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1. Introduction and basic definitions

The purpose of this paper is to extend and make more explicit
some notions and results presented in [5], [6], [9],and [10]. The
reader is assumed to be familiar with the standard theory of L-systems,
[4] or [8]. In particular, we use the customary abbreviations for va-
rious types of OL~systems: D(deterministic), P (propagating, with no
erasing rules), E (extended system, intersection with the set of words
over a terminal alphabet is allowed), and T (system with tables).

One of the first observations concerning L-systems was that the
corresponding language families have very weak closure properties,
in fact, many of the families are anti-AFL!'s, i.e., closed under none
of the AFL operations. However, this phenomenon is due to the lack of
a terminal alphabet rather than to parallellism which is the essential
feature concerning LL-systems. E.g., the family TOL of all TOL-lan-
guages is an anti-AFL, whereas the family ETOL is a full AFL. Later
on we will see how L-systems can be used to convert language families
with weak closure properties into full AFL's in a rather natural way.

The basic notion in this paper, K~iteration grammar, is a slight'
generalization of the notion introduced by van Leeuwen [5]. The moti-
vation for such a notion is three-fold:

i) It provides avunifor‘m framework for discussing OlL-systems

and all of their context~free generalizations.

i) It shows the relation between OL-systems and (iterated) substitu-
tions.
iii) It associates with each family K of languages (having certain mild

closure properties) some full AFL's, obtained from K in the

"L indenmayer way'.

We make the following conventions, valid throughout this paper.
All language families discussed are non-trivial, i.e., they contain at
least one language containing a nonempty word. (A language family is
understood as in [8].) Two generative devices are termed equivalent

if they generate the same language or else the language generated by




one device differs from the language generated by the other through
the empty word A. (Thus in this sense, for any context-free grammar,
there is an equivalent context-free grammar with no A-rules.)

We introduce first some standard terminoiogy and notations.

Let K be a family of languages. A K-substitution is a mapping 0

from some alphabet V into K. The mapping 0§ is extended to languages
over V in the usual fashion. For language families K, and K, , we

define
(1) sub (K, Ky) = f6() [ I € Ky and & is a K, —substitution} .

If K; =OL or K, = TOL, families (1) are called macro-OL and macro-

TOL families, respectively, and denoted by K, MOL  and K; MTOL..

Macros were introduced in [1] and [2], where especially the cases
Ky =F (the family of finite languages) and K; =R (the family of regu-
lar languages) were investigated. Using the fact (cf, [7]) that the
family of EOL ~languages is closed under arbitrary homomorphism, it is
easy to show that
FMOL = EOL..
(There seems to be no short direct proof for the inclusion FMOL < EOL..)
Similarly, one can prove ithat
FMTOL = RMTOL = ETOL..
On the other hand, FMOL is properly included in RMOL because

Herman's language

n

h*i{ad& | nz0} withh(a) =a, h(b) =4,

is in the difference RMOL-FMOL, cf. [3]. The family RMOL is the

smallest full AFL (and the smallest AFL) including the family OL,

cf. [2] or [7]. It is also the closure of FMOL under inverse homomorphism.
We will now present the basic definition. LLet K be a family of

languages. A K-iteration grammar is a quadruple G = (VN, Vs S, u),

where \/N and VT are disjoint alphabets (of nonterminals and terminals),

sevhwith v = VU Vo (initial word) and U = {8, ,..., 8,} is a finite
set of K-substitutions defined on VV and with the property that, for each
i and each a € V, 0;(a) is a language over V. The language generated

by such a grammar is defined by



(2) uG)=u6H...sz)mvT

*
b

where the union is taken over all integers k= 1 and over all ordered

k-tuples (iy ,..., i) with 1 =i; =n. The family of languages generated

(1)

by K-iteration grammars is denoted by K . By Ky,. we denote the

iter
subfamily of K;;.r , consisting of languages generated by such grammars,
where U consists of one element only.

The different OL ~families can now be easily characterized within

this framework. Consider the special case K =F. Then
nge)r =F§§e)r = EOL = FMOL.

(Note that it suffices to choose, for each a € V, §(a) to be the language
consisting of the right sides of the productions with a on the left side.)
Similarly,

Fiter = ETOL (sFMTOL = RMTOL.).

The families with D and/or P are characterized as follows. D
means that the 6's are homomorphisms, P means that the 0's are A-free.

Thus, EPDTOL is the subfamily of Fy.,, obtained by such grammars

where all substitutions & are A-free homomorphisms.
If one wants to consider families without E (OL, TOL, etc.), then

one simply assumes that V_, is empty (which means that the intersection

with VT* in(2) is super‘fIL‘J\‘ous). Note that in the general case the
generative capacity is not affected by assuming that S ¢ VN' Finally,
the macro-families KMOL and KMTOL are obtained by K-iteration
grammars satisfying the following condition. There is a sub-alphabet

\{ of \f such that, for each i and each a ¢ Vs 9 (a) is a finite language

over VN' Furthermore, for each | and each a ¢ VT’ 0, (a) is empty and,
for each i and each a € V-V 8, (a) is a language (in K) over the
alphabet VT' (Here it is assumed that K contains all finite languages.)

Thus, all context-free LL-systems find their counterpart in this for-
malism. Note, however, that so far (apart from regular macros) one
has not considered in the theory of LL-systems cases more general than

K=F.




2. How to get rid of erasing

In this section, we establish the basic tool needed in later proofs
for closure results. We say that a K-iteration grammar is A-free iff

each of the substitutions 0; is A-free.

Theorem 1

Assume that K is a lahguage family closed under finite substitution
and intersection with regular languages, L is a language generated by
a A-free K-iteration grammar, and h is an arbitrary homomorphism.
Then also h(L) (or h(LL) - {X}) is generated by a A-free K-iteration gram-

mar.

Proof

Let L. be generated by a A-free K-iteration grammar G = (V S,U).

NERS
We first list a few assumptions that can be made without loss of gene-
rality:

i) S eVl

61 (a) contains a word where S occurs,

this was noted already before), and none of the languages
ii) For each §; € U and each a ¢ Vs 6, (a) is empty.

This is achieved by taking what might be called the '"'synchronized version!

NU VT to
[

consist of nonterminals, add a new terminal alphabet VT = {a'[ ac V_l_}

of the original grammar: Consider first the whole set V =V

and define
(3) o,4a)=206;(a)u {a'}, 6, (a") =9, ac Ve

If we now make an alphabetic change back to our original notation, ii)
follows. Note that the languages on the right sides of (3) belong to K by
our assumptions.

iii) 1f h maps V_ into \, ¥ then VNV, =®. This is achieved by making,

T
if necessary, an alphabetic change in G.

Consider now the following assertion:

iv) Theorem 1 is true for A-free homomorphisms h.



This follows immediately by ii) and iii), because it suffices to take
6, (a) = {h(a)}, for ac¢ Vo, and 6,(a) =@, for a € \V; (the target alphabet
of h). ‘

We now divide V__ into two parts: V;;. consists of those letters a

T

for which h(a) =X; Vi, consists of the remaining letters of V Because

the case V| iye =@ is trivial, we may assume by iv) that both othhese parts
are nonempty. If L is entirely over the alphabet ;4. , there is nothing to
prove. Therefore, we may assume:
V) I_ contains a word involving a letter of V). .

Two somewhat more difficult reductions remain in the proof of

Theorem 1. For each nonterminal A € \V/_,, we denote by L(G, A) the

N’
lahguage generated by the K-iteration grammar G = (VN’VT’A’ u). We
say that A € VN

Viwe s dying iff L(G, A) € V4i. ¥, and undecided, otherwise. We may ob-

is living iff each word in L(G, A) contains a letter of

viously assume that, for all A, L(G, A) is nonempty. Note that by v) S
cannot be dying. We now claim:

vi) There is no loss of generality in assuming that G has no undecided
nonterminals.

To establish vi), we first prove that there is a A-free K~iteration
grammar G' equivalent to G such that, with the possible exception of the
initial letter, G' has no undecided nonterminals.

The terminal alphabet of G! is VT (i.e., coincides with that of G).
The nonterminal alphabet of G' consists of letters A, where A is a non-
terminal of G, of letters A , where A is an undecided nonterminal of G,
and of a new initial letter S, . To define the substitutions §;' of G!, we
consider two finite substitutions t;, and t;, defined on V. For A ¢ VN’
n(A) = {A}; & (A) = {A, Al or 1,(A) = { A}, depending on whether or not
A is undecided.

Forat¢ V., t(a) = t,(a) = {a}.

Each §; ' maps S; to S or to {S—, §} , depending on whether S is
living or undecided. Each §; ' maps every letter of VT into the empty
language. For every living letter A € VN’

51 ! ('X\) =t (61 (A))
For every dying letter A € V

N’

6, (&) = t, (65 (A)).



To define 0; ! in the remaining cases, we consider two regular languages
R, and R; . Ry’ consists of all words over V,;, and, in addition, of all
words over the total alphabet of G!' where at least one nonterminal occurs
and, moreover, all occurringnonterminals are of the form A—, for some
dying or undecided letter A € V. R, consists of all words over Vo
which are not words over V,;, and, in addition, of all words over the
total alphabet of G! which contain at least one letter ;&, for some living
A€ VN’ or at least one letter /f, for some undecided A ¢ VN. Let now

A € VN be undecided. We define

Having completed the definition of G!, we first note that G' contains
no undecided letters, with the possible exception of S, . All nonterminals
K, where A € VN
where A € VN is living, as well as all nonterminals A, where A ¢ VN is
undecided, are living. It is also easy to see that G and G' are equivalent.

is undecided or dying, are dying. All nonterminals K,

In fact, derivations according to G! are derivations according to G, with
some bars added to the nonterminals. (Intuitively, the decision of making
a living or dying contribution is made as early as possible in G'.)

If S, is living, we have established vi). Otherwise, we replace
G' by the grammar obtained from G' by omitting S; and S. Now the initial
letter is S. (Here assumption i) should be remembered. ) Although the
new grammar might not be equivalent to G any more, it suffices for our
purposes, since we are looking for a grammar for h(L) and the words ob-
tained from S contribute at most the empty word to h(L).

According to vi), we from now on assume that G contains no unde-
cided nonterminals. We cannot simply discard the dying nonterminals from
G because they may influence the mechanism of synchronization. However,
all information needed to know the effect of the dying letters is contained
in the knowledge of which among them are present. Our first construction
is based on this observation. ,

Let us denote by M,,, the alphabet consisting of the letters of V.
and of the living nonterminals of G. Similarly, denote by M;,, the alphabet

c.onsisting of the letters of ;4. and of the dying nonterminals of G. Let



M, be the alphabet consisting of pairs <A, B>, where A € M, -{s}
and B is a subset of My, .

Consider the language Ry consisting of all words of the form

Y

X YiXe oo K VYeXery , KET,

where each x; is a word over the alphabet My;, and, for 1 =i = k-1,

y; is a letter <A, B> of M; such that B is the set of letters occurring
in Xy, and y, is a letter <A, B> of M; such that B is the set of letters
occurring in X, .., . Obviously, R; is regular. Consider then some sub-
stitution 6; of the grammar G and some subset B of My;, . The language
R, (i, B) is obtained from R; by changing each y;, =<A;, B, > to some
<A, , B, U o(B)> where ¢(B) ranges over subsets of My;, satisfying the
following condition. If d;,..., d. are the elements of B, then there is
a word X in 0;(d, ... d.) such that ¢(B) is the set of letters occurring
in X. Obviously, also R, (i, B) is regular.

We also need two finite substitutions t; and t, , defined as follows.
The substitution t; maps each element A € M;;,, to the set of pairs <A, B>,
where this element occurs as.the first component; t; maps the elements
of My,;. to themselves. The substitution t, maps elements of M; to them-
selves and elements of My,. to the empty wordA.

We are now ready to define a A-free K~iteration grammar G" as
follows. The total alphabet of G" is M, U {S} , and the terminal alphabet
VT“ consists of letters <A, B>, where A € V,;y and B is a subset of
Viie » The initial letter of G" is S. The substitutions §; "' are defined as

follows:

6; M(S) = 1, (15(6; (S)) N Ry ),
6, M<A, B>) = t,(t5(0; (A)) N R, (i, B)).

Because S and each A are living, all substitutions 6;!" are A-free.
Let now h, be the homormophism mapping each letter <A, B> where
A € Vi to h(A). Clearly, h; is A-free. It is also easy to see that
h(L(G")) = h(L)-{X} . (Note that G'"" is able to simulate only such deri-
vations according to G, where at each step all occurrences of a dying non-
terminal A are replaced by the same word in §, (A), this being a consequence
of the definition of (p(B). But this is all we need because such a derivation
is possible, and the only task of the dying nonterminals is to block some

words from the terminal language. Any other derivation would block at



least the same words.) But h; is A-free and Theorem 1 now follows by
the assertion iv).

The proof above is a modification of the corresponding proof by
van Leeuwen, [7], for EOL -languages. It depends on the family K

whether or not the proof is constructive.

Theorem 2

Assume that K is a language family closed under finite substitution
and intersection with regular languages. Then for each K-iteration gram-

mar, there is an equivalent A-free K~iteration grammar.

Proof
Given an arbitrary K-iteration grammar, we first replace A in
each of the languages 0, (a) by some new letter ¢, and define 9, (c) to
be the empty language. We then apply Theorem 1 to the resulting grammar
(which clearly is A-free) and to the homomorphism erasing ¢ and leaving

the other letters unchanged.



3. L indenmayer AFL's

We are now in the position to establish some basic results con-
cerning the families Kyi.: and K(ile)r . Following van Leeuwen [ 5], we
say that a family of languages is a quasoid iff it is closed under finite
substitution and intersection with regular languages and, furthermore,
contains a language a*, where a is a letter.

Thus, a quasoid always contains all regular languages. A cone
(also called a full trio) is always a quasoid but not vice versa. The
essential difference is that a cone is closed under regular substitution,
Theorems 1 and 2 are valid for quasoids K. We have stated them in a
little more general form to see that they are valid for the family of finite

languages F.

Theorem 3

If K is a quasoid then Ky;,» and ng), are full AFL's,

Proof

We note first that Theorems 1 and 2 are valid if attention is re-
stricted to the family Kﬂe),. . The proof is also exactly the same because
we did not make any use of the number n of the substitutions 0, . Also
in the following argument there is no difference between the two cases,
and so we restrict ourselves to Kjier »

By known AFL~theory (cf. [8]), it suffices to prove that Ky, is
closed under union, star, regular substitution and intersection with re-
gular languages.

Assume, that, for i =1, 2, L, is generated by a K-iteration grammar
G; with the initial letter S; . Without loss of generality, we assume that
the nonterminal alphabets of G, and G, are disjoint. To generate the
union L, U Lo, it suffices to introduce a new initial letter S which is
mapped to the language {Sl , So } by all substitutions. To generate L, *,

you introduce two new nonterminals S (the new initial letter) and s, !

with substitutions

Gi(s) = {A, 551'} ’ 61(51') = {Sllt 51} .
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For the remaining two operations, we assume by Theorem 2 that
the grammar G, generating L, is A-free. (The eventual loss of the
empty word does not matter because we have closure under union.)
Leto be a regular substitution. We first make p A-free by replacing
A in the languages p(a) with some new letter c. We also apply ii) from
the proof of Theorem 1 to G, . We now proceed exactly as in iv) of
the proof mentioned: define §; (a) = p(a). (Note that K contains the
languages p(a)). Finally, we apply Theorem 1 to erase c.

Let R be a regular language, accepted by a finite automaton M.
The alphabet V' of a A-free K-iteration grammar G' generatingL; N R
consists of an initial letter S and of all triples (s;, A, s;), where
s; and s; are states of M and A is a letter of G, . The terminal alphabet
of G! consists of such triples where A is a terminal letter of G, . For
any two states s; and s; of M, let R, (i, j) be the language over the al-
phabet V! consisting of all words x (of length = 1) satisfying each of the
following conditions:

i) In the first letter of x, the first state symbol is s; .
i) In the last letter of x, the second state symbol is s;.
iii) The second state symbol of any letter of x (except for the last

letter) equals the first state symbol of the next letter of x.

It is immediate that R, (i, j) is a regular (in fact, a 2-testable) lan-
guage. Let t be the finite substitution mapping each letter A of G; to
the set of triples having A as their middie symbol. We are now ready
to define the substitutions §,! of G'. Each §,' maps S to the set consisting
where sy is the Initial state of M and s

of triples (s, S,, s ranges

F)’ F
over the final states of M. In general, for any letter A of G, , and any
states s; and sy,

Oy (s, A, s;) = t(8 (A)) N R (i,]).

Let now h; be the literal homomorphism mapping the triple

(s; , A, s;), where A is a terminal letter of G, , to the letter A. Then
Ly NR =hy (L(G").

Hence, Theorem 3 follows.
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The following theorem, [5], [9], [10], can be established

similarly.

Theorem 4

If K is a quasoid then the families KMOL and KMTOL are full
AFL's.

Since the full AFL!'s associated with a quasoid K in Theorems 3
and 4 are obtained by parallel rewriting, they are naturally called

L_indenmayer AFL.!'s. Apart from the obvious inclusions

KMOL € KMTOL € Ko , KMOL < Kﬂ) S Kiter »

very little is known about these AFL's, e.g., about the strictness of
the inclusions.

We have considered only the families Kﬂe)r and K., , obtained
by one substitution and an arbitrary number of substitutions, respectively.
A natural generalization is the family Kg:,)r , obtained by grammars with
at most n substitutions. (Thus, Ki,,, is the union of all these families. )
For a quasoid K, all of these families are full AFL!s.

It is a result by van Leeuwen [5] that Ri(ge)r equals the family of
languages accepted by pre-set push—-down automata. It seems likely that
this family is properly included in the family R;;., but we have no proof.
To prove this, it suffices to show that the language

{a23' | m, nz 1}

is not in EOL (van Leeuwen, personal communication). The family
FMOL = Fge)r is not an AFL. The proof above fails with respect to

regular substitution. One obtains only closure under finite substitution.
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4, Hyper-AFL'!s

We now consider language families closed under iterated substi-
tution. By definition, a hyper-AFL is a quasoid K such that K;;., =K.
Thus by Theorem 3 every hyper-AFL. is a full AFL. Moreover, it can
be shown to be a super-AFL..

Theorem 5

The indexed languages form a hyper-AFL.

Proof

The proof of van L.eeuwen [6] is almost directly applicable. The
only difference is that production ii) in the proof has to be replaced by
the productions

Xo + Xy Ly ,i=1,...,n

where the L, 's are flags corresponding to the different substitutions 9, .
By Theorem 5, the family Ry;., (and also the family CF ;.. ) is
contained in the family of indexed languages. On the other hand, Rji.,
includes all of the context-free extensions of OL-languages considered
in the literature.
We mention, finally, the following interesting open problem:
Does the proper inclusion K C Ky, imply the proper inclusion

Kiter © (Kiter )iter 2 This would give rise to an infinite hierarchy.
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