ON THE DECIDABILITY
OF SOME EQUIVALENCE PROBLEMS
FOR DOL-SYSTEMS

by

Mogens Nielsen

DAIMI PB-20
December 1973

Institute of Mathematics University of Aarhus [ ]

Ny Munkegade - 8000 Aarhus C - Denmark

Phone 06-1283 55

=sij=
=

DEPARTMENT OF COMPUTER SCIENCE Jr




ON THE DECIDABILITY
OF SOME EQUIVALENCE PROBLEMS

FOR DOL-SYSTEMS

by

Mogens Nielsen
Department of Computer Science
University of Aarhus

Denmark

December 1973



48 pages.
1 figure.
Proposed running head: '"Equivalence of DOL.-systems'.

Symbols used:

\

N - may be typed as an italic or a gothic N.

All script letters are handwritten in this manuscript (Zl", f,or, L’, and y).




ABSTRACT

One of the questions of the longest open standing in the
area of Lindenmayer-systems is the decidability of the equivalence-
problem for deterministic, informationless L-systems (DOL -
systems). This and some related equivalence-problems (equivalence-
with respect to the set and the sequence of generated words,
Parikh-vectors and word-lengths) are investigated. Some of these
related problems are shown to be recursively solvable, and the
implications of htese results on the main open problem mentioned

above are discussed.




0. INTRODUC T ION

L-systems were introduced in 1968 by A. Lindenmayer [2], originally
in connection with some problems in theoretical biology (L-systems
are models describing the development of filamentous organisms ).
Since then the systems have been studied intensively from the viewpoint

of the theory of formal languages [8].

L-systems can be viewed as generating devices corresponding to the
grammars usually considered in the theory of formal languages. But in
L-systems one does not distinguish between terminals and non-terminals,
productions are applied in parallel on a word, and the starting string of

the systems can be of length greater than one.

One of the problems of the longest open standing in the area of L-systems,
is the decidability of the equivalence problem for deterministic, infor-
mationless (context-free) L-systems (DOL -systems), i.e., the problem
of deciding for any two DOl_-systems whether or not they generate the
same language. It has been shown, see [5], [6], and [7], that the equiv-
alence problem for corresponding non-deterministic L-systems is unde-

cidable.

The biological motivation behind this problem is clear: given descriptions

of the development of two filamentous organisms one wants to decide

whether the sets of cell-patterns occurring in the life time of the two or-
ganisms are the same. But from a biological point of view it is perhaps
more interesting to ask the question of whether two organisms develop
identically, i.e., whether two DOL ~systems genér'ate the same words in

the same sequence.

Also other related problems are biologically motivated. Suppose one is
not interested in where particular cell-types occur in. patterns, but just

the number of occurrences of different cell-types in patterns, then the

 problems mentioned above are "weakened!" to the problems of deciding

whether two DOL.~systems generate the same set (sequence) of Parikh-
vectors. Furthermore, suppose one is not even interested in which cell-
types occur in patterns, but just in the sizes of patterns, then the cor-
responding problems are to decide whether two DOL -systems generate

the same set (sequence) of lengths.

The above mentioned problems are the subject of this paper.




1. DEF INITIONS

Definition 1.1

A DOL -system is an ordered triple H=<XZ, h, x>, where Z isa
finite non-empty set of symbols (the a‘lghabet of the system), h is a
homomorphism (with respect to the concatenation-operator) mapping
Z to ¥ (h:Z-+Z*%), and x is a non-empty string of symbols from

X, x€ Z+! (the axiom of the system).

A DOL -system is called propagating (PDOL.) iff h(og ) # A (the empty word)

for every o €L, i.e., h:Z+z'.

Definition 1.2

The word-language (usually just called the language) generated by a

DOL -system H as in definition 1.1 is the set of words over X defined
as follows:

W L) =1{n'(x)]| iz o0
(where ho(x) = x).

The word-sequence generated by H is defined as the ordered, infinite

sequence of words generated by H - conveniently denoted as the set

WL ={i,n' ) | iz 0}

Let N denote the set of nén-negative integers:

Let T = {0‘1 y Ozy--., Oy } be a finite set of symbols. For any

0y €EZ and x € I*, #0 . (x) denotes the number of occurrences of

03 In Xx. The function 7 : Z*¥ 2 N* is defined in the following way:
m(x) = (4%1 (x), #02 (x)y..., ¥ (x)),

i.e., ™ associates with each word x € Z* its corresponding Parikh-

vector.



The relations =, <, and < on N® are frequently referred to in this

paper. They are defined as follows:

i=1,2: v (v,,v-z,...,vn)GN“
vy =V, iff M1 =<j<n : v}=vj2
vySv, iff M1<js=n : v}s\/jz
vy <V, iff (VISVZ)/\(VI #vz)

= is a partial ordering of N . If neither Vi = v, nor VZS Vis then

Vv

i and v2 are said to be incomparable.

Definition 1.3

The Parikh-language (Parikh-sequence) generated by a DOL -system

H as in definition 1.1 with & ={0,, 0z,..., 0, |, is the set of vectors
from N® (from Nx N®) defined as
FLH) = {nhi(x) | iz 0]
(£ ) ={G, nh'G | 1= 0})

Remark
Let H be a DOL -system as in definition 1.1 with L = {ol y Ogyecey, Oy f .
. . —rHy o
Define the nx n matrix MH = [mij] = [4#0_1 (h(a;))] called the growth-
matrix of H. Then the following equality (see [ 4 ]) can be used to
characterize 5)55 and fﬁp (vectors written as row-vectors) :
i _ . aal
m(h (x)) = m(x) M,

The length of a word x € Z* is denoted by |x]|.

Definition 1.4

The length-~language (length-sequence) generated by a DOL. ~system

H as in definition 1.1 is the set of natural numbers (of pairs of natural



numbers) defined as:
ALY =1 |n'(x)] |i=o0]}
(IR =1 G, [p'x)]) | i=0})
Remark
Jz and c}'y can be characterized in the same terms as fﬂ and
P4 in the remark after definition 1.3. Let 71 denote the n-dimensional

column-vector with every entry equal to 1. Then since |x| =2 #U(x)
oEX

RG] =70 - M -

Definition 1.5

Let X be one of the operators wo‘é, &f’y,fz,fy’ c//o‘é’or‘('///f,

then X is defined in definition 1.2, 1.3 or 1.4 in the form
= H,. .
X(H) = [f2(i) | 12 0]

For any of the six operators, X, and Nys Ny € N define:

CRDE(H) = LiglD) | ny S 1<)

Definition 1.6

Let H=<XZ, h, x> and G = <Z, g, y> be two DOL.-systems over the
same alphabet, and X one of the operators /g , ?(/y, P , ?y ’
‘,‘{ , Or f///f. Then H and G are said to be X-equivalent iff

X(G) = X(H). The X-equivalence problem is the problem of deciding
for any two DOL -systems H and G as above whether or not H and

G are X-equivalent.



The purpose of the next sections is to discuss whether the six equiv-—
alence problems defined in this section are recursively solvable, i.e. ’
whether or not there exists an algorithm that decides for any two

DOL -systems whether or not they are X-equivalent,

Remark

It might seem a little str'ang‘e to require H and G to be over the same
alphabet in the definition of SE_ and ol/fl-equivalence, but from the
viewpoint of decidability, which is the subject of this paper, this is no
restriction. Assume that H and G are two DOl -systems over dis-
joint alphabets (this can always be obtained by an eventual "marking"

of the symbols of one of the alphabets), H = <Z}H, h, x>, G = <ZG, g, y>.
Define H! =<Z)HU EG’ h, x> and G! =<Z)HU Z}G, g, y> where h and
g are defined at random on EG and ZH respectively. Then clearly

H and G are C/o((/y)—equivalent iff H' and G' are o//éf(éf/y)u

equivalent.

The requirements on the alphabets seem more reasonable in the defini-
tions of word- and Parikh-equivalences. However, one might argue that
trivial cases,in which the systems are intuitively "equivalent", are not
included in definition 1.6 (like the case wher;e one of the systems con-
tains dummy symbols never occurring in any of the generated words

or the case where equivalent symbols are called by different names).
One might suggest the following alternative definition of language-equiv-
alence:

Given the two DOL -systems H and G, extend these systems to H!
and G! as above. H andﬂe are said to be ZU‘{( 5056 )-equivalent

iff there exists a coding c (an automorphism (with respect to concate-~



waion) in 5, UT,) such that WL =c(r&icn( P& ) =
c( P& (c').

»
Y

A similar alternative definition of sequence-equivalence can be given
in a straightforward way. But since there exist only finitely many
different codings from a finite alphabet to itself, there is no difference

between the original and the alternative definitions of equivalence with

respect to decidability.



10

2. WVARIOUS RESUL TS ON DOL-SYSTEMS

This section contains a few results on DOL -systems needed in the

v

3

next sections.

Lemma 2.1
Let H=<Z, h, x> be a DOL-system. Then there exists a constant
k., € N such that
H k
i H .
1) {m(h'(x)) | 0<i< kH} = fﬁo (H) is a set of linearly inde-
pendent vectors

2) Mi,j= kH : m(h*(x)) is a linear combination of the set from 1).

Proof
Define kH as the largest integer satisfying 1). Construct the growth-

matrix of H, MH’ as mentioned in section 1. By the construction
k
m(h H(x)) is a linear combination of the set from 1)

k, ,~1 -1

K, _H i _kH i

h " (x)) -—Zo c; * wh(x))=2Z c; * (m(x) - MH).
i= i=0

7 (

From this it follows that

+1 k
G0 = i - My My

m(h
kH—l . kH-1 .
= (I ot (mx MM, =T o - (rx) - MTT)
i=0 i=0
k-2

{H +1
l\i‘i.g < ¢ (m(x) - MH‘ a+ CkH" s (m(x) - M

K

g )




11

H : Kyt :
(E Ci-y * (m(x) - M;_l))+ S 1 (T ¢ (m(x) - M:_'))
H i=0

]

1 kH—I

kH- . .
el (mx) - M) =T ¢+ mh'(x)).
i=0

- Z
i=0

Y

The equations above can easily be extended to a formal proof of 2)

by inducfion.

Lemma 2.2
Let H=<Z, h, x> and G =<Z, g, y> be two DOL-systems over the
same alphabet, and let kH be the constant from lemma 2.1 corresponding

to system H. Then

vi,0< i<k, : wh(x) = mig(y)
implies

Mi, iz 0 : wh'(x) = 7(g'(y)
Proof

Let MH and MG be the growth-matrices of H and G respectively.

'~ Assume that the condition of the lemma holds for H and G, i.e. ’

) . i
MO0 i<k M) My = mly) s Mg .

H

Then K
k, 1 ,

P (0) = (<) M) My

kH—l : kH-l
= (i=20 cy ¢ (m(x) - MH)) i MH = ;Eo Cy * (m(x) -
kH-1 ] kH-1 .
= I )M - (B o () - Mg)) - M
i= .=

i+1

)

G




12

kH-l

. k
=B e 00 M) Mg = - M) - Mg
l=
' k -k +1
= @ M) Mg = mly) e MS = n(o (V.

Y

.

A formal proof of lemma 2.1 can be obtained by straightforward ex-

tensions of the equations above {proof by induction).

Lemma 2.3
Let H and G be two DOL -systems as in Lemma 2.1. Let |Z| denote

the number of symbols of Z. Then

Wi,0< i< | : mh'(x) = 7(g'(y)
iff Mi,i=0 : wh'(x) = 7(g'(y)
- Proof
It follows directly from lemma 2.1 that the constant k is less than

H

or equal to |Z|. Lemma 2.3 is now an immediate consequence of

lemma 2.2.

Remark
Let H=<Z, h, x> be a DOL-system. Then H__ =<Z, h™, h"(x)>
is a well defined DOL -system (for which &/x(Hnm) c Z/’%(H)) and

from the arguments above it then follows that

vm,n € N, Mj €N : a(h™™(x) = 7((h™) (h"(x)))
is a linear combination of

the set of vectors {'rr(hm.mi (x))] o=i<|Z|}.



13

Lemma 2.4

Let H=<Z, h, x> be a DOL -system, and let R be one of the rela-

tions < (=) or = onv'l‘\l|Zl . Then
n,m € N : 7(h"(x) R 7(h™™(x))
implies

Mi, iz 0, M,0=< j<m:ah™M i) R ppm M)

Proof

The proof is very simple using the fact that the entries in all T-values

and the growth-matrix, MH’ of H are non-negative integers. This

implies that for any words z, z' € £*:

7(z) R7(z') implies (m(z) * MH) R {r(z') - MH)'
From this and the assumption of the lemma you get

7(h"(x)) R m(h™M(x))

implies

7(h"(x)) - M;:Hj R 7(h™™(x)) -Mg““i
i '

"(hn+mi+j(x)) R ﬂ(hn+m(i+1 )+j(x”

Lemma 2.5

Let H=<Z, h, x> be a DOL-system. Then
3n, m€ N : m(h"(x)= 7(h""M(x))
iff

P & (H) is finite.



14

Proof
Assume the existence of n and m, then the finiteness of ?% (H)
follows from lemma 2.4 and the observation that the entries in the

m-values are non-negative integers.

The reverse implication is trivial.

Theorem 2.6

There exists an algorithm that decides for any DOL -system

H =<Z, h, x> whether PL(H) is finite or not.

Proof

Compute the smallest integer n for which there exists an m such
that m(h"(x)) and 7(h""™(x)) are comparable. It follows from [1]
that any infinite sequence of m-values always contains at least two

comparable elements, hence n is well-defined and computable.

Assume that n(hn-m(x)) = n’(hn(x)). Then it follows from lemma 2.5
that ?x(H) is finite.
If ﬂ(hn—m(x)) < 7(h"(x)) then "(hn+m(i-1 )(x)) < 'n'(hn+mi(x)) for any
i € N (lemma 2. 4). Define
Mi€EN:d =™ ™) - a1 0g) € NI
Then it follows from lemma 2. 5 that:
(*) PLH) is finite iff dio is equal to the zero-vector (the vector with
all zero-entries) for some i, € N (which implies that d; is equal to

the zero-vector for all 12 i,).



15

n+mi n+m(i-1)

{x) M, -m(x) - M

G,
I

n—m) . Mml

(m(x) « M" —m(x) * M) - M)

H

= dy+ (MDY, | '

i.e., the sequence of vectors, di’ |s the ?y-value of the DOL -
system <Z, hm, X9>s where X0 is some word from I* for which
ﬂ(xo)/é do. It then follows by arguments used previously that one
can compute n,, m, € r‘\l, my = 1, such that dnl —my < dnl , which
implies by lemma 2. 4 that dn1 +jm, < dnl +{(j+1 )my for any jE€ N.
But then ?z(H) is finite iff dﬂ1 is equal to the zero-vector
(follows from (*) above).

(Theorem 2.6 could also have been proved using the theory of

growth-functions. )

Since only a finite number of different words from L* are associated

(through ) with a single Parikh-vector, results similar to lemma 2.5
and theorem 2.6 hold for the 21/5(-0perator‘. Furthermore, since only
a finite number of Parikh-vectors are associated with words of a par-

ticular length, similar results also hold for the of/ée—Operator‘.

Corollary 2.7

Let H be a DOL-system. Then Z_U"f(H) ( FEL (H)) is finite iff
.5‘955 (H) is finite. Furthermore, lemma 2.5 and theorem 2.6 hold if

the fx -operator is replaced with the WL —operator ( 'L -operator).



16

Remark
Note that the algorithm given in theorem 2.6 is constructive in the sense
that if fo{(H) is finite and if n and. m are the computéd values for

which 7(h""(x)) = m(h"(x)), then (lemma 2.4) :

PL ()
(AL ()

{r(hi(x) | 0<i<n}

I

{ [h(x)| | 0<i<n})

The corresponding constructive algorithm solving the finiteness-problem

for the &fée—Oper‘ator computes n and m as adove and then continues

computing the smallest il for which there exists an iz < i] such that
n+i, m n+i, m
h' (x) =h (x) (i1 is well-defined and computable). Then

W)y = (h'x)] osi< i m}
/
In the following the term "a finite (infinite) DOL.~system!" refers to a
system for which the fg-value (and thereby the Zfo{- and the oféﬁ -value)

is a finite (infinite) set.



17

3. ON THE PARIKH-EQUIVALENCE PROBLEMS

-

In this section it is shown that the Parikh-sequence and the Parikh-

language equivalence problems are recursively solvable for DOL -systems.

Theorem 3.1

The fy—equivalence problem is recursively solvable for DOL ~systems.

Proof

Follows immediately from lemma 2. 3.

Theorem 3.2

The ?%—equiva!ence problem is recursively solvable for DOL-systems.

Proof

N
Let H=<Z, h, x> and G =<Z, g, y> be two DOL-systems over the
same alphabet. First apply the algorithm of theorem 2.6 to H and G.
If one or both of the systems turn out to be finite then fée—equivalence

is trivially decidable, since the algorithm then effectively constructs

the finite set(s) of Parikh-vectors (see remark after corollary 2.7).

Assume now that both systems turn out to be infinite. The idea in the
algorithm then applied is the following: based on finitely many generated
vectors from J¥ (H) and ?K(G) either t) to state that

PL (H)+ PL(G) or 2) split H and G into finitely many subsystems
in such a way that the fZ-equiva!ence of H and G can be decided

by a;aplying the given algorlithm to decide ?y—equivalence to given

pairs of these systems.



18

The flow-diagram in figure 1 describes this algorithm. It consists
of one main loop with two possible outcomes, steps 4 and 14, corres-
ponding to 1) and 2) above respectively. Before the remarks to the
essential steps of the algorithm are iisted, two ge.ner'al remarks on
any infinite DOL -system H =<ZXZ, h, x> should be noted:

RI. Mi, JEN, i#] m(h'(x)) # m(h)(x)) (follows from lemma 2. 5)

7(h™(x) < 1(h"™M(x)) implies

R2. Mn,m,i,j€ N
» ‘n'(hn+mi+j(x)) < ﬂ(hn+m(i+] )+j(x)) (follows from

R1 and lemma 2. 4)

Remarks to the steps of the algorithm in figure 1.

Step 2:
As will be shown, the situation on entrance to step 2 is always:
P QO(H) = PL ZO(G), so
PL ) =FPLe) w1 LT ) = PLT ()

0

(follows from R1), and each iteration of the main loop starting in
step 2 is investigating whether the last equality holds or not.
The requirement is trivially met on the first entrance to step 2 with
n0=0.

o© o=
Since f.f( nO(H) and ?é{no (G) are infinite sets, the constants N

My Ng and mg are welldefined and computable (see proof of theorem

2.6 and R2).



Y

np:=0

(*)
(**) m(n M

1

Define mH

< < -
l_nm_nH No

(x)) < m(h

"M

as the minimal
(*) and (**).

Find constants nG and

(x))

m_ in the same
G

Find min nH > ny for which there exists
an m such that

m satisfying

way corresponding to system G.

' no

STOP

FPL(H) +FPL(c)

Define permutation p : [0,m=1] + [0, m-1]
i AR
such that m(h" T(x)) = n(g p“)(y»

6
no :=
m:=m_, ( ms
i:=1
8 )
11 9
no (i+1)
. ntmii
ng = ntmi —\ P¥ n+mi
10 I yes
no
—————
12§ ves
=i+
13
(i>12[}-1e
14 yes
STOP

+m(i+1)

(H) = fz :-i-mi

(G)

%j, 0= j<m:a(r™Miti) =n(g"*mifp(“(e))}

2LH) = PL(G)

FEigure 1.

The algorithm of theorem 3. 2.




20

Step 3:
If the equality of step 3 does not hold, then it follows from R1 that

there exists an i (n i< nH) such that 7(h (x))E fo{ nH(H) and
O
m(h (x))@; ?5{ fG) (or the other way round). But then

PL > (H) PL = (e) \
implies
3j=n

implies

ot T () =1l y)

Djhng=i'=n g (yD<m(gly))  (from R2)

G
implies

B1t,n,=11<1: m(h' (x)) = (g (v))
implies ) )
?i, i',no-<-i'< i<ng: n(h"(x))<n(h'(x))

which is a contradiction to the construction of Ny i.e., if the
equality of step 3 does not hold, then ?é( (H) * .//754 (G), and
H and G are not J « ~equivalent.

Notice that if the equality does hold, then Ny = Ng (follows from R1).
Step 5:

Assume that the equality of step 5 does not hold, then the flow of the

algorithm leads you back to step 2 after the assignment in step 6

(no"— H (—nG) - notice that after this assignment, the requirement
fS( (H) = fﬁ (G) holds on entrance to step 2). Let n‘(_r), m(:),
n(g) and m(lg) denote the values defined at the k'th entrance of step 2,

(k)

and let n 0 denote the value of n. in the k'th iteration of the main

0
loop, k= 1. Assume that the equality of step 5 fails for values m(:)
{lhd m(g). Then it follows directly from step 6 that n(gﬂ ) - n(l_‘_:) (=n((:))

and from R2 that

(k) (k) (k)
n(h (x)) < 1T(hhH H

which implies .




21

nﬁﬂ) = n(l'_:) + m(g)

and hence
mikt1) < (k+1) alkt1) _ alk+1) nlk) < (k)

H " T No H H H
In the same way you get that m(('.;ﬂ) = m(g). If m(l:H) = m(:_(l) and
(k+1) _ (k) (k+1) _ (k) (k) (k+1) _ (k) (k)
ms m(?,,::md'cher*ebynH -nH-i-mH andnG —nG+mG,

then it is dir‘ectlyfver‘iﬂed that the equality of step 3 fails in the

(k+1)st iteration of the main loop

(k+1) (k), (k)
n n, ' +m
H - H H
PL ey =FL G, (H)
I"\O nH
(k) (k) (k+1)
n _+m n
F G G G
fz (k) (G) =f§< (k‘H ) (G),
"G no
and the algorithm stops in Step 4. Otherwise, m(:ﬂ ) < m('H<) or
mllsH) < m{K),
Notice that if the equality of step 5 does hold, then My = Mg (follows

from R1), and the assignments of step 7 are welldefined. It also follows

from R1 that the permutation p in step 8 is welldefined.

Step 9:

It will be shown that the situation on entrance to step 9 is always

(x) PL M) - PL M (g)

(**) Mk, ], 05K <i, 0= j<m: m(h™MH() = g(gmrmitplily))

~ At entrance from step 8 these requirements are met from steps 5,7
and 8.

Assume that the equality of step 9 faiils in the k'th iteration of the main

(k) (k)

loop, that is for values i, n and m" . The flow of the algorithm leads

you back to a new iteration of the main loop, after the assignment of

((’)(-H) = n(k)+m(k)i), which ensures the condition on entrance

swep 11 (n
to step 2 to hold (from (* ) above and the equality of step 3)). From R2

it now follows that



22

(k) (k)

n “+m

(k)+m(k)(i+l )(x))

7(h i(x)) < m(h"

which implies that
n(k”) = n(k) + m(k)('i+1 )

H ,
and hence .
wlir!) = i) liett) _ (k)i (),

= mll) o i),

(gﬂ) = mK) 5 m('t_|<+1) - m(l(;ﬂ) = miK)

= n,(k) + m(k)(i-H ), then it is directly verified

In the same way you get that m

(k+1) _ (k+1)
H "¢

that the equality of step 3 fails in the (k+1)st iteration of the main loop,

and hence n

and the algorithm stops in step 4 (see the remarks to step 5 - notice

in this connection that step 5 is equal to step 9 with i = 0.)_ Other-
. (k+1) (k) (k+1) (k)

wise m < myt oo DN < ms -
Step 11

Assume that the requirements of step 11 are not '’ fulfilled. Pick the
greatest j for which the equality does not hold, then (from the requirement

of step 9) there exists a j!, 0=j'<j, such that

m(h ™M) + (g™ TIP ) = pn™TH )

which implies
ntmi _ mmi _ agrm(i=1)+j . m=]
n(h (x)) = 71(x)M Hoos m{(x) MH MH
= (W(y)-Mrgm('-I )-l-p("))'Mr!r_‘;J (from {(**) in remarks to step 9)

< (1r(y)-M'E;miﬂ’“))-rvt';_"_"'j {from R2)

= (ﬂ(x)-M::mi-*.ji-M:-‘i
= "(x)'Ml:-m(H.? )+J '-jJ
- ﬂhn+mi+(m-(j—i'))(x)),
where MH and MG are the growth-matrices of systems H and G
respectively. Assume thaﬂt the requirements fail for values n(k) and
(k)

m” ", then the flow of the algorithm leads you back to a new iteration

of the main loop with n(:+])=n(k) + m(k)i ( follows from the assignment




23

of step 11). Now, from the above equations it follows immediately that

n(’:ﬂ ) = n(k) +m(k)i +(m(k) -(j=i"N < n(k)-t- m(k)(i+1 )

and hence »
mikF) < (1) (tT) o (tT) (k) m(g)i)

H H 0 H H ,
(k) (k). (k) (K)o _ (k)
< (nH +mH(|+1))—(nH +mH|) =m’.
From the remarks to step 9 it also follows that m(k-H ) = m(k).

G G

Step 13:

If i=|Z]| then the flow of the algorithm leads you back to step 9, and
the equalities of steps 9 and 10 ensure that the requirements on enirance
tO. step 9 mentioned above are met after the assignment of step 12.
Obviously the algorithm will exit the small loop (from step 9 to step

13) after finitely many iterations (at most |Z]). Exits to a new ite-
ration of the main loop from steps 9 and 10 are treated above. If the
algorithm exits the small loop from step 13 to step 14 then the situation

is (follows from the remarks to step 9 and the equalities of step 10):

. . i i + i i
Mi,j, 0S i< |Z], 0<j<m: ™M) = ngmImPl) )

Step 14:
On entrance to step 14 the following holds:
1) \PK 8 H) = PZ 3 (G) (follows from the requirements on entrance

to step 2 and the equality of step 3).

2) For each j, 0 < j < m define systems
H = <z, A", K"MH(x)>

G

then(from the remarks to step 13)

<z, g™, g"Plidy)s

i, 0= 1= [Z]: (0™ (W)= (g™ (g™PH)y)



24

Now an application of lemma 2.3 to systems H! and Gj gives
you fy(HJ) = ?Y(GJ) and hence
.?5{ (H)) = ?K(GJ) for each j, 0< j< m.

A

3) By the construction of systems H! and &' above it follows that

1 .
PLm) = L) u (v PLEHD

i=0

m-—
9]

) m-1 .
F(@) =FL5@ v (U VLATD)
i=

But 1), 2), and 3) above imply that . PL () = PL(G).

From these remarks to the essential steps of the algorithm, it follows

that for any Kk :

1) rr;lg(ﬂ) < ml(_':) and mgjﬂ) < m(é()

2) if the algorithm does not stop in step 4 with a negative answer in

the (k+1)st iteration of the main loop starting in step 2, then

(k1) L) (k)

m(k) o
H H G G

Now, since all the m - and mG—values are natural numbers greater
than or equal to one, then only finitely many iterations of the main loop
are possible. From this one concludes that the algorithm stops after
finitely many steps in either step 4 or step 14 with a negative or a positive

answer to the question of fé{-equiva!ence respectively.

This completes the proof of theorem 3. 2.



25

Example 3.3

‘Let H and G be the two DOL -systems defined as follows:

H=<{a’b’C},h)a> G=<{a’b’C}’g7b>

where where .
h(a) = b "gla) = cba

h(b) = abc glb) = a

h(c) = ac glc) = cc

The algorithm of figure 1 defines in the first iteration of the main loop:

nl(-'l) = ng) =2, mg) = mg) = 1. The answer to step 3 is positive since

JLEZ = PLEe) = {4, 0,0, (0, 1, 0)

and so is the answer to step 5 since

f"zg( 756 (@) = {(1,1, 1)}.

The permutation p defined in step 8 is the identity (p(0) =0). The

answer to step 9 is negative since
PL I = {(2, 2,2} * PL S(6)=1{(2, 1, 3)}.

The algorithm then starts a new iteration of the main loop with values
(2)_ (2) _ (2) _ (2) _ _(2) _ ; ;
ng = 3, Ny =ng = 4, my = Mg =1 and then stops with a negative

answer to step 3 because of the inequality above.

Let G'=<{a, b, ¢}, g', b>, where g'(a) = g(a), g'(b) = g(b), but
g'(c) = cb. The algorithm of figure 1 applied to systems H and G' gives
a first iteration identical to the one described above for systems H and

G, except that the answer to step 9 is now positive since



26

PLyH) = PLEGH = (L2, 2, 2).

The equality of step 10 is trivially fulfilled, and the algorithm now

Ay

iterates the small loop from step 9 to step 13 twice, since

PL ) =PL () = {(4, 4 4)
and

PL2wH) = PLE (@)

{(8, 8, 8)}

And then the algorithm stops in step 14 with a positive answer to the

question of fée —equivalence,

Definition 3. 4

Let H = <2, h, x> be a DOL-system. A symbol ¢ € Z is called
useful iff there exists an i € N such that #O(h'(x)) > 0. H is called

reduced iff any ¢ € Z is useful.

Definition 3.5

Let H =<Z, h, x> be a DOL-system. Then P, denotes the
|Z| x |Z] matrix for which the (i, j)'th entry is equal to # (h i1 (x)),

1=<i, j<|Z], i.e., the rows of P_, are the vectors of fﬁdzl(H)

H
Lemma 3.6
Let H =<Z, h, x> be a DOL-~-system. Then ¢ € I is a useful

symbol iff the j'th column of PH is not an all zero column.



27

Proof

Assume that the j'th column of PH is not an all zero column, then O'J.
is useful by definition. )

Assume that the j'th column of PH is an all zero column, then by

i
lemma 2.1 any vector 7(h (x)) is a linear combination of the rows of

PH, and hence Uj is not a useful symbol.

Theorem 3. 7

For any DOL.-system H =<ZI, h, x> there exists a reduced DOL ~

system H' = <Z!' h', x'> such that wf(H) = Zlff/(H').
Proof
Define I' as the set of useful symbols of T, h'! the restriction of h

to Z!', and x' = x. Then H' is reduced and Wf(H) = ?l/'é”(H").

Theorem 3.8

For any reduced DOL -system H = <X, h, x> there exist only finitely
' many (reduced) DOL.-systems G = <Z, g, y> such that ?5{} (H) = ft{(G),
and one can effectively construct a finite set of DOL-systems including
all such systems, G, P,Z—equivalent to H.

Proof

If H is finite (infinite) then define n as the smallest natural number

for which there exists an m, 1 < m=<n, such that |

1(h"()) = ") (@ (W) > ("))

| Define q as max{n, IEl+mf . Then it follows from the proofs of

lemma 2.8 and theorem 3. 2 that



28

PLm) = P
implies

P& G o P2 )

A

Define r as the maximal entry in the set of vectors ?Xg (H), i.e.,
r = max{#_ (h'(x)| 1=<j<|3], 0<i<q}
3

Notice that by definition the rows of the matrix PG . MG’ where MG
is the growth matrix of system G, are all vectors from ﬂ( J)EI-H (G).
Denote the entries of PG and MG by pij and mij respectively.
Since H is reduced, then f.‘f(H) = fﬁf(G) implies that G is also
reduced, but then you get from lemma 2. 6:

(*) wj, di, 1=i,j<|Z] : pij#o
Now from the observations above you also have

(**) wi, j, k, 1=, j, k< |Z]| : p,,» m,

ij jk
_Izl
< pP.,* m
I=1 il Ik
<r

From (*) and (* *¥) it follows that

Wi, k, 3i, 1<1i, j, k< |Z] :p,.*0 and m,, < =
ij — jk Pij
which implies that

Mj, k, 1 =j, k< |Z] : mijr‘

Thus the entries in any growth matrix M_ of a system G for which

G
FL(H) = PL(G) are bounded by the number r, and hence only a

finite number of such growth matrices are possible. But now it js




29

easily seen that for any |Z| x |Z]| matrix Mg as above only finitely

many mappings g: L - L*¥ exist such that
Wi, j, 1<1i, j<|Z| : #oj(g(cri )) = m,; '

Furthermore, it follows from the proofs of lemma 2.6 and theorem 3.2

that any axiom y of a system G for which PLH) = PL (G) satis-

fies m(y) € fS( 3 (H). And obviously only a finite number of such

words y € T* exist.

This completes the proof of the first part of theorem 3.8. The second

part follows almost immediately from the above proof.

The following corollary is an immediate consequence of theorem 3.8,

The corollary can also be easily obtained using the theory of growth-

functions [ 3 ].

Corollary 3.9

For any reduced DOL-system H there exist only finitely many (re-

duced) DOL -systems G such that fy(H) = ?5’(6).

Theorem 3.10

L.et H and G be any two ,J’p‘g—eqmvalent DOL -systems, for which

the constant k , of system H defined in lemma 2.1 is equal to |Z].

Then MH = MG where MH' and MG are the growth matrices of H

and G respectively.

Proof
Define matrices PH and PG according to definition 3.5. Then the
assumptions of the theorem imply that P,, is non-singular and

H




PH = PG. Furthermore, by definition it follows that

PY ) = P4 ’

implies

PH-MH = PG-MG (=PH-MG)

But since P _, is non-singular, qu exists, and thereby MH = MG.

H

From example 3.3 it follows that theorem 3.10 does not hold for the
";ﬂf-Oper*ator*. The constant kH for system H is 3, which is the

cardinality of the alphabet, but system G!' is a ff—equivalent system

for which MH * MG"



31

4. ON THE WORD-EQUIVALENCE PROBLEMS

Theorem 4.1 ’

S

If the Z/f—equivalence problem is recursively solvable for DOL.~

systems, then so is the %f—equiva!ence problem.

Proof

Let H= <Z, h, x> and G =<ZX, g, y> be any two DOL -systems
over the same alphabet. Assume that an algorithm to solve Z/;g'—equiv-
alence is given, then the following is an informal description of an al-

gorithm to solve Zfz—equivalence.

First apply the algorithm to decide finiteness to H and G (corollary
2.7). If one or both of the systems are finite then Z’Sf—equivalence is

trivially solvable (see remarks just after corollary 2.7).

If both of the systems turn out to be infinite, then notice that

1) % (H) = ’Z(/’f(e) implies _?f(H)a?x(G).
2) By remark R! in the proof of theorem 3. 2 there Is a one-to-one
correspondence between NE'd (H) and Q(/'Z(H) and similarly

for system G.

. The idea is now simply to apply the algorithm of figure 1 to systems H
and G.
a) If the algorithm stops in step 4, then \?Z(H) * ?K,(G) and

hence ZI’K(H) + Z"((G) (see 1) ébove).



32

b) If the algorithm stops in step 14 then
- i) define systems H' and &' as in the remarks to step 14

in the proof of theorem 3.2. Then it follows from 2) above

N

that ’4/'5'8 (H) and Zf"ﬁ(Hj), 0 < j< m, are mutually disjoint

sets for which

- im—l >. :
L (H) = 2«/463 (H)u (U 2Lty

i=0

Similarly, ¥ g (G) and W% (c9), 0<j<m, are mutually

disjoint sets for which

m-1 .
wlie) = Ly (e u (U WLe)
. j=0

ii) systems H' and GJ, 0<j<m, are f% —equivalent, and
from i) above and the observed one-to-one correspondence
between ?az’- and @Nf—values it then follows that

WwENH) =27 (6) and
W& H) = &) i 0 0 an

W€ M) =UZ(E) for0=j<m,

iii) since the one-to-one correspondence between fff- and
Z’Z —-values does also hold for the infinite systems HY and
G", 0= j<m, and since H' and G", 0< j< m, are also

known to be ff—equivalent, then

Mj, 0= j<m: L)) = L&) isr WS (1) = W (S).

The observations above under i) and iii) imply that if the algo-
rithm stops in step 14, then you can decide Z‘/z—equivalence between
Systeﬁs H and G by generating and comparing the sets 2’/‘@(8 (H) and
'va 8 (G) and applying the given algorithm to solve Q”'-(f-equivalence

to systems H! and GJ, 0 j<m.

This completes the proof of theorem 4.1.



33

Theorem 4. 2

If the ?(/x-equivalence problem is recursively solvable for DOL -
systems, then so is the fo—equivalence probiem.

Proof

Now assuming that an algorithm to solve &"x—equivalence is given,
an algorithm to solve Z/‘j—equivalence is to be constructed.

Let H and G be any two DOL -systems as in the proof of theorem 4.1,

First apply the algorithm to decide finiteness to systems H and G.

1) If both systems are finite, then compute the minimum Ny (nG)

i i < < < <
for which there exists an m, (mG) 1< my =0 1< mg = nG)
such that

n -m
hHe) = 1 Hg
n n_-m

(g ®y) = g€ Sy

Then clearly ]
+m, ,i+j- n, ,~-m_+j

wi,j, 0<1i, O$j<mH:hnH H ) = n P H

n_+m__i+]j n_-m_+j

(vi,§, 0<1,0<j<m :g C € (v) =g C ()
which implies that XY (H) = WY (c) i

ik = BRAC
and

. . i i
< = . =

Wi, 0 i< Ny =ng: h(x) =g (y).

2) If one of the systems is finite and the other infinite then clearly

WL wm) = WY (c).



34

3) If both systems are infinite then

a) apply the given algorithm to decide Q‘/f—equivalence
to H and G. If ¥L(H) + Y& (G) then WL ) + WS ().
Otherwise \

b) using the one~to-one correspondence between the P& _value
and the ng -value of infinite DOL.-systems mentioned
in the proof of theorem 4.1, one gets that for the infinite,
%‘Sg—equivalent DOL -systems H and G:

W) = VL) it PLH) = PAo)

And by theorem 3.1 the Parikh-sequence equivalence

problem is solvable.
This completes the proof of theorem 4. 2.

Remark
In the case of 3.b) in the proof of theorem 4. 2 one rrﬁght also have
applied the algorithm of figure 1 to systems H and G. Since H and
G are known to be Z’-f-equivalent (and thereby qu —equivalent) in
case 3.b), the algorithm would stop in step 14. Furtﬁer‘more, the
systems Hj and Gj defined in the remarks to step 14 in the proof of
theorem 3.2 satisfy Q‘/y(Hj) = Wf(ej), 0=<j< m. (see proof of
theorem 4.1.).
But then

wy H = YY)

iff

(*)wi, 0<i<ntm : %hi(X) = éi(Y)-



35

This is proven by the following immediate implications of (¥ ):
1) FPYoH) = PIY(e)
2) The permutation p defined in step 8 in the last iteration of

the main loop of the algorithm of figure 1 is the ider:\tity.

From theorems 4.1 and 4. 2 it follows that Zuo{—equivalence is re-
cursively solvable iff Z‘/f—equivalence is recursively solvable. Un-
fortunately, it is still an open problem whether any of the equivalence
problems ar‘é actually solvable, as a matter of fact the solvability of
the ?‘/x —-equivalence is one of the most outstanding open probliems In
the area of L-systems. However, the proof of theorem 4.1 suggests
some results that intuitively seem to simplify the Z‘/ée -equivalence

problem.

Definition 4.3
Let H =<Z, h, x> be a DOL-system. For any z € Z* let min(z)
denote the subset of Z consisting of exactly the symbols from Z oc-

- curring in z. H is said to be conservative iff min(h'(x)) == for

every i2 0, i.e., iff any symbol from I occurs in any word

generated by H.

Theorem 4.4

The Qu‘f—equiva!ence probliem is recursively solvable for DOL-systems

iff it is recursively solvable for conservative DOL ~-systems.



36

Proof

Assume that an algorithm to solve Z/x-equivalence for conservative
systems is given (the reverse implication is trivial) and that H and

G are infinite (otherwise the theorem is also trivial) DOL—systems.

Define n _, as the smallest natural number for which there exists an

H

1<m,6<n,6 such that

M H™ "H

n -m

min(h H(x)) = min(h H(x)).
Then clearly
n, +m  i+] n, —m, +j
Mi,j, i20,0<j< mh min(h H™H (x)) = min(h HH (x))

which means that

: +j m n_-m, +j
Hi = <minth ), h T, H s

"H "

where ,h?H is the restriction of h to min(h (x)) , are well-

defined conservative DOL -systems for 0= j< m . Define Ng» Mg

and systems GJ (0<j< mG) similarly for system G. By definition

m

WY (Hj) ( ?l/o‘f(ej)) consists of precisely the infinite set of words
) n, +j
from WX (H) « ig4 (G)) over the alphabet min(h H (x))
n_+j

(minlg © “(v)). But then WX (1) = W& (c) iff

1) nH=nG(= n) and mg = m,(= m)

2)  WLTTH = VLD g

3 {min(h™60) | 0<j<m) = {min(g™(y)) | 0= j < m]




37

4)  Mj, 0=j<m: w (Hl) = Z/*{(Gp(j)) where p is the per-
mutation p : [0, m-1] =+ [0, m-1] for which
min(hn+J(x)) = min(gn+p(j)(y)). .p is known to exist from 3

and the construction of H! and’ G'.
But 1-4 are easily checked (assuming that an algorithm to solve
'ZUZ -equivalence for conservative DOL -systems is given). This

completes the proof of theorem 4. 4.

Definition 4.5

Let H = <X, h, x> be a DOL-system. H is said to be growing

i+1

iff Tr(hi(x)) <mh " (x)) for every i= 0.

Remark

Theorem 4. 4 could have been established more directly by theorem 4.1 ’
but the construction in the above proof indicates as a matter of fact

a much easier way of proving that the Z/ﬁ —equivalence problem is
recursively solvable for PDOL ~systems iff the &/J’—equivalence
problem is recursively solvable for PDOL -systems. (If H and G are
infinite PDOL -systems then all the constructed subsystems Hj and C_-‘,j
will be growing and hence these subsystems are wx—equivalent iff they

are ?‘/f—equivalent. )

From theorem 4.4 and the proof of theorem 4.1 the following is an ob-
vious corollary, intuitively simplifying the 2‘/‘(—equivalence problem for

DOL -systems a great deal:



38

Corollary 4.6

The z‘/v{—equivalence problemis recursively solvable for DOL -~
systems iff the ws -equivalence problem is recursively solvable

for conservative, growing, ?g-—equivalent DOL -systems.

Although corollary 4.5 seems to simplify the &/o{-equivalence
problem, the Q(/f-equivalence problem is not at all trivial, not
even for conservative, growing, N —equivalent DOL -systems. It
seems likély that a result similar to lemma 2.3 would hold also for
the words generated by two DOL -systems, i.e., that a constant kE
exists, depending on the cardinality of the alphabet of the systems,

such that:

Mi, 0Sisks : h'(x) = g'ly)

(*) iff

Mi, 0= i : h'(x) = g'(y).
It can be shown that for any two systems over the alphabet T = {a, b}
with axioms x =y = ab, (* ) above holds for kE = 3 (but unfortunately

the arguments are very difficult to generalize). That 3 is a lower bound

for kE in this case is seen from the following example:

H=<{a, b},h, ab> G=<{a, b}, g, ab>
where where

h(a) = abb _ gla) = abbaabb
h(b) = aabba glb) = a

For these systems:
Wi, 0<i<2 : h'(ab) = g'(ab)
and

h3(ab) * gs(ab)



39

From the results of section 2 one gets some corollaries, stating

results about ?(/y_ and Z(/cf-equiva!ence.

Corollary 4.7

The Q/e{— and the Z/Jp-equivalence problems are recursively solvable
for DOL_-systems over a one-letter alphabet.

Actually, the result of corollary 4.7 is rather _trivial in itself.

Corollary 4.8

For any reduced DOl -system H there exist only finitely many (reduced)
W& —(Z/f—)equiva[ent DOL.-systems, and one can effectively construct

a finite set of DOL -systems including all systems Z)",Z_( ?l/“f—)equiv—

alent to H.

Proof

Follows from théorem 3.8 and the fact that ZU’-f-( ?ﬂ"f—)equivalence

implies ?Z—equivalence.

Theorem 4.9

Let H and G be any two reduced Q‘/f-equivalent DOL -systems,

. and let m}i'} and mg denote the entries in the growth-matrices MH

and MG of systems H and G respectively. Then

|Z| P2
Mi, 1<i<|D] : T ml =3 my;

implies

H = G.



40

- Proof

The alphabets and the axioms respectively of two (zuf—equivalent DOL.-
systems are identical by definition. So, to prove the lemma it is suf-
ficient to prove that h = g, where h and g are the homomorphisms
of the two systems.

Let ¢ be any symbol from X. Since H and G are reduced, there
exists a j, 0= j< |Z], such that o is occurring in hj(x) = gj(y) =

z, 0 z,. But then

() h(z) h(o) hlzy) = hiz; o z,) =hi™ () = T (y) = g(z, & 2,)
= a(z;) glo) olz,)

The assumptions of the theorem imply that |h(g)| = |glo)| for any symbol
o € L and thereby

(**) lh(zl)] = ]g(z,)l, |hio)| = |glo)], [h(z,)]=]g(z,)]

Now (*) and (* *) imply that h(g) = g(o), and this completes the proof of

‘theorem 4. 9.

Corollary 4.10

Let H and G be any two Z/f—equivalent DOL -systems, for which the
constant kH of. system H defined in lemma 2.1 is equal to IE] . Then

H=0G.

Proof
Since ?Uf—equivalence implies ?b"—equivalence it follows from theorem

3.10that M_, =M_, where M, and M_ are the growth-matrices of

H G

H G’




41

of systems H and G.

ke, = |Z| implies that the matrix P, defined in definition 3.5 is non-

singular, which implies (lemma 3. 6) that H (and thereby G) is re-

duced.

Thus, the assumptions of theorem 4.9 are fulfilled for systems H and

G, and therefore H = G.

Corollary 3.9, Theorem 3.10 and corollary 4.10 are also consequences

of results in [ 3].

From the following trivial example it is seen that corollary 4.10 does not

hold if H and G are only assumed to be 2Af—equivalem:

H=<{a, b}, h, a> G=<{a, b}, g, b>
where where

hi(a) = b gla) = a

h(b) =b glb) = a

Obviously, H # G, WL (H) = 2‘/({(6) = {a, b}, and the matrix P,, de-
H

fined in definition 3.5 is equal to

i.e., the constant kH of lemma 2.1 is equal to 2, which is the cardinality

of the alphabet of the systems.



42

5. ON THE LENGTH-EQUIVAL ENCE PROBL EMS

Theorem 5.1 s

Y

The Cl/f—equivalence problem is recursively solvable for DOL-~systems.

Proof

The reader is referred to [ 4 ] for a complete proof of this theorem.

One might think that the idea of the algorithm in figure 3.1 would

carry over and establish a proof of the decidability of the Ckée-equiv—
alence problem for DOL.-systems by means of theorem 5.1. Unfortunate-
ly, this is not the case. The main reason is that there need not be any
relation between the number of useful symbols in two length-equivalent

DOL -systems, contrary to the case of Parikh- and word-equivalence.

It is possible, however, to show that the Ol/o{—equivalence problem is

solvable for PDOL -systems, using the result of theorem 5.1.

Definition 5.2

Let £ be a finite alphabet and z any string from T¥%, z = 0y 05::-0.,

g, € Z. Then define

eee. T.

Vi,j,lSiSan:[z]‘;=0ici+' i

Definition 5.3

A DOL.-system H =<Z, h, x> is called length-growing iff

)

Wi, 120 : Ihi(x)| <|h



43

L.emma 5. 4

For any infinite PDOL -system H =<ZH, h, x> there exists a PDOL.-
system G =<ZG, g, Y> such that

1) ) = YL (c) ' ’

2) G is length-growing.

Proof

Define n as the smallest natural number for which there exists an m
such that

min(h™(x)) = min(h"~"™(x)).

As in the proof of theorem 4.4, n and m are well-defined and comp-
utable, and

iy T
Mi,j, i20,0<j<m: min(hmm'ﬂ(x)) = min(hn m¥ (x)).

Fur‘thermor‘e,' the following is an immediate consequence of the fact

that H is a propagating DOL -system:

: lhn-m+j(x)] = |h"""""+j"“1 (x)] forj, 0<j<m
(*) Iiff

(x)] .

Let ¢_, 0=k < m, denote the number of different symbols from o

in min(hn—m+k(x)). Define m mutually disjoint, finite sets of symbols

(all of them disjoint from EH):

Wk, 0Sk<m : T =

m-1

and define T'= U I‘k. Finally, define m isomorphisms (with respect to
k=0




44

concatenation), one for each I:
Nn-m+k

Wk, 0=k<m:qg :min(h (x)) ~» I‘k
where
. g N=mtk . D
Yo € min(h (x)) : ¢, (o) —ij

iff

o is the j'th symbol of min(hn_m+k(x))

Notice that the % 's are defined for some fixed enumerations of the
sets min(hn-m+k(x)).

Now, system G is going to be constructed. I' will be a subset of the
alphabet EG of system G, and the homomorphism of G, g, is defined
on T' as follows.

K k . of natural numbers satisfying:

Define the sequence k 210 Ky

1’
<

1) O0<k; <kp<...<k <m

2) v, 1sisre o ARG | < Rtk )

3) Wk, 0Sk<m: Mi, 1<i<r:k%k

implies

. lh = |h
Since H is propagating, the sequence kl R k2’ .oy kr‘ is well-defined
and computable,A and since H is infinite, the sequence is non-empty

(follows from (*) above).



45

Now define:
a) Mi,1<i<rMj,1<j<c : gy, ko (hki+l =K (4,0-1 (y_ .M
? ! Ky A k1+1 ki Ky

. . m-k, +k -1
b) wj,1=;j< k. g(’ykrj)=<pkl(h 1 (<pkr b J.)))

T

 Note that the use of Py ‘ is AWe}!l—defined since
1

min(hn_m+k" +Hm-k, +k, )(x)) _ min(hn+k1 (x)) = min(hn—m+k1 (x))

c) For any ij € T for which g has not been defined according to
a) and b) above (k is not in the sequence Kis Kgseons kr')
define

9tv ;) = Vi
As a matter of fact g(‘ykj) can be defined at random, since

ykj will not be a useful symbol in G.

Let L, ! ,..., | be the set of different elements from c#Z N~ (H)
10 '2 p 0

for which |, < i

<lg e <t <= [0 | = (R )

Introduce a new set of symbols

A={6ij[ 1<i<p, 1SjSli}

which is also going to be a subset of ZG.



46

Define

i < i i1 <] : =
ML IS i<pML T=i<lgld) =0, .

v

A}

1 < i - = o ’ :
Mi, 1<i<p : g(6i,~l£,)ﬁ,: 6“":'16“'11'1 FEERR 6i+1 i
. . -m+k i
Wi, 1<j<I :g(6 )= R ()74
is i<l ol pJ) <pkl([ ( )]J )
_ n-mtk, |
a(d ‘p) -cpkl([h “1(x)] |”)
If y is defined as the string 0,, 6,, ... & from A+ then
1 %12 11,

G =<TUA, g, y> is a PDOL.-system satisfying 1) and 2) in the lemma.

This completes the proof of lemma 5. 4.

Theorem 5.5

The Jf-equivalence problem is recursively solvable for PDOL.-

systems.

Proof
Let H and G be any two PDOL -systems over the same alphabet. If
one or both of the systems are finite, then the Crx—equivalence problem

is trivially solvable.

If both systems are infinite, then construct length—-growing systems

H' and G' according to lemma 5. 4 (note that the proof is constructive)

such that OKZ(H) =Gl/z(H') and c//J{(G) = CI/ée(G'). Then



47

FKL (1) = FL(c)
iff
AL (H) = ()

iff (since H' and G' are length-growing)

P H) = e

which is decidable by theorem 5.1 {nothing is known about the alphabets

of H!' and G' - see the remark in section 1 about this problem).

Acknowledgement .

The author is grateful to the group of people in Aarhus working on
L-systems, especially to Arto Salomaa for valuable help during the
preparation of this paper, and to Jean Berstel who made some useful

comments on an earliier version of the paper.



48

[1]
[2]

[3]
[4]

[5]

L6]

[7]
[e]

REFERENCES

Konig, D., Theorie der endlichen und unendlichen Graphen,
Chelsea, New York (1959).

Lindenmayer, A., Mathematical models for cellular interactions
in development, Parts | and 1l, J. Theoret. Biol.,
18, 1968 | 280-315.

Paz, A., Similarity in DTOL and related problems, Technical
Report no. 15, May 1973, SUNY at Stony Brook,
Dept. of Computer Science.

Paz, A., and A. Salomaa, Integral sequential word functions
and growth equivalence of LLindenmayer systems.
information and Control, vol., 23, no. 4, 1973, 313-344.

Rozenberg, G., Direct proofs of the undecidability of the
equivalence problem for sentential forms of linear
context-free grammars and the equivalence problem
for OL-systems, Information Processing L_etters,
vol. 1, no. 6, 1972, 233-236.

Rozenberg, G., The equivalence problem for deterministic
TOL -systems is undecidable, Information Processing
Letters, vol. 1, no. 5, 1972, 201-205.

Salomaa, A., On sentential forms of context-free grammars,
Acta Informatica, vol. 2, fasc. 1, 1973, 40-50.

Salomaa, A., Formal LLanguages, Academic Press, 1973.






