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Summary Interpolation formulas of the form
N
UK 1 geeey Xeny tx )™= T Ay U(Vigyeeey Vig, t)

i=1

are presented. These formulas are based on the heat polynomials

of Appell. The point (X4, ,..., Xxn ) is in the interior of an (n+1)
dimensional region, R, ., , and the points (v;; ,..., Vvj,, t;) are

on the boundary of R, ;, . These formulas can be used to approximate
the solution of the heat conduction problem in R, ., . The relation-
ship between formulas of the above type of degree 2 in R, ,, and the
second degree harmonic interpolation formulas of Stroud, Chen,
Wang, and Mao [1] in R, is presented. Some higher degree formu-

las for special regions in R, are also developed.



1. INTRODUCTION

In this paper we discuss interpolation formulas of the type
N

U1 peeey Xgny t5)=2 Ap Ul(Viqyeee, Vin, t) (1)
i=1

which are based on the heat polynomials of Appell [2]. The point

Px = (Xg¢15++5 Xyu, tx) is in the interior of a region, IntR, .,
in (n+1)-dimensional space. The points p; = (Vi1 5.0, Vig, 4 ),
i=1,..., N, lie on the boundary of this region, Bd R,,,, and the

weights (also called coefficients), A, , i=1,..., N are positive

constants. We will sometimes déal with the cylinder
Rivp 2Ry x [0,T) = {(x,t)|x € R,, 0<t<T}. (2)

It will be assumed that Bd R, ,, is sufficiently smooth so that the

initial boundary value problem of heat conduction,

L, [u(x,t)]
u(x, 0)
u(x, t)

0inIntR 4,
f(x) on R, (3)
g(x) on Bd R,

Il

N 0°u  du
where L, [u] E_E 3 T o (4)

i=1 i

has a solution. Then formula (1) can serve to approximate the solution

of (3) atpy € INtR,,, .

In section 2 we introduce the heat polynomials in 2 variables and
state some of their properties. We then extend the heat polynomials
of degree = 2 to higher dimensional spaces. In section 3 we demon-
strate the existence of (n+1)-point formulas of degree 2 in cylindri-
cal regions (2). We also show that for both cylindrical and NON~Cy ~
lindrical regions there is a formula of degree 2 for which the n+1
points in the formula (1) lie on a hyperplane t = constant. The
theorems of this section state some of the geometrical properties
of these formulas and their relationship to the harmonic interpola-
tion formulas of Stroud, Chen, Wang, and Mao [1]. In Section 4
we investigate n-point formulas of degree 2n-1 in 2 variables. In section

5 we briefly discuss open questions related to investigating formulas (1).




2, THE HEAT POLYNOMIALS

2.1 Heat Polynomials in 2 VVariables

Appell introduced in [ 2] the fundamental heat polynomials,

Uy (X%, t), which he defined as the coefficients of z* /n! in the power

series expansion of exp(zx+Z1}, i.e.,
o>
Zx+2 t z
e = 2 v, (x,t) -

n=o

He showed that each of these linearly independent polynomials is

a solution of

%y

L [u]= ¢ -2=o. (5)

Rosenbloom and Widder [ 3], Widder [4], and Haimo [5] have in-
vestigated expansions of solutions u(x,t) to (5) in terms of the heat
polynomials. These polynomials are directly related to the Hermite
polynomials and are given by the following recursion formulas (see,

for example, Shohat [6]),

Uo(x, t) = 1,
vy (%, 1) =X, (6)
U, (%, t) = Xy (X, 1) + 2(n=1)t v, ~5(x,t) n=2,..

Examples of (6) are

Vg (X, 1) = x° + 2t,

Vs (%, t) = % + 6xt,

X128t + 128,

Us (X, 1) = x° + 2053t + 60xF
Vg%, 1) = > + 30Xt +180¢ £ + 120>,

v, (x, t}

I

It can be shown that v, (%, t) can be written as

2 n—-2
b, (%, 1) = I (7)
k=0 (n-2k)!k!




where [n/2] means the integer part of n/2. Note, v, (x,1t) is of
degree n in x and of degree [n/Z] in t. We will call any linear
combination of the fundamental heat polynomials (6) a "heat poly-
nomial', . It is obvious such a linear combination also satisfies

equation (5).

Lemma 1. A heat polynomial p(x,t) is transformed into another
heat polynomial g(r, s) under any affine transformation
x =r+h, t=stk

which is a simple translation of the origin. [

Because of this lemma, we can assume that R; is situated so that

any given interior point (xy, ty) coincides with the origin.

2.2 Heat Polynomials of Degree <2 in (n+1) VVariables.

We now extend the heat polynomials of degree <2 to higher

dimensional spaces.

Definition 1. We will call the following independent polynomials

the fundamental heat polynomials of degree =<2 in the nt1 variables

X, i=l,..., n, and t
1,
% L ./
' |’J=1’-‘0,n’|7£J (8)
xix:’
%+ 2t.

We note that there are (n+1)(n+2)/2 such polynomials. This definition

is motivated by the fact we wish to construct polynomials similar in

form to those of (6). Linear combinations of (8) satisfy (4) and will

be called "heat polynomials!,

Lemma 2. A heat polynomial p(x, ,...,%, , t) is transformed into
another heat polynomial q(r;,...,r,, s) under the simple affine
trnasformation consisting of a translation of the origin combined

with a rotation about the t-axis. [J

This lemma allows us to assume that R, ,, is situated so that any

given interior point (Xy,,...,Xg, , ty ) corresponds to the origin




and that any particular point on the Bd R, ,,, say p;, is such that

Pr =(VyqgyeeesVin, ;) =(vyy, 0,...,0, t;), vy, > O.

3. FORMULAS OF DEGREE 2 INR, ., , ntl > 2

For a given region R, ,; and py € Int R, we wish to de~
termine the points and weights p; , A;, i=l,...,n so that formula
(1) is exact for the heat polynomials (8). We therefore introduce the

following definition.

Definition 2. We say that the interpolation formula (1) has degree

d if it is exact for all fundamental heat polynomials 0(X; 5. ..,% ,1)
of degree < d in the x;!'s and there is at least one heat polynomial of

degree d+1 for which it is not exact.

In this section we discuss interpolation formulas of type (1) of degree
2inR,;,, nt1 > 2. These formulas are directly related to the second
degree harmonic interpolation formu las discussed by Stroud, Chen,
Wang, and Mao [1] which are used in approximating the solution of
the Dirichlet problem and some of the proofs are in a similar vein.

In fact, the proofs for theorems 1-3 are quite similar to those in [1]

and are not given here but can be found in Shriver [7].

If the points and weights p; , A;, i=1,...,n+1 are to specify a formula
of degree 2 for py =(0,...,0), then they must satisfy the following
(n+1)(n+2)/2 equations based on Definition 2,

A, + Ag s FA L, =1

Ay vy + Ay vy e e TALLL Va1 =0 (9)
9

Ar Vg Vi T A Vo Vo co e TA L1 Vat191 Vasr sy =0

Ay (Vo+2t)  + A, (V| +2t)

"'+A“n+1(\ﬁn+l7i+2tn+l)=o
i, =, e,n, P# ]

Je

Mo+ o+ o+ o+

In the following, we assume R, ,, is convex.

Theorem 1. If thep;, A;, i=1,...,nt+l are the points and weights

of a formula of degree 2 where all of thep; € BdR, ,,, then all of



the A; are positive and the pointpy= (0,...,0,0) is an interior point

of the n-simplex, T,, which has vertices given by
Py =(Vigseeny Vin, t1), i=l,...,n+1,
wheret; =t =... =t,, =0. 0O

Theorem 2. An interpolation formula (1) of degree 2 cannot be obtained

with fewer than N = n+1 points. O

If we are given a set of points p;, i=1,...,n+1, which can be used as
points in a formula of degree 2 for py =(0,...,0) then the A, ,
i=1,...,n+1, are uniquely determined as a solution to the first n+i

(linear) equations of (9),

A Fooot Ay =1
AV i+ ot Ay Vasg,e =0, i=1,...,n. (10)

We now state a theorem which can be used to determine the n+1 points,

Ps -

Theorem 3. In order that the p;, i=1,...,n+1, will be the points in a
formula of degree 2 for R,,, and py =(0,...,0), it is necessary and

sufficient that the following conditions be satisfied:

(i) px is an interior point of the n-simplex which has vertices

Py =(Vig,eeey Vin, 0), i=1,...,n+1,

(i) for each i, the vector py is perpendicular to the plane containing

the other pf, j# 1, i, j=1,...,n+,

(iii) assuming R,,, is rotated so thatp, =(v,;,,0,...,0,t,),

vi, > 0, the t; must satisfy

Aty Fo it Alpr by S Vi Ve /20 O




When n=2, for example, this theorem means that the point py =(0, 0, 0)
is the orthocenter © of the trinagle with vertices py = (v,,,0,0),
P =(Va1,V%2,0), and p; = (v, ,V2,0) wherep,, ps, ps are the in-

terpolation points of a formula of degree 2 for py =(0, 0, 0).

We will now need the following theorem from Stroud, Chen, Wang, and

Mao [1].

Theorem 4. Givenany v; =(v;;,..., V;,) € BdR,, R, a bounded
simply connected convex n-dimensional region, there exist vy ,...,V,4+1,
and positive A, ..., A, ;,; so that the v;, i=1,...n+1 satisfy conditions
(i) and (ii) of theorem 3 and the A;, v;, i=1,...,n+1 satisfy system (10).
Furthermore these are the points and weights of a harmonic interpolation

formula of degree 2 for R, .
As a direct result of this we can show

Theorem 5. Given R, ., is the cylinder (2) and given a point,py € R, .1,
there exist points p; € BdR, .., i=l,...,ntl, and positive weights
A;, i=l,...,nt1, so that thep;, A;, i=l,...,ntl, are the points and

weights of a formula of degree 2 for R, ;, and py.

Proof. Assume that R,,, has been translated so the py corresponds

to the origin and rotated so that p; = (v;;,0,...,0) € BdR, € BdR,,;.
From Theorem 4 we can find p; = (Viy ,...,V;,,0) € BdR,, i=2,...,ntl,
so that conditions (i) and (ii) of theorem 3 are satisfied, and A; >0,
i=1,...,n+1 so that system (10) is satisfied. Now choose the t, ,

~T ==ty =t <0, i=1,...,nt! so that

Aty ool A L =V11V21/2'

We have n free parameters to do this. Thus we have satisfied the con-
ditions of theorem 3 and system (10) and the p; , A;, i=l,...,n+1 are a

formula of degree 2. [

+ The orthocenter of a triangle is the point of intersection of three
altitudes.




We now ask the following question: Are there interpolation formulas
(1) for which all of the points, p;, in the formula lie on the hyper-
plane t=constant, i.e., t;=t, i=1,...,n+1. These formulas bear a
resemblance to explicit finite difference methods when viewed as

interpolation formulas. We can state,

Theorem 6. Given R, ,, is the cylinder (2) and given a point
px € INtR,,,, there exists points p;=(V;1 ,...,Vin, t) € BdR, 1),
0< t<ty =T, and weights A; > 0, i=1,...,n+! so that the p; , A,

i=1,...,ntl are an interpolation formula if degree 2 for R, ,,; and py.

Proof. Assume that R, ,, has been translated so that py corresponds
to the origin and rotated so that point p; ={(v;,,0,...,0) € BdR, €
Bd R, ,,. From theorem 4, we can find points p; =(v;; ;...,Viy,0)

€ BdR,,, and weights, A, > 0, i=1,...,n+] so that conditions (i) and
(ii) of Theorem 3 and system (10) are satisfied. If all of the points are
to be on the hyperplane, t=constant, then, since LA; =1, condition

(iii) of theorem 3 becomes
t=V11V21/2~ (11)

If the t calculated from the above points, p; , with formula (11) lies in
the interval -ty < t < 0, then the required formula has been found.

However, the calculated t may be such that t < -ty . We will show the
required formula lies on the portion of the boundary of the translated

R,:+; given by

By, =R, N {t=-ty.}.
Consider B't'* =R, N{t=-t,} € B, » Where R’ CR, and BdR] is
formed by contracting the Bd R, , i.e., reducing the distance between
the origin and every point on the Bd R, in some fashion. Choose
p; =(vi;,0,...,0,-ty) € Bd R:, vi;> 0, and note that vy, < v;; and
=B

ty ty’
and t° = t. Since we can shrink the Bd R, in any continuous fashion,

Cd

compute t* = "ij1 Vs, /2. We note that when B then vy, =v;
we can make v;, as small as we please. Therefore, ' will take on
all values in the interval t<t’ < 0. Thus we can find a t* = -ty and

the conjectured formula exists.



Theorem 6 can be extended to hold for more general regions than
the cylindrical regions heretofore discussed. We denote by D a
bounded (n+1)-dimensional domain in E*"1. Let (x,t) = (X ,...,% ,t)
be a variable point in E**'*. D is bounded by a region B lying on

the hyperplane t=0, a region BT lying on the hyperplane t=T,

0< T <=, and a hypersurface (manifold) S is lying in the strip

0< 1< T. We assume that the Bd D is sufficiently smooth so that
the following initial boundary value problem has a solution (see, for

example, Friedman [8]),

L, [ulx,t})] = OonD+ B
u(x,0) = f(x) on B (12)
u(x,t) = g{x,t)ons

Formula (1) can serve to approximate the solution of (12).

Theorem 7. Given a region D as described above and a point
px € Int D, there exist points p; =(Viq,...,V;5,t) € Bd D,
0<t=ty =T and weights A; > 0, i=l,...,n+l, so that thep;, A,

i=1,...,n+1 are an interpolation formula of degree 2 for D and py .

Proof. Assume that D has been translated so that py corresponds to
the origin and rotated so that p; lies on the positive x, —axis, i.e.,

p; =(v;1,0,...,0,t)€ D, vy, > 0.

Consider the 2-dimensional curve, C, which is the intersection of the
sets %, =0, %3=0,...,%x =0, % =0, -ty =t=< 0, and the Bd D. C is such
that either (a) as t varies from t to -ty in a continuous fashion the
point p; moves along C with v;, taking on all values in the interval

-F <v;; <M, M, F constants, M> 0, F = 0, or (b) as t varies from

0 to -ty in a continuous fashion the point p, moves along C with v,
taking on all values im the interval 0 < N= v, =M, N a constant, i.e.,
C contains a straight line segment parallel to the x, —axis at t = -ty

which intersecis the t-axis.

Let us choose at’, -ty =t“< 0, and a point p; =(v{,,0,...,0,t")
€ Bd D, »; > 0. From theorem 4 we can findp] =(viy,...,Viy,t")
€ BdD, i=2,...,nt1, and A, > 0, i=1,...,n+l so that conditions (i)

and (ii) of theorem 3 and system(10) are satisfied. If all of the points
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p;, are to lie on the hyperplane, t = constant, then condition (iii)

of Theorem 3 again becomes equation (11). All we need to show is
that for some choice of t° equation (11) holds. In case (a) above,
vary t* in a continuous decreasing fashion from 0 to -t, . But then
v,, assumes, in a continuous increasing fashion, values from M to
-F, and the right hand side of (11) varies continuously between
MV, < 0 and -FV,, > 0. Thus there is a t” for which the required
formula exists. In case (b), it may be possible that we do not yet have
a t’ such that (11) holds when t = -ty , t having varied from 0 to -t, .
We can however employ the contraction argument of Theorem 6 and
show that the formula exists on the portion of the translated Bd D

defined by B, . [
ty

Theorems 5, 6, and 7 show that given a second degree harmonic in-
terpolation formula of the Stroud, Chen, Wang, and Mao type, we
can construct a second degree formula of the type described in this
paper. We will now give some examples:
Let S, be the n-sphere of unit radius with center at the origin,

S, e, )| 2 s+ S0
We give some examples of formulas of degree 2 of Theorems 5 and 6

in the cylindrical region S, x [-T,0]. The point py is assumed to lie on

on the x, ~axis,
Pe =(Xg1,-..50,0), xgy € (-1,1), 1y =0.

One can verify directly that the points and weights

Pi =Px s Ar,y i=T, 00,0t
given in Table 1, satisfy equations (9). The points p;, j=2,...,n+1,
(t; =0, j=2,...,nt2), are the vertices of a simplex, T,-;, lying in the
plane %, = v;; . The points p;, j=2,...,ntl1 may be rotated about the x, -

axis in any manner we desire and we still obtain a formula of degree 2.



Table 1
A Formula of Degree 2 for S, x [~T,0]

P1
Pz
Ps
(223

Pa

Pn +1

where,

Vi s4

Vit1si

= (Vll,O ,0 ,0 ,...,0 ,O,tl)
= (V1 yVe5,0 ,0 ,...,0 ,0,1)
= (Vo1 ,VassVaz,0 ,...,0 ,0,t)
= (Moq sVag sVansVassesss 0 ,0,t,)

(Val,vsg s Vasa 1VEgaseeesVnsn—~1,W ’n’tn)

= ro(1-€),

= Xx1 T €,

= x-;el/r':

= (nt1) = (n=1)xy,,
= r-c,

(n—lz‘x“—1 R

(n=i+1 J(1 4%y, )BE r, i=2,...,n.
n(n-i+2)

- (14+%4 1 )8 Py, 1=2,...,n.

| n(n=i+2)(n-i+1)

i

-

= P A - =AL -
B B

1-Ry4

I"2 _(x;el )2

2n

= (Vgl,V32,V4,37V54:"-,Vn1n=1,Vn+1:ntn+1)

(13)
(14)
(15)
(16)
(17)
(18)

(19)
(20)

(21)

(22)

11
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Example 1. Formulas of Theorem 5.

In equations (13) through (22) of Table 1 let ry =1 and €=0.
The points p; lie on the surface of S, . By choosing the
t, € [-T,0], i=1,...,n+1, so that (22) holds, we have a desired

formula.

Example 2. Formulas of Theorem 6.

Here we are interested in formulas with all points lying on
the hyperplane t”=constant. Let r,=1 and €=0 in equations (13)

through (21). Ift; =... =t ., =17, equation (22) becomes

r‘?, _(x-ge N )2
2n

t* = -

If-T=<t < 0, then we have a desired formula and the points p, ,
i=1,...,n+! lie on the surface of S, . If t* < =T, perform the

boundary contractions below with t; = -T, i=1,...,n+1 :
case i) Xy, =0
choose r, such that r,® = -2nT and with ¢ = 0 recompute (13-21).

The points p; , i=1,...,nt1 lie on the surface of S, ,, which is
o]

the n-sphere of radius r, with center at the origin.

case ii) X4, < O.
1-x%, (1= %y, |)?
<T < e —
It 2n =T= 2n

then choose ¢ so that

2nT - (x5, -1)
2(1+xy )

and with r,=1 recompute (13-21). The points p;, i=l,,..,n+1, lie on

the surface of S,

W or 3=g - Which is the n—sphere of radius r=1-¢ and

center atp__ =(-€,0,...,0);

1§ (l-lx*l‘)g <T<O0
2n

then choose r, so that
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P 2 - _ 2nT
© “"x*ll)g

and with € = | x4, | recomputer(13-21). The points p; , with t; =0,
i=t,...,ntl, lie on the surface of S , ,,.¢ which is the n-sphere
of radius r=rq(1-|x,, |) and center of P = (X41,0,...,0).

case iii) Xy, > O.

In this case, make the following changes to the equations of Table 1:

(14) becomes xk; = =xy4, + €,
(17) becomes v;, = —(r-¢),
(n=1)%x, =1
(18) becomes v,, =- — r—¢ ,

and perform the previous analysis of case (ii). The points p; , with
t, =0, i=1,...,n+! lie on the surface of 5, , » ,-¢ Wwhich is the n-

n-sphere of radius r=rq (1 -¢) with center at Pe = (¢,0,..,0).

Example 3. Formulas of Theorem 7.

Here we give an example of a formula of Theorem 7 for the

non-cylindrical region defined by the paraboloid of revolution, Pjs,
%%+ =r " (|T[+), T=t=0,

where Fr and T are given constants which describe the paraboloid.

The point py is assumed to lie on the %, —axis,
t/ "/
Px = (Xx1,0,0), xg, € (—r‘,r (7]) 72, PT(|T|) 2),
One can verify directly that the points and coefficients
Pi = Pxs Ay, 1=1,2,3
satisfy equations (9) with n=2. Thep;, A;, i=1,2,3 are given in
Table 2. Since the cross sections of the paraboloid are circles, the

relationship between the formulas of Table 1 and Table 2 for n=2 is

clear. If we define a general (n+1)-dimensional paraboloid, P, 1, as



14

%2 ..+ x° = r? =r~T2 (|T| +1), T=t=0,

so that any cross section is 5, , ; , the n-sphere of radius r with
center at the origin, the extensions of formulas of Table 2 based on

those of Table 1 is direct.

Table 2
A Formula of Degree 2 for P,
Pr = (Vlls 0 ,t‘)
P = (Va1,Vz,t')
ps = (Vg1,Van,t")
where,
e =12 | T|
tl = —-—-—’r—— ?
4etr?
T
r = POT] + 1),
T
£ = Xx1 /1,
B = 3-Xyx1
Viq = r,
Ry 1 -1
V. = r
21 2 ’ %
(R, +1)B
Voo = ~Vag = ||,
A = B y Ae = Ay = B .
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4, N-POINT FORMULAS OF DEGREE 2n-1 IN 2 VARIABLES

In this section we shall consider n-point interpolation for-

mulas

N

U(xy 5ty ) =~ Ay ulx;,t;) (23)

o

of degree 2n-1 for the half plane t 2 0, —» < x < @, and for the

rectangular region, G, shown in Figure 1.

(0,T)

(-1,0) (1,0)

Figure 1

Rectangular Region G: {(x, t)| -1 <x<1, 0<t<T}

We shall consider various configurations of interpolation points

on the boundary of the rectangular region.

4.1 The Half Plane, t> 0, —o< x <

Consider the following Cauchy (initial value) problem of heat

conduction

Ly [u(x,t)] =0 for —o < x<w, t>0 (24)
u(x, 0) = f(x)

If we wish to approximate the value of u(x,t) by a linear combination
of its boundary values, we must have all of the interpolation points,
p; » lying on the x-axis, i.e., p; = {x,,0), i=t,...,n. Because of

Lemma 1 we can choose, without loss of generality, py = (xy,ty) =

(O,t*).
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If formula (23) is to be of degree 2n-1, thenthep;, A;, i=1,...,n
must satisfy (from Definition 2) the following non-linear system of 2n

equations in 2n unknowns,

A + Ay + ... A = Co
A Xy + Ay Xy + 00 A X =c,
: ; : (25)

AVETTE AT L ARYTTE =gy
AT + AT L AL s,

where the ¢; =v; (0,ty) are given by

0 i=1,3,...,2n"1
Ci = il. (t*)% i=0, z, e e ey 2n-2 (26)

(i/2)"

This representation for the ¢; is obtained from (7) with x=0 and t=ty .
System (25) closely resembles the nonlinear system of equations which
arises in the determination of the points and weights of Gaussian
Quadrature formulas. L.et us review, for a moment, a few elementary
concepts and results from this theory which is concerned with ob-

taining approximations of the following type,

By (f(y;) (27)
1

o wly) fly) dy =
i

N ™Ms

We will say they;, B;, i=l,...,n, are a quadrature formula. A
quadrature formula is said to have degree d if it is exact whenever
f(y) is a polynomial of degree < d (or equivalently, whenever f(y) =

fly) =1,y,...,y%) and it is not exact for f(y) = y**?

. Thus, if we are
to have a formula of degree d = 2n-1, they,, B;, €=1,...,n must

satisfy the following system of 2n equations in 2n unknowns,

B, + By + ... 8B, = Cq

Bly1 + By ys + ... T B, W = C

: : : : (28)
B,V T 4B ya P ... B VTP = chp e

BiYi® P 4B yet R b 4B VT =y
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where the ¢, are given by

b
Cx =J w(y) v*dy, k=0,1,...,2n-1.

a
The following result is known (see, for example, Krylov [9]),

Theorem 8. If the weight function, w(y), is nonnegative in [a,b], ([a,b]
finite or infinite),the points y, and weights B;, i=1,...,n can be

found so that (27) has degree d=2n-1, i.e., such that (28) has a
solution. Moreover, the y;, i=l1,...,n are roots of the unique n'th
degree polynomial which is orthogonal with respect to w(y) on the

interval [a,b], and the weights B; , i=1,...,n are positive. [

Thus, to show that p; , A;, i=1,...,n can be found such that (25)
has a solution, it is sufficient to show that the €; defined by (26)
are the moments of a nonnegative weight function on the interval

- to», That this is not unreasonable is suggested

a) by the fact that the heat polynomials are related to the Hermite

polynomials, Hj(y), as mentioned in Section 2,

J/ 1/
v (%, ~t) =t H, (x/(41)?) (29)
and,
b) because the fundamental solution
X /4t
K(x,t) &8 S
(4mt)%

is the "heat kernel! T of the Cauchy Problem (24), i.e., if u(x,t)

is bounded, then we have

{oe)

u(x, t) =f k(x-y, t) f(y) dy.

Rosenbloom and Widder [ 3] have shown

+ see, for example, Weinberger [10].
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Theorem 9. The heat polynomials vy, (x,t) have the following repre-

sentation

un(x,t)=/ k(x—é,t)g"d . O

-— O

Thus, we have

Theorem 10. (i) The T; of (26) are the monomial integrals of the
positive weight function k(- £,t.), (ii) p,, A, i=1,... ,N can be

found so that (25) has a solution, i.e., so that formula (23) has

degree 2n-1, (iii) moreover, the x;, i=1,...,n are the roots of

the n'th degree Hermite polynomial H, (x/(4ty, )%), and the A, , i=1,...,n

are positive.

Proof. Since T, =v;(0,ty), the first statement is a direct application
of Theorem 9 and the second statement then follows from Theorem 8,
Also, we note the Hermite polynomials, H, (x/(4ty );5), form an ortho-
gonal system on the interval -« to ® with respect to the weight func-
tion e_x/qt* . Thus (iii) is a direct application of (i), equation (29),

and Theorem 8 to system (25). [

Due to the relationship between systems (25) and (28), the weights A,
can be formulated in terms of the orthogonal polynomials related to
system (25) just as the weights B, are formulated in terms of the or-
thogonal polynomials associated with system (28); (see, Stroud and

Secrest [11]); for example, we can write

A= [k%‘oo(xi y=tx )+ +I<i“‘11)n'”1(x1:"t*)]~l, i=l,...,n
or,
A =[O (%, =ty Jop ey (%, =t )Y, i=1,...,n

where
co

Kk = / (%, t ) [0 (%, —t )]? dx = nt(2t, )"

and
1
X, =y (4t )2, i=1,...,n (30)

The y;, i=1,...,n are the roots of the n'th degree Hermite polyno-
mial, H, (y). These roots are symmetrically distributed about y=0.

We can also write the A; as
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AL = (n-1)! 2" , i=1,...,n (31)
anl(yi) Hn+1(yi)

Tbale 3 gives the y; and A;, i=1,...,n where n=2(1)10. The A,

were calculated from (31) with the y; given in Stroud and Secrest [11].

4.2 The Rectangular Region G

A. All points on the x~axis.

The results of Theorem 10 for the half plane can be immediately
extended to the rectangular region G of Figure 1 for interpolation for -
mulas with all of the interpolation points on the portion of the boundary
given by S, : {(x,y) | -1=x=1, t=0} . For this case, we are solving

system (25) subject to the constraint that
| | =1, i=1,...,n
Let v, ,uax be the largest root of the n'th degree Hermite polynomial.

We see immediately from (30) that for any point py =(xy ,tx ) € Int G
such that

the %, given by (30) satisfy the constraint |x; | = 1. The region for

which formulas (23) exist with all points on S; is shown in Figure 2.

,t=—-J——-|——“" x4 )7

/"/ 4yr12 sma X

(-1,0) (1,0)

Figure 2

Region foh formulas (23) in region G with all points on x-axis
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Table 3

Formulas of Degree 2n-1 for the Half Plane

L7071

.1224
. 0000

.1650
. 5246

. 2020
. 9585
. 0000

. 2350
.1335
. 4360

. 2651

.1673
. 8162
. 0000

. 2930
.1981
1157
. 3811

.3190
. 2266
.1468
. 7235
. 0000

. 3436
.2532
.1756
.1036
. 3429

Y
0678

7448
0000

6801
4762

1828
7246
0000

6049
8490
7741

9613
5516
8788
0000

6374
6567
1937
8699

9932
5805
5532
5101

0000

1591

7316
6836
6108
0132

24 (1)

. 5000

.1666
. 6666

. 4587
. 4541

.1125
. 2220
. 5333

. 2555
. 8861
. 4088

. 5482
. 3075
. 2401
. 4571

.1126
. 9635
L1172
. 3730

.2234
. 2789
. 4991
. 2440
. 4063

.4310
. 7580
L1911
.1354
. 3446

A

1

0000

6666
6666

5854
241 4

7411
7592
3333

7844
5746
2846

6885
7123
2317
4285

1453
2201

3990
1225

5844
1413
6406
9750
4920

6526
7093
1580
8370
4233

00

67
67

77 (-1)
52

33 (-1)
20
33

02 (~2)
04 (-1)
96

60 (-3)
97 (-1)
86
71

84 (-3)
21 (-2)
77
77

01 (-4)
21 (-2)
77 (-1)
29
63

31 (-5)
43 (~3)
50 (-1)
30
49

20
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It should be noted here that for n=2 and n=3 these formulas become

u(x*yt*)ﬁéu(x*— Z’t*,O)'l'%u(x*-i- zt*,O), ty S(]_ >2<* )2

and

~ 1 6 0 2 1 < (1 "i X% ! )2
Ulxy sty ) = gulxg = 6ty ,0) +3u(xy ,0) + ulxe+ 6ty ,0), t,= —
These formulas are directly related to the classical explicit finite

difference approximation to L; [u] = 0 given by (4 x ), i.e.,
Upyger = Upsgy T -1, =205, Uiy ,y),
where u; ,; =ul(x;,t;) and T =/£/h, Aand h the mesh parameters.

Remark When T =1/2 we have the formula for n=2. This is the
maximum choice of 7 allowable so that the finite difference scheme is
stable. When 7 =1/6 we have the formula for n=3. Saul'yev [12, p. 98],
notes that for this choice of 7, the finite scheme has the hightest accu-

racy (O(h*)) which can be obtained with the classical explicit method.

B. General Configuration of Interpolation Points for G.

Let S; and S; be the sets: S; : {(x,t) | x=-1, 0=<t=< T} and
Sy {(x, t) [ x=1, 0= t=< T} respectively. We now ask the more ge-
neral question: Given a point py € Int G, does there exist an interpo-
lation formula (23) of degree 2n-1 with Ng points on side S, , n52 points

1
on side S,, and n_ points on side S;, n_ +n_ +n_ =n? Or, assuming
Sz S1 S Sa

the existence of such a formula, the question becomes: What is the
distribution of interpolation points on D =3, U S; U S; for a given
px € Int G. The points and weights p; , A;, i=1,...,n must satisfy the
following nonlinear system of 2n equations in 2n unknowns,
N n_-+n
S =N n

i=1 i=n_ +1 i=a_ +n +1
' Sy S S

Sz

where j=0,...,2n-1. The solution of this system for n=2 for various
combinations of ns1 ) nsg , and nSS is straightforward. After some al-
gebraic manipulation, one arrives at the formulas summarized in Table 4.
For n> 2 the situation is much different and closed form solutions to

this system are difficult to obtain except in a few special cases for
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Table 4

Summary of 2 Point Formulas of Degree 3

X1 =X* —_ Zt*, )(2 =X* + zt*,
= _ - (] —Xy )2
tl_tg—o,t*—___._z LA = A =1/2.
% =1, % =1, t =ty - (14xy N 3=xy)
’ 6
3+x 1 =%
Ay = (14x,)/2, ty = (1 4%, H3=x )

6

Let b= (xy-1)° + 6ty, %, =1-b, =1,
* %3 X X2

_ b[(xg =1 N(xy =14b) + 2ty |
2(b + (x4 ~1))

Al (1 —X* )/b, AE = 1"(] —Xx )/ba
(% =1)/2 < ty < (T4xy4 )(3-x, )/6.

th =0, t

’

]

Formulas do not exist.
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small n. Here, for example, is a 3 point formula of degree 5 for

Px =(O:t*); ty = 1/6:

u(0,te ) = Ay ul=1,1 )+ A u(0,0) + Agu(l, t;)

where
A=A = ty v9t2; +6 —3@*, A, =1-2A,,
_ ,V3(3t§ +2) =3(1-ty)
ho=t =X

To obtain numerical solutions to system (32) the author has em-
ployed the Newton- Raphson method of approximating the solution

of nonlinear systems. System (32) was rewritten as
f;(y) =0, j=0,...,2n-1

where y is a vector having components in the unknowns A;, X; , and t, .

The iterative process then becomes
Visr = Y + [JIEY &
where k is the iteration step. J is the Jacobian matrix of the system,

g, =2
t Ty

J
and the notation ¥, , [J]y;, and f, means that the components of each
of these matrices are evaluated with the values of the components y;
at iteration k. Let the first n components of y be the A;, the next n;,
be the t; on side S, , the next nSg be the x; on side S;, and the last

ng be the t; on side S;. Then, using the following relationships,

0f, =1, 0f =v (x5,4), i=1,...,2n-1, j=1,...,n,

ofy =0, 0f; = 1A, V-1 (xy,t), i=1,...,2n-1, j=nsl+1,...,nsl+nSg ,

—— " iy ""O’ g—%— = i( i-’ )Aj Ui —2 (Xj 9 tJ ) i=2, LR ] 2?’1-—1 3
3 5 . .
=1,... ,nsl,J=nSl+nsg+1 yoeoy,
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the Jacobian matrix can be written as shown in Figure 3.

A computer program was written for the solution of this nonlinear
system. (Formulas are tabulated for a variety of 3, 4, 5, 6, and 7
point interpolation formulas in Shriver [7].) The solution of this system
is not without computational difficulties. For example, given a point
Px =(Xy , tx ), With x, fixed, as ty increases the x; on S, become larger
and there are values of ty for which the configuration of points on the
boundary and, hence, the structure of the Jacohian matrix change. An

example of such a configuration change is shown in Figure 4.

(.1,.1)

AT, 1N\,

Figure 4

A Change in the Configuration of Interpolation Points

5. CONCL UDING REMARKS

This paper and reference [’7] are only the beginning efforts to
investigate the existence, construction, and properties of interpolation
formulas (1). There are many questions still open. For given integers
N and d and a point px€ Int R4, , do there exist points p; = (Vi ;...,Vi,, 1)
€ BdR,4;, I=1,...,N, and weights A;, i=1,...,N, so that formula (1)
has degree d. The existence or nonexistence of such formulas for arbi-
trary regions and degree is not yet known in general. Moreover, we are

interested in those formulas which for a given number of points, N,
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have the highest degree, d, possible. The questions of appropriate error
estimates to be used with such formulas and the identification of the class

of solution functions for which they are valid must also be investigated.
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