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Prime decompositions with minimum sum

1. Introduction.

During the January 1972 meeting in Aarhus on Automata Theory
a number—theoretic problem was posed in connection with determining
the size of a language generated by a DOL -system (Deterministic Lin-

denmayer-system with no interaction between neighbours).

The problem as posed by P. Vitanyi [ 1] is:

!
Find an algorithm which for every integer n > 0 yields a number

of pairwise relative primes k1, kz, , Km and a non-negative inte—

ger r such that

is minimal.
An accompanying probiem is the same as the above except that (1
is replaced by
m
(1%) T ki +rzn.
i=1
We have solved the first problem and shall in section 3 describe
how and give examples of minimal decompositions of certain integers.

We shall also give some comments on the solution of the second problem.



2. Preliminary remarks.
A few simple observations indicate how to limit the search. First-

ly, although the only requirement for the k is that they be relatively
|

prime (g. c. d. (k; ’ki) 1if i fj), itis sufficient to consider powers of

primes as factors, i.e. k; = piJ( j= 1) and P; {: P; if i +— j- To see this,
notice that for any two different primes P; and pJ. pi + pj < pi-pj such
that a smaller value of the sum can be obtained by splitting a composite

kI into its prime factors.

Remark: The number 1 does not count as a prime in these considera-
tions, since ones among the k; only add to the sum without en-—
farging the product, and therefore a minimal sum can never
contain a ki which is equal to 1. We shall in the following always

assume that ki £1

An upper bound on m , the number of factors in a decomposition,
can be obtained easily, by noting that the smallest number n for which
a decomposition can contain m factors is the product of the first m pri-
mes.

For easy reference we supply in Table 1 a table of the first pri-

mes, their products, and sums.



Tabel 1

m m
m P n=m p s =2 P,

1 1
1 2 2
2 3 5
2 ) 30 10
4 7 210 17
5 11 2310 28
6 13 20 030 41
7 17 510 510 58
8 19 9 699 690 77
9 23 223 092 870 100
10 29 6 469 693 230 129
11 31 200 560 480 130 160
12 37 7 420 738 134 810 197

Based on this information a method of finding s for a given n
can be devised by finding the maximal number m. of factors and then
ook at all combinations of at most m, factors, each one the power of a
prime. Also, once a decomposition has been found with a corresponding
sum 0 , then there is no need to consider primes (or prime powers)
that are larger than ¢

This method will probably not be efficient for large n and a much
simpler and straightforward method was suggested by mr. A. H. Ander-

sen in an informal discussion, and we shall now present this method.



3. An effective method to finding the minimal decomposition of a
number n.
Compute the prime decomposition of n and also compute the corre-

sponding sum:

(3) n= 1T P, ; g = .; p.

Next subtract 1 from n , compuie the prime decomposition of n-1i

and the corresponding sum:

(4) n=

(There should also have been superscripts (0) and (1) on , Pis
and ji in formulae (3) and (4) but they have been left out for sake of
readability).

Formula (4) represents another decomposition of n .

Now subtract 2 from n , compute the prime decomposition of n-2
and repeat the process.

The general step consists of finding the prime deComposition of

n-t (t 2 0) such that we have

(5) n =

(o) (1) (t)

If s is the smallest of © , O , «-., 0 7, i.e. the best value
we have obtained so far then there is no need to continue the process
further down than to n — s (and it isnot even necessary to go this far)
and we can thus terminate the process rather quickly even for large n .

All we have to do then is to record the decomposition corresponding

to the smallest J .



1f the object is to compute a table of minimal sums corresponding to
a certain integer interval then it is not necessary to repeat all of this
for each individual n . Once the process has been started and a minimal
decomposition has been found for a certain n with sum s(n) , then in:
order to proceed to n + 1 it is only necessary to compute the prime decom-

position of n + 1 and compare the corresponding sum with s(n) + 1.

4. Properties of s(n) .

We shall in the following use the notation s(n) for the sum corre-
sponding to the minimal decomposition of n .

When computing a table of s(n) it is seen that the minimal decompo-
sitions for a sequence of consecutive integers will form groups, each
group built upon a certain prime decomposition and with a remainder
which increases from zero in steps of one. This behaviour which becomes
very expressed for large n provides a very crude upper bound for the
growth of s(n) . Although s(n) usually grows with slope 1, it drops every
once in a while to a lower value and starts the climb again. (See fig. 2
and 3.)

Thus a table of s{n) versus n can be somewhat compressed by only
giving the values of n and s(n) each time s(n) drops. Our computer
program also supplies the - redundant but useful — information on s(n)
just before the drop.

The function s(n) is not at all monotone but it is possible to define
two monotone functions related to s(n): the infimum of all monotone func-
tions larger than or equal to s(n), and the supremum of all monotone func-
tions smaller than or equal to s{(n). For lack of better names we have cal-

(1) (2)

led these functions s and s respectively. In Table 4 we have supp-

lied a table of the decompositions of the first 40 integers together with



(2).

s(n), s ', and s
We shall now take a look at the inverse functions of s(]) and 5(2)
which we call n_. and n respectively.
min max
Let us by n (s) denote the largest n such that s(n) = s. Some

max

values of this function are very easy to find, since it is easy to see,

that decompositions involving the small prime numbers (with exponents 1)
are very !'good! in the sense that the product n is large compared to the

sum s . Therefore,some values of nmax(s) can be found from Table 1 and
others can be derived from these.

On the other hand, | it is rather difficult to compute nmax(s) systema-
tically for a given s~interval, the reason being that you 'never! know when
a fairly large n will produce a decomposition with a small s . FThe-only
way out is to perform computations for a large n—-interval, the bounds to
be estimated from the values given in table 1.

The other function which gives the smallest n such that s(n) = s
is called nmm(s). Contrary to 0 ax it is virtually impossible to find a
single value of Nin for a given s, but it is a straightforward task to
compute nmin(s) systematically for an interval of the form 1 < s < Syt
You just compute s(n) from n = 1 and up until for some n you hit the
value s(n) = Sg -
A table of n_. and N ax for 1 < s < 70 is found as Table 5. Fhis-

min

[tab!e reflects some of the difficulty in computing a full table of nmax -

we have not invested the computing power necessary to fill in the gaps.

5. Vitanyi's two problems

Vitanyi's first problem is soived by the algorithm which we described
in section 3 and which is implemented in the programs in section 7. As for
the second problem the minimal sum corresponding to a number n is the

(2)

value of s “/(n) . In order to find the corresponding decomposition, i.e.



the numbers ki and r, we must find the largest number g such that

5(2)(q) = s(z)(n) and take the decomposition of q which is the one we need;

q can be found easily by using a table of nmax in the following way:

Given n , find two consecutive values of nmax(s) such that n is an inter-

mediate number. g is now the larger of the numbers and the corresponding
entry s is the minimal sum.

This does not really solve tﬁe second probliem as it is stated by
Vitanyi in a completely satisfactory manner because of the difficulties
which we mentioned in section 5 of producing a table of Max * On the
other hand, given Table 1 and enough computing power we have here a
terminating algorithm for solving the second problem.

In his paper Vitanyi also mentions the problem of, for a given s*,

finding a decomposition such that

m
(6) s* = ¢ ki +r
i=1
m
and n =" ki +r is maximal.
i=1
The corresponding n is clearly the value of n at s* An accompanying

max

problem with (6) replaced by
(6%) s*

yields nothing new, since a solution necessarily must have equality in
(6*) for otherwise a larger n can be obtained by increasing r in order to

force equality in (6®).



6. Minimal decompositions are not unique.

As can be seen from Table 4 it is not correct to talk about the mini-
mal decomposition of a humber since there may be more than one. If we
exclude from consideration the numbers n < 5 for which only rather tri-
vial decompositions are possible, the number 14 is the first one which

possesses two distinct minimal decompositions:

14=4.3+2=2-7; s(14)

il
\e}

il

Another example is 18 = 3:5+ 3= 29 s(18) = 11 . These are not
unique examples: In the range 6 < n < 1 000 000 there are 671 groups to-
taling 15885 integers which have at least two minimal decompositions.

The number 39 is an example of a number with three minimal decom-
positions. There are 15 groups totaling 229 numbers with at least three
minimal decompositions in the range 6 < n < 1 000 000. These are given
in Table 6.

Four minimal decompositions is the most that we have encountered

and there is only one such group consisting of 7 numbers. The group be~

gins with

64782

i

2:9:59:61 =4:5+41-79+2=2+13-47-53+ 16

i

8:9+29:31 + 54 ; s(64782) = 131 .



7. AL_GOL. realizations of the method.
Program 1.
Find s{n) and the minimal decomposition (with smallest r ) for a

given n .

The strategy of this program when searching for the prime decompo-
sition of a number is to attempt to divide the number first by 2 and then by
all odd integers from 3 and up to the smallest value of 0 recorded so far.
This gives a short program but a tonger running time than if we supply a
table of primes.

The dimension 1:11 of the arrays allows values of n up to
7 420 738 134 809,

When the program stops, min will contain s(n) and the factors I<i

are found in B1 to BA&M,



10

begin integer a, b, j, k, m, n, nu, r, min, diff, sum;

integer array B, C|{1:11];

INPUT(n);
min = n+ 1;
for diff := 0 step 1 until min do
begin nu = n - diff; k = 1; a = 2;
for j = 1 while nu > 1 do
begin for b := nuta while bXa = nu do
begin j := jXa; nu = b end;
if | > 1 then begin C[k] = j; k :=k + 1 end;
if a > min then nu = 0;

ifa=2thena:=3elsea:=at?2

end;
if nu> 0 then
begin sum = 0; k =k - 13

for j := k step -1 until 1 do sum := C[j] + sum;

sum := sum + diff; if k = 0 then sum = n;

if sum < min then
begin for j := 1 step 1 uniil k do B[j] = C[j];
min = sum; m = k; r = diff
end
end
end;
comment s(n) is now contained in min and the factors can be

found in the first m positions of the array B ;

®
3



11

comment by introducing the statement min:=n+1 instead of min:=n
at the beginning, the program will work aiso for 1< n < 5. For this in-
terval only trivial decompositions exist, i.e. either m=0, r=norm=1,

'Ki arbitrary in the interval 1 =k, <n, and r=n - k] . The decompositions

1

with smallest r are thus

For n=1 the program will give m =0, r =1, though,

FProgram 2.

Find s(n) for p<n < g where p and g are given integeré.

In this program we have used the alternate approach of supplying
a table of primes for use in the prime decomposition of n . The range is
again 1 © p< q< 7 420 738 134 809 provided the table of primes is large
enough. It is believed that no primes larger than 3001 will be needed

here.



begin integer a, b, i, j, kK, m, n, nu, min, diff, sum, p, 1, r;

4

integer array P[1:432], B, C[1:11];
io= 1
for j:=2, 3, 5 7, 11, ., 3001, 100 000 000 do
begin P[i] := j; i =i+ 1 end;
comment P now contains a table of primes, The four“dots
represent 425 interjacent primes and the number
100 000 000 is used as a safeguard;
INPUT (p); INPUT(q);
min = 3000; if min > p then min :=p + 1;
comment necessary if p happens to be a prime;
if g =pthen
for diff := 0 step 1 until min do
begin nu = p ~ diff; i =k = 1; a = 2;
for j = 1 while nu > 1 do
begin for b := nuta while bxa = nu do
begin j := jxa; nu := b end;

if j > 1 then begin Clk] = j; k =k + 1 end;

PaaS oty

ifa > min then nu = 0;

=i+ oa=Pli]

9]
3



13

if nu> 0 then
begin sum = 0; k =k - 1;
for j := 1 step 1 until k do sum := C[j] + sum;

sum = sum + diff; if k = 0 then sum := p;

if sum < min then

begin for j := 1 step 1 until k do B[] :=Cl[j];
min = sum; m = k; r := diff
end

end
end this is the end of the initial stage, that of finding @ minimal
decomposition of p (and of all numbers down to p - r as
well). This was merely a repetition of Program 1;
for n:=p+ 1 step T until g do
begin nu ==n; i =k == 1; a = 2;
r=r+1; mn:=mn+ 1; sum := 0;
for j = 1 while nu > 1 do
begin for b := nuta while bxa = nu do
t_)g__g_i_ft_j = jXa; nu = b end;
£ > 1 then
begin C[k] = j; sum := C[k] + sum; k =k + 1 end;
if a > min then nu = 0;

P=i+1; a:=P[i]

o
3
[0

if nu=1 now, then we have found a prime decomposition

of n, and the corresponding sum must be compared to
min, Otherwise nu = 0 and we have decided to stop further
searching for a such decomposition since the primes

necessary are larger than min;



14

if nu> 0 then
begin if sum < min then

begin comment output of the minimal decompo-~

sition of n and s(n), possibly pr‘_eceded
by that of n - 1 and s{(n-1), should be
placed here.

This will give a condensed table of s(n)
providing only values where s(n) drops
or - in the case sum = min - where a
different minimal decomposition is found;

min = sum; r = 0

o
3
o}

1)
3
o
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10
10
10
10
10
10
10
10
10

12
12
12
12
12
12
12
12
12

Table 4.

A table of minimal

decompositions of n

s(n), and

s(”(n) = 12‘0\§~1S><n[s(\))}

and
(2

(n) = min {s(v)}]

(1)

S and s

(2)

are inverse finctions

of and n

n_.
min

respectively.

max

H

~3
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139
150
151
164
179
194
247
248
249
250
251

105
140
210
2n
420
421
422
423
840
841
1260
1261
1540
2310
2520
4620
4621
5460
5461
9240
9241

36
37
38
39
40
41

42
43
44
45
46
w7
48
49
50
51

52
53
sS4
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70

Table 5.

296
297
298
355
356
491
492
493
654
655
656
657
658
659
984
985
1214
1215
1216
1217
1354
1355
1356
1357
1358
1359
1424
2124
2125
2126
2127
2498
2498
2500
2501

A table of n_. (s) and n (s).
min max

vl

13860
13861
16380
16381
27720
30030
32760
60060
60061
60062
60063
120120
120121
180180
1801861
180182
180183
360360
360361
360362
360363
471240
510510
556920
1021020

18
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[1] P.M.B. Vitanyi, DOL -Languages and a Feasible Solution for a
Word Problem, Mathematisch Centrum, MR 138/72, Amsterdam,
1972,

Also in: Proceedings of the Open House in Unusual Automata
Theory, January 1972; Comp. Sci. Dept. Publ. No 15, Aarhus

University, 1973,
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