exists an occurrence of a in wi such that the ancestor
in wi_1 of that occurrence of a derives a subword of wk
where at least one symbol belongs to Z}\h-1 (A).

oo

2) a derives a subword in W (in k=i steps) which is included in h™




)

which means that h(L(G)) < L(H).

The other inclusion is shown in the same way.

Example:

Assume that G =< {a,b} ,p,bab> where ? consists of the table

a -+ ab
b~ a }

(

and that our weak coding is h(a)

Then

X, h(b) =c.

where
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Pifa,p s [ @2 7 % )
(a,{al) ~ #
(a,{b}) -~ =
(a,{aab})_’ #
(b,®) + 3

( (b,fal) -~ # )
(b,{b}) =+ #
(b, {a,b})» #

X - #
4o
L ¢ o ¢ J

We have, thus, established the following diagram:

(D8) PDTOL ¢ CPDTOL € NPDTOL € EPDTOL = WPDTOL = HPDTOL

It is an open problem whether or not the two inclusions in the middle

are proper.

Since the F-extensions of the systems with tables are treated in
exactly the same manner (in fact, F does not alter any table families

except the pure ones), we only give the final diagrams:

(D9) DTFOL & CDTFOL = NDTFOL = EDTFOL = WDTFOL = HDTFOL,
(D10) PDTFOL G CPDTFOL cNPDTFOL < EPDTFOL = WPDTFOL =HPDTFOL..

The two open probelms in (D10) are equivalent to the corresponding
problems in (D8). The results from section 5 concerning relations to the
Chomsky hierarchy do not carry over to the table case, eg., the family

NPDTOL contains all regular languages.
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7. Mixed diagram for the table case. Open probliems.

Rather than giving the full mixed diagram, we only give the
diagram for pure families which together with the results of the pre-

vious section has all the information we are able to present:

DTFOL

7N

DTOL —mmmmme PDTFOL

N

PDTOL

This diagram follows by the definitions and by the easily established
facts that the language

n
L ={bc(aba)z | nz1 |

1
belongs to the family DTOL. (and, in fact, to the family DOL.) but does
not belong to the family PDTFOL, whereas the language

belongs to the family PDTFOL but does not belong to the family DTOL.,

Some open problems have-already been mentioned above. The most
significant open problem in Sections 4 and 5 is whether DOL. § CPDOL
or whether the two families are incomparable. A solution to this problem
would also settle the two other open problems in the mixed diagram,
namely, whether or not the inclusion CPDOL < NPDOL. is proper and
whether or not EDOL ¢ CPDOL., In fact, DOL & CPDOL. iff

EDOL ¢ CPDOL iff CPDOL = NPDOL.. A somewhat related result is
that the language L.1 above is not a finite union of PDOL ~languages

(and not even a finite union of PDTOL -languages). However, L, isin
CPDOL..
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NONTERMINALS, HOMOMORPHISMS AND CODINGS
IN DIFFERENT VARIATIONS OF OL-SYSTEMS

by
Mogens Nielsen
G. Rozenberg

Arto Salomaa

Sven Skyum

il. NONDETERMINISTIC SYSTEMS

Summary

Continuing the work begun in Part 1 of this paper, we consider
now variations of nondeterministic OL-systems. The present
Part Il of the paper contains a systematic classification of the effect
of nonterminals, codings, weak codings, nonerasing homomorphisms
and homomorphisms for all basic variations of nondeterministic

OL ~-languages, including table languages.



8. Introduction and some lemmas

The outline of the present work corresponds to that of Part I,
the difference being that we now investigate nondeterministic L~
systems, i.e., the letter D is not present in the name of the system.
Thus, the purpose of this Part Il is a systematic study of the effect
of the operators E, C, N, W, H on the families OL, POL, FOL, and
PFOL., as well as the same families with tables. More specifically,

we consider the families

oL EOCL CoL NOL WOL HOL
POL EPOL CPOL. NPOL WPOL HPOL
FOL EFOL CFOoL NFOL WFOL HFOL

PFOL EPFOL CPFOL NPFOL WPFOL HPFOL

as well as the same families with T added.

The reader is referred to Part | for basic definitions, motivation
and background material. The definitional convention to the effect that
whenever a language L. belongs to one of our families, then also
Lu {)\} belongs to the same family, is valid also in this Part Il.

-~

According to the remark made after Lemma 3.2, both Lemma 3.1

and Lemma 3. 2 are valid also for nondeterministic families, i.e.,
families considered in this Part Il. We now establish two additional
lemmas.

Lemma 8.1
The families NY, EY, HY and WY are not altered if the letter F

is added to or removed from the name Y.

Proof

If we are dealing with the families NY or EY , the lemma follows
from the observation that we can choose a one-letter axiom in the
Y-system if F is not present in the name Y. For the families HY and

WY the statement follows by L.Lemma 3.2, (iii).

{ _emma 8.2

The language

belongs to the family CPOL. but not to the family TFOL..



Proof
The first assertion is established by considering the POL -
system with the axiom a, and productions

a + a,a

+ a,a,, a1 3 363, az» azaz, 83'* 8383&13

1 272

and the coding h defined by

2)=h(a3) =a.

h(aI ) = h(a
To prove the second assertion, consider any TFOL-system G such
that a2€ L(G) and a3 € L(G) and, furthermore, a production
a-a" with m> 1 appears in some of the tables. If m has a prime
factor different from 2 (resp. different from 3), then a2 (resp. a3)
yields directly according to G a word not in L. Consequently,

L # L(G), and the lemma follows.




9. Systems without tables

Theorem 9.1 OL ¢ COL..

Proof

Follows from Lemma 8. 2.

Theorem 9, 2 COL. = NOL. and WOL. = HOL..

I

Proof

Follows from Lemma 3.1.

Theorem 9.3 COL = EOL = HOL..

Proof

The proof can be found in [2].
Theorems 9.1-9.3 can be summarized in the following diagram:

(D1) OL ¢ COL = NOL. = EOL = WOL. = HOL..

Theorem 9. 4 POL & CPOL..

Proof

Follows from Lemma 8, 2.

Theorem 9.5 CPOL ¢ NPOL..

Proof
The inclusion follows from definition and that it is proper

is seen from the language

L={a""c"u q° | n=1}.

it is easy to see that L. belongs to NPOL., but it does not belong to
CPOL (see [1]).



Theorem 9.6 NPOL = EPOL..

Proof
The inclusion EPOL < NPOL can be established by using the
method of [ 2] (the proof of EOL < COL). The other inclusion is

easily checked.

Theorem 9.7 EPOL. = WPOL. = HPOL..

Proof
Follows from Lemma 3. 2 and the fact that EPOL = EOL (see eg. [4]).

The following diagram is established from the theorems 9. 4-9. 7:
(D2) POL ¢ CPOL. § NPOL = EPOL = WPOL = HPOL..
Theorem 9,8 1) FOL ¢ CFOL..

2) CFOL = NFOL..
3) NFOL = EFOL = WFOL. = HFOL..

Proof
1) and 2) follow from Lemma 8.2 and L.emma 3.1 resp. , 3) follows

from Lemma 8.1 and theorems 9.2 and 9. 3.

Theorem 9.9 1) PFOL ¢ CPFOL.
2) CPFOL < NPFOL = EPFOL = WPFOL = HPFOL.

Proof
1) follows from Lemma 8.2, 2) follows by definition, Lemma 8.1

and theorems 9.6 and 9. 7.

Theorems 9.8 and 9.9 can be illustrated in the following diagrams:

(D3) FOL ¢ CFOL = NFOL = EFOL = WFOL = HFOL.
(D4) PFOL ¢ CPFOL € NPFOL = EPFOL = WPFOL = HPFOL.,




10. Mixed diagram. and relations to the Chomsky hierarchy

Theorem 10.1 1) POL ¢ OL..
2) OL ¢ FOL..
3) POL ¢ PFOL.
)
)

4) PFOL ¢ FOL..
5) OL and PFOL. are incomparable.

Proof

All inclusions in 1) to 4) are true by definition.

Define

and

It is easy to see that L., € OL\PFOL and L,¢€ PFOL\OL, which proves 5)

1
and that the inclusions in 1)to 4) are proper.

Theorem 10. 2 1) CPOL ¢ CPFOL.
2) CPOL is incomparable with OL, PFOL and FOL..

Proof

1) The proof can be found in [1]. (The language L defined in the
proof of theorem 9.5 belongs to CPFOL\CPOL.. )

2) It follows from lLLemma 8. 2 that it is sufficient to show that
OL and PFOL cannot be a proper subset of CPOL..
If OLL € CPOL then COL < CPOL which is not true. PFOL. cannot be
a proper subset of CPOL because

{a1anb]bnc1cn | n= 0} U {d

]
3 | n=1} € PFOL\CPOL.

The following two theorems give some relations between the families

considered in section 9 and the families of the Chomsky hierarchy.



Theorem 10. 3

All the families considered in section 9 are properly included

in the family of context-sensitive languages.

Proof

A proof of the theorem for the family OL can be found in [4] and
becauseof theclosure properties for the family of context-sensitive
languages this holds true for NOL and thereby for all the other families

considered as well.

Theorem 10, 4

The family of context-free languages is properly included in the
family CPFOL.

Proof

Let G=<V, 2, P, S> be a cf-grammar of a language not
containing A in Greibach-normal form (i. e. » the productions are of
the form A -+ a or A~ aA1 . ’An)' Suppose there are no useless
symbols in V.

For each A € V we choose

wy € fwez* | A% w, | w| minimal}.
WA will, in the rest of the proof, be fixed for every letter A € \/.
Define k : V -+ N by k(A) = |WA] , and furthermore

s(A) = {xwxézk(A)\/* | A= xw , | %] =k(A)} and

left =

m(A) = {xéEk(A) |3 W E V¥ 1 xw € s(A)}

Since the grammar was in Greibach normal form, s(A) and m(A)

are finite sets of strings.
Let n: V=N be defined as n(A) = { humber of strings in m(A) | .

We will use m(A) as an ordered set.



Now we can construct a PFOL system H and a coding h such that
h(L(H)) = L(G) :

Hi<zu U A, P, {s}s’z...sl(s),sfsg...sz(s),...,
Jis(A) |
:E}SH(A) s;‘(S)sg(S). . 5223§ >
P! is defined as follows:
1) For all a€Z, a+a isin P!'.

2) Forall A€V, 1=<j<n(A), and1 < i< k(A)-1, AJi—v aJi is in P!,

where aJi is the i'th terminal in the j'th string in m(A).

3) For all A€V and1 =< < n(A)

K k k [ k K

] j 1K 1 2 Ko 2
AA) ” A(a)Brr Bra - By k(B )B21 Bag - ‘BZk(Bz)'
ke Kq <,
B . 9...
Bai Bg2 qu(Bq)

is in P! for all B1,Bz,...,Bq and 1 SkiSH(Bi) where

xB;B,.. .Bq € S(A) and x is the j'th string in m(A).

The coding h is defined by h(a) =a for all a€ X, and

N J = : P <
h(AiAZ"‘Ak(A)) W,y forall A€V and1 =j=n(A).

We prove that L(G) € h(L.(H)). The other inclusion is shown in the

same way.

Let w€ L(G).

There exists a derivation of w in G such that




S=A 5 xAA_...A

1 left 123 N
: 1 { I |
=§ ><1sz21...qu ><3B31...B3q "'anrﬂ"'Bnq
2 3 n
1l solt Pt t i 1ol 1 1 =
=5 ><1><2><21 x2q2x3x31... x3q3...xnxm... xhqn wW

where x! € m(A ) for all 1 < i< n(A) and B, iy xi! for 2= i = n and

1=j< qa;-
. . . I .1 |
It suffices then to show that there exists an axiom S, S

172" 7k(S)
in H such that:
SISI Sl =
172" - () H
Kk k Kk k k K K Kk Kk
2 2 2 3 3 3 N N N
1
%121 Agg 'A21<(A\2)A31 Asg "'A3k(A3)"'An1 Anz 'Ank(An)
and
K. k

Aj1jAj2J' . 'Ajkj(Aj): x!w. for all 2 =< j < n but that is exactly how H

is constructed.

Remark

Note that parallellism is used essentially in the proof.

Consider a somewhat related problem, namely whether or not
it is true that every context-free or regular language can be obtained
as a coding of sentential forms of a cf~grammar, where we allow our-
selves to have a finite set of axioms instead of a single start symbol.

The answer is negative for cf-languages. E.g., the language
{anbcdn[ n=1 } cannot be obtained by a coding of sentential forms because
the only way one can produce an equal number of a's and d's is from one
non-terminal in the "middle" and this cannot be coded into bc.

The answer is positive for regular languages. (e.g., see the
proof of RG € CPFOL in [1] . In this proof the parallellism is completely
avoided.) This later result is not true if you only allow one single
axiom instead of a finite set of axioms, see [3]. In this case, there even
exist finite sets, e.gq. {ab, cdl, which are not codings of sentential-

forms for any cf-grammar.

Theorem 10,5

PFOL is incomparable to the family of regular languages.
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Proof
e n

2 | n= 0} € PFOL\RG

{a

(aba)* cbc(aba)* € RG\PFOL

Finally we will summarize the results from this and the two previous
sections in the following mixed diagram. If two nodes labelled X and VY
are connected by an edge (resp. oriented edge), the node X being below
the node Y, then X € Y (resp. X ¢ Y). If two nodes labelled X and Y

are connected by a broken edge then X and Y are incomparable.

CfS
COL = NOL = EOL = WOL = HOL
= NPOL = EPOL = WPOL = HPOL
= CFOL = NFOL = EFOL = WFOL = HFOL

|

NPFOL = EPFOL = WPFOL = HPFOL

POL.

Figure 1.

The most significant open problems in Sections 9 and 10 are whether
CPFOL =COL. (= EOL) or CPFOL ¢ COL, and whether or not the con-
text-free languages (or even regular languages) are included in CPOL..
It follows by theorem 10. 4 that every context-free language which

contains a one-letter word is in CPOL_,



11. The table case

Theorem 11.1 1) TOL ¢ CTOL..
2) CTOL = NTOL.
3) WTOL. = HTOL..

Proof

1) follows from Lemma 8.2 and 2) and 3) from Lemma 3.1.

Theorem 11. 2 CTOL = ETOL = HTOL..

Proof

The proof can be found in [ 3].
Theorems 11.1 and 11. 2 give the following diagram:
(D5) TOL ¢ CTOL = NTOL = ETOL = WTOL = HTOL..

Theorem 11.3 PTOL ¢ CPTOL..

Proof

Follows from LLemma 8. 2.

Theorem 11.4 NPTOL. = EPTOL = HPTOL..

Proof

The statement can be established by using the method of [3].

Theorem 11.5 WPTOL = HPTOL..

Proof

Follows from Lemma 3.1.

11
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Theorems 11.3 to 11.5 can be summarized in the following diagram:

(D6) PTOL & CPTOL < NPTOL = EPTOL = WPTOL = HPTOL..

It is an open problem whether or not the inclusion CPTOL € NPTOL.

is proper.

Since the F-extensions do not alter any table families except the pure
ones, the following diagrams follow immediately from diagrams D5 and

D6 and Lemma 8. 2.

(D7) TFOL ¢ CTFOL =NTFOL = ETFOL = WTFOL. = HTFOL.,
(D8) PTFOL ¢ CPTFOL ¢ NPTFOL = EPTFOL = WPTFOL =HPTFOL.
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12. Mixed diagram and relations to the Chomsky hierarchy for the

table case

Theorem 12.1 1) PTOL ¢ TOL..
2) TOL ¢ TFOL.
3) PTOL ¢ PTFOL.
4) PTFOL ¢ TFOL..
5) TOL. and PTFOL. are incomparable.

Proof
The proof of theorem 10.1 is also valid in the table case, i.e.,

I_1 € TOL\PTFOL and L_2 € PTFOL\TOL.

It is an open problem whether TOL &€ CPTOL or whether TOL and
CPTOL are incomparable,

Theorem 12.2

The family of context-free languages is properly contained in

the family CPTOL..

Proof
We know from theorem 10. 4 that CF ¢ CPFOL. and this together
with CPFOL < CPTFOL = CPTOL gives the result.

Theorem 12.3

All the families in the previous section are properly contained

in the family of context-sensitive languages.

Proof

Analogous to the proof of theorem 10.3 (TOL < CS).

Theorem 12. 4

PTFOL. is incomparable with the family of regular languages.

Proof
The proof for theorem 10.5 holds true for PTFOL as well as
for PFOL.,



We finally summarize the results in this and the previous section in

the following mixed diagram for the table families.

Cs

CTOL = NTOL = ETOL = WTOL = HTOL
NPTOL = EPTOL = WPTOL = HPTOL
CTFOL = NTFOL = ETFOL = WTFOL = HTFOL

NPTFOL = EPTFOL = WPTFOL =HPTFOL

CPTOL=CPTFOL , TFOL

Figure 2.

The three open problems in the diagram are equivalent: CPTOL s
properly contained in ETOL iff TFOL and CPTOL are incomparable
iff TOL and CPTOL are incomparable.
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13. Conclusion

An overview of the results obtained in both parts of this paper
has already been given in the diagrams and in the mixed diagrams. A
furhter discussion of the results is omitted -~ we only want to point
out. the rather surprising gact that the generative capacity caused
by the operator E varies to a large extent depending on what types of
pure systems we are dealing with. Apart from three open problems,
we have completed the task set at the beginning: to characterize the
role of the operators E, N, H, C and W. The open problems are

whether or not the equations
CPXOL =CXOL, for X =D, F, T,

hold true. Various equivalent formulations for these problems were
also given. Although we have not shown that the problems are equiva-
lent among themselves, it seems very likely that a break through in
one of them would also solve the others. On the other hand, the tech-
niques used so far in the study of L-systems seem not to be applicable.
Eg.,neither the method of [ 2] for establishing the equation COL. = EOL
nor the more recent method using recurrence systems (Gabor Herman,
personal communication) for establishing the same equation seem not
to be extendable for solving the problem whether or not

CPFOL = CFOL (=COL.).
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