The Significance of Microprogramming

Robert F. Rosin
DAIMI PB - 16
June 1973

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

]

— [ |




THE SIGNIFICANCE OF MICROPROGRAMMING*

Robert F. Rosin
(University of Aarhus, Aarhus, Denmark,
on leave from SUNY at Buffalo)

Abstract

Interest in the topic of microprogramming appears to have
had a great growth in the middie and late 1960's, but since
that time it has leveled off or declined somewhat. This pa-
per examines the reasons behind this development and then
offers a reconsideration of and a new proposal for the de-
finition of microprogramming.

This result is supported by the consideration of three
phenomena. First is the evolution of microprogramming du-~
ring the past twenty years. Second is the evolution in the
use of interpretation as an implementation technique. Third
is the set of Y"rules of thumb!" resulting from the system de-
signher having to resolve conflicting forces attempting to in-
fluence his activity.

Five possible meanings of the term microprogramming are
considered and rejected totally or in part prior to the one
finally offered. The suggestion is made that this redefined
concept be avoided as much as possible in the future, and
two avenues for research alternatives are encouraged in-
stead.

* supported in part by NATO Reserach Grant No. 621,
to be presented at the International Computing Symposium,
Davos, Switzerland, September, 1973.




INTRODUC TION

Although it first arose in 1951 (10), interest in the idea of
microprogramming peaked during the 1960's (11), and it seems re-
cently to have declined somewhat. That is not to say that the liter-
ature in. this area is not growing, for one need only consider the
continuance of the ACM SIGMICRO Microprogramming Workshops
and issues of the SIGMICRO Newsletter to be convinced that people
committed to this concept have produced a reasonable amount of new
results. However, there appear to have been no successors to the
book by Husson (4), and the word microprogramming seems either to
have  ‘never caught on or to be of little current interest to many
leaders and opinion makers in computer systems research. It is
not possible to offer '"negative references' to support such a state-
ment. But one can observe that the many papers in the 25th Anniver-

sary Issue of the ACM Communications and the several ACM Turing

Lectures ¥ preveal a remarkably infrequent occurrence of this term.
In particular, note that the paper by Foster (2) in CACM, which
treats "microcomputers'!t at great length, never even suggests the

concept of microprogramming.

Rosen, in the same issue of CACM (6), offers three short pa-
ragraphs on microprogramming in which he mentions its use as a
re placement for conventional hardware technology, suggests that
it is really programming and not hardware, and then predicts that,
although "advances in this area have been slower ... than some of
the enthusiasts ... have predicted, ... software in microprogramming
is bound to be important!'. Through many of my own activities, including
two papers (7, 8), I have clearly expressed the enthusiasm which
Rosen refers to. | believe it is only responsible for those of us who
have been in that position to offer some explanation as to why our
predictions have not proven valid, and that is one of the purposes

of this paper.

*) The ACM Turing Lectures have been published as follows:
Perlis, JACM vol. 14, No. 1 (Jan. 1967) 1-9.
Wilkes, JACM vol. 15, No. 1 (Jan. 1968) 1-7.
Hamming, JACM vol 16, No. 1 (Jan. 1969) 3-12.
Minsky, JACM vol. 17, No. 2 (April 1970) 190-215,
Wilkinson, JACM vol. 18, No. 2 (April 1971) 137-147.
McCarthy, (unpublished. ?)
Dijkstra, CACM vol. 15, No. 10 (Oct. 1972) 859-866.




It is the primary purpose of this paper to offer reorientation
and redirection of the common perception of microprogramming. Of
course, the reader is cautioned to place no more credence in projec-
tions included here than he did in those offered earlier, especially
in the light of the shortcomings of earlier enthusiasm. But at the same
time it is hoped that he will appreciate the reflection and sincerity

which form the basis of what follows.

The remainder of this paper is divided into two major sections.
In the first we examine three phenomena which are used later to sup-
port oyr reconsideration of microprogramming. The three phenomena
are the evolution of microprogramming, the corresponding evolution of
the use of interpretation in the implementation of systems, and the
practice of computer architecture in which the previous two phenome-

na play an important role as tools.

In the second major section,microprogramming is reexamined.
We first consider and then reject, at least partially, five generally
accepted views of microprogramming. This leads to the conclusion which
embodies first a new definition, constructed out of what remains from
these five ideas, and second the realization that this newly defined in-
terpretation of microprogramming should to a very great extent be a-
voided by the community of computer scientists. Two alternative ave-
nues for research and development in system architecture are proposed

as a direct replacement.




THREE INFLUENTIAL PHENOMENA

The Evolution of Microprogramming

In his paper "The Growth of Interest in Microprogramming',
Wilkes (11) presented an excellent picture of the history and devel-
opment which took place in the area from 1951 to 1969. There is no
necessity to repeat that discussion here. However, as a program-
mer, | attempted in (7) to offer a rather different perspective of the
impact of that evolution in terms of the potential application of mi-
croprogrammed computers rather than their implementation. What
follows is a very brief summary of both of these points of view, and
then an attempt to extend that discussion into a more recent period.
References to the material of historical interest can be found in each

of the papers cited above.

In 1951 Wilkes first suggested that the control unit of computers
should be organized in a systematic rather than ad hoc manner, and
he called this approach "microprogramming''. This concept had almost
no impact on the thinking of computer users or even programmers.
Even as late as the mid 1950's the idea that such persons could have
any influence on the organization of computer hardware was considered
quite radical and was carefully discouraged by most hardware de-

sighers throughout the next ten years.

In the mid 1960's there were two events which had significant
effect in changing the status quo: the development of the IBM Sy s-
tem /360 based on a somewhat flexible basis for the realization of
microprogram store, the read-only memory; and a suggestion by Op-
ler (5), among others, that read-only store would eventually be re—
placed by so-called fast/read-slow/write stores. Only then did the po-
tential of "rewirable!'" machines, user designed instruction sets, "hard-
ware'! support for higher level languages, etc. become a matter of po~
pular interest. By the late 1960's there was considerable attention
being paid to the idea of using microprogrammed systems to interpret
(or "emulate') a wide variety of previously uneconomical "machines".
Furthermore, it was suggested, at least among some programmers and
users, that one could expect about a factor of ten improvement for each
level of perhaps unnecessary interpretation intervening between a com-

puter application and an actual hardware system.




Research projects blossomed in attempts to harvest the fruit of
the new era. Consider the work of the author and his group as re-
ported in (8). However, not everyone shared this enthusiasm. In
particular, the hardware community suggested that such attempts
were bound to yield disappointment if not failure. They said that
microprogramming is not ordinary programming; that one must pay
particular attention to timing problems; that one must learn to cope
with parallelism; that at least some of the existing machines were
designed for particular purposes and would not be suited as hosts
for microprogrammed support of higher level languages, and, in par-
ticular, that microprogramming required special skills in order to
use the facilities of the hardware efficiently. It was suggested that
the word "programming' never should have been included in the name
of the concept, and that perhaps "microcontrol!! would have been more
appropriate. At least such a choice of nomenclature might have kept

the programmers out of the way.

With only a few exceptions there have been in fact no true suc
cesses in the quest for microprogrammed support of other than the line
of successors to the von Neumann Machine. :The hardware community
seems to have made their case. Were the programmers so completely
wrong? Was this analogous to the usual case of a programmer promising
to meet an unmeetable deadline? These questions will be considered
later. First let us look briefly at the history of the use of interpretation
in system implementation, for it is only in this way that microprogram-

ming has any applicability.




The Use of Interpretation

By the mid 1960's it was generally believed that interpretation
was usually less efficient than translation as a technique for imple-
menting higher level languages. Because most programs have been
written in higher level languages since that time, one could con-
clude that interpreters are seldom if ever used, and that they might
even disappear from the scene in the near future. In fact, however,
almost the opposite is the case. We consider here four motivations
for the use of Interpreters, from among the many which might be of
fered, to explain this apparent paradox.

1. Limited amounts of fast storage

Interpreters were used on the very earliest computer systems.
One particular instance of wide spread interest was the Bell Inter~
pretive System (12) which was implemented for the IBM 650 computer
in about 1956. The attempt here was to provide a means to help the
ordinary user, who was accustomed to desk calculators, to cope
with ""certain problems not encountered in desk computing'’, as the
report states. This goal is merely an early, specific statement of
the desire to provide application-oriented systems for computer users.
Somewhat generalized, the languages of most hardware systems are
not directly suited for the applications which must be run on them.

This has been the, perhaps unmentioned, justification behind the devel-
opment of every higher-ievel language and software system before or
since that time.

But that fact does not justify interpretation as opposed to transla-
tion as a technique for solving this problem. The report on the Bell
Interpretive System goes on to say, '"Limitations in storage capacity
may necessitate the choice of an interpretive system rather than a sys-
tem of the once-for-all type in the case of small or medium size com-
puters! (where once-for-all means translation). This happens not
only because compilers are often large, but because object programs
frequently are also, and an appropriately designed interpreter can
lead to meaningful reductions in their size. The problems of large pro-

grams and small main stores have not yet disappeared.

2. To support a family of computers

The trend after 1956 was to larger stores, and interpreters
seemed to fall into disuse for system implementation. But in fact, this

was only because their use became hidden. When IBM made its far-




reaching decision to abandon the development and production of in-
compatible machines in favor of a family of machines, interpreting

of programs came to the forefront again, although not in a way that
most people recognized it. The problem was to implement a family

of machines which had precisely the same instruction set and data
constructs, but across a wide spectrum of cost-performance ratios.
While it was economically justified to build a very fast direct hard-
ware implementation of such a system which would cost a corres-
pondingly large amount of money, it was not clear that this was the
best approach for impliementing a smaller, slower version of the
same system. A suitable conclusion was reached when it was demon-
strated that the latter version of the system could be implemented by
writing an interpreter to be run on a fast but less complicated ma-
chine: one which had a small amount of fast memory for holding the
interpreter itself, but silow memory for holding the program to be in-
terpreted. This machine could have a narrow data path and function-
al units whic¢h could be programmed to operate serially to simulate
the wider parallel operations of the machine to be realized. This
scheme, the heart of contemporary microprogramming, was used,

for example, in the implementation of the majority of the 360 systems

in the field, and is now employed in all of the 370 product line.

3. The trend toward fast, inexpensive hardware components

If the superficial reason behind the decision to use the interpre-
tive technique in implementing some models of 360 was to achieve a fa-
mily of systems,on closer examination it was again also based on the
relatively high cost of fast storage, and the desire to economize on
this portion of the system. However, also implicit in this decision is
the fact that hardware was becoming cheaper -and faster in the middie
1960's, a trend which does not seem to have abated. The most obvious
way to employ such devices in low cost systems is to assemble them in-
to very simple host machines which are then used to interpret the lan-

guages of slower but far more complex virtual machines.

4, Higher level languages

As much as the hardware world has provided a rapidly changing

set of parameters, the world of the user has also forced us constantly




to evaluate our practices. Higher level languages have developed and
evolved considerably during the past two decades, along with proces-
sors to support them on whatever machines are available. As stores
became larger the motivation for interpreters declined, but this was
only a temporary phenomenon. Newer languages require very com-
plex support, not only at compile time, but also at run time, in or-
der to be used on available hardware systems. The typical (but not
unique) approach to providing this support is to implement a library

of routines which are invoked at run time to support various functions
required. This is, in effect, processing a somewhat massaged portion
of the original code through an interpreter. Perhaps the most obvious
example of this application of interpretation is seen in the execution

of FORMAT statements in such languages as Fortran. The block struc-
ture, dynamic storage allocation and string manipulation facilities many

languages have often led to complex interpreters for their realization.

It is reasonable to conclude that interpretation has not disappeared
as a tool for system implementation, and, except for the motivation pro-
vided by inadequate fast store, the pressures to use this technique seem
to be increasing. That is, languages are becoming more demanding at
run time, hardware is becoming cheaper and faster, and families of
computers are necessary in order to have some control over the rapid-
ly rising costs of system development. et us now examine in more de-
tail the effects of these and other forces which are operating on the sy-

stem architect.




The Practice of Computer Architecture

The following sentence is taken from a proposed encyclope-
dia entry on computer architecture and is authored by a person of
recognized competence in the field: ""As normally conceived of,a
computer architect accepts from a logical designer units such as
adders, stacks, memory blocks, and tape drives,and puts them to-
gether so that they form a computer, and turns this over to the sy- |
stems programmer who then constructs an operating system for the
machine!'. (3) (emphasis added). This quotation is as remarkable in
what it does not say as in what it does say. One must ask when,if
ever, does the consideration of user applications enter the picture?
Is there any reason to believe that the influence of higher level lan-
guages will be found in any but a few systems which themselves are
often considered eccentric? Is there a place for a system architect

in the picture?

Even in the ideal case,where the computer architect is aware
of or even responsive to the needs of the user, it is clear that he
must contend with what he is obliged to "accept! from the logical de-
signer. Moreover, he is put into the very difficult position of attemp--

ting to resolve two basic sets of forces.

There is one set of forces which arise from the evolution of
basic hardware and software technology and long standing traditions.
They tend to maintain the status quo and are rather well defined; they
change, but usually in a predictable fashion. In contrast, the other
set of forces, which arise from the needs of society for computer ser-
vices, is very difficult to define in any precise way, and, furthermore,
is subject to rapid and rather unpredictable change. The result is that
the system designer establishes a number of "rules of thumb" which,
whenever there is a conflict, generally reflect the influence of the first

set, and the "acceptance'! cited earlier. Consider the following examples.

Rule 1:

"In case of doubt,sacrifice a design concept to preserve cycle
time!'. After all, the user of a system cannot demonstrate that a cer-
tain design component is good or bad until the machine is built, and
then it is too late. Reconsideration is too expensive for both the user

and the producer, and the architect has also usually moved on to his




next machine. In particular, it is essentially impossible to measure
the cost of a particular computation on a potential system as a func-
tion of various design constraints without first implementing the entire
system. On the other hand, one can always estimate cycle time quite
accurately. Somehow many a designer's ego is closely connected with
that measure. Weinberg (9) discusses the virutes of "ego-less'" pro-
gramming, and there is nho reason that this idea cannot and should

not be extended to cover the system design process as well.

Rule 2:

"Some facilities are cheap!'. If an extra capability can be added
to a machine at no cost, due to the existence of a set of possible bus
connections in hardware which where not intended in the original
plan, then a way is often found to realize this function as an added in-
struction. The fact that this addition may compromise the system by
inviting the programmer to bypass a more globally conceived con-
struct,which was purposely intended in the original design,is consi-
dered to be of little importance. Following this rule in the era of me-
dium and large scale integration of curcuitry has led designers to
add uncalled for register sets and adders, and even to change the

word size during design of otherwise ''clean! systems.

Rule 3:

"Design constraints don't allow the realization of some otherwise
good ideas!. This rule usually derives directly from a set of precon-
ceived components being allowed to have undue influence on a design.
Examples are found in the precondition of such things as a memory
of a certain size and speed, a printed circuit board of some particu-
lar dimensions, a committment to a particular field size in an instruc-

tion format,etc.

Rule 4:

"If it looks nice, i1t must be useful'., A system is a reflection of
the professional ability of the designer; a monument to his cleverness.
Therefore, if a particular feature is contrived which happens to illu-
strate this cleverness, then it is often made prominent in the imple-

mentation, even if it compromises the ultimate objectives of the system.




10
It is our contention that obeying these rules will lead the system ar-

chitect to specify machines which bear the label "unreasonable!!.
It is our observation that most hardware systems contain timing idiosyn-

crasies, gates rather than functions, assymetric bus structures, re-
gisters of unsuitable width, preoccupation with a feature of limited scope,
etc. The degree to which a machine is considered "unreasonable! is direct-
ly proportional to the degree to which it has the above characteristics.
Thus a '"'reasonable!" machine tends to be one which is transparent to the
user, helps rather than hinders its application to the solution of a given
task, and can perform the computation with an acceptable cost/performance
ratio, where cost is measured in terms of man-hours as well as CPU-
hours.

Based on our understanding of the experience gained in the design
and use of the wide variety of computer systems available during the past
25 years, we offer the following guideline for achieving reasonable com-
puter systems.

First, the rules of thumb stated above must be avoided as much as

possible in computer system development.

Second, the entire history of computer system development has
shown us that systems are always used for purposes that their designers
never foresaw. Supplying generally applicable, readily accessible, and
highly symmetric facilities will go a long way toward ensuring the
longevity of a particular system, ’

Thir‘d, although programmers may not have the force of rigorous
science to support their beliefs, their convictions about computers are
not necessarily invalid. For example, whether or not it can be proven
desirable, the ability to allow convenient relocation of code is very use-
ful. The authors know of at least two so-called microprogrammed ma- -
chines whose implementations of branching disallow effective relocation.

Finally, one should not attempt to apply tools which are inappro-
priate to a given task. For example, although the various hardware
_systems on which System 360 has been emulated are possibly good hosts
for that purpose, the same hardware is generally unsuited for efforis
in the direct’or indirect support of higher level languages. Concluvsions
drawn from such an application of inappropriate hardware could be se-
riously misleading, if one is interested in the general question of low

level support for such .languages.

Having considered these three phenomena, that is, the evolu-
tionary development of microprogramming and interpretation along with
system architecture, we now are able to make a broad assessment of the

significance of microprogramming.




11

MICROPROGRAMMING REEXAMINED

Microprogramming has been described by many, including this
author, as helping to bridge the gap between hardware and software. |
However, | now feel that microprogramming has actually been used
to disguise the gap rather than bridge it. To understand this conclu-
sion requires that we appreciate what people really mean by the term

microprogramming.

A Definition of Microprogramming

Let us first consider a set of criteria usually used to describe

this concept.

1. NUsing systems which are faster than those normally in use is
microprogramming!!. If this aspect were allowed, then the first pro-
grams ever run were microprograms, and the programs written for any
machine faster than yesterday's machines are microprograms, etc.
This is clearly not a valid criterion, although faster execution can
lead to the adoption of interpretation as a tool for system implementa-

tion. Therefore, as one alternative, one might conclude that:

2. "Support of emulation is microprogramming''. As discussed
earlier, emulation is merely one aspect of interpretation. There are
obviously hundreds of uses of interpretation which could in no way be

accepted as microprogramming.

3. "Programming for real hardware machines is microprogramming'.
That would lead one to believe a machine language program run on a
360/75, which is a system implemented directly in hardware, is some-
how different from identically the same program run on the 360/30,
which itself is simulated by another program (a "microprogram!) run
on the 2030 CPU. But of course, except for timing differences, it is
not at all different, so we must reject this idea. But one can now con-

sider:

4,  "Writing programs in consideration of the timing of various in-
structions and storage devices is microprogramming!'. Going back to
our previous example, it is possible, but almost an act of herecy, to

write a program for one of these 360 systems which depends on its ba-




12

sic timing to the extent that the program will not run successfully
on the other system. Yet few people if anyone would agree that co~

ding for either of these systems is microprogramming.

5. ""Microprogramming is programming the direct control of the
gates and buses of a computer!. This criterion is derived from the
idea of "horizontal" or "minimally encoded!" microinstructions. But,
since this excludes "vertical or "highly encoded!" microinstruc-—
tions, it does not suffice to include all of microprogramming. Never-
theless, this criterion is one of the cornerstones of our proposed

redefinition.
What then is the essence of microprogramming? These five
potential criteria, taken all together, after distilling out those aspects

which are irrelevant, lead me to propose that:

"microprogramming is the implementation of hopefully

reasonable systems through interpretation on unreason—

able machines! !

The concept of reasonability was introduced in the last section.
It follows that an unreasonable machine is one which requires the pro-
grammer to know about and cope with particular gates, buses, race

conditions, split cycle storage, and all other "features!!.

Given this definition, microprogramming is equivalent to the use of in-
terpretation to hide the nature of unreasonable machines by construc—
ting reasonable systems on top of them. Our earlier comment about its

use in disguising the hardware-software gap follows directly.

Furthermore, it is believed by many computer scientisis that un-
reasonable machines are neither a good idea nor are they necessary:
In fact, they are to be avoided, and, therefore, microprogramming
should also be avoided whenever and wherever possible. On the other
hand, if one ‘is faced with an unreasonable machine, then micropro-

gramming, as defined here, is a necessary tool.



13

Alternatives to Microprogramming

It was suggested in the introduction that there has been a rela-
tively poor showing in most attempts to use microprogramming for
other than the implementation of conventional machines, which is mere-
ly an application of the disguising function referred to in the pre-
vious section of this paper. However, given our new understanding
of microprogramming, this lack of success is ho real surprise. It is
due, in large measure, to the fact that these other attempts to use mi-
croprogramming precluded by definition the use of reasohable machines
as hosts. In fact, in past years, there existed no such reasonable ma-
chines. There appear to be two viable alternatives to the pursuit of
microprogramming which can be recommended.

The first major alternative is to pursue the development of rea-
sonable machines. To do this it is necessary to analyze the forces ac-
ting upon the system architect, such as those suggested earlier, and

then to reject totally any rules of thumb which resemble the ones

stated.. It is possible to design and build machines which have no

timing problems, which exhibit an economy of well chosen and well in-
tegrated facilities, which have no obtrusive "features!" based on some
accidentally available componentry or someone's ingenuity, and which
are not befouled by constraints imposed prior to conceptualization of a
whole design. The quest will become more and more important as time
and technology progress. In (2) Foster predicts an era of machines

which are very inexpensive and yet very powerful. But will they be

reasonable? It is obvious that they should be, but, given the present
exploitation of microprogramming to hide a multitude of design sins, we
cannot be sure.

The second major alternative to microprogramming is to carry out
the proposed research programs, for example that of the author in
1969 (7), but on machines intended to support the proposed projects;
that is, on reasonable machines. Such activity appears to be under-
way in a small. .- number of institutions but may become widespread as

the availability of somewhat reasonable machines increases.



14

CONCL. USION

Given the ideas expressed above, the significance of micropro-
gramming is presently far out of proportion to its potential return.
At least a portion of the vast amount of time being spent on coping with
unreasonable machines would be better spent on other tasks. A com-
mittment in the direction away from microprogramming can be expec-
ted to result in an era with a high number of hopefully reasonable
systems implemented through Iinterpretation on reasonable machines.
Rather than basing my new interpretation of microprogramming
on prior attempts to define this term, | have concentrated on the charac-
teristics popularly attributed to the term by contemporary practitioners.
This analysis is preceded by an examination of the closely related topics
of the development of microprogramming, the use of interpretation, and
the state-of-the-art in system architecture. At the heart of the latter part
of the paper is the concept of unreasonable machines and the claim that

their use interferes with productive work in system implementation.




(1)

(2)

(3)

(7)

(9)

(10)

(1)

(12)

15

REFERENCES

Flynn, M., and Rosin, R.F. Microprogramming: an intro-
duction and viewpoint. IEEE Trans. Comput. C-20, 7, (July 1971),
727-731.

Foster, C., A view of computer architecture, Comm. ACM, 15,
7 (July 1972) 557-565.

Foster, C., Computer Architecture, Computer Architecture
News, 2, 1, ACM, (Jan. 1973).

Husson, S., Microprogramming: Practices and Principles,
Prentice-Hall, Englewood Cliffs, N.J., 1970.

Opler, A., Fourth generation sofiware, Datamation, vol. 13,
No. 1 (Jan. 1967) 22-24,

Rosen, S., Programming systems and languages, Comm. ACM,
15, 7, (July 1972) 591 -600.

Rosin, R.F., Contemporary concepts of microprogramming

and emulation. Computer Surveys 1, 4 (Dec. 1969), 197-212,

Rosin, R.F., Frieder, G., and Eckhouse, R., An environment

for research in microprogramming and emulation, Comm. ACM,
15, 8 (August 1972) 197-212.

Weinberg, G., The Psychology of Computer Programming, van
Nostrand Reinhold, New York, 1971.

Wilkes, M.V. The best way to design an automatic calculating

machine. Manchester U. Computer Inaugural Conf., 1951, 16-21,

Wilkes, M.V. The growth of interest in microprogramming, Comp.
Surveys, 1, 3 (Sept. 1969) 139-145,

Wolontis, V.M., A complete floating-decimal interpretive system
for the IBM 650 magnetic drum calculator, Technical Newsletter

No. 11, Applied Science Div., IBM, March,! 956.




	20050912090135.pdf
	20050912090225.pdf
	20050912090250.pdf
	20050912090311.pdf
	20050912090359.pdf
	20050912090430.pdf
	20050912090456.pdf



