Open House in

Unusual Automata Theory
January 1972

Brian H. Mayoh (ed.)
DAIMI PB - 15
June 1973

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540 :F

]
-

DK-8000 Aarhus C, Denmark

— [|

INTRODUCT ION

The Aarhus Open House was intended as an informal
forum for the exchange of ideas on recent developments
in automata theory and its applications. In order to
give a fair impression of those recent developments
that were discussed, these proceedings include more
than a reprinting of some of the formal papers that

were presented.,

However, no report can convey the lively interaction
between the participants that developed during the
course of the open house. The success of the meeting
was due both to the invited participants and to the
many local staff members who were involved in so

many ways.

Brian H. Mayoh

CONTENTS

List of participants

L.ist of lectures

List of books in open house library
Bibliographies

Open Problems

Articles:

Ausiello, G. : Computational Complexity

Bancilhon, . : A Geometrical Model for a Stochastic Automaton

Bancilhon, F. ! Necessary conditions for automata inter-
changeability

Doucet, P.G. ! The Growth of Word LLength in DOL ~-Systems

Herman, G.T. et al. @ Synchronization of Growing Cellular Arrays

Lindenmayer, A. : Cellular Automata, Formal Languages and

Developmental Systems

Paz, A. & Salomaa, A.: Integral Sequential Word Functions and Growth
, Equivalence of Lindenmayer Systems

Vitanyi, P. : DOL~Languages and a feasible Solution for a Word
Problem
Vitanyi, P. : Context-variable L.indenmayer Systems and some

simple Regenerative Structures

Unusual Automata Theory, January 1972

List of participants:

Dr. Giorgio Ausiello Jan. 9-22,

Istituto per le Applicationi del Calcolo
Consiglio Nazionale delle Richerche
Piazzale delie Scienze 7

00185 Roma

Italia

Francois Bancilhon Jan.17-28.

Institut de Recherche d'Informatique et d!Automatique
Domaine de VVoluceau

78 Rocquencourt

France

Dr. Paul G. Doucet Jan. 12-21,

Filosofisch Instituut
Heidelberglaan 2
"De Uithof!"

Utrecht

Holland

Professor Gabor T. Herman Jan. 9-26,

Department of Computer Science
State University of New York/Buffalo
4226 Ridge L_ea Road

Amherst, N.Y. 14226

USA

Pauline Hogeweg Jan. 12-23.

Filosofisch Instituut
Heidelberglaan 2
"De Uijthof!"

Utrecht

Holland

Dr. Gunther Hotz Jan. 11~18.

Univer*s._ité't des Saarlandes
Saarbrucken
Bundesrepublik Deutschland

Herbert Kopp Jan. 16-29.

Univer‘s__it'a't des Saarlandes
Saarbrucken
Bundesrepublik Deutschiand

list of participants cont. :

Professor Aristid Lindenmayer Jan. 9-15.

Filosofisch Instituut
Heidelberglaan 2
"De Uithof!

Utrecht

Holland

Jan van Leeuwen Jan. 22-28,

Mathematisch Instituut
Budapestlaan

"De Uithof!

Utrecht

Holland

Professor John Myhill Jan. 9-15.

School of Mathematics
University of Leeds
Leeds LLS2 9TJ
England

Professor Azaria Paz Jan. 9-28.

Technion

Israel Institute of Technology
Technion City

Haifa

Israel

Martti Penttonen Jan. 9-28.

Department of Mathematics
University of Turku

20500 Turku 50

Finland

Professor Bernd Reusch Jan. 9-29.

Institut fur angewandte Mathematik und Informatik
der Universitat Bonn

53 Bonn

Wegelerstrasse 6

Bundesrepublik Deutschland

Professor Arto Salomaa Jan. 9-28.

Department of Mathematics
University of Turku

20500 Turku 50

Finland

list of participants cont.:

Paul Vitanyi Jan. 9. 28.

Foundation Mathematisch Centrum
2e Boerhaavestraat

49 Amsterdam (QO)

Holland

Adrian Walker Jan.

SWNY at Buffalo
4226 Ridge |_ea Road
Amherst, N.Y. 14226
USA

9-28.

List of lectures:

January 11:

Gabor T. Herman:

Gabor T. Herman:

January 12:
Azaria Paz:

A. Lindenmayer:

January 13:
Bernd Reusch:
A. Salomaa:
J. Myhill:

January 14:

G.T. Herman &
A. Lindenmayer:

J. Myhill:

January 17:

A. Salomaa:

A, Paz:

January 18:
A. Paz:

G. Ausiello:

January 19:

A. Salomaa:

P. Hogeweg:
P.G. Doucet:

IPolar Organisms with Apolar Individual Cells!

ICEL.IA - A CEllular Linear lterative Array
Simulator Program!

lIntroductory Stochastic Automata and Lnaguages!

locally catenative formulast

(2) IL-Systems with interactions!

10n linear and Partial Linear Realization of Automata!
1Growth functions of DPOL -systems!

IUnprovability of the induction schema in the ramified
Principiat

IUse of automata theory in the simulation of develop-
mental processes!

IIntuitionistic Set Theory!

ITime-varying automata and grammars!
IProgrammed Grammars!

iINonclosure and Unsolvability Results for
Stochastic L.anguages!

INonclosure and Unsolvability Results for
Stochastic Languages!

1Abstract approach to computational complexity!

IControl LLanguagest!
'1Ordered Grammars!
IGeneration of Branching-Patterns in 2L -Systems!

1The growth of word length in DOL -Systemst!

list of lectures (cont.):

January 20:
A. Paz:

F. Bancilhon:

January 21:
P. Vitanvi:

G. Ausiello:

January 22:
B. Reusch:

January 24:
A. Paz:5

J.* van Leeuwen:

B. Reusch:

January 25:

A. Salomaa:

G.T. Herman:
B. Reusch:

January 26:
A, Paz:

F. Bancilhon:

January 27:
A. Salomaa:

P. Vitanyi:

tWord function of Markov chainst

'Necessary conditions for Automata Interchangeability!

IDOL.-Systems: letters and their propagations,
the word pattern and numerical values involved
in finite languagest!

IUnusual abstract computational complexity!

'On linear and partial linear realization of automata,
part 1!

tWord function of Markov chains!

IRule labeled programs - a generalization of the
notion of a context-free grammar!

ISurvey on recent Results on the Input-Semigroup
of Linear Automata!

'Ordered Grammars!

IDifferent approaches to probabilistic grammars!
ILinear-space automatal

ISynchronization fo growing cellular arrays!

ISurvey of Recent Results ...

IDecomposition of Stochastic Automatal

IA Geometrical Model for a Stochastic Automaton!

see January 25.

'1Sexually Reproducing Cellular Automata!

Matematisk Institut Aarhus Universitet I |

DATALOGISK AFDELING

Ny Munkegade - 8000 Aarhus C - Danmark
TIf. 06-1283 55

n=mn
=
=l

Unusual Automata Theory

I_ist of books in open house library:

Arbib, M. A. : Theories of Abstract Automata

Claus, V. : Stochastische Automaten

Codd, E.F. : Cellular Automata

Conway, J.H. : Regular Algebra and Finite Machines
Salomaa, A. : Theory of Automata

Tou, J.T. ~: Applied Automata Theory

Paz, A. ! Introduction to Probabilistic Automata
Banks, E.R. . Information Processing and Transmission

in Cellular Automata

Burks, A. W, : Essays on Cellular Automata
Caianiello, E.R. : Automata Theory
Wiener, N. & Schadé, J.P. : Cybernetics of the Nervous System

J. Computer System Sci. 4, (1970)

Rozprawy Matematyczne, 31-40, (1963-64)

Proceedings in Applied Mathematics, Vol. XIV

Mathematical Theory of Automata, Symposium Proceedings VVol. Xll
1969 ACM Symposium on Theory of Computing

1970 Second Annual ACM Symposium on Theory of Computing

1966. Seventh Annual Symposium on Switching and Automata Theory

/km

Matematisk Institut Aarhus Universitet I | :I]I]

DATALOGISK AFDELING Jr

Ny Munkegade - 8000 Aarhus C - Danmark
TIf. 06-1283 55

I=Hi

=m
TJl_

____l

L.ist of books in open house library: (continued)

Minsky, Marvin L, : Computation: Finite and infinite Machines
Hennie, F.C. : Finite-State Models for Logical Machines
von Neumann, J. : Theory of Self~-Reproducing Auto mata
von Neumann, J. : The Computer and the Brain

Ross Ashby, W. : An Introduction to Cybernetics

Harrison, M. A. . i_ectures on Linear Sequential Machines
Gill, Arthup ! Introduction to the Theory of Finite-State

Machines

BIOLOGICAL AUTOMATA BIBLIOCGRAPHY

Lindenmayer, A.

L indenmayer, A.

Herman, G.T.

Herman, G.T.

van Dalen, D.

Rozenberg, G. &
Doucet, P, G,

: Developmental Systems without Cellular Inter—

actions, their languages and grammars
(J. Theor. Biol. 30 (1971), 455-484)

: Mathematical Models for Cellular Interactions

in Development
(J. Theor. Biol. 18 (1968), 280-315)

: Computing Ability of a Developmental Mode! for

Filamentous Organisms
(J. Theor. Biol. 25 (1969), 421-435)

¢ Role of Environment in Developmental Models

(J. Thoer. Biol. 29 (1970), 329-341

: A note on some Systems of Lindenmayer

(Math. Sys. Th. 5 (1971), 128-140)

: On OL.~L_anguages

(Inf. Control 19 (1971) 302-318)

CELLULAR AUTOMATA BIBLIOGRAPHY

ki Concentrated introduction to the subject

s: Self-reproducing automata

g: Garden of Eden problem

[1]:

[2]:

[3]:

L4]:

[5]:

L6l

[7]:

[sl:

Codd, E.F. : Cellular Automata, kap. 1-2(k), kap. 3-8 (s)
(ACM Monograph Series, Academic Press 1968)

Burks, W, . Essays on Cellular Automata

Essay 1 (s)
Essay 6-7 {9g)

(University of lllinois Press 1970)

Banks, E.R. ! Information Processing and Transmission in
Cellular Automata (s)
(MAC TR-81 MIT Jan. 1971)

Winograd, T. : A simple Algorithm for Self-~-Replication (s)
(MIT Memo No., 197)

Amoroso, S. &

Cooper, G. : The Garden of Eden Theorem for Finite
Configurations (g)
(Proc. of the Amer. Math. Soc. 26, 1970, pp. 158~164)

Yamada, H. &

Amoroso, S, : A Completeness Problem for Pattern Generation
in Tessalation Automata
(J. Comput. System Sci. 4, 1970, pp. 137-176)

Gardner, M. : On Cellular Automata, self-reproducing, The
Garden of Eden and the Game !"life" (s, g)

(Sci. Amer. Fber. 1971, pp. 112~117)

Gardner, M. : The Fantastic Combinations John Conway's

Solitaire Game "life'!,

10

STOCHASTIC AUTOMATA BIBLIOGRAPHY

The references marked *) are recommended as introducing - the re-

ferences are arranged chronologically.

*) Robin, M.O.:

Carlyle, . W,

Salomaa, A

Even
*) Paz, A.
Page, C. V.

Salomaa, A.

McLaren, R. W.

TuraKeinen, P.

: Prababilistic Automata

Information and Control 6 - 1963 — p. 230-245,

: Reduced Forms for Stochastic Sequential Machines.

I. Math. Ann. Appl. 7 - 1963 - p. 167-175.

: On probabilistic Automata with one input-letter.

Ann. Univ. Turku - Ser. AI85, 1965.

: Comments on the Minimization of Stochastic Machi-

nes. IEEE - Trans. on EC. - 14 - 1965 - p. 634-677.

: Some Aspects of Probabilistic Automata.

Information and Control 9 - 1966 - p. 26-60.

: Egvivalence between probabilistic and determinis—

tic seqvential Machines.
Information and Control 9 - 1966 — p. 469-520.

: On Events represented by Probabilistic Automata of

Different Types.
Canad. J. Math. 1966 - p. 242-251,

! A Stochastic Automaton Model for the Synthesis

of LLearning Systems.
IEEE Trans, on Sys. Sci. and Cyb. - ssc 2,
2 -1966 - p.109-114,

: On non-regular Events representable in Probabi=

listic Automata with one input-letter.

Ann. Univ. Turku. - Ser. Al 90. 1967.

Salomaa, A.

Paz, A.
Paz, A.
Paz, A.

TuraKeinen, P.

ChandraseKaran, B

Arbib, M.

Salomaa, A.

Ellis, C.

Bancillon, F.

Paz, A.

11

: On m-adic probabilistic Automata.

Information and Control lo, 1967 - p. 215-2109,

: Minimization Theorems and Techniques for Seq-

vential Stochastic Machines.

Information and Control 11 - 1967 ~ p. 155-166.

: Fuzzy Star Functions, Probabilistic Automata and

their Approximation by non-probabilistic Automata.

Journal of Comp. and Sys. Sci. 1 - 1967 - p. 371-390.

: Homomorplisms between Stochastic Seqvential Ma-

chines and related problems.
Math. Sys. Theory. 2 - 1968 - p. 223-245,

: On Stochastic Languages.

Information and Control 12 - 1968 -~ p, 304-313.

: Stochastic Automata Games.

IEEE Trans. on Sys. Sci. and Cyb. - ssc 5, 2,
1969 - p. 145-149,

: "Theories of Abstract Automata!t. 1969,

Chapter 9: "Stochastic Automata'.

: "Theory of Automata't — 1969

Chapter 2: "Finite non-deterministic and Proba-

bistic Automata'l.

: Probabilistic lLanguages and Automata.

Sec Ann. ACM Symp. on th. of Comp. 1970

: Dispersion metrices and Stochastic Automata Mor-

phisms. Int. Symp. on the Th. of Mach. and Comp.
- Haifa - 1971.

: Introduction to Probabilistic Automata.

Ac. Press. 1971.

12

CGRAMMARS AND AUTOMATA WITH CONTROL DEVICES BIBLIO~

GRAPHY :

Abraham, S.

Cohen, R.S. &
Nash, 8. 0.

Friant, J.

Fris, I.

Ginsburg, S. &
Spanier, E.H.

Greibach, S. &

Hopcroft, J.

Rosenkrantz, D. J.

Salomaa, A.

: Some questions of phrase structure grammars
(Computational Linguistics 4 (1965), 61-70.)

: Parallel leveled grammars

(IEEE Conf. Record of 1969 Tenth Ann. Symp.
on Switching and Automata Theory, 263-276.)

: Grammaires Ordonnées -~ grammaires matricielles
(Université de Montréal (1968), 43 pp.)

Grammars with partial ordering of the rules
(Information and Control 12 (1968), 415-425)

: Control sets on grammars
(Math. Systems Theory 2 (1968), 159-177.)

:Scattered context grammars
(J. Comput. System Sci. 3 (1969) 233-247.)

: Programmed Grammars and classes of formal

fanguages
(J. Assoc. Comput. Mach. 16 (1969), 107-131.)

: On grammars with restricted use of productions

(Ann. Acad. Sci. Fennice. Ser. A1 454 (1969),
32 pp.)

On the index of a context-free grammar and
language

(Information and Control 14 (1969), 474-477)

Periodically time~variant context-free grammars
(Information and Control 17 (1970), 294-311.)

13

Salomaa, A. : Probalistic and weighted grammars
(Information and Control 15 (1969), 529~544.)

- : Theory of Automata
(Pergamon Press (1969), 276 pp.)

- : On some families of formal languages obtained
by regulated derivations
(Ann. Acad. Sci. Fennicae, Ser. Al 479 (1970).)

Stotskij, E.D. : Some restrictions on derivations in context-sen=-
sitive grammars
(Akad. Nauk SSSR Nauchno-Techn. Inform.
Ser. 2(1967), 35-38 (Russian).)

- : The notion of index in generalized grammars
(Ibid. (1969), 16-17, Russian.)

- : Generative grammars with regulated derivations
(1bid. (1968), 28~31, Russian.)

PROBLEMBOOK

UNUSUAL
AUTOMATA
THEORY

JANUARY 1972

UUUUUUUUUUUUUUUUUU
DDDDDDD

1)

2)

3)

4)

6)

15

Is the family of languages generated by context-sensitive
grammars with a context-free control language equal to

the family of context-sensitive languages?

Is there a context-free language L. such that every context-

free grammar for L. has a non-context-free Szilard-language ?

- Given a language L, in what cases is it possible to decide

whether L is a Szilard-language of some grammar ?

Give a characterization for the family of languages generated

by context-free ordered grammars.

Is there a PD2L~-growth function which is not a PD1L~growth
function? If there is, study the same problem in terms of the

Rozenberg (k, |)-hierarchy.
Can one decide the growth equivalence of two PD1 L -systems ?

(For PDOL~ and even for DOL -systems a decision procedure

can be given.)

Arto Salomaa

16

Conjecture

Only regular languages over one letter are generated by

context~free matrix grammars (original ddinition).

Arto Salomaa

Is there any relation between

M the class of languages generated by context-free
matrix grammars,

M the class of languages generated by context~free
A~free matrix grammars with appearance checking?

Is either of these the same as

M the class of languages generated by context—-free
A~free matrix grammars?

n
Is the language {a® [n=11711in any of these classes?

Arto Salomaa

Is it decidable whether two propagating, deterministic OL~-systems

generate the same language?

More simply, when do they generate the same sequence of strings?

A. Lindenmayer

1) Is it decidable whether two context-free grammars generate the
same sentential forms? (A sentential form is any word derivable from
the initial letter, not only words over the terminal alphabet.) This

problem is closely related to the decision problems of L.-systems.

2) Develop a theory of probabilistic L-systems combining the ideas

in probabilistic automata and grammars together with the ideas in

L-systems.

Arto Salomaa

Exercise (solution available from G. T. Herman)
Give a symmetric 2-L system, which, starting from the string 'abt!,
generates a sequence of strings of length 2,3,5,8,13,.... (the Fi-

bonacci sequence).

i) Give an algorithm which, for any regular expression R, finds

the number ¢ (R), where

o (R) = (1 n) (there is a OlL-system with n letters which gene-
rates the language denoted by R).

(ii) Give an algorithm which, for any regular expression R, pro-
duces a OL-system with o (R) letters, which generates the language

denoted by R.

(iii) Do (i) and (ii), but with context-free grammars in place of re-

gular expressions.

G. T. Herman

18

Lineare Automaten

Sei 0 : Xx Z-+ Z die Zustandsfunktion eines linearen Automaten.

Ist 0(x, Zxo) =2z dann ist

“h = z+
(z) = z zx0

ein Isomorphismus des autonomen Automaten mit x = 0 auf den autono-

men Automaten mit dem konstanten Eingang x = X, .

InFall & nicht singular existiert fUr jedes x genau ein Fixpunkt z,

so dass alle autonomen "Faktoren!! isomorph sind.

In wie weit ist diese Eigenschaft fur lineare Automaten charakteristisch ?

G. Hotz

{ } falsch. Siehe: B. Reusch, Lineare Automaten

Bibliographisches Inst., Hochschulskripten 708
1969, p. 75-80.

Gegenbeispiel:
M linear uber GF(2).

010 100
6 (s, x) = As + Bx mit A= 001 B=|010
111 001
. O 0\ /1
fur die Eingaben 0} 1 o] {1 ergibt sich folgender Graph:
0 0 1
o o)
. 0\ /O 1 ergibt sich folgender Graph:
fur die Eingaben | O 1 O
1 1 0

; : B. Reusch

19

Give an example (or prove there is none) of a recursively enumerable

stochastic language which is not context-sensitive.

A. Paz - A. Salomaa

The regular languages, which can be defined on the m-adic machine

using rational cut points, have only 2 states. What do they lose in

exchange for the saved states?

due to Paz

Exercise:

Given a natural number n, find recursion formulas which

cannot be satisfied by any DOL.~sequence over an
alphabet.

n-letter

F.G. Doucet

20

Gegeben: beliebiger Graph

Gesucht: abstrakter endl. Automat mit folgenden Eigenschaften:

1) Die Anzahl seiner Ein- und Ausgange ist gleich der maxima-
len Anzahl von Kanten, die von irgendeinem Punkt der Graphen
ausgehen.

2) Setzt man i jeden Punkt des Graphen ein Exemplar dieses
Automaten und verbindet man Ein- und Ausgange, die vorhandenen
Kanten des Graphen entsprechen, dann berechnet dieses Automa-
tennetz eine Einbettung des Graphen in eine 2-dim. Mannigfaltig-

keit seines Geschlechtes.

Er*l'a'uter‘ung: Jeder Automat kann eine zyklische Axnordnung
der Kanten seines Punktes anzeigen; d.h. er definiert einen " ebenen
Stern''. Diese Sterne sind so beschaffen, dass sie eine 2-dim. Man.

sein. Geschlechtes definieren.

%(

Gibt es einen abstrakten Automaten, der dies fur alle Craphen mit
beschranktem Grad leistet?

Gunter Hotz

Consider the class of D2L ~grammars producing strings which
stabilize at a certain length.

Make some reasonable assumptions about maximal production
length (e.g., 2) and axiom length (e.g., 1) and then find the
maximum stable length as a function of the number of letters

in the alphabet.

after V.1. VVarshavsky

Given linear automata My, M;, My by [A;, B;, C;, D;] i=1, 2, 3,
Ay B,

such that AO:(O A%) , Bp = B,

@

How are their semigroups iH,, H” H, related?

If you have semigroups in that relation and you know that H, and H,
are the semigroups of some linear automata, is H, also the semigroup

of some linear automaton?

B. Reusch
1) Are scattered context languages equal to context sensitive
languages ?
2) Are left context~sensitive languages (context sensitive

with empty word as right context) equal to context sen -

sitive languages ?
3) Can each context-sensitive language be generated by a

grammar with left context~sensitive and permutative
(XY + YX) productions ?

Martti Penttonen

22

Invarianten von formalen Systemen

Arithmetische Ausdrucke a haben einfache Invarianten:
Man nehme den Homomorphismus ¢ der allen Zeichen ausser den
Klammern (, { s Lseses)y } ,] vergisst. ¢ (a)kann in der freien
Gruppe mit den Erzeugenden (, {, [,... und mit (—1=), { _1=} ,
[71=] auf 1 gekiirzt werden.

Gibt es weitere einfache Invarianten fur andere Klassen
kontextfreier Chomskysprachen ?

(Die charakteristische Funktion ist naturlich eine Invari-
ante, aber eine uninteressante, da die Invarianten der Berechnung
dieser Funktion vorgreifen sollen).

Man denke hierbei an den Satz von Schutzenberger - Chom-
sky : L kontextfreie Chomskysprache. =

Es gibt Dycksprache D und regulares Standartereignis S
und Hom. ¥ mit

(DN s)=L.
1

D entspricht dem Klammerwort von oben !

Gunter Hotz

23

(1) Find an algorithm (or Function), other than the trial or error
method, which for every integer n> 0 vyields an arbitrary

number m of pairwise relative primes k;, ..., _km and a

positive integer d (which may be zero) such that

Z k; +d is minimal.

(2) The same as (1) but Ii k,+d=n

m
ad (1) 2 k; +d isthe minimal number of letters needed to generate
i=1
a finite DOL -language of exactly size n.
m —
ad (2) ki + d is the minimal number of letters needed to generate

[Ny

a finite DOL.~language of at least size n.

Paul Vitanyi

24

Give an algorithm which will do the following:

Input: A finite set S of finite ordered sequences of words over
a finite alphabet 2.
>y ey

S={<p.1 09 P1 15 cecs3 P1n ~3y <P2o0s Po 15-++35P2 ’
H] ? ’» 1 ’ ’ 2 R

<pm 0s Pnm 19 oe+9 Pnn >}
I ’ »om

OQutput: A DIL-system L such that, for1 = ism, 1 <j<n

Such a system L. may not exist, in which case the algorithm should

produce an output indicating the non-existenxe of L.

[This problem, and similar problems, appeared in the Feliciangeli
& Herman paper, which is in the folder in Biological Automata. Of the

36 problems mentioned in that paper, there are 6, including the one

described above, which are still open. |

G.T. Herman

25

Consider the set C(Z) of polynomials with coefficients in £
and leading coefficient 1, and its subset C (Z7) (with leading

coefficient 1 and the others non-positive).

Problems:
1) If f€eC(Z), finda g€ C (Z) such that fg€ C (Z).

2) Find necessary and/or sufficient conditions for the existence of

such a g (given f).

Comment:
- one necessary condition (for problem 2) is that f be not of the form

f(x) =X + - X7+ o foax - (with all g, € N).

- a DOL -language is locally catenative only if (not : if) such a g
exists for the characteristic polynomial of its associated pro-
duction matrix. All such matrices .define a set of polynomials
which is smaller than C(Z) (and to which the f in the example

does not belong).

P.G. Doucet

Given two DOL - (or PDOL.-) grammars G and & , is it possible

[. A
to say whether for some Kk & x Wk = wkx ? (or vice-versa, Wk = ka)'

due to G. Rozenberg

26

Very hard problem:

f:{0,1/* + {0,1}] is a "Boolean Function'".

Def: f is a thresholdfunction : & (\V/ (f(xy .o) =1 © Za; x; 2t))
han,..,3,€ER

2N -
A ALB, .8 €f0,1)r (A =T,

K k
f(B,) =0, i=1..k=>Z A +3T B,))
i=1 i=1

Def: f is k—asumable : o (

addition of vectors
over the regls!

Theorem (well-known) : f is a thresholdfunction © /\ f is k—asumable.

keEN

Theorem: if n= 8, then

f is a thresholdfunction © f is 2—-asumable.

proof: by enumeration (! 1)

Conjecture: For every n there is a m(n) such that

f is a thresholdfunction e /\ f is k—asumable
k<m(n)

Problem: Prove the conjecture and give some bound for m(n).

B. Reusch

27

/}U‘(_z {wﬁ » [45 u // S

i XS ot y Jun j./ NNzt 7 nn z
. . l
. / /
. i] { [i : J, . p { // A TS
“-.,V/ ,‘i ;r o (’: i o T < L_'; i L t OL (e EZ/ { € //9 Lo U 2 /'
/] ey

) ,'] . g
{ I ‘/ Voo d [} {' ‘C{/\ Q/}/ weve oL
R A g

L
7 O s
':” ,{';./, \L/' C ,’/\L i (/} (_,_

{ ‘!1"'«
; { ! ; {
‘/ y j {(!\\ 0 i\/ a {\};:5{,(}/ ¢ 1[’ Ly /'l 6’(o ul to é) Va 121 { La n At)

I
/ Y
oy .) » Loy 2 Lo
f ing VL w5 o L/ Fet &// ¥ i 7 / D
J

., i
on é(/té j&“/

4] \ T
j{ 7, {L e 1 N ‘/('~ (,?/ A7 7 /C Ll v J

A4 i & {\ /7 ol [1 vView (21w 7 s v J

i3 p 4 { 1,‘(ya 1 0.\ &7 7 _(,L / 124 5 { L Q\?r (/) .
[/ AN 14

4 J? -~ h(’:/;\:,f«/"{/mfxff/z/\

l'l /

/k/ﬁéé //{;z,z,w”%{c? 0"/

\/;/71/,) g

28

COMPUTATIONAL COMPLEXITY:

Hain results and a conmentary.

Giorgio Ausiello

Istituto per le Applicazioni del Calcolo del CL.N,.R.

Roma, Italy
Summary
0, Theories of computational complaxity.
1. Subrecursive classes,
2. The machine dependent approach.
3. The abstract approach.
4., Structural abstract cdmputational complexity,

. 29
0. Theories of computational complexity.

The theory of computational complexity has been deve
loped as an attempt to answer basic questions both on
the side of all days programming exigencies and on the
side of logical foundations of computing processes: for
example, "Given two functions, which one is easier to
compute?" "Given two algorithms for the same function,
which of them runs faster?".

Though those questions appear to be verybnatural
questions, even to state them properly we first need to
meke clear what we mean as 'easy to conpute" , "ruiming time",
etc., In connection to this pqint we may find a wide range

- of approaches to the problems of computational complexity.

A, Analvysis of algorithms: here the notion ofncomplexity
is defined in terms of elementary operations required to
perform a particular processing of particularly structured
data. For example; operations on numbers in binary notation,
matrix multiplication, sorting sequences of integers, etc, |
In this field the problems are to find efficient (or even
optimal) techniques of encoding structured data and of per
forming the required transformations and, at a first level
of abstraction, to find classes of problems that are of
equivalent degree of complexity in terms of a given comple
xity measure.

We will not deal with this approach, but, in order to
give an idea of the Rind of work people are doing in this

area we give a short bibliograephy at the end of this paragraph.

30

B, Subrecursive classes. Under this name we will consi

der many various attempts to give a hierarchy of clacses
of primitive recursive functions in which, according %o
some a-priori definitions of complexity, functions falling
in class C, are "easier" than the functions falling in
class (4 - C;. In paragraph 1 we will give a brief

survey of the work that has been done in this area.

C; Time and tape bounded abstract machines., Working with
a particular abstract machine,very natural notions of time

and space required to compute functions, immediately arise,
Using these notions as complexity measures}i@portant results
have been achieved both in providing a classification of
primitive recursive functions and in showing properties

of more general complexity classes., Paragraph 1 will be devg

ted also to this approach.

D. Axiomatic computational complexity. This approach is

interested in giving a very weak notion of what we can
consider a complexity measure and in establishing results
that hold for all such measures. For this reason this is
often called a machine independent approach., Paragraph 2
will be denoted to the basic results in this area while
paragraph 3 will give a survey of a few subjects on which
research in abstract compufational complexity has been

recently carried on.

E, Information theoretic approach to computational comple-

xity. From the point of view of the information content of
a program the complexity of a string w of length n is
roughly given by the length of the shortest program that

given n as an input gives w as an output. Relations

 between highly complex strings and the notion of randomness

have been investigated. A very recent paper in this ares iss

' 31
Schnorr, C.P. A unified approach to the definition of

randon sequences, Journal of Mathematical System Science
Sept. 1971 and from its bibliography most of the important
papers in this area can be retraced,

An extensive bibliography on the whole field of computa-
tional complexity has been written by Marek I. Irland and
Patrick C. Fisher, University of Waterloo,Dept. of Applied
Ahalysis and Computer Science CSRR 2028 October 1970.

A bibliography of analvsis of alsorithms:

- D.E, Knuth, The art of computer programming, Addison
Wesley.,

- S. Winograd, On the time required to perform addition,
J. ACM 12 (1965).

- S. Winograd, On the time required to perform multipli-
cation, J. ACH 14 (1967).

- S. Winograd, On the number of multiplications required
to compute certain functions, Proc. Nat.Acad. of
Sciences 58, 5 (1967).

- V. Strassen, Gaussian elimination is not optimal, unpub
lished, Angewandte Mathematik der Un1vers1tat
Zﬂrlch (Dec.1968),

- M. P, Spira, The time required for group multlpllcatlon,
J. ACM 16 (1969).

- P. M. Spira, On the computation time of certain classes
cf Boolean functions, ACH Symposium on Theory of
Computing, Marina del Rey, Calif.(May 1969).

- J. E. Hopcroft, L. B, Kerr, On minimizing the number of
multiplications necessary for matrix multiplication,
. Tech. Rep., N, 69~44, Department of Computer Science,
Cornell University (Sept. 1969).

- M. 0. Rabin, On proving the simultaneous positivity of
linear forms,Third ACHM Symposium on Theory of Computing
Shaker Heights, Ohio.

- A. Borodin, Some results on the computation of polynomial
forms, An Int., Symp. on the Theory of Machines and
Computations, Haifa, Israel (1971).

32

J. NMorgenstern, On linear algorifhms, An Int. Sympe.
on the Theory of HMachines and Computations,
Haifa, Israel (1971). :

I, Munro, Problems related to matrix multiplication,
Symposium on Compututional Complexity, N.Y.U. (1971).

P, M. Spira, On the complexity of linear algorithus,
Symposium on Computational Complexity, N.Y.U.(1971)

S. A. Cock, The complexity of theorem proving procedu
res Twelfth Annual Symposium on Switching and
Automata Theory, East Lansing, Michigan (1971).

1 Subrecursive classes, . ‘ oo : . 33

e .

In this paragraph we will deal with the notion of
complexity as it is related tc the structure of the e - .
finition of a function or to the specific resource thas

is needed to compute it on an absiract machine.

1.1 Classes based on growth rate.

The first rough classification of functions has been
introduced since the early days of recursive functiuns
theory. |

The broadeét class of computaﬁle functions is the

class(R,of partial recursive functionsg. They are oxa-

ctly those functions that can be computed by a turing
machine, a Markov algorithm, a register machine or any
other kind of mechanical device.

They can be defined in terms of base functions and
operators. The set of base functions we need %o define
the class @;are the following (we will refer o them as

base functions from now on):

. e ‘ ;
zero funtion: 07(X,y eavey x,) =0 n 70
successor functions S (x) = x + 1
. . . v ’ ,
identity functions: UA(X,y cvuayx,) = x; 1£1i4n

The operators that allow us to define new p.r. functions
in terms of other p.r. functions are the following (let

X be the argument vector)

composition: given hy 81y ¢eee Erm
f(X)= h(g,(X) ieuy g (X))
primitive recursion: given h, g

f (X) 0) = g (X)
(X, y+1) =h (X, 5, £ (X, y))

34

minimalization :- given g 4
£ (X) = uy (g (Xy) = 0)
where/uﬁy means "the least y such

that ... ' and g must be a total function.

Hence the class G% is the smallest class that contains
fhe base functions and is closed under composition, primiti
ve recursion, minimalization.

% The class & contains functions whose growth rate is
extremely fast, such as the Ackermann function. A smaller
class of functions, all of which are total, is the class @

of primitive recursive functions: Gb is the smallest class

that contains the base functions and is closed under compo
51t10n and primitive recursion.

Primitive recursion, though, is'still a'powerful operaw
tor that allow us to define functioné that grow too fast.

The elementary functions (Kalmar) are a proper subset of

GD and we might say that practically in all problems of
every day life we deal only with this kind of functions. The
classﬁg,of elementary functions is the smallest class that
contains as initial functions the base functions, additipn

and substraction and is closed under composition, limited

summation (given g, f(X, y) = Z:, g (X, i)) and
limited multiplication &y
(given g , f(X,y) = - uy g (X,i)) .

A L4

It can be easily shown that elementary functions do not

have a growth rate faster than exponential,

The classification of recursive functions in general,
primitive and elementary recursive functions is not satig
factory because it is too wecak; for thisvreason people
interested in classifying re.ursive functions have been
working mainly on this point: finding an infinite set of
classes of primitive recursive functions ordered by inelu~
sion according to some intuitive notion of complexity.

The first notion that has‘béen used is growth rate.
Andrzey Grzegorczyck in 1953 gave the first results in
this direction., We will expféssl - them using the formula-
tion that has been given by R. Ritchie in 1965.

~Let us define the following infinite ordered set of

functions:

X + 1

i

fo(x, ¥)
£, (x, y)
f,(x, y) = xvy
and for n 2 3
f.(x, o) =1

n

X +Yy

fn(x, y+ 1) =1, (x, fw(x,y))

This set of functions is often called "spine'" of the
hierarchy of classes of functions that we are going to de-
fine, It is easy to see that, roughly speaking, each Ifun-
ction is the iteration*éf the preceding one, This is the
same idea that has been used by Ackermann in order to defi-
ne a recursive function that gréws faster than any primiti-

ve recursive function.

35

36

Thekway to define classes based on the growth rate
is, now, to put in each class one function of the spine
but to forbid iteration, that is we are &llowed to us2
primitive recursion in order +to add functions to the
class, provided the new function grows less than some
functions already in the class,
lMore precisely, we say f is defined by limited
recursion on g, h, j if f (X, o) = g (X)
£ (X, 3 +1) = h (X,7,f(X,y))
£ (X, y) ¢ § X, y)

Then we define 'gh,to_be the (n + 1)-th Grzegorczyck

class if ﬁ%w is the smallest class that contains as initial

functions the base functions and<ﬁv}and is closed under

composition and limited recursion.

Basic properties of Grzegorczyék classes are the following:

i) Vn gn < ‘%nﬂ

o0 +
ii =
) U g =@
iv) ¥, 2 2 V one argument function 3€ Sy T (2,2) 2 g(x)

. . . O
v) b@,77 2, J%n \ contains a universal function for ¢
*

Nevertheless, the most important property of the Grzegor

“eczyck classification is its stability with respect to diffe-

rent intuitive notions of complexity as we will see in the

next paragraphs.

(*)- We say that f 1is defined by iteration on % if
£f(x) = g (x)

37

1.2 Classes based on depth of nesting of iteration,

In 1963 Paul Axt introduced the idea of measuring

the complexity of a primitive recursive function in terms
of number of times the operator: of primitive recursion is
used in a nested way.

: Accordlngiykthe first level of Axt hierarchy }<°,
is made of all functions that are defined by composition
of the base functions; K, is made of all functicns that are
defined using the primitive recursion operator at most once
etc. In general a function f is in K o if it is obtained

either by composition of other functions of K;FH' or by

primitive recursion of functionsin KX

In order to give a more neat formulation of this
approach, in 1968 Dennis Ritchie introduced the so-called
iloop programs.

Essentially a loop program is a formalism to compute
primitive recursive functions, that is interpreted on a re-
lgister machine (Shepherdson & Sturgis machine). The instruc
tions of a loop program are of the following type:

i) X &0 |
ii) x &y
iii) X ¢y + 1
iv) ILOCP x

i1l

end

The instructions of type 1), ii), iii) have a transpa
rent meaning of assignment statements of the content of
register X, respectively clear, load, add 1 and load. A
LOOP--END pair is the function that gives the iterative

capability to the language, It is sortof a DO statement

38

where the Sequeﬁce'of instructions (program) denoted
by’qr is executed as many times as the content of X
(in ¢=so (x) = 0 , no times at all). Content of X is
assun~d unéhanged during execution of M.

Using loop programs D, Ritchie defined a hierarchy
of classes of functions in the following way: the first
lével L, is made of all functions that have a program
thét does not require a LOOP instruction. Level T
is made off all functions that have a program where a
LOOP-END pair is nested n times.

-Intuitively the notion of complexity.fhat has been
uged by A x t and Ritchie is a notion of structural
complexity, that is it has to do with the complexity of'
the description of the way we have to cohpute the function.
Surprising enough are, hence,the basic results:

i) Lz,:‘”‘lgs

ii) w23 K =L = &

Inside the elementary functions the comparison between
the hierarchies is rather cumbersome, D, Tzichritzis has
tried to fill up the table of comparisons that is based on

the conjecture Ax [Ax]"¢ X, while it is in L,.

1.3 Classes based on predictability.

.Among different approaches to the notion of comnlg
xity of primitive recursive functions, there has been a
special interest for the notion of predictability because
it has been showed that it can provide not only a new
hierarchy of classes but alsocarefinement of an important
class such as the class of elementary functions.

To be able of predicting the amount of resource that
is needed to compute a function is the basic idea underlying
Robert Ritchie's original papsr (1963), and later work
by Cleave and Herman. '

Robert Ritchie's defined a hierarchy of recursive
functions in the following way: let F, be the (n+1) th
level of the hierarchy: all functions £ in F... can
be computed by Turing Machines which use in their computa-
tions an amount of tape Oy bounded by a funcfion in F .
Let ¥ ©be the set of functions that can bevcomputed by a .
Turing machine which behaves like a sequential machine,
lthat is as soon as it scans +the input it prints out the
output. Since the tape needed to compute functions in F
is exactly the tape needed to express (in binary) the
imput and the output, the class F is the level zero of
the hierarchy. Actually, the first interesting level of
the hierarchy is F, that is the set of all functions whose
computgtion requirés an amount of tape that is bounded

by a function in F, An example of function in F, is

*, In general, if £ (x) = x and §'5X) = ZQQQ

then bﬁ f;-G :L . Other results are:

1) V. Fo & Fon

ii) _Cop _
. '%z-t{E%SCn)”_wxh)sP%-Q(XH_NWX%JEEE h

iii) O T %

39

40

In the same year J. P. Cleave proposed an other
hierarchy of functions based on the predictability of
the numbexr of jump instructions executed during the
computation of a function on a register machine. Also
in this case what we get is a refinement of the class
of elementary functions but, due to the use of register
machines, we can extend the hierarchy to transfinite

ordinals in such a way that all Grgzegorczyck levels

- above the elementary functions are refined through an

infinite hierarchy of levels. Let Z_be a set of functions,
EAZE;)£+| is the set of functions that can be
computed on a jumplimited register machine allowing the

following instructions:

y("_ f(Xl, ooon,X,ﬁ) . f‘ez_
IJF X = 0 THEN GOTO n ELSE GOTO mn

and accessing the jump instruction a number of times

bounded by some function in E (2_):._

Let us take Z.,_'z {-h/ -/%x/)y[IF x=y Tuew 4 ELSE CJ]}

and let E;(Z;)_‘ , be the set of constant functions.
Then, let '
E,= B (2.),
EU,; 'L45= E (E('H'c)s‘ r,s 4(/‘)
E = | .

R i\&jmrc, Eb
Eue = U E.

Lo v
The basic result is that for s 71 E. . x—%z .

This means that if we are allowedto compute in just
one step all functions of a Grzegofczyck level, then we
can refine the next level with infinitely many classes
based on predictability of jumps. Besides, according to
Herman, the refinement obtained by Cleave is as coarse as

the one given by Ritchie inside the elementary functionse

41

A bibliography of subrecursive classeés,

R.li. Robinson, Primitive recursive functions, Bull.
' AM3, 53 (1947) '

J. Robinson, General recursive functions, Proc .AMS,
1 (1950). : :

A. Grzegorczyk, Some classes of recursive functions,
i Rozprawy Matematyczne (1953)

E. Péter, Rekursive funktionen, Akadémiai Kiadd, Buda
| pest (1957)

S.C. Kleene, Extension of an effectively generated class
of functions by enumeration, Colloq.lath.,6 (1958)

P. Axt, On a subrecursive hierarchy and primitive recur
sive degrees, Trans.AMS, 92 (1959) :

R.W. Ritchie, Classes of predictably computable functions,
Trans.AMS 106 (1963)

Jd. Cleave, A hierarchy of primitive recursive functions,
Zeitschr. f, math.Logik und Grundlagen 4.
Math, 9 (1963)

R.W. Ritchie, Classes of recursive functions based on
Ackermann's function, Pacific Journal of
Hathematics, 15, 3 (1965)

P, Axt, Ernuwneration and The Grzegorczyk hierarchy, Zeitchr,
f. math. Logik undGrundlagen d. Math., (1965)

A, Cobham, The intrinsic computational difficulty of
functions; Logic, Methodology and Phylosofhy
of Science, Amsterdam (1965)

J.¥. Robbin, Subrecursive hierarchies, Ph. D, Thesis,
' Princeton, (1965). '

A,R. leyer and D,M. Ritchie, "The complexity of Loop
programs" Proc. 22 National ACHM Conf,.(1967)

R.L.Constable, Extending and refining hierarchies of
computable functions, Comp, Sci.Tech.Rep.N.25,
University of Wisconsin (June 1968)

D. Tsichritzis, A note on comparison of subrecursive
hierarchies, Information Processing Letters

1 (1971)

42
"J.C., Warkentin, Small classes of recursive functions
and relations, Tech. Rep. CSRR 2052, U. of
- Waterloo, Canada (1971)

G.T. Herman, The equivalence of various hierarchies of
' elementary functions, Zejtsch. Logik und Grun
dlagen d.lath., 17 (1971).

43
2, The machine dependent approach.

2.1 Time and tape reguired by Turing machines computations,

Anmong the different notions of complexity that we have bee:
considering until now, only the notioéxﬁredictability is
related to the amount of resource that is needed to perform
a given computation. In the case of Ritchie's classes,
though, this is done with the purpose of stressing the
constructability of certain classes of primitive recursive
functions. Under a weaker point of view the notion of amount
of time (tape) required by a Turing machine has served the
twofold purpose of '

- studying the complexity of specific problems like recogni
zing languages, computing functions belonging to certain
classes,etc. |

- 1ntroduc1ng the notion of complexity claoseg, that is of
claqses{functlons whose running time (tapn) is bounded by

a given function. ‘ ' ,

While the former type of resuits has been relevant for
what we might call "low level complexity" (most of the pro-
blems are characterized by elementary functions), the latter
is congidered the point of departure of "high level complexi
ty" (or abstract computational complexity) where the idea
of complexity class with regpect to a very general notion
of resource, is developed. ‘

Most of the work in formal languages theory, specially
for what concerns the Chomsky hierarchy, has been done with
the purpose of charécterizing the automata that are needed

to solve the recognition problem for a given class of lan- .

guages,

44

A few results are summarized here: Let us use a Turing
machine whith a read only input tape and a read / write work
tape (we say that this machine operates off-line); let n
be the lenght of a word:

i) regular languages are recognized with constant (zerot)
work tape and linear (n) time;
ii) context-free languages are regognized with (log n) tape
and n> tinme

Let the Turing machine be non-deterministic:
iii) context-sensitive languages are recognized with linear
(2 + bn) tape (it is still an open problem whether a deter-

ministic TM can recognize CS languages with linear tape).

It is clear that thié kind of problems are more on the
side of analysis of algorithms than on the side of theore-
tical computational complexity. A more general kind of re-
sult is the following (Cobham): .

iV) For any n33 Ax[F (x)] is in gw' if and only if there
ié a TM that computes f using an amount of time and an
amount of tape thét are bounded by functions in 8n.

This is certainly one of the most important results in
the theory of subrecursive classes because it states that
Grzegorczyck classes are meaningful not only from the point
of view of the growth rate and of the structural conmplexity
but also from the point of view of the computational comple
xity.

Unfortunately this happens only above the elementary
functions; as we have already said, what happens below A
elementary functions is rather messy and is usually studied

from the point of view of the analysis of algorithms. A few

results are anyway available as far as gaﬁis concerned, 45
for example: |

v ~>>4;€(x)] is inwg,if and only if there is a TIM
which computes f uging an amount of tapes bounded by

a + b log x.

2.2 Resource bounded complexity classes,

‘ An important question that comes out from problens
ﬁn~this area is the following: suppose we have a bound

on the complexity of a certain class bf.problems; how
much we have to inecrease the boupd in order to be able

of increasing the computational power? For example: we
'khow that in constant tape a Turing machine can recognigze
all and only regu;ar languages; it is known that there is
a non regular context free language that can be recognized
in tape logd log n; which is the slowest growing function
that allows a Turing machine to recognize a non regular

context free language?

In general, both in case people is interested in
practical compﬁtations and in case is interested in
computations by abstract machiues, the problem of defining
éomplexity classes as classes of functions whose complexity
is bounded by a certain total function, and, given a
fuﬁctionﬁthe oroblem of realizing whether it is contained
in a given complexity class aﬂd in case it is not, the
problem of finding the smaller complexity class that
contains it, are central in the whole field of computa-
tional complexity.

From the point of view of machine dependent complexity
~the first results on complexity classes have been given
by Fartmanis and Stearns in 1965, Actually they defined
the notién of complexity classes for binary sequences and

with respect to two particular complexity measures that

46

are time and tape for Turing machines, but their results

- can be thought of as the start of all high level computa-—

tional complexity studies,

A sequence & is t-computable if and only if there exists
a multitape TM which prints the first n digits of the sequen
ce o in no more than t(n) steps. Let Cf be the class
of all t--computable sequences. The only hypothes€s on 1
are that t(n) s tln+) and (ax)(Vn)th)E‘“/K]

The result for time bounded computations is the following :
i) If w(»)is real time countahle, that is

- ww) > n

- Ww(w) monotone increasing

- there is a Turing machine whose output on
the j-th step: is £ if w ()=

~ for some L , O otherwise

and if {(n) isatime function, then

tlw) ?cob’t(w)
taf =0
) W (W)
- | s s
is a sufficient condition to say that: C_ 2 -

Now let W to be a set of finite strings. We say that

W 1is 1l-tape recognizable if there is a TM that accepts

each word inY&’and rejects any other word, and for any
striﬁg of lenght vt the machine head visitsat most 1(n)
équares, where 1 must be a monotonically increasing re-

cursive function.

47

The class of all l-tape recognizable sets is denoted
by C:;
ii) If J(w)is a constructable tape function, that is there
exists a T which stops for all input sequences and for
each vn takes at most 1l(n) squares for any string of lenght
n and takes exactly 1(») squares for some string of lenght

n , then

Q{Va)
inf =0
- 00 1(w)
. ' . . T s ('T
is a sufficient condition to say that C:l Z “q

It can be noticed that the result for tape complexity
classes is stronger than the result for time complexity
classes, in fact the computational power of a class can

be more easily expanded.

Similar results have veen obtained for other measures
and all of them give an interesting insight in the properties
of the abstract device and of the resource that has been
considered. For'eXample if we use the number of head
revergals of a TM, and if ¢ (n) is a constant function
or a "sldwly" growing function it is enough to encrease
by 1 the number of reversals to encrease the computétional

. "t
power, while if « is such that lim — =0 even hy
: ne in)

decreasing it by any constant factor we cannot reduce the

R
computational power of the class C:t .

The most recent results of this type have been proved
by Haritmanis using Random Access Stored Program machines

and number of instructions executed as a complexity measure ;

48

these results state that:

i) For any >0 there exist arbitrarily complex functions

ﬂjw) which can be computed in time T (M) but cannot be

computed in time (4-&) t.(w) by any RASP program.

ii) There exist arbitrarily complex functions -Q. (n)
with self modifying programs running in time L (n) 3
such that any fixed program for f. of lenght L

v

cannot run faster than . (:z’.-éf /2 6) t,(w) for large n.

A bibliography of machine dependent theory of complexity.

H. YAMADA, Real time computation and recursive functions
not resl time computable, IRE Trans.Electronic Com-
puters EC=11 (1962) : '

J. HARTMANIS, R.E. STEARNS, On the computational complexity
of algorithms, Trans. Amer. Math.Soc. 117 (Hay 1965)

J. HARTMANIS, P.IlM, LEWIS II, R.E. STEARNS, Classifications
of computation by time and memory requirements, IFIP
Congress 1965. Vol.1 Spartan Books, Washington, D.C,
(1965) ’

R.E. STEARNS, J, HARTMANIS, P,M. LEWIS IT, Hierarchies of
memory limited computations, 1965 IEEE Conference
Record on Switching Circuit Theory and Logical Design,
(October 1965)

P.,M, LEWIS II, R.E. STEARNS, J. HARTMANIS, Memory bounds for
recognition of context~free and context-sensitive
languages, 1965 IEEE Conference Record on Switching
Circuit Theory and Logical Design, (Oztober 1965).

-B.C. HENNIE, One tape off-line Turing machine computations,
Information and Control, 8 (1966) '

F.C., HENNIE, R,LE. STEARNS, Two-tape simulation of multitape
Turing Machines, Journal ACM, 13 (1966)

J.*Hartmanis, Tape-reversal bounded Turing Machine computa
tions, Journal of Computer and System Sciences, 2
(August 1968) . .

49

J.E. HOPCROF, J.D. ULLNMAN, Formal languages and their relation

to automata, Addison Wesley Publ. Co. (1969)

- J. HARTMANIS, R.E. STEARNS, Automata-based computational
complexity, Information Sciences, 1 (1969)

S.A. COOK,Variations on Pushdown Machines, Proceeding of ,
the ACHM, Symposiym on Thecry of Computing, Marina del
Rey, Calif, (May 1969)

J. HARTMANIS, Computational complexity of Random Access
Stored Program machines, J. of Mathematical System
Science (}971)

50

3. The abstract“approach.-

3.1 Machine dependence of the notion of complexity.

It is intuitively clear that there is no such a thing
as the complexity of a function unless we talk in terms
of a specific way of computing that function; an attempt
)gf studying the machine dependence of the notion of comple
%ity has been done by Arbib and Blum in 1965 and will help

us to meke the statement more precise.

At this point we will introduce a few notions that are
2t the base of the abstract approach to computational -
complexity. We will hence refer to then %hroughout the

rest of the chapter,

Let ‘{’ = { (.P;}jjo

denote an acceptable G8del

numbering of all partial recursive functions of one variable()

<0
By definition the set {«y;},_o must satisfy the
following propertiess ’

1) (35 <dl,) (Va,x,y) [%{‘, x)(y) = (<><,;/,>):] (s-w-n)
i) () (v%.7) [¢ (ex,»>) = ¢ (y):] (unversality)

whex%edgn,is the set of all total recursive functions of 'm
variables and A x Ny [<x,r>]] is an effective
bijection NxN-—> N

)
fn infinite subset & of- {¢, }, will be chosen
: o
as complexity measure and denoted by {’§§‘”’ if it

satisfies the following two axioms (Blum):

s (Vo) [) =v it B.ox-y]

¥* 5 .

()m For sake of simplicity all definitions will refer to
functions of one variable but they can be immediately
extended to more variables.

A2, the relation @;_5“’»)‘ =YL g total recursive in L, x,wn
where (Q(x) = ¥ denotes (@ (%) defined.

\ - te — . F

Remark: by convention, () #F ¥ denoted by O; ()=

means that for all n @L (%) > n

14

The meaning of the axioms and their consequences are.

the subject of the rest of the chapter. Here we will just

make use of the notation so that we can say (ﬁ: is a program

and P; (®) is the number of steps that the program L{)i

- takes before halting (if ever) on input x . We will call
the pair (c!o‘ é) a class of machines,

Now let S be a moneid of total functions G N=N=>N
increasing with respect to % the second variable, with
com iti isfyi - = 2 !))-”

position satisfying oG =AxAy Lo(x, 6'0xr))]
and with identity e = AxdyLY]
Given a complexity measure ® and a monoid S we can

induce an ordering with respect to complexity.

i) f is no more difficult than q with reSpéct to (&, g)

that is F Q{:S g if domain (a)e domaln(f) and for

every index i for q there is an index y for fand a c€ & A

such that & (x, @; (») = @i (<) for almost all

X in domain (%)'

A
ii) two classes of machines (¢ ¢) and (L';O &) are S-similar

it (¢)&, (§,8) m (98)£5(F)
where we say that ((p @) L /\?,:B) ' iff for

every jtheré exists an J. and & & € P ~such that

;)

@, & ¢ end (=, (x)) > 3.0 . We denote

L

S=similarity by ’i&s s

51

52

It immediafely follows thet if we take S, =jel
thaer no two classes of machines are similar: in fact
theories based on time and space (for TM, say) comple
xity measures make use of j% and, hence, have a very low
degree of invariance. On the other side, if we take
:%” 3{¢"¢ < 6%& and increasing in the second variable }
bractically all properties become invariant from one
measure to another because, as we will see, all measures

are recursively related.

The non trivial case studiecd by Arbib and Blum
is the following: let é§ be the set of all functions
Nxay [q(logn, >f>-] where q is a polynomial monoto-
niflly increasing in both variables, Then all TM with
base K>4 input and base 1-4 output, finitely many tapes,

finitely many heads per tape, are S similar.

In this way it can easily be shown that, for
~
example, °>><[23J is - S -more difficult than
Ax [x] on apy TM. | :

Other results on the so-called weak invariance of
computational complexity have been given by Burkard and
Kfoon in 1971 but the basic result coming from machine
dependent studies and from Arbib and Blum's work on
invar;ance is that in a strong.sense no notion of complexity
can be completély machine independent without becoming
trivial. As we will see later on, even in a spegcific
measure no notion of complexity can be attached to all
functions because there are functions that do not have
e "best" program. So the onlyrway of dealing with the
problem in a machine independent way is to provide a theo

ry whose theorems are proven in a machine independent way,

53
'so that even though the results are necessarily machine

dependent, the methodology of producirg them is machine

independent,

3.2 Basic results in abstract compuﬁational complexitye.

Blum's axioms for computational complexity have been
introduced in the proceding chapter., We will now provide

a motivation for them and state the first basic results.

According to the axiéms we will consider as an accepta
ble measure of complexity of a recursive function another
recursive function §P£ = @i that is defined if
and only if ﬁ% is defined and has the property that we
are able to answer to the question, is the complexiaty
of ¢. on input x equal ton ? That is we want the graph
of @, to be recursive. Besides, we want 6 to be recursive
that is we want to be able to go from functions to step-
counting functions in a uniform and effective way. It is
immediate to realize that .very natural measures like
time for Turing machines, number of instructidns executed
- by a register machine, number of applications of rules
of a Markov algorithm, number of sqﬁares scanned by a
Turing machine {provided We let it be undefined if +the

machine does not halt), satisfy both axioms.

The first interesting consequence of this definition
F
of complexity measure is that every two measures §§,4§
are recursively related, that is R
. B2 i =~ .
1) (Fee®,)(vi)(Vx) [B:00 ¢ n(x, &)
- & P& wfn @;“&j

where ¥ means almost every-where,

54

Together with Hartmanis work on complexity classes a@d

Arhid and Blum's work on machine invariant properties,

 another result that is at the base of computational comple

xity theory is the work by Rabin (1960) that shows that
there are arbitrarily complex characteristic functions. M.O.

Rabin proved his result for a general computing device

t:(Post algorithms) but it can be nicely expressed in abstracs

jerms: |
(S;") [& (x) «?:»703 (ﬂ)]

Two remarks have to be made at this point. The first
is that we need to prove the result for 0-1 valued recursi
ve functions in order to show that the complexity of the
function is not a consequence of an exceptionally large

output, but is entirely invelved by the computational process,

The second point is that we cannot prove a stronger result
where "for all but a finite number of x" is replaced by
"for all ~". In fact whatever function we take it is always
possible to embed a finite number of values of the function
in the program so that we can compute them by table look-up
with no cost, This intuitive point can be made more precise
in the followipg way: since the lenght of the program qL
can be assumed to be about lqg i and since a table can
be at most as large as the program it self, it has been
proved by Meyer and Mc Creight that the number of values
of x that can always be "easily" computed, can be made as
swall as @Qafﬂ + d‘{eﬁa(Q) . The same authors have,
besides, pointed out that if a 0-1 valued function has
the property that tre only way of computipg it fast on
finisely many points is to put those values in a table,

it means that no subroutine can help us on infinitely

' 55
manry points, that is to say that no value of the function

(beside the values that are in the table) can be “predicted®
faster than it takes to act:ally compute it. In an intuiti
ve sense, hence, those funciions are "very hard" to compuy
te; using tape for Turing machines as a complexity measure,
Meyer and Mc Creight have finally proved that “very hard"
functions exhibit the properties of pseudo-random functions;
that is their average value is 1/2. This kind of results
seem to provide an intersection between axiomatic computa-
tional complexity and Kolmogorov's approach (par.O, point
D). , _

After having showed that,if we define ¢ f% % - iff
a program for £ runs faster than any program fox'<3 almost
every where, %’ has no maximal element, the last of the
basic results we state in this paragraph, says that _f%
has incomparable element since there are @-1 valued functions

that do not have a best program (speed-up theorem),
iii) (‘r/z&ﬂ,_)(Bg:N**{@‘j)(%)(%’g)(573>((ﬁ:§)
(B0 [auw > eon @500)])

In otlher words, given any function 7 , there are functions
f such that any program for(? can be speeded--up by an
amount ¢ almost every where. It is interesting to notice
that ¢ can be a very easy (in an intuitive sense) function.
For example, Markov algorithms that compute the characteri
stic function of even lenght sequences of difits can be

very easily speéded-up by an amount A x [z“]

56

The speed-up theorem has been proved in stronger versions
where the composition To Py is substitued
by iteration (Blum) and by a general recursive operatlor

(Meyer, Fisher, Hartmanis) .

3.3 Compexity classed,

Let @ be any Blum's acceptable complexity measure;

letthe any total recursive function: we are interested in

'nharacterizing the set of functions whose complexity is

bounded bytalmost every where
{1 pef ot (3)(4, - @R et}

As we have seen in the chapter on machine dependent comple
xity theory, the first property of complexity classes that
people is interested in considering is how to expand them |
in a uniform way. The‘most important results in this di-~
rection are the following: v
i) in any measure there is a feéursi#e function « such that
given any total recursive function tﬁ the class bounded by
(ﬁ is strictly contained in the class bounded by
jh([c(x éifdl] . In particular if we consider sufficieptly
complex %% , such that §§£09 2 % , Wr can obtain
Cp F Cros,

It would be interesting to find a way of increasing

the computational power of the class, uniformly, in terms

o},

of the bound it-self ¢ instead of its complexity &. .

Unfortunately the gap theorem (Borodin) proves that this
is not possible,

ii) Given any recursive function % there are arbitrarily
large functions t° such that the class bounded by -° ot

is exactly as large as the class bounded by t.

57

If we want to get rid of gaps we have to accept only
"good" functions as bounds for a complexity class, In
fact if we consider classes bounded by running times or
(more weakly) by fancfions belonging to a "measured set"

(an infinite set of different functions with recursive

graph) we can prove the following compression theorem

(B;um) .

iii) Let ‘{ng be a measured set of functions. Then in

any complexity measure & there exists a recursive function
¢ such that the class bounded by y; is strictly contained
in the class bounded by Nx [% (%, ¥; (x)]

The compression theorem actually shows that the gap
theorem is a consequence of a wreng way of setting bounds
to complexity classes. Let us call the bound functions
"names" of the complexity classes. The gap theorem shows
that there are different names for the same classes that
are as far apart as we want wnile the compression theorem
shows that if we pick names out of a measured set the gap
property disappears. The whole problem is hence reduced
to choosing "good" names for complexity classes., Can we
do this for all complexity classes? The answer is yes and

is given ¥y fhe naming theorem (Meyer, Mc Creight).

iv) For each measure & there exists a measured set naming
all complexity classes, '

At this point we can also give a meaning to the expres-—
sion "good" name. We say a function] is g-honest if thers
is a program ¢, for ﬁ such that the complexity of %%
does not exceeds more than an amount % the value of the

function* That is

>] PN AR e -t /] §)
(\Vx € cowmainf q},\‘L, .@((K) < % {/max«l x . {Xzﬁ)

58

It turns out that the notion of honest set and the
notion of measured set are equivalent. Hence the naming

theorem can be also stated in the following way: it is

always possible to give honest names to complexity ciasses

in a uniform and effective way.

3.4 Primitive recursive functionsand abstract complexity.

The notion of complexity class is an intuitively appez
ling notion but are we sure that when we refer to a speci
fic resource the set of functions computable within a given
bound on that resource have any interesting characteriza-
tion ? We can give examples where the answer is yes and that
are enough to justify research efforts in the abstract

approach.

First we need to state a closure property of complexi

ty classes: it is the uninon theorem proved by Meyer, lic.
Creight. -
i) Let fg.)i=12,--3
sive functions such that for each ¢ and x %;(*)<i%£*,(ﬁ

be an r.e. set of recuxr

there exists a recursive funcgion 1) such that
Ce = i}'il C%i

In other words an r.e., hierarchy of complexity classes
is it-self a complexity class.

We already know that for all subrecursive classes éib
above (and igcluded) the elementary functions, if a fun-
ction § is computable by a TM within time and tape bounded
by a function in.gu, £ it-self is in gw. Now let'&%;iLr:hQu
be an infinite r.e. sequence of functions in gﬂ, eventmally
majorizing any function of gn(e.g. ’@:L = \x Efi'») [x}] ;.

where Fn is as defined in paragraph 1.1)

\..tf'
i
~

. o 59
Now let us define

- R

03; = o {iji(?‘),w(%a(x)/ -, OJL():JJ";"V
the Sequence{gigsatisfies the hypotheses of the union
theorem and so there must be a function L that bounds
exactly the class 8“ in terms of time ox tape for T2,
This is a rather interesting result that gives yet another
iargument in favor of the fact that Grzegorczyck claéses
vhave a very deep meaning in terms of complexity.
| Since all Grzegorczyck classes have now been proved
to be complexity classes with respect to some recursive
bound, it is easy to draw the consequence that also primi
tive recursive functions form a complexity class. One
point that still has to be investigated is whether we can
characterize the "names" of Grzegorczyck classes and of
primitive recursive functions without having to compute
them using the techniques of the union theorem,

While the union theorem has played in favor of subre-
cursive classes another result of Blum says that if we
use only a subrecursive programming language we occasio-
nally may have to write an . &normously large program
for a function that have a very short program if we use
a general recursive language. In order to define these
concepts we first need to introduce the axiomatic notion
of size of a program.

A recursive function -}l : NN is called a_gigg
function and we say}iJ is the size of the program ¢f, if
there is an effective way of listing, given vi. the entere
finite set of programs of size v and of knowing when hs

listing is complete.

60

An acceptable size measure is, for example, given
by the number of characters of a FORTRAN program or by

the state-symbol product for a TH,.

Now we can formulate the following result:
ii) Let 9 be a recursive function with infinite range::
(% ehumeraﬁes indices of an infinite sequence of algori-
thme, in particular enumerates all smallest primitive
recursive schemas); let % be a recursive function; there
exist integers v and j such that Y = Yqci)
and g (1) ¢ l g (j)’ . Besides there exist a
recursive function h, not dependent on q and Q s such
that @L (<) ¢ B (X) & 0 (%) almosf: every where
Q\ is defined,

v

In other words, whatever function is=§, there is a
function whose smallest primitive recursive derivation
is larger than a general recursive program for the szme
function of an amount £ énd besides the complexity of
this pragram is recursively related to the complexity
of the subrecursive program.,

More work in the direction of evaluating - advantages
and disadvantages of subrecursive 1anguéges has been done
by Constable and Borodin by using specific subrecursive
languages (such as LOOP programs).

Another interesting result on size of ﬁrqgrams is
the one by Young and Helm showing that there are speedable
characteristic functions for which not only is ilmpossible
to find the faster programs in an effective way but even
their sizescannot be recursively bounded because they

grow faster than any recursive function.

A) 61
A bibliography of abstract computationsl complexity

M.0. Rabin, Degree of difficulty of computing a Tunction
and a partial orderiug of recursive sets, Tech.Rep,
No.2, Hebrew U.,, Jerusalem, Israel, (April 1960).

e Arbib, M. Blum, Mechine dependence of degrees of QLfi&
culty, Proc. AMS, 16 (1965),

M. Blum, A machine indepéndent theory of the complexity
of recursive functions, Journal of ACM, 14 (April

1967).

M. Blum, On the size of machines, Informatlon and Control
II (1967).

A.R. Meyer, P.C., Fisher, On computational speed-up, IEEE
Conf. Rec. 9th Amn.Symp. on Switching and Automata
theory, (October 1968).,

AR, Meyer, D.M. Ritchie, A classification of functions
by computational complexity, Proc. Hawaii Internatiog
nal Conference on System Sciences, U. of Hdwa11(1968)

R.L. Constable, Upward and downward diagonalization over
axiomatic complexity classes, Tech. Rep. N.69,72,
Dep. of Computer Science, Cornell Univ.,Ithaca,N.Y.
(March 1969).

E.M, Me Creight, A.R. Keyer, Classes of Computable functions
’ defined by bounds on computation, ACM Symposium on _
Theory of €omputing, Marina del Rey, Calif, (May 1969)

E.M. Mc Creight, A note on complex récursive characteristic
functions, Dep. of Computer Science, Carnegie-Mellon
U., Pittsburgh, Pa, (May 1969).

P.R. Young, A note on the union theorem and gaps in‘compig
xity classes, CSD TR, Purdue U., Lafayette, Indians
(July 1969).

J. Helm, P. Young, On size vsy efficiency for programs
admitting speed-ups, CSD TR 43, Purdue U., Lafayette,
Indiana (Sept. 1969).

F.D., Lewis, Unsolvability considerations in computational
complexity, 2nd Ann, ACM Symposium on Theory of Compu
ting, Northampton, Mass. (May 1970).

62

R.L. Constable, On the size of programs in subrecursive
formalisms, ibid.

R.L. Constable, A.B. Borodin, On the efficiency of programs
in subrecursive formalisms, Comp. Sci., Tecin. Repart
70-53, Cornell Univ., Ithaca.N.Y. (1970).

W.A. Burkhard, F.W. Kroon, Toward a weakly invariant
complexity theory, twelfth Annual Symposium cn
Switching and Automata theory, East Lansing, Michi
gan (1971). ~

M. Blum, On effective procedures for speeding up algorithms,
Journal of ACM, 18 (1971).

Jd. Hartmanis, J.E. Hopcroft, An overview of the theory of
computational complexity, Journal of ACM, 18 (1971).

A.R. Meyer, E.M. Mc Creight, Computationally complex and
pseudo-randon zero-onc valued functions, An Int.
Symp. on the theory of Machines and Computations,
Haifa, Israel (1971).

P, Van Emde Boas, A note on the Mc Creight-leyer raming
theorem in the theory of computational complexity,
Mathematical Centrum, Amsterdam, Holland (1971).

M. Blum, Classifying complexity properties of partial re-
cursive functions, Symposium on Computational Compe
xity, NYU (1971)

. A. Borodin, Computational complexity and the existence

of complexity gaps, Journal of ACM, 19 (1972)

R.L. Constable, The operator gap, Journal of ACM, 19
(1972) ~

63

4. Structural abstract computational complexity.

In this paragraph we wil? examine some of fhe developments
of thé axiomatic complexity. theory with particular attention
to the problem of introducing the notion of program stru-
eture; In some sense the classical Blum's work on COMPULE -
tional éomplexity and most of the later papers in the ficel
meke use of global notions about a computational process:
amount of resource needed by the computation, sjze of the
program. As we have seen we can obtain interesting results
along this way but we feel that we are not able of describing
what really happens during the computation and how two pPro-—~
grams for the same function behave in a different way accor
ding to their different structures. Also, we feel that if
we were able to handle those pfoblems, we could zlso get

ri& of many pathologies of the theory.

4,1 Stronger axioms,.

In order to reduce the number of acceptable measures a
few differsnt kinds of auxiliary axioms have been proposed.
Among them (Meyer, Mc Creight and Borodin): '

i) properness: we want to be able of computing the running

time of a function just by running the function it-self, hence
a running time must be a strongly honest function, if it is
large enough,

To be more precise:

() (e)(Be > 0)(3)(9, - B,) [, <5,]

/aS

64

ii) parallel computation: we require that, in order to

be acceptable, a class of machines:is able of carrying
on computations where two programs are esgentially run
in parallel, that is, there must be a recursive function

g such that given eany two programs qi and C{-
g N

({9 (%) Ltot (x) ‘f 9?,, (=) € ?-%:i £
"é{a)‘))
(€;&Q (otherwise)
v \))
. @G‘{;‘*i) (x) & wnia {@3("), ﬁi?ji‘}.}

Those axioms are satisfied, for example, by the tape
peasure for Turing machines., They have been introduced
mainly to be able of reducing the number of pathological
measures but they are not. enough to insure all desired
properties. For example Landweber and Robertson have showed
that there are proper measures with the parallel computation
property for which not all complexity classes are r.e. On
the other side, if we want all complexity classes to be

r.e. we need the following axiom (Borodin):

iii) finite invariance: all total functions that are dif-

ferent enly on a finite set are in the same complexity class,
that is
(Vi E Ve[(T [0 =dem] »(§' € T)]
“/X/j-,f 4 < "_, f s j
" Another axiom has been proposed by Pavl Young with purpose
of guaranteeing that we are able, given a finite function,
to find the most efficient algbrithm for computing it.

iv) Piinciple R: 1let (¢, &) be an acceptable class of

machines and || =and acceptable measure of size: there is

-

a2 total function ¢ ﬁfjij such that if ¢, 1is defined on
the finite &omain,zy, and if there is an index | such that

X @j}% implies . (x,_/‘ = Cp (=) , With

. A
Z@m‘fv‘? - (2 then)] (& &,y)
x€P, x€D, | xeDy

65

In other words if we have a bound on the mmount of
regource that is needed to run the program on a finite
set of inputs, then we also have a bound on the size of
the programs which neéd be considered in looking for pro-

grams which require a smaller asmount of resource.

4.2 Weak computational complexity,.

As we have pointed out before, abstract computational
complexity allows us to pro%e things about halting computa--
tions and theif properties, Besides if we want to consider
the tépe measure for Turing machines as an acceptable Blum

measure we have to slightly change its definition:

number of squares scanned by the i-th TM if
D. (% = -1t halts
=

A if the i-th TH does not halt

- This is unrealistic because for many classes of machines
the resource can be used in a finite amount also when the
computation diverges, Tipically a TM can cycle on a finite
amount of squares and, besides, when the number of squares
scanned is finite we are able of solving the halting problem.
This fact is at the base of a weakef formulation of Blum's

axioms for complexity (Ausiello):
AMa. i @.(<) =¥ then D = ¥

Alb. there exists a partiai recursive function N such that

[4 if goos={

;F é(‘)—‘f . .)
l)= A
VYT then N{i,x; ?(} otherwise

A2, the relation g?.Cx) = n is recursive in i,x,n.
: 1

66

Besides proving all the results of the classical
abstract theory that mainly deal with halting compu
tations, we are now able of proving things about
computations that c¢ycle on a finite amount of re-
source,

Let K={x|@00 +¥) and S={x\& =)

R

The set S‘ is the set of programs which use a
finite amount of resource. We can prove the following
results:

i) PFor no measure/£3 can be recursive.

wE
ii) S is creative and, hence, it is recursively
isomorphic to K

iii) there are measures such that S-K is recursively
isomorphic to K and besides S-K and
K are effectively inseparable.

The last result seems to be important in the
characterization of interesting measures (in fact,
the TM tape measure @xhibits this property). For this
reason Ivan Havel introduced additional axioms that
make possible to implement loops into programs and
that are enough to achieve essentially the same.
result,

A3a, there exists a total recursive function 9

such that Cf o 0= (g, (V)

Cf) () cycles on the resource Q® if for
K[&VR) -

sonme /

qa(}ji)'and q% (;Q cycles on thé

resource §§

67
A3vb. there exists‘a total recursive function 4

such that ~

0. (x) P x>0

[©

QP’() v x=0

R

%Z (%) cycles on the resource & if either

¢

L&J} .
X>0 and C{)C (%) cycles on the resource

\

1

ST
i)

Thosé axioms express the possibility of serial
composition and branching of programs, both preser-
ving loops so that we are also allowed to use the
expression "655@ cycles" whenever in the proof of
2 theorem we are allowed to say(&{x) gives output
Y . |

As we have seen the weaker axioms are a tool to
prove properties of cycling programs and, in this
gense even if they weaken Blum's theory, they really
extend our ability in studying how a program makes

use ¢f a certain resource.

Along the same line of #evelopment we might be
interested in having a complete description of how
a resource is consumed during the computation and,
in this way being able to prove things about strongly
divergent computations, that are thosé computations
which neither halt nor cycle on the resource,

For this purpose Giuséppe Longo has introduced
the notion of computational resource as an infinite

-y
r.e, set of recursive functions {)x)tf[fi{x,élfj‘
)

68

each one associated to a partial recursive function
N % Ecgzﬁgz ; Where the dependence ont w.s
needed to describe the time progression of thLe
consumption of the resource. Three axioms are needed
to characterize a computational resource: the first
on: states that the amount of resource goes to zero
if and only if the program halts; the second one
concerns the weakness of the complexity measure and
formally describes the requirement that, if no more
resource is consumed, we can effectively decide whe-
ther the computation is going to converge or not;
the third axiom is a request on time dependence of
consunption of resource, Weaker than monotony, to

answer recursively to the question whether a certain

amount of it is eventuvally being consumed or not.

4.3 Commutational complexity'of structured programs.

As we have seen a major concernfol people working
in abstract computational complexity, has been to cha
racterize acoeptable classes of machines and acceptable
resources in terms of properties and behaviouwr of
specific progfams: programs to compute running times,

pregrams that carry on parallel computations, programs
that cycle or diverge,
One way of dealing with all those problems is
by introducing the notidn of structured programs and
to study the complexity of programs through the

complexity of their parts,

. 69
A few very weak results have been obtained since

the early days of abstract computational complexity.
Musiello gave them the following general form: let %l
be & partial recursive function defined in terms of
other functions 9, =, %9 such that @ converges if
and only if some well defined assertions about the cone
vergency of %0 "D hold: then we can find
a total function (depending on the number of steps requi
red to compute Ql) ey %yh) that bounds the step
counting function of\ﬁalmost every-where f is defined.
For example, if (%) = . (x) + . (%) we can
ple, C@.(‘,‘N) C{)L &Po
use the theorem to say that there exists a total recur-

sive function T such that

Qo= ¥ and f.(x)=¢ implies
Bogs, ;) § T (e wan § 8109, B)
It is clear that the statement is ewtremely weak
since % can be rather large even ifYcan show that to
compute the bound Z to the step counting function is
not much harder than computing the step counting function
it-self. For this reason we need a much more detailed
- study on how the complexity of a program depends on the

complexity of its parts.

- Work in this direcfion-has been recently developed
(Keyer, Linch, Symes) by first introducing the notion
of oracle and then by interpreting horacles as subroutines,
Symes defined a subroutine operator as a Specialytype of
recursive operator in which oracle function calls may
not be perfofmed in parallel; the consequence of introdu-

cing the facility of oracle calls is that although not

70

all partial recursive funciions become easy to compute,
they all become honest., 0. the other side the whole
complexity theory can be transposed onto subromtine
operators; for example honest subroutine operators can

be defined.

In the same work he makes an'attempt t0 use subroutine
operatbrs as components of the program structure: for
example clementary register operations can be considered
as O-ary subroutine Operafors (i.e. independent on any

oracle call) while concatenation is a 2-ary s.o. and
8 LOOP-END pair is a 1-ary s.o0. Subrowtine operators are,
then, an abstraction of specific structures for programming
languages and they allow us to introduce auxiliary axioms
for size and cost such as: suppose we are given a suitable
defined enumeration of s.o,. {sLﬁthere exists a recursive
function ¢ such that if a program S is a pasic s.o. S:

v

the size of S is given by |s| =% (L) , if s is

- & composition S; (s, ,--,5,) then |s|=

gz<1,<,5J),wganif we replace one subroutine with a larger
one then we increase the size of the whole program, As far
as the cost, similar properties have been introduced and
though the research has not been carried on to find rele~
vant consequences of the said approach we think that

the basic idea of studying the computational complexity

of structured programs is certainly one of the main directior
in which the research in computational complexity has to be

developed.

A bibliography of structural abstract computational 7

complexitye.

G. Ausiello, Weaker axioms for abstract computatioial
complexity, Fourth Princeton Conference on Infor-
mation Systems and Science,Princeton, N.J.(1970).

G. Ausiello, Parallel universal computation, ibid.

G; Ausiello, On bounds on the number of steps to compu
te functions, Second Annual ACM Symposium on Theory
of Computing, Northampton, Nass.(1970).

L.H. Landweber, E.L. Robertson, Recursive properties of
abstract complexity classes, ibid.

I. Havel, Weak complexity measures, SIGACT News (1971).

G. Ausiello, Abstract computational complexity and
cycling computations, Journal of Computers and
System Sciences, 5 (1971).

P.C. Fisher, Trends in computational complexity theory,
Symposium on Computational Complexity, NYU (1971).

N. Lynch, A universally helped recursive set, ibid.

D.M. Symes, The extension of machine independent computa-
tional complexity theory to oracle machine compu-
tation and to the computation of finite functions,
CSRR 2057, University of Watexloo, Waterloo, Onterio
(0ct.1971).

P.D. Young, A note on axioms for computational complexity
and computation of finite functions, Information
and Control, 19 (197%)

G. Longo, Towards an abstract analysis of time progression
of consumption of resources during computation,
Internat. Computing Symposium, Venice, Italy (Apr.
1972).

72

73

A Geometrical Model for a Stochastic Automaton

by

F. Bancilhon

1. SUMMARY

We here introduce a new model of stochastic automaton to express
the geometrical nature of the problem of equivalence between stochastic
sequential machines. Then, using the concept of pseudo automata we
establich relationships between the algebraic and geometrical form.
These results are used to solve an open problem of minimization by

covering.

2. INTRODUCTION

Among all the problems which were discussed about stochastic se-
quential machines, the main one seems to be the equivalence between
two SSM!s:

The distinction has been made between non-minimal and minimal
automata. Procedures to obtain a minimal automaton are well known
now. Another notion, namely the rank of an automaton appeared to
be distinct from the concept of non-minimality. The non-uniqueness
of some minimal automata, the existence of full rank equivalent pseudo-
automata, combined with the feeling of the geometric nature of the prob-
lem (Cones and Modules) seems to indicate the solution would he in a
geometrical model.

We recall the following lemma from !'"Necessary conditions for auto-

mata interchangeability'.

Lemma: Let (Z,m) be a c—automaton of rank r, then there exists
BL, B such that
i) B (cxr) and BL (rxc) are pseudo-stochastic matrices
of rank r such that

Lo
B™B=1,

ii) m' = B mB is a monoid morphism

74

Hi)%‘ﬁ,(1xc)suchthat<ﬁ,ec>=l
B ', (1xr) such that <m!', e> =1
and m{(Z*¥)e = 7' m"(Z*)e and conversally

v) The cone generated by the rows of B is closed under
the action of m'(Z2%)

vl vmi(Z¥)e=0=v =0

From this lemma we intuitively define a geometrical stochastic automaton

(G.S.A)

Definition A GSA is a set
ZDG (g (r\).,..] C’ Z m
where (4 is a vector Spuce of fmlte dimension r.

Z = XXY is as previously defined.

Ao:zx o S(é,g)

f e Q + R
re € & Mi=1,...,c
such that:

i)u((, is a morphism monoid

i.e. ua,(z. 21) =J[z ./l(z,)

i) The set P = 'ﬁ‘Eg flm) =1}

is closed under the action of

Z va(yix) , M€ X,

yey
iii)ry €P Mi=1,...,c
Py =Py =0 =]
(Pi)i=1 e isof rank r.

*

(vl (z*¥)=0 = v=0
v) The polyhedral cone C generated by (r;)i=1 en.,C is closed
under the action of M(Z)
We define the state space as S(L) P N C. The behaviour function

of is the map:

75

AU I)

z o fr (2)

3. RELATIONSHIP BETWEEN GSA's.

Definition: 1) Two GSA, EG and E’G, are equivalent iff :
- .
M e SE),dn €SI) such that MLG = H‘Z"G
e G m m!
and conversally.
2) Two GSA are state equivalent iff
- .
M r;, 3 r'y such that ¢ zIG = K z G and conversally.
r; rl;

Theorem The two GSA
2(3:(? y (r) gy Zo,)
o t
Be= B)iy o 2)

1
are equivalent iff there exists an isomorphism g: g - % such that
. é‘
i) g(C)
1
ii)fm

iii)

[I
@
o
=
o
@

I

(e}

o)
-

Theorem The two GSA ZG and E’G are state eqgivalent i), ii), iii)

and there exists a permutation ¢ on (r})i=1 such that

.cl=c

alr'y) = golr;)

4, RELATIONSHIP BETWEEN GSA and SSM

Theorem Let 2 be a c-automaton of rank r then there exists a

unique (up to an isomerphism) geometric model state equivalent with it.

Theorem L.et Z be a c-automaton then there exists a unique (up to

an isomorphism) minimal GSA equivalent with it.

Theorem L.et EG be a GSA then there exists an SSM state equiva-

lent with it.

5. THE DOMINANCE PROBL EM

Definition Let ZG be a geometric stochastic automaton
Zg = é, (r;), z,M™,).
Z'G= (g', (rt,), Z,./WU‘, f!) is a sub-automaton iff
iyC'cC
ii) C is closed under
iii) (6, is spanned by (r';)
iv) M'is the restriction of M to g‘

1
v) f!' is the restriction of f to g

Theorem X'= e G(Z) is a sub-automaton of G(X!) up to a per-

mutation.

Theorem Let Z=(Z,)be a c-automaton of rank r. If there exists
2! such that

Dz, cl<c, rt>rp
then there exists L' such that

IzZ,clt<ct, rtt=p

77

Necessary conditions for automata interchangeability

by

F. Bancilhon

I SUMMARY

This paper is concerned with the relationship between internal
and external description of stochastic automata. The concept of
pseudo-automaton is defined, together with its relations with auto-
mata. A systematic investigation of the typeof behavioural equivalence
between (pseudo-) automata is used to solve two problems:

1) Given an automaton, which transformations on its internal struc—
ture lead to a parti ally interchangeable, dominant or totally
interchangeable automaton?

2) Conversally, given two (pseudo-) automata having some beha~
vioural equivalence, which relationship is there between their

internal descriptions?

I INTRODUCTION

Definition 1. A transition output automaton (Carlyle) is

X input alphabet x| =
Y output alphabet |Y| =b
R state set IR[=c

and ply, r‘j [o o)

Definition 2. The algebraic representation is 2 =(Z, m) where :

=2

Z=XXY
m -» R

P ZF R is such that

i) m is a monoid morphism

i m (z) € Lo, 11 Wi, j, =

iii) by m(y‘%)e=e
veyY

Definition 3. The state space of 2 is
S(X) = {:Tr('lXc) : TTi € [o, lj, <m, e>= 1}

Definition 4. The behaviour function induced by the automaton

Y =(Z, m) from the initial state ™ is the map

MZ : 2%

" - m-—>
(v1%) = priy

A behaviour function has the following properties:

) wZ (3 € lo, 1]
L by (VY] 3x) = (v [%)
i) M, (2) =<, m(Z]e>=<mm®), e>

Definition 5. X =(Z, m) is a prepresentation of W iff there exists

e S(2) such that
%
by =W

Definition 6. A pseudo-representation of an external description is

a couple X =(Z, m) such that

i) T m(y[x)e=e

yeEvY
ii) m{(zzt)= m(z) m(z)
iii) ® T 1Xxc suchthat<m, e>=1and Tm(z)e=u(z)

The state space associated to this pseudo-representation is

P§(Z)={W:<ﬂ, e>=1}

From now we use : pseudo-automaton instead of pseudo-representation
and automaton instead of algebraic representation of an automaton. No~-
tice that every automaton 2 can be considered as a pseudo automaton,

~

we denote it by 2.

79

Definition 7.

1) Two (pseudo-) automata 21 =(z, m1) and 22 =(z, mz) are
partially interchangeable (~) iff 3 Tr1 € (P) 8(21), T, € (P) S(Zz)

2
such that MZ1 = LLTZTZ
'ﬂ‘»i 2

2) The (pseudo~) automaton Z] =(z, m]) dominates (=) thed pseudo-)

automaton 22 =(Z, m iff

o)

v, € (P) S(T,), 31, €(P) S(I,) such that pfr: %

1 Mo,

3) Two (pseudo-) automata 21 = (zZ, m1) and 22 =(z, mz) are

totally interchangeable (or equivalent =) iff 21 > Zz and 22 > 21.

Il TRANSFORMATION ON THE INTERNAL STRUCTURE PRESERVING
SOME BEHAVICURAL EQUIVALENCE

#* Let L(Z, e) be the subspace of RS spanned by the infinite
family m(z)e: Z € 2% . The rank of ¥ is the dimension
of L (%, e).

L.emma 1 Let Z=(Z, m) be a c~automaton of rank r, then there

exists a subspace V such that

i) dim (V) = c-r
i) V CKer (e)

iii) V is closed under m(Z)

Theorem 1 Let X =(Z,m) be a c-automaton of rank r, then there

exists two pseudo-stochastic matrices B (cXr) and

BL (rxc) of rank r such that BLB = lr* and ='= (z, BL'mB)
is a full rank pseudo~automaton totally interchangeable with
>

* Let X(Z, m) be a (pseudo) automaton. Let T € (P) S(2)., We

denote by K(m,) the subspace of RC spanned by the infinite
family {TT m(Z) : Z € Z'X‘E,

80

Theorem 2 Let X be a c-~automaton, let T € S(2) be a state such
that dim (K(m, 2)) = r, then there exists two pseudo-sto-
chastic matrices BL' (rxc) and B (cXr) of rank r such
that BLB = lr and that X = (Z, BL

o~

automaton dominated by .

m B) is a pseudo-~

Theorem 3 Let 2=(Z, m) be a c~automaton. LLet T be a state such
that rank (Mﬂ)= r. Then there exists an r-pseudo automaton

2! which is partially interchangeable with X for 1.

IV CONDITIONS OF INTERCHANGEABILITY

Lemma 2 Let 2, =(Z, m1) be a c be a

1 1 2)
c,-automaton. Let 21 and Zz be partially interchangeable

for m € F’(Z1) and m, € F’(Z1) such that

—~automaton, ZZ =(Z, m

I

rank K(TT1, 21) r*ank(ZI) =c

1

rank K (TFZ, %,) = rank (Zz) =c,

o)
ther: i) c,=c,=c
ii) 5 P cXc regular pseudo-stochastic such that
a1
m, = P m,, P
o o~
iii) 21 and 22 are totally interchangeable.

Theorem 4 (Local interchangeability)

Let 21 and 22 be locally interchangeable for | of

rank r, then there exists four pseudo-stochastic matrices
L

- L
B, (r*Xcl), B, (c1><r~), B, (r‘Xcz), BZ(CZXI") such that

i)BLB =BZL'B =]

M)
5

Theorem 5 (Dominance)
Y =(Z, m) dominates &' = (Z, m!)
D B (c'Xc) stochastic such that

m! (zZ) e = Bm (2) e

3 53 (c!'Xc) stochastic such that

81

m! (z) Bm(Z) e =8 m(z) m(Z) e

Corolary 1 (dominance)
if 5! is full rank then D BL“ stochastic

B pseudo : m! =BLmB

Corolary 2 (Dominance)
if rank (2) = rank (2') = ¢
3 B stochastic BL‘ pseudo~stochastic:

m=BL‘m‘B

Theorem 6 (Equivalence)

Two totally interchangeable full rank automata have identical

algebraic representation up to a permutation.

/km

82

(a)

(b)

83

‘THE GROWTH OF WORD LENGTH IN DOL-SYSTEMS

BY

P.G, Doucet

summary
This paper presents a recursive and an explicit

formula for the growth function of a DolL~system.,

It also discusses

the possible recursive formulas satisfied by a |
DolL~-language

the construction of a DolL-system satisfying a given
recursive formula for word length or a given growth
function.

It indicates the connection with (i) the property of
being locally catenative (ii) the equivalence problem

for Dol-systems.

=Y

84

-y

INTRODUCTION

Dostystemsbare exceptional‘among formal grammars in producing
words in a fixed order., One can study the way in which the
length of these words grows. This paper is concerned with the
following problems:

~ Given a DoL~system, find a recursive relation between

its word lengths.

- Find its growth function,

~ The inverse problems of these two problems,
A few additionél problems arise along the way.
Remark: this paper poses more questions than it answers., As a
whole, 1t is perhaps rather sketchy, and it should be regarded
as an interim report rather than a finished study.
For a definition of a DoL-system, I refer the reader to such
papers as Rozenberg and Doucet [4]., As regards notation, I shall
denote a DoL-system G by a triple <Z,Pyx,> with Z the alphabet,
P the set of production rules and x, € =" the axiom.
&(G) denotes the infinite sequence of words generated by G, in
order of appearance., If a sequence can be generated by a DoL-

system, it is called a DoL-sequence.

L(G) denotes the language generated by G.

#'S denotes the number of elements of a set S.

]x] denotes the length (— number of letters) of a word x.

If 2 = {01,...,ok}, then the Parikh-vector x assigned to a word

'x is defined as a vector in NSwith its i-th coordinate equal to
the number of’occurrences of 0. in x. Example: if

2 = {a,b,c} and x = aacac, then x = (3,0,2).

Sipilarly, the set P of production rules can be mapped into the

kxk production matrix AP = ((c)), where c. i3 gives the number

of occurrences of o, in P(cj) 1n other words, the j'th column of

A equals the Parikh-vector of P(oi). Where no confusion is possible,
AP is also written A. '

The Parikh-sequence of G (= the sequence of the Parikh- vectors) is
denoted by &(A ,xo).

85

Example: Let ¥ = {a,b,c}, P = {a = be,b = aab,c = ab}, x, = ac.

Then 021 _

Ap = (111 and xo = (1,0,1).
100

Now &(AD,Xo) = (1,0,1),(1,2,1),(5,%,2) 5uuuns
If o f(m+n)+an_1 f(m+n=-L)+,, .0+ 0y, £f(m+l) = 0 1is a difference
equation of order n, then '

o(x) = anxn+an_1xn_1+....+ 0, 1s called its associated

polynomial, and vice versa. (I do not use the more customary term
"characteristic polynomial" to avoid confusion in the Seqdel).

I shall sometimes use the name "difference equation" in a slightly
wider sense than usual by also applying it to mappings into

w* or ¢F instead of to functions sensu stricto.
i

- a W - - o . W

86

"CHARACTERISTIC" DIFFERENCE EQUATION ;3 GROWTH FUNCTION

Lemma 1. Let 6 = < £,P,x,>Dbe a DoL-system with #r= k.
Then the Parikh-sequence &(Ap,X,) satisfies a
difference equation of order k which is the associated equation

of Ap's characteristic polynomial.,

Proof: The vextorslio,il,iz,.... can be written as
XgsAXgsA%X seses » Application of Cayley & Hamilton's

theorem produces the required result.

Example (continued):

- .33 2 - .z - -
<1_>A(x> = =A®+A%+3A+1. By lemma 1, X _ o = X 43X . *X

for every n =2 0.

Note that
1 the difference equation is always monic with integer
coefficients.
‘2 the sequence |xg|,|x;|,|xz]5++. of word lengths satisfies

the same equation.

Lemma 1 and the theory of difference equations produce an explicit
expression for the growth function of a DoL-system (see also Paz

and Salomaa, [2]).

Lemma 2. Let G = < £,P,x,> be a DoL-system with #I = k.

If AP has eigenvalues O,kl,...,lm with multiplicitiesl

Koskiyeoosk respectively (k0+k1+;¢;+km = k), then

|an = POlk _1(n) K? t eaes T polk _1(n) AQ for all n =2 kg, where
m

1
poli(n) denotes an 133 degree polynomial in nj; these polynomials are

determined by the initial word lengths lxk [,....,yxkl.
[

‘Lemma 2 gives the overall growth function of &(G)vand can be con-

sidered as the k individual growth functions (of the different
letters of Z) lumped together., In fact, the individual growth
functions can be kept separate; they are represented by the sequence

87

E(AP,EO), for which lemma 3 gives an expression,

To obtain ‘

Lemma 3 {from lemma 2, replace the various [xi[by ii throughout,
- and replace the coefficients of the polynomials poli(n)

by k=-vectors (thereby extending the notion of a polynomial.

gomewhat).

Example (continued):
A has eigenvalues A;=1,X,=1-v2,A3=1+v/2. In terms of lemma
3, ko=0, k;=1, kp=1, ks=1, |
So in = (-1)nﬁ1+(1-/2)nﬁz+(1+/2)nﬁ3; where the 3-vectors U,,u;,U;
("extended polynomials" of degree 0) are determined by the initial

vectors Xg,%X;,%X,. Solving of the equations

(1,1,0) = Uj+U,+Usy
(2,2,1) = =U;+(1=V/2)U,+(1+V/2)Us,
(5,5,2) = U +(1=v2)2u,+(1+V/2)2u;

yields °

x_ = (-1)“(0,o,o>+</2“1 Lt '1> (1-v2)Ry(Y22L /221 -1 ><1+/2)“.
n 2V/2 2/2 2/2 2V2 2/2 2/2

Apparently the "ordinary" DoL-growth function is a sum of exponentials
(this includes oscilléting behaviour, if Ap has complex eigenvalues).
In case of multiple eigenvalues, growth can be mixed (exponential/
polynomial). In the special case of all non-zero eigenvalues being

+ 1 growth is purely exponential.

In a given DoL-system, the growth type (exponential, polyhomial

or mixed) may or may not depend on the axiom (Salomaa, [7]).

Note that if Ap has null columns (k, # 03 G is not propagating), the
associated difference equation degenerates and has order k-k,.

The effect is that in such a case the expressions in lemmas 2 and 3
do not hold for the first k, words of &(G).

jw

88

OTHER DIFFERENCE EQUATIONS. INVERSE PROBLEMS

We saw that, given a DoL-system, both a recursive and an
explicit expression can be found for the sequence X ,X;;Xpsses

A few other problems now arise naturally.

Problem 1
What other difference equations are satisfied by the sequence

io,;{l,xz’..' ?

Problem 2
Find a DoL-system satisfying a given difference equation.

Problem 3

Find a DoL-system to a given growth function.

Problem 1 is largely answered by lemmas 4 and 5:

Lemma 4. Let ¢A be the characteristic polynomial of A,

For any polynomial y with integer coefficients, the
sequence &(A,R%,) satisfies the difference equation associated with

¢A.w.

Proof: Easy. As yet, only y's with integer coefficients seem to make

any sense, but the restriction is of course not necessary.

Lemma 5. Let # = = k, and j < k.

, &(A,X,) satisfies a difference equation of order j iff both
of its associated polynomial y is a divisor of Oy
o X, is in the subspace of R° induced by ¢ (i.e. the null space of
Y(A)). '

Proof: straightforward.

Example (coﬁtinued): '
- Multiply ¢, by y(A) = A2+2:¢, (XD = =ASHAT 22X+ 20243 0+1

89

- Now é(A,io) satisfies the associated difference equation

X = X +2% +2X% +3% +X .
' n n

- n+d n+h n+3 I n+2 +1
- x(A) = -A%2+2)+1 is a divisor of ¢A(x). Now &(A,Xo) satisfies
the associated equation X 42 = 2Xn+1+xn iff X, is dependenF

on the eigenvectors corresponding to the roots of x. Here

this means that X, has to be of the form -
01(1+vV2,1+V/2,1)+0,(1~-V/2,1-/2,1). x,, however, must have integer
coordinates, and this further restricts the possible form of

Xo to w(l,1,1).

The influence of the last-mentioned restriction has yet to be
studied.

Problem 2 has a partial answer:
If X ik T %=1 Xpaxe1 toeeee o0 X

then the companion matrix of the associated polynomial,

+1+a°§n is the given equation,

01
01 &
.8.

. °

O"QO('], * s o @ .ak":j.

and the corresponding
set of production rules

Go
01")0
C51
k

: (or permutations)
o ;-o gy k-1
k k-1"k

G, -+ 0,0

L

provide a solution (as
does the transpose of A), for any axiom x,. The only trouble is that
A may ‘have (and often has) negative entries, which of courée
disqualifies it as a grammar-representing matrix. So problem 2 preduces

to the more general

90

Problem 4
Given a matrix with entries in %Z, find a similar matrix with

entries in IN,
Except for some trivial cases, I have no solution.

A different approach is, perhaps, also feasible. As shown above,
an equation which has an associated polynomial with leading

coefficient 1 and the other coefficients negative (in which case

I shall call both equation and polynomial monic-negative) is
immediately translatable into a DoL-system. Now, given a difference
equation which is not monic-negative, one can try to "multiply" it
with some other equation to obtain an equation which is monic~-
negative. The companion matrix corresponding to this product,
together with an appropriate axiom, would produce a sequence
satisfying the given equation.

In a better formulation:

Problem &
.Given a difference equation whose associated polynomial y is not
‘monic-negative, find a polynomial ¥ and a positive vector io such
that 1. Y+X is monic-negative.

2. the sequence X,,AX¢,A%X,,... satisfies the given equation.

Although in principe X is free, it is easy to show that onlygx's

with integer coefficients can provide a solution,

Requirement 1 generates. a set of inequalities. The answers I

‘obtained to the pertinent problems are as yet too scattered to make
worthwile reading, and I omit most of them. For some y, the

required x does not exist, such as for all y of the form

Y(x) = xn+an_1xn-1+...+a2x2 - ;1+a1x~aq (with all o positive). Often,
a X does exist: for yY(x) = x%-x+3 (not monic-negative), multiplication
with X(x) = x3+x?%-2x~-5 yields x5-x-15 (monic-negative). '
The existence of such a polynomial X is of some importance for
studying the prbperty of being locally catenative as discussed by

o1

Rozenberg and Lindenmayer [5]. The connection is a simple one:
in order to be locally catenative, a DoL-sequence (or rather
its Parikh-sequence): must satisfy a monic-negative difference
equation, The converse is of course not true.

Conversely, if one is looking for locally catenative properties
in a DoL-language, one only has to examine the difference |
equations satisfied by its Parikh-sequence, which considerably
narrows down the search area (the more so since only monic-

negative equations can lead to meaningful concatenations).

The second requirement of problem 5 can be restated as
WA)R, = 0 (by lemma 5). It is much harder to fulfill than the
first requirement. In fact, I am not even sure that it can be

fulfilled at all.

Problem 3 quickly leads to one or two other problems. If the

growth functlon is given in the form

£(n) = pol (n)A1+...+pol (n)k R (*)
K, km
then by lemma 2 any matrix A with characteristic polynomial
.*.
6, (x) = (x=1)) e St

will realize f, provided that an ax1om can be found yleldlng the
given coefficients of the polynomials polk ,...,polkm.

First of all, there is the matter of flndlng such an axiom vector.
This involves the solving of a number of equations which are
nonlinear except in the case of all A's being 1 or -1 (that is,
purely polynomial growth). Secondly the axiom vector must consist
of positive integers, which imposes a heavy restriction on f. An

f for which such an axiom exists can be called an admissible

growth function.

Problem 6
For a given function of the form (*), determine whether it is an

admissible growth function.

Open.

92

4. DECISION PROBLEMS

A number of decision problems are, or might be, connected with

growth functions.

Problem 7 Given two DoL~systems GA = <:EA,PA,X0:> and
GB = <ZZB,PB,XQ:>, decide whether they are Parikh-

equivalenty that is, whether-é(A,xo) = E(B;EQ).

Solution: the sequences are equal iff the first k+1 Parikh-
vectors (with numbers 0,....,k) are pair-wise equal, where

k = min (#£2 , #EB).

Proof: Without loss of generality, assume that #52A<g #:EB.

Let o4 and ¢B be the characteristic polynomials of A and B.
A =~ —:—-

¢A()R, 0 and ¢B(B)X0 0.

If the sequence é(A,io) can be shown to satisfy the difference

Obviously,

equation associated with ¢B, it follows by induction that the
elements of &(A,X,) and &(B,X,) are pair-wise equal. In other words,

it suffices to prove that ¢B(A)§0 = 0,

If N has coefficients P ERERRRL TP then
6, (B)%, = Bk§0+ak_1Bk‘1§0+.....+a0£
k- k= - - -
= A oo, A T Rt R = ¢, (AR, = O,

Since ¢A(B)§0 = 0 and 9, is of lower degree than L

a

must be a divisor of ¢B (by lemma 5). By lemma 4, ¢A(A)§o = 0
now implies ¢B(A)§0 = 0. :

Problem 8 'Given two DoL-systems, decide whether they have the

same growth functions.

Open.

Problem 9 Determine whether two DoL-sequences &(G) and &(G,) are

equal.

“ Open.

Problem 10, Determine whether two DoL-languages L(G;) and

L(G,) are equal.

Open. For olL-languages, and even propagating oL-languages, the

problem is undecidable (Blattner [1], Salomaa [6]).

93

04

References

[1]

[2]

[3]

Meera Blattner, The unsolvability of the equality problem
for sentential forms of context-free languages. To be
published.

A. Paz and A. Salomaa, Integral sequential word functions
and growthlequivalence of Lindenmayer systems. To appear

in Information and Control (1972)

G. Rozenberg, The equivalence problem for deterministic
ToL-systems 1s undecidable. State Univ. of New York at

Buffalo, Department of Computer Science Report 2u4-72 (1972)

- G. Rozenberg and P.G. Doucet, On oL-languages. Information

and Control 19 (1971), 302-318.

G. Rozenberg and A. Lindénmayer, Developmental systems with

locally catenative formulas. Submitted to Acta Informatica.

A. Salomaa, On sentential forms of context-free grammars.

To appear in Acta Informatica.

A, Salomaa, On:exponential growth in Lindenmayer systems.

To appear in Indag.Math.

A, Szilard, Growth functions of Lindenmayer systems.
University of Western Ontario, Computer Science Department

Technical Report no. 4 (1971).

SYNCHRONIZATION OF GRCWING CELLULAR ARRAYS

Gabor T. Herman, Wu- Hung Liu,
Stuart Rowland and Adrian Walker

Department of Computier Science
State University of New York at Buffalo
4226 Ridge |_ea Road
Amherst, New York 14226

85

96

ABSTRACT

Generalized versions of the firing squad synchronization
problem are investigated. The generalizations consist of al-
lowing the linear array of automata to grow (by division of au~
tomata into two or more) while it is trying to synchronize itself,
Solutions are obtained for cases when growth takes place only
at the ends of the array (irrespective whether or not the rate of
growth is the same at both ends) and also for cases when growth
takes place in the middle of the array. Biological motivations for

the generalizations are discussed.

97

1. Introduction

The Firing Squad Synchronization Problem (from now on
FSSP) is so well known that we shall not give a detailed state~
ment of it. Many of the references mentioned below will provide
the reader with a detailed discussion. A concise statement of the

problem is the following.

'Find a two input, two output automaton (Moore type) with
three distinguished states (s, i and f, say) and an arbitrary but
finite number of additional states, such that a one dimensional ar-
ray of such automata (with the end automata constantly receiving
one special input each, which shows them that they are end auto-
mata) will have the following properties:

(i) If all the automata are in state s, they will all remain
in state s.

(i) If one of the end automata is in state i, while the rest of
the automata are in state s, the array will undergo a series of
transitions ending up with all the automata being in state f. Further-
more, no automatonwwill be in state f prior to all the others being in

state f.!

The FSSP originates from J. Myhill, and, according to Moore
(1964), it first arose in connection with causing all parts of a self-
reproducing machine to be turned on simultaneously. It was first
solved by M. Minsky and J. McCarthy. Waksman (1966) gave a solution
which for an array of n automata achieves synchronization in 2n - 2
steps. It can easily be shown that this time cannot possibly be made
shorter. Balzer (1967) gave such a minimal time solution using only
eight states. Varshavsky, Marakhovsky & Peschansky (1970) discuss
some generalized versions of the FSSP, The generalizations include
allowing the initial disturbance, i, to take place anywhere in the ar-
ray; allowing different types of automata in the array, each type
having a different speed of reaction to the initiating signal; allowing
a fixed number of delays between the automata which are required to
synchronize irrespective of the number of delays; and allowing a random

reconnection of the automata in the array before each step (i.e., in

98

each step, the automata are randomly partitioned into pairs, and
each automaton will influence in that step only its partner in the
pair). In all these generalizations, the total humber of automata
remains fixed during the synchronization process. Smith (1971)
made repeated use of solutions of the FSSP in his two dimensional
pattern recognizing cellular automata. Herman (1971b) gave a so-
lution to the FSSP where the automata were symmetric, i.e., they
could not distinguish between their left and right inputs.

In this paper we shall consider generalizations of the FSSk,
where the array is allowed to grow during the synchronization
process. Growth will take place by allowing the individual automata
to divide into two or more automata. For this reason, rather than
the more traditional type of cellular automata (see, e.g. Codd, 1968),
we shall use the models proposed by Lindenmayer (1968a, b), and
since then developed by Baker & Herman (1972a, b), van Dalen (1971),
Doucet (1971), Herman (1969, 1970, 1971a, 1971b), Lindenmayer
(1971), Rozenberg & Doucet (1971). These models allow an automaton
to divide anywhere in the array, provided that itself and its two

neighbors are in appropriate states.

The reason for the generalization to growing arrays is a logical
extension of the criginal motivation. It is reasonable to assume that an
organism, all of whose parts we wish to turn on simultaneously, is
still growing during the synchronization process. More specifically,
our attention was brought to this generalization by the study of mol-
luscan pigmentation patterns. In an earlier study (Baker & Herman,
1972a), we have shown how the pigmentation pattern (see Plate 1),
originally studied by Waddington & Cowe (1969), can be discussed in
terms of Lindenmayer models. We wished to extend this study to include
pigmentation patterns found on the shells of different kinds of sea snails.
We found that many of these (Plates Il 111, IV) have recurring in them
dark areas which get uniformly wider as growth takes place, and then
suddenly disappear, giving us shapes of the type shown in Figure 1. If
such shapes are to be explained on the basis of cellular interactions

(rather than on the basis of an external influence), we must conclude that

99

cells, which are depositing the darkregion, must have succeeded
in synchronizing their action to stop creating the dark pigment at
the same time, even though their number was growing during the
synchronization process. (For those who are interested to see
more molluscan pigmentation patterns, a good reference is Marsh &

Rippingdale, 1964.)

In the next section, we give a precise statement of the generalized
FSSP in terms of Lindenmayer models. In section 3, we discuss the
improtant preliminary problem of synchronizing the two end automata
of a growing array with automata in the middle of the array. In sec~
tion 4, we discuss our solution of the case when growth takes place
only at the ends. In section 5, we discuss the implementation on a
computer of our solution for the case of growth at the ends. In section
G, we give a solution in which growth takes place in the middle of the
array. In section 7, we summarize our results and show how similar
techniques can be used to solve other problems for growing arrays of
automata, for example a generalization of the French flag problem of
Wolpert (1968).

For reasons explained in earlier works (Herman 1971a, 1971b),
we shall in all cases attempt to give solutions using symmetric auto—

mata.

2, Definitions and problem statement

If G is a non-empty finite set, G¥ denotes the set of all se-

quences of elements of G. G¥ includes the empty sequence, which

is denoted by €,

A Lindenmayer model L is a quadruple <G, g, 6, F>, where

G is a non-empty finite set of states, g € G is called the standard
environmental input, & is a function giving for the states of any three
consecutive automata (cells) the sequence of states of the automata
(cells) by which the middle one is replaced (8: GXGXG » G¥) and F

is a subset of G. In this paper we shall have no occasion to use F.

1.01

For any filament p, let L(p) denote the length of [
For any symbol a in G and any non-negative integer I, let
al denote a sequence of | instances of a. For any rational
number #, let [n] denote the greatest integer which is not
greater than %, and [%l denote the absolute value of #.
Using this terminology, the generalized FSSP may be stated

as follows,

Problem 1. Given any integersp, g, r, t, 0&p <q, 0%-r £t,
find a propagating L.indenmayer model L = <G, g, § , F>,
such that s, i, f are elements of G (all distinct from each

other and from g) and L has the following properties.

(1) For any non-negative integers | and n, there exists
a non-negative integer k21 and symbols b and c¢

in G, such that A" (s s! s)=bs"ec.

(i) For any non-negative integers |, k, and n
LOA (s'isM) = 1+ o+ 1+ [f‘f}u{w—”t““],

(iii) For any non-negative inteders | and k, there exists
a positive integer m, such that, for all positive inte-

gers n<4m, A" (slisk) does not contain the symbol f,

but A" (slisk)

does not contain a symbol other than f.

In this problem statement, (i) tells us that a filament in which
all cells are in state s will remain stable except, possibly, at the
ends. We exclude the ends, since we want to allow the possibility
that the growth described in (ii) will take place at the ends of the
filament. In this case p/q and r/t are the growth rates at the
two ends respectively, i.e., the filament grows p cells in a unit
of time at the right end and r cells in t units time at the left end.
The negativeness of r indicates growth right to left. The synchro-
nization of the filament, after an initial disturbance i anywhere in

the filament, is stated in (iii).

100

A Lindenmayer model is said to be ;_)_r_‘_opagating if, and only if,
8(d, b, ¢) #¢, forany d, b, c €G. Soina propagating Lindenmayer
model cells cannot simply disappear. We shall only be discussing pro-

pagating Lindenmayer models.

If L =<G, g, §, F> is a Lindenmayer model, any element
of G* is said to be a filament of L. (From now on we shall always
refer to the individual automata as cells, and linear arrays of the

states of automata as filaments.)

It was seen that the standard environmental input is an element
of G. It is a basic assumption of ‘l_indenmayer models that environ-
ment affects a filament only at the end cells, and its effect can be
described by elements of G. Herman (1970) proved th at by constantly
changing the environiment, one can induce practically any type of be~
haviour in a filament. Since we want a filament to synchronize due to
the interaction between its cells, and not due to environmental changes,
we shall from now on assume that all development takes place in a
constant environment. In view of this, we can give the following defi-

nitions.

For any filament p of a Lindenmayer model L = <G, g, 6, F>,

we define KL_ (p) (or X (p) when there is no possible concfusion about

the _I:), the consecutive filament as follows. If p is of the form

a,8,. .08 (k=2), then X (p) =g

132 ‘iz“'fk , where

1

q, =95 (ai_1, a, ai+1)’ for 2 <i <k-1,

a, = 6(g, a,, a,),
Ik = 0 (aags B 9

If p =€, then A(p) =€, andif p € G, then A (p) =23 (g, p, 9).
For all hon-negative integers n we define KE (p) (or Kn(g)),

the n'th consecutive filament of p , by

2% (p) = p,

A") = 2 (A7 (p)).

102

The restriction that p <qgq and]PI {t is Iintroduced for the
following reason. Suppose that growth takes place at the ends due
to cell division, so the right end cell divides into p cells in a
time qg. A disturbance set up by i somewhere in the middle of the
filament can propagate at most with the speed of one cell per unit
time. If p2q, then such a disturbance can never reach the right

end, let alone lead to a synchronization of the whole filament.

If we forgo the possibility that growth may take place at the

ends of the filament, we can have the following stronger formulation.

Problem 2. Same as Problem 1, but replace (i) by

(i) For any non-negative integers | and n,

)&n (s') - sl.

In a solution of Problem 2, there will be no growth in a fila-
ment which contains only the symbol s, but growth will co mmence
immediately after the disturbanrce. Hence, growth must take place
near the disturbance. Cells far away from the disturbance cannot
be immediately influenced by the disturbance, since in one step a

cell can only influence its immediate neighbors.

It is biologically interesting (see,e.g., Herman 1371a, b) to
investigate whether synchronization is possible with a model in
which the individual cells lack polarity, i.e., they are symmetric.

This notion is made precise by the following definitions.

A Lindenmayer model L = <G, g, {, F> is said to be

externally symmetric if, and only if, § has the property that

g(d, b, c)= §(c, b, d)

for all d, b, c€ G. L Iis said to be internally symmetric if, and only

if, § has the property that

§(d, b, ¢) = [J‘(d, b, C)JR

for all d, b, c €£G. (RR denotes the filament p written in reverse

103

order) L is said to be symmetric if, and only if, it is both ex—

ternally symmetric and internally symmetric.

Problems 1'(a, b, ¢) and 2'(a, b, c). Same as Problem 1 and 2,

respectively, except that we insist that L should be
(a) externally symmetrig
(b) internally symmetric,

(c) symmetric.

For an externally symmetric Lindenmayer model
§(g,s,s) =4(s,s,g), and growth at different rates at the ends im-
mediately upon a disturbance in the middie is impossible. The fol-
lowing version makes different growth rates possible, by having

distinguished symbold at the ends.

Problem 3'(a, b,c). Given any integers p, q, r, t, 04&p<q,

0% -r«t, find an

(a) externally symmetric, respectively,
(b) internally symmetric, respectively,

(c) symmetric,

Lindenmayer model L = <G,g, §F>, suchthat s, i, f, b, ¢ are
elements of G (all distinct from each other and from g) and L has

the following properties.

(i) For any non-negative integers | and n, there exists

a non-negative integer k21, and symbols b! and c!

in G, such that

;{n(bslc) = b'skc' .

(ii) For any non-negative integers [, k, and n
L | An(bs'iskc)) =] +k +3 +[%E} + [%‘Lr:‘]

(iii) For any non-negative integers | and k, there exists
a positive integer m, such that, for all positive integers
]
n<m, A (bs

Am(bsliskc) does not contain a symbol other than f.

iskc) does not contain the symbol f, but

104

Qur solution to all the problems mentioned in this section
will have the following basic form. At the beginning, there will
be a preparatory stage, followed by a number of standard stages.
At the beginning of each of the standard stages, the filament will
have the following properties. It contains a number of cells which
are "markers!'. These markers occur either singly or in pairs, but,
except for the beginning of the last stage, there are never more
than two consecutive markers, In particular, the two end cells are
markers. The number of consecutive non-marked cells is the same
everywhere in the filament, i.e., the markers divide the filament
into subfilaments of equal length. Further more, except for the last
stage, if the length of these subfilaments is 1, then the length of the
subfilaments at the beginning of the next stage is B—] . This implies
that, irrespective of the length of the initial filament, we arrive at
a stage, at the beginning of which the number of consecutive non-
marker cells is everywhere 0, i.e., the whole filament is made up
from markers. Furthermore, this is the first time that there is a
marker cell in the filament such that both its neighbors are also mar-
kers. Thus, if we require the living state f to appear if, and only
if, the cell under consideration is a marker with both its neighbors

also markers, then synchronization will be achieved.

What we have described above applies equally to standard
solutions of the FSSP (Waksman, 1966, Balzer 1967, Varshavsky,
et of, 1970, Herman, 1971b). However, in that problem the filament
is not growing, and so the number of subsegments at the beginning of
each stage is twice the number of subsegments at the beginning of the
previous stage. Due to growth, this will no longer be the case for the
generalized problems discussed in this paper. The placing of markers
to achieve thefiner and finer subdivisions becomes therefore a somewhat
more complicated process. A thorough discussion of this process, when
growth takes place at the ends, will be the subject matter of the next

three sections,

105

CELLULAR AUTOMATA, PORMAL LANGUAGTES

AND DEVELOPMENTAL SYSTEMS
by

ARISTID LINDENMAYER

University of Utrecht, The Netherlands

4 Contribution to the Symposium on Cellulasr Automata and

Their Significance to the Foundations of Biology,

held as part of the IVth International Congress for

Logic, Methodology and Philoscphy of Bcience,

Bucharest, Romanis

1971

By kind permission reprinted from:

P. Suppes et al. (eds.), Logic, Methodoloqy and Philosophy of Science [V
North-Holland, Amsterdam, 1973.

106

1. "Cellular automatm" are formel constructs which in the last
decades came into increasing use as biological models. The first
two, and still important cellular-automata constructs with biolo-
gical motivation were the nerve-net models of McCulloch and Pitts
(194%) and the self-reproducing cellular automata of von Neumann
(published posthumously by Burks, 1966). Nerve-net models have

been constructed th exhibit various kinds of simple behaviour like
refleﬁloops or the looming response of frogs. Self-reproducing
cellular automata are meant to demonstrate how very complex struct-
ures can be constructed from relatively simple components and be
able to replicate themselves. The term "cellular" refers in this
case to the subunits with which this construction is carried out,
and does not imply an analogy of these subunits with cells of living
organisms. In fact, the whole self-reproducing structure might be
considered to be analogous to a single living cell.

Both of these models consist of a number of interconnected eimple
unites. These units are switching elements in the model of McCulloch
and Pitts; and input-output devices with a small number of internal
atates, but without any other additional memory, in the case of von
Neumann's system. Both of these kinds of units are examples of what
are now called "finite automata", i.e. machines with finite number
of states, and sequential generation of outputs as determined by the
sequence of inputs and the configuration of states. The interconnect-
ions ¢f the units in the first model can be arbitrary in form and
richness, while in the second one the units are placed in a rigid
square grid, and are connected in uniform, time-invariant way with
neighbouring units, e.g. to exactly four neighbours, in the von Neu~
mann model, While McCulloch's and Pitts' constructs were subsequently
shown (Kleene, 1956) to be not any more powerful computing machines
than theilr own subunits the finite automata, the construction of von

Neumann turned out to be equivalent in computing ability to Turing

107

machines, i.e., to the most general and powerful computing devices,
This difference in computing power between the two kinds of models

is & consequence of the fact that the first ohes are of gtsble size,
they consigt of a constant number of units and interconnections,
while the latter ones can expand, and computation can be carried out
with increasingly larger numbers of subunits.

Cellular automata of both kinds have been further investigated
and their biological usefulness have been commented upon by several
workers (Codd, 1968, on simplified models of self-reproducing auvto=-
mata; Arbib, 1969, a)b, on the use of cellular ways in simulating
regeneration and on self-reproducing systems in which the neighbours
of & cell are allowed to change; Vitdnyi, 1972, on sexually reprodu-
cing automata; several of these and others being also mentioned in

Burks, 1968\

2. Cellular - automata models have also been introduced (Linden-
mayer, 1968) with reference to the development of organisme, rather
than their self-reproduction, or their nervous behaviour1). In this
cage, the cells of the model are sssumed to correspond to individual
cells of growing multicellular organisms, Living cells are well eg-
tablisghed as autonomous uhitﬁ of metabolism, heredity and physiclogi-
cal function, In these models cells sre, in fact, construed to be
finite automasta, which in any moment may be present in one of
finite number of states, can receive one of ¥he a finite number of
inpute from neighbouring cells and give rise to one of finite number
of culbputs, the outpute in turn serving as inputs to other cells.

As in all such models, time is to pass in discrete steps;andi whether
e cell changes its state, divides;or dies at the next moment is
determined by i1ts present state and by the present inputs it receives.

The outputs of cella st each moment are slso determined by their

states and inputs. Since cells can divide or die, the number of cells

108

may increase or decrease from moment to moment. Thus one can obtain
a seriea of cellular arrays, each corresponding to a momentary de-
velopmnental stage of an organism, beginning with a single cell, the
Ffertilized egg, and increasing or decreasing in size., Furthermore,
morphogenesis is simulated by the production of stable patterns in

the srray, provided that certain cellular states are such that they

snge no further under any input combinations.

It may well be asked whether these kinds of automata-theoretical
nodels can a8t all be interpreted in terms of the biochemical mecha-
nismsg supposed to underlie development and morphogenesis. Goodwin
(1970) posed this question in the folléwing way: "The implication
of the computer anaiogy is that the cell computes its own state,
looks at the DNA program for further instructions, and then changes
gtate accordingly. This is not in fact what a cell does, although
formal analogy can be made between the biochemical behaviour of a
cell and the operation of an automaton following a program. It may

seem elementary to insist that all the operations of the automaton

, &% some point be interpreted in biochemical and physiological
terms, when discussing such a process as epigenesise), but I have
been somewhat dismayed at the amount of confusion that has arisen
vecanse of the failure of those using the computer aﬁalogy to

illustrate the operation of algorithmic instructions at the bio-

swmical level®,

in fact, the concept of finite automaton is general enough to give
it the desired interpretation in biochemical and cell=-physiological
terms, one needs only to elaborate it somewhat. We may safely assume
tirat of all that the same genes (or operons) are present in every
cull of & certain organism, and that each gene may be present in an

sutive or a pagsive form (masked or unmesked) and thus at each moment

Lnoaach cell there is a particular combination of active and inactive

109

genes, We can assume furthermore that in each cell the getive
genes produce specific enzymes, which under the proper conditions
are able to cohvert various metabolites into other compounds, some

of which accumulate in the cell, resulting in its differentiation,

Ihe change of particular genes from inactive to active form, or

vice versa, is presumably determined by the product (an inducer) of
some enzyme, together with a repressor protein. Whether the inducer
comes from the same or ancother cell, we observe the induction of the
synthesis of a new enzyme, which then might result in differentiation,
or in the initiation of a new cell line. In a very short summary,
these are the currently accepted hypotheses concerning differentia-
tion and induction, and they represent an important portion of the
mechanisms underlying development (leaving aside for the time being
the spatial orientation of cell division and enlargement which repre-
sent another impeortant aspect). We recognize 6f course that many
different control mechanisms may be operating on the synthesis and
activity of various enzymes (as e.g. discussed by Waddington, 1968);
neverthelees, all of these controls can be expressed as either turning
on and off the genes, or as affecting the activities of the engymes
and thus the appearance of their products.

Now as for the automata-theoretical connections of all these
statements. Let us first consider all metabolites and other cellular
components, except for the active proteins and nucleic acids (in-
formational macrOMmolecules), and call the set of all the species of
such components C,

At each moment in a given cell there would be present (in significant
amounts) & particular combination of the elements of C, i.e., the cell
can be associated with a particular subset of C. Let us further
consider each gene and the enzyme it gives rise to ag a transformation

rule, transforming certain combinations of cell components (elements

of C) into other components, and call the set of all such transfore—

mation (or producticn) rules P. In each cell at a given time there
will be & certain combination of genes active, concomitantly there
being also the corresponding enzymes active, l.e.} the cell will
posgess productions representing a subset of P. To each cell at

each moment one can thus assign a state, consisting of a particular
gubset of C and & particular subset of P. The inputs of a cell con-
sist of the compounds (elements of C) which have entered the cell
during the last time interval, and the outputs of the cell consist
of the compounds which have laft it (in significant amounts)B).
gstate and the inputs it receives, according to some specifiable
functlions.

First, one needs a function which determines the next subset of P,
i.e.y the combination of active and inactive genes (and their enzymes)
at the next moment, including also the possibility that two new
gqubsets of P are to be specified (the cell divides), or no new
subset of P is specified (the cell dies). The combination of cell
components at the next moment will be determined by the present com-
bination of components, by the input to the cell, and by the subsget
of P applicable to the cell at the time (the elements of P being
rules which wpecify the interconvérsion of components), If the cell
divides, it has to be fuTrther specified whether the cell components
are to be divided equally or unequally between the daughter cells
(one more function is needed in the latter case).

The output of a cell, i.e., the compounds which diffuse or are
transported from a cell into the neighbouring cells, will depend only
on the components present in the cell (assuming thagt it is known which
cell components are transportable). If an inducible permeagse is ine
vnlved in the transport of a compound, then the producticu of the

nermease is controlled as that of an enzyme.

111

I% can be seen, that bhoth the next-state and the output functions
can in principle be constructed for & given population of cells, thus
the cells can be validly represented by finite automata. I -cannot
agree, therefore, with Goodwin's objeotions. What he calls the "UNA
program" is the set of production rules we introduced, and according
to our short discussion above it can be said in a completely natural
way that the next state of a cell is computed by using these production
ruled,

The only serious objection against these sort of methematical
constructs, that I can envision, is an objection against their dis-
creteness. It is quite true that not only time and space appear here
in discrete units (the time steps and naturally the cells themselves
are these units), but the enzymes, metabolites and inducers must
also be considered as discrete entities, being either present in
concentrations above certain thresholds or not. The genes are of
course always present in integer units anyway. Having to deal with
discrete temporal and concentration parameters is clearly a dis-
advantage of this approach one must recognize. This is counterbalanced,
however, in my view, by great conceptual and practical computational

advantages, some of which will presently become more apparent, I hope.

%, Ag for our developmental models, up to now we have investigated
primarily one~dimensional cellular arrays. Fach cell in the array is
construed to be a finite automaton with uniform sets of states. and
qext- state functions throughout the array. For the sake of mathemati~-
cal simplicity, we have considered states and outputs to be identical
and consequently the inputs to be the states of neighbouring cells.
Under these simplifying assumptions, a filamentous developnental
systen (called a Dlindenmayer model by Herman, 1969, 1970, or &w
L~ system by van Dalen, 1971) is a construct consisting of a finite

st of states, a next-state function, and an initial array.

This construct is formally somewhat analogous to grammars, as
the term is used in formal language theory (see e.g., Aho and Ulkmann,
1968). There the met of ustates is called an alphabet; the next~state
function a set of productions, and the initial array an axiom. Jusi
as one can obtain new cellular arrays from previous ones by uwsing
the next-state function, so én language-theory one obtains new strings
of symbols by the use of production rules. But the difference between
our constructs and grammare lies in the fact that (1) in our case all
cells in the array must gimultaneously be transformed at each step;
in other words, all symbole in the string must simultaneously undergo
substitution, according to the production rules; and (2) in our
congtructs no distinction is made between terminal and non-terminal
gymbols as is done in the case of grammarsg,

In formal language theory a language is defined as the set of all
terminal strings, generated from the axiom by the production rules
(terminal strings are string composed only of terminal symbola).
Analogously, we may define developmental languages (or L=languages)
as the set of all strings generated from the axiom by simultaneous
application of production rules to all symbols in each string (no
regstriction needed concerning terminal or non-terminal symbols),

An Lesystem may either be deterministic or non-deterministic,
depending on whether for every state symbol there is exactly one
next-state transition rule (prﬁducticn) or not. If a system is deter~
ministic, then there will be a single geguence of arrays (strings)
generated by the rules beginning with the initial array (axiom):
in non-deterministic svstems many such sequences may be produced,
possibly diverging and converging at various pointa.

Each such sequence of strings is supposed to correspond to the
entire 1if2 of en organism, each string being s momentary description

of it. A deterministic system permite only one such developmental

segquence to occur, while a nbn—deterministic one yields many
possible life histories.

A further division of L-systems is that into propagating and
non-propagating ones, meaning thereby systems, respectively,without
production rules resulting in cell deaths, and with such rules. Such
rules correspond to erasing in languasge theory, i.e. to productions
which erase particular symbols, The presence of erasing rules in
grammars is well known to give rise to much more complex languages,
Similarly, preprogrammed cell death has heen recognized by develope
mental biologists (e.g. Saunders, 1966) to be an important mechanism
in many morphogenetic processes.

A third, and equally important distinguishing notion for Lesystems
is the size of the neighbourhood of the cells. One can namely con-
gsider systems in which each cell acts independently of all other
cells, i.e., systems with context-free productions, and cthers in
which each cell receives inputs from certain number of ifs neighbours
on either side in the filament, in other words, systems having
productions with varying lengths of context. In general one may speak
of Legystems with k left and 1 right inputs, meaning inputs received
by each cell from k left and 1 right neighbour cells. The biological
interpretation of such contexts was already»given ebove, i.e., the
trangport of metabolites or other biologically active molecules from
cell to csll., If one wishes to allow the transport to take place in
one direction only, as in the case of auxin beiné transported from
apex to base in stems of higher plants, then one needs only one-sided
(vndirectional) context. The higher the number of neighbours contribu-
ting to the context of a cell in one direction; the faster is the
transport of the active substance along the filament (relative to the

length of the time steps).

4. The simplest of the L-systems in terms of context are the
ones without any interaction among the cells, called OL—systemé,
and these have been the subject of most work so far., Some of the
results obtained as well as formal definitions of OL-systems and
languages are given in the Abstracts of this Congress by Doucet
(1971) and van Leeuwen (1971). Two simple examples for OL-languages
are: (1) the set of strings. consisting of the letter a, of lengths
2n, for all non-negative integers n. This langhage is generated by
the single production a-»ga@, from axiom &, (2) The set of strings,
for all integers n2 1, consisting of n-times the symbol a, followed
by the symbol ¢ or nothing, followed by n-times the symbol b. This
language is produced by the productions:

&a-»8, b—-b, c-»ach, c-rempty string; from axiom ach.
1t is interesting to note that the language consisting of n-times a
followed by n~times b symbols, a well-known context-free language,
cannot be generated by OL-systems. It can be generated by L-systems
with one-sided inputs.

Rozeuberg , 18470, 1971 b

Various theorems (due to Rozenberg and Doucet, 1971;Avan Leeuwen,
1971a; van Dalen, 1971; Lindenmayer, 1971; Doucet, 1972; Herman, 1972a¢
Salomaa, manuscript) deal with the relationship of OL-languages to
the languages of the Chomsky hierarchy, of which the main classes
are in order of increasing complexity: regular, context-free, con-
text-sensitive, recursive, and recursively enumerable languages (see
€.g. Aho and Ullman, 1968).

It can be proven that all OL-languages are context-sensitive. In
fact, the set of OL-languages intersects the set of regular, context-
free and context-sensitive languages, but does not exhaust any of
them (thus, there are regular languages which are not OL-languages).
The usual closure properties (under set-theoretical union, interw

section, etc.) do not hold for OL=languages. OL-systems which have

115

identy productions for all symbols in their alphabet (thus for every
symbol a, one has a production a=+a) produce context-free langudges
only.

Among the above-~mentioned formal results perhaps only the last
one has biological significance, It shows, namely, that the fact that
certgin OL-systems are able to produce non-context-free languages
(for instance the language simulating the development of the red alga

Callithamnion rogeum, Lindenmayer, 1971) is due primarily to the

synchronous cell divisions and changes of state imposed by the
production rules of these systems. As soon as the synchrony require-
ment is relaxed by adding identity production rules for all symbols
in these systems, the resulting language becomes context~free.
Another biologically interesting theorem was found by van Leeuwen
(1971)). .« stating that for every OL~system G, such that every
symbol in its alphabet either leads to the empty string or to a
cycle but not both, there exists a propagating OL-system G1, and &
non-erasing homomorphism h such that the language generated by G
is identical to the h transform of the language generated by ¢! (with
the addition of the empty string to the latter, should the empty
string be in the language of G),
For example, the language (the set of all strings) consisting of
ab repeated all possible finite numbers of times can be generated
by an OL-system, but cannot be directly generated by a propagating

OL-gystem. A non-propagating OL-system generating this language is

the one with the productions: a-»ab, a-»abab, b-rempty string; with
the axiom: ab. The same language can be obtained by the use of =
non-erasing homomorphism h, such that h(a) = ab, from a language

produced by a propagating OL-system, namely the one with productions:

a=»>a, and g-»aa, and with axiom: a. Thus developmental patterns which

are produced by systems without cellular interactions and for which

preprogrammed cell death appears to be necessary, may also be
produced by a system without cell death, provided that a biologi-
cally interpretable homomorphism can be found.

5till another biologically promising aspect of OL-~systems has
been the study of "locally catenative" systems (Rozenberg and
Lindenmayer, 1972). In this case we are concerned with propagating,
deterministic OL~-systems which give rise to development such that
certain previous developmental stages appear as part of the whole
organism at a later time. One frequently sees such cases in the de=~
velopment of compound leaves and branching structures, Formally, we
are dealing here with sequences of strings such that (after an
initial period) each string consists of the concatenation of strings
which were previously encountered in the sequence. It was possible
to find a certain property (called dependence) of the set of product-
ions of propagating, deterministic OL~systems which entails the
generation of such locally catenative sequences, This property has to
do with the existence of certain types of cycles among the states of
the system. On the other hand, given any locally catenative formula,
one can always find a propagating deterministic OL~systém which gives
rise to a sequence satisfying that formula. Thus the observation of
& locally catenative developmental pattern in nature ensures the
existence of a propagating deterministic system without cellular in-~
teractions which can give rise to such a pattern. Of course, the fact
that such & no~interaction system could exist does not mean that in
the actual case no interactions are taking place, since every pattern
which can be produced without interactions can also be produced by a
system with interactions. Nevertheless, a biologist might find it
useful to know that such seemingly very complex patterns can arise
by development without cellular interactions and without cell death,

and thus he does not need to search for interactions or oceurrences
ol cell death to explain the underly?ing developmental mechanisne.

From a biological point of view an important result would be
an explicit characterization of OL-languages or OL~sequences.
Algebraic characterizations are available at present among the
Chomsky languages for the class of tegular languages only (the
class‘which can be recognized by finite automata or by the Mc=
Culloch - Pitts nerve-nets). Partial characterizations are
available for the set of context-free languages,in the sense,
that given a context-free language one knows certain properties
it must have, but given an arbitrary language with those properties
it does not follow that it is context-free, Once even a partial
characterization (or algorithmig. procedure) would be available
for the recognition of OL-languages, one would be able to tell from
the developmental descriptionsof an organism or of an organ whether
it is necessary that cellular interactions occur in the course of
its development., This is so, because the partial characterization
would provide us withiformal property for which the developmental
history of the organism could be tested (just as mentioned above,
+4n the case of the locally catenative property for certain sequences),
and if the organism does not fulfill the required property, then it
would follow that its development could not have taken plase in the
absence of cellular interactions.

At the present time characterization is available only for OL-
languages over one-letter alphabets (Rozenberg and Doucet, 1971;
van Leeuwen, Rozenberg and Herman, in preparation), but further work
is in progress on characterizatlons of deterministic OL-languages.

An extension of OL-systems has been proposed by Rozenberg (19€q9,
in which the productions are organized into tables, each table con-
taining at least one production for each symbol, and requiring that
in any one string only productions of a single table may be used.

These kinds of developmental systems, which still have no inter-

actions among cells, but in which the entire organism may be
subjected to sudden changes of programs, are particularly suited
to simulate deﬁelopmental processes controlled by some critical
value of an environmental parameter. We may think of the sudden
switch from vegetative to flowering condition in higher plants as
the length of daylight (or length of night) exceeds a certain
threshold. A simple table OL-model for such a change in a filamen-~
tous fungus from vegetative to reproductive state under the control
of light has been presented before (Surapipith and Lindenmayer,
1969). Although more powerful than regular OL-systems, table OL~
systems were shown to be properly included in the set of context-

sensitive languages.

5. As to L-systems with inputs, the first point to be mentioned
is that they exhibit a dramatic rise in complexity. The results
obtained by Herman (1969), van Dalen (1971) and Rozenberg (1971 &,e)
gshow that Lesystems with em inputs from single cells from one side
only (called 1L-~systems) can generate nonrecursive languages, i.e.,
languages of the highest complexity class in the Chomsky hierarchy.
With proper coding 1lL-systems can simulate any Turing machines.

Nevertheless, if one considers the languages which can be directly
generated by 1L-systems (i.e., without any coding or canonical ex-
tensions), then it turns out that there are many regular languages
which cannot be generated by them. Thus, the set of 1l-languages
intersects all the major Chomsky-classes of languages, but does not
include any of them. The set of 1L-languages includes, of course, the
set of OL-languages, and it also includes the set of all finite
languages.

Beginning with OL- and 1L~ languages, one can build an entire

hierarchy of L-languages, according to the number of inputs coming

to a 2ell from either cide, esch set of L-languages with 2 higher

total number of inputs (from both sides) containing the sets with’
lower total numbers of inputs. But no matter how high numbers k

of left inputs and 1 of right inputs we choose, there always remain
certain regular languages which cannot be generated by a (k + 1)
Le~system,

The generation of finite languages is of particulgr biological
interest, since it corresponds to developﬁent of organisms or or-
gans with a finael (adult) stage. This is what is called determinate.
growth in plants, of which leaf growth is a good example. Among
animals the occurrence of an adult stage with a final size and form
is widespread. It is important, therefore, to ask what kind of
developmental programs would be necassary to yield such terminating
growth and development, i.e., a sequence in which strings would
eventually occur repeatedly. Curiously enough, while finite languages
are considered to be of the lowest complexity type in formel language
theory, the production of mahyof these languages by propagating L=
systems reqHdires a high degree of interactions (large contexts).

An attempt has been made to find general conditions for the product~
ion of symmetric terminating growth patterns with reference to the
development of leaf marginal meristems (Lindenmayer, paper in pre-
paration), and it was shown that such a pattern can be generated by
a propagating L-system with two sided inputs which is completely
apolar. (In a polar system the productions distinguish one side from
the other either by giving rise to different states. under mirror
images of inputs, or by giving rise to two cells in unequal states
under any combination of inputs. An apolar system is one which is
not polar.)

The most interesting aspect of developmental systems with cell

interactions is their ébility to simulate regeneration. To regene-

rate a complete organism of the oiiginal size after amputating a

120

part at a previous stage, or to reorganize a cut-off part to form

a complete organism reduced in size, are processes which definitely
reguire intéractions among cells. An abstract statement of the latter
case is the "French flag problem" proposed by Wolpert (1962). Systems
with two-sided inputs, cépable of accomplishing this kind of re=-
generation have been constructed by us as well as by Arbib (1969a)
and Herman (1971, 1972b). The latter investigator has even given an

apolar l~system which exhibits this kind of regeneration (this work

is described elsewhere in these Proceedings). A general theory of

developmental systems with regeneration properties is, however,
lacking.

In the previous discussions (except for that of table OL-systems)
it was alwgys assumed that the environment remained constant during
the course of development, and we asked what kinds of patterns can
be produced by what class of systems. However, if the environment
does not remain constant but fluctuates in some unknown way, then one
is faced by an entirely different sort of construction and classi-
fication problem. Herman (1970) has begun to work on this topic, as
well as on the problem of constructing L-systems to fit incomplete
developmental data (see also Feliciangeli and Herman, 1972).

6. Theffe have been other developmental models based on cellular
automata published recently, which differed from the ones discussed
here eitheéji’by being more than one-dimensional, oé?;’by using
continuous variables (concentration, age, distance) as well as
discrete variables, or by both respects(1) and (2).

For instance, Baker and Herman (1972) studied the distribution of
heterocysts along filaments of blue-green algae by a one-dimensional
model in which the concentration of an inhibitor (which can diffuse

from cell to cell). and the age of the cell determined cell division

121

and the transition from vegetative to heterocyatkondition.

Another kind of process which can be considered in a somewhat
extended one~dimensional framework is the development of branching
structures. Models giving rise to branching patterns and based on
L-systems have been studied by Hesper and Hogeweg (1971,1972); and
probabilistic cellular models for the production of branching
patterne were given by Cohen (1967), who also considered the inter-
action of branches in terms of exhaustion of nutrients in their
surroundings. ‘

Cellular-automata models for two - or three dimensional devel-
opment have also been investigated, such as the model of Raven
(1968), and Raven and Bezem (1971), for the early embryonic devel~

opment of the pond snail Limnaea stagnalis, in which the sizes and

positions of the cells are algorithmically computed after each
cleavage; or the cellular model for avian limb developmeni by Eds
and Law (1969), in which cell movements, in additiom to cell divi-
sions, are programmed in order to simulate in two .dimensions the
morphogenesis of limb initialsy or a cellular model for the origin
of regularly spaced leaf primordia (phyllotaxims) om a cylinder sur-
face, controlled by the diffusion of an inhibitor (Lindenmayer and
Veen, unpublished manuscript).

There is, at the present time, no general theoretical frame-
work within which we could handle the various cellular-automata
models, some of which are of more than one dimension, and some of
which use continuous parameters as well., Clearly, the morphogenetic
role of spatially directed cell divieions, cell enlargement, and
cell movements can only be investigated if such models are further
developed.

At the present time there is also a lack of clearly elaborated
connection between the biochemical and physiological mechanisms of
development which we mentioned earlier and the automata models
described afterwards. Although we maintained that in principle
such a connection is possible to find, detailed interpretations

}T;have not yet been attempted, and their testable consequences have
not: been obtained. PR %
These shortcomings of cellular-automata theorles of developmeﬁ

are both »

%
rious. But the results obtalned so far could provide

certain automata - thebretlcal and Pormal llngulstlc 1nterpretatxons
for a number of fundamental concepts of developmental biology, such
as dlfferentlatxon, induction, regeneration, cellular interactions,

polarity, and the roleg of synchrony, cell death, ang envi
Vironment

122

in development. There clearly remains a great deal more of the
theoretical framework to be constructed before we can speak of a

"theory of development".

123

Footnotes

1) I would like to add here that W.Ross Ashby (1956) was emong the
firet to enunciate clearly the method of construction for
interacting automata and I owe his book a debt for learning the
basic principle of this method. I am also indepted to John R,
Gregg for his having introduced me to automata theory in the
first place.

2) Epigenesis is meant to include both norphogenesis and differen-

tiation, for further explanation see e.g. Waddington, 1970.

3) Walter R.Stahl (1966) has introduced the concept of "gene-
enzyme automata" in his computer model of a self-reproducing
cell, and I would like to acknowledge the influence of his
paper in construeing here genes and enzymes as production rulss.
I had many interesting discussions with bim, and I felt his
early death as a great loss. A theoretical biologist of very
broad scope, he was also among the first %o be concerned with
computational complexities of cells and organisms, as compared
for instance with Turing machines. ‘

ﬁﬁﬁERENCES

Abho, A.V. ad Ullman, J.D., 1968, The theory of languages, Math.
Systems Theory, Vol.2, pp.97-125.

Arbib, M.A., 1969, a,Self-reproducing automata -~ Some Implications

for theoretical biology, in: Towards a Theoretical Biology,
Vol.2, ed.C.H.Waddington (Edinburgh Univ.Press), pp.204-226.

Arbib, M.A., 1969 b, Theories of Abstract Automata, (Prentice-Hall,
Englewood Cliffs).

Ashby, W.R., 1956, An Introduction to Cybernetics, (Chapman and
Hall, London).

Baker, R. and Herman, G.T., 1972, Simulation of organisms using

a developmental model, Int.J.Biomed.Computing (sudbmitted for

publication).

Burks, A.W., editor, 1966, Theory of Self-Reproducing Automata,

by John von Neumann (Univ. of Illinois Press, Urbana).

Burke, A.W., edifor, 1968, Essays on Cellular Automata (Univ. of
Illinois Press, Urbana).

Codd, E.F., 1968, Cellular Automata (Academic Press, New York).

Cohen, D., 1967, Computer simulation of biological pattern genera-
tion processes, Nature, vol.216, pp.246~248

Dalen, D.van, 1971, A note on some systems of Lindenmayer, Math.
Systems Theory, vol.5, pp.128-140.

Doucet, P.G., 1971, Some results on OL-languages, Abstracts of

IVth Int.Congr.Logic, Methodol., Philos.of Sei., Bucharest,
pp 087"'889

Doucet, P.G., 1972, On _the membership guestion. in some Lindenmayer
systems, Indegationes Mathematicae (in press).

Ede, D.A. and Law, J.T., 1969, Computer simulation of vertebrate
limb morphogenesis, Nature, vol,221, pp.244-248

Feliciangeli, H. and Herman, G.T., 1972, Algorithms for produéing

grammars from sample derivations: A common problem of formal

language theory and developmental biology, J.Computer and
Systems Sci.(submitted for publication).

125
Gocodwin, B.C., 1970, Biological stability, in: Towards a Theoretical

Biology, vol.3, ed.C.H.Waddington(Edingburgh Univ.Press),
ppo 1"'170

Herman, G.T., 1969, The computing ability of a developmental model

for filamentous organisms, J.Theoret.Biol., vol.25, pp.421-
435.

Herman, G.T., 1970, The role of environment in developmental models,
J.Theor.Biol.,v0l.29, pp.329-341.

Herman, G.T., 1971, Models of cellular interactions in development

without polarity in individual cedls, I.General description

and the problem of universal computing ability, Int.J.Systems
Sci., vol 2, pp.271~289.

herman, G.T. 1972 a, Closure properties of some families of langua-

ges associated with biological systems, Information and

Control (Submitted for publication).

Herman, G.T., 1972 b, Models of cellular interactions in develop-

ment without polarity of individual cells, Il.Problems of syn-

chronization and regulation, Int.J.Systems Sci., (in press).

Hesper, B. and Hogeweg, P., 1972, Generation of branching patteras,

J.Theoret. Biol. (submitted for publication).

Hogeweg, P. and liesper, B. 1971, Pattern recognition in biology:

4 methodological analysis using computer experimentation,

Abstracts of IVth Int.Congr.lLogic, Methodol, Philos.of Sci.,
Bucharest, pp.279-280.

Kleene, $.C., 1956, Representation of events in nerve nets and

finite automata, in: Automata Studies, Nc.34, Annals of Math.
Studies, eds.C.E.Shannon and J.McCarthy, (Princeton Uniwv.

Precs), pp.i-41.

Leeuwen, J.van, 1971 W, Canonical restrictions of Lindenmayer-

languages, Abstracts IVih Int.Congr.Logic,Methodol.,Philos.
of Sci.,Bucharest, p.284.

Lindenmuyer, A., 1968, Mathematical models for cellular interactions

in development, Parts I and II, J.Theoret.Biol, vol.18, pp.
260-315.

Lindenmayer, 4., 1971, Developmental systems without cellular inter-

aetions} their languageés and grammars, J.Theoret.Biol., vol.
30, pp.455-484.

126

MeCulloch, W.5. and Pitts, W., 1943, A logical calculus of the

ideas immanent in mnervous activiity, Bull.Math.Biophys., vol.5,

pp.115-133.

kaven, C.P., 1968, A model of pre-programmed differentiation of the

larval head region of Limnaea stagnalis, Acta Biotheoretica,
VOlo’%gg ppo}16"‘"3290

Raven, C.P. and Bezem, J.Jo, 1971, Computer simulation of embryo-

nic_development, Parts I and II, Proc.Kon.Ned.Akad.Wetensch.,
Series C., vol.T4d, pp.209=233.

Rozenberg, G., 1970, Scme results on OL-Languages, Paxrts I and II,

Elektr.Rekencentrum Utrecht, Publ.Noe.93 and 95, 30pp.

Rozenberg, G., 1971 a, T~0~L systems and languages. On O~L systems

with restricied use of productions. Elektr. Rekencentrum

Utrecht, Publ.Nos.103 and 116, 110 pp.

Rozenberg, G., 1971 b, On scme properties of propagating D-0-L

systems. Elektr.Rekencentrum Utrecht, Publ.No.106, 30 pp.

Hozenberg, G., 1971 ¢, L~-asystens with interactions. Propagating

L-systems with interactions. Elsktr.Rekencentrum Utrecht,
Publ.Nes. 120 and 121, 7% pove.

Rozenberg, G. and Doucet, P.G., 1971, On OL languages. Information

and Contrel. vol.19, pp.302-~318,

Rozanberg, G. and Lindenmayer, A., 1972, Developmental systems with

locally catenative formulas, Acta Informatica (submitted for

publication).

Salomaa, A., (manuscript) Formal Languages (Acadsmic Press, New
York).

lace,
Sevnders, J.W., Jr., Death in embryonic systems, Science, vol.154

};}pe 604”6?2 L3

Stahl, W.R., 1966, 4 model of self-reproduction based on gtring pro-

cesaing Tinite automata, in: Natural Automata and Useful Simula-

tions, wvd.H.H.Pattee et al. (Spartan Books, Washington)
A3=T2,

s PP

Surapipith, V. and Lindenmayer, A., 1969, Thioguanine-~depandent

light sensitivity of perxrithecial initiation in Sordsria fimicols

Jelien.Microbiol., vol 57, PO227-237,

127

Vitdnyi, P.M.B., 1972, Sexually reproducing cellular automata,

Math. Bioseiences (submitted for publication)e.

Waddington, C.H., 1968, Theoretical biology and molecular biology,

in: Towards a Theoretical Biology, vol. 1, ed.C.H.Waddington,
(Edinburgh Univ.Press), pp.103-108.

Waddington, C.H., 1970, Concepts and theories of growth, develop-

ment, differentiation and morphogenesis, in: Towards a Theo-

retical Biology, vol.3, ed.C.H.Waddington (Edinburgh Univ.
Press), pp-177-197.

Wolpert, L., 1969, Positional information and the spatial patiern

of cellular differentiation, J.Theoret.Biol, vol.25, pp.1-48.

128

129

INTEGRAL SEQUENTIAL WORD FUNCTIONS AND GROWTH
EQUIVALENCE OF LINDENMAYER SYSTEMS

by

Azaria Paz & Arto Salomaa

1. INTRODUCTION

Lindenmayer systems (also called L -systems, L.indenmayer models
or developmental languages) have-been the object of extensive study
during the past two years. The systems were introduced in connec—
tion with a theory proposed to model the development of filamentous
organisms. The stages of development are represented by words
corresponding to one-dimensional arrays of cells (filaments). The
developmental instructions are modelled by ordinary rewriting
rules or productions. These productions are applied simultaneous~
ly to all letters to reflect the simultaneity of the growth in the or-
ganism. This parallel rewriting is the main difference between L in-
denmayer systems and ordinary generative grammars. There are
many types of Lindenmayer systems. One distinction results from
the fact that 'the various parts of the developing organism may or
may hot be in communication with each other. Different types of sy~
stems will be defined in the sequel at appropriate places. For more
background material and motivation, the reader is referred to Ro-
zenberg and Doucet (1971), Rozenberg and Lindenmayer (1971) and

Salomaa (1973), as well as to the items given in their bibliographies.

A particularly interesting aspect in the study of L_indenmayer systems
is the theory of growth functions. The basic paper in this field is by
Szilard (1972). In the theory of growth functions only the lengths of
the words matter, no attention is paid to the words themselves. This
implies that many problems become solvable whose solution is un-
known for L-systems in general. Also hierarchies of language fami-

lies may reduce to one family of growth functions.

130

The basic observation behind this paper is that growth functions

of certain Lindenmayer systems fit in the framework of the theory
of integral sequential word functions. Functions resembling the
latter have been studied extensively in the past, cf. Paz (1971),

pp. 116-144, in connection with probabilistic automata. Consequent—
ly, our subsequent results might be of interest to both people work-
ing with word functions and to people interested in Lindenmayer
systems., The former may read only Part 2 of this paper, although
some definitions get their motivation in Part 3. (One of them is the
definition of the vector 1.) On the other hand, people interested in
Lindenmayer systems may read Part 3 only, although they miss many

of the proofs.

Basic notions concerning integral sequential word functions are in-
troduced in Sections 2a and 2b. Some theorems, based on earlier
results, are also mentioned., Section 2c gives preliminary results
concerning the reduction probiem which gives a solution to the mini-
mization problem and is directly applicable to growth functions.
Using some results previously known, the reduction theorem is then.
applied to solve the problem of realizing a given function as an inte-
gral sequential word function (Theorem 17). Some other represen-
tability problems are also considered in Section 2e. Section 2f deals
with closure properties, and Section 2g with the single letter case

which, in fact, corresponds to DOL -systems.

Section 3a deals with the growth functions of DOL.-systems. Algo-
rithms are given for the solution of the following problems: growth
equivalence, finding all growth equivalent axioms and cell minimiza-
tion. It is also shown that, for any DOL -system S and integer k, there
is only a finite number of DOL -systems growth equivalent to S and
having k letters in their alphabet. We also study the problem of rea-
lizing a given function as a growth function, as well as problems con-
cerning malignant growth. The following Section 3b deals with growth
functions of context-dependent Lindenmayer systems. Examples are
given of such growth functions which are not DOL growth functions.

Also a result concerning the'saving of cellg! in the transition from

informationless to context~dependent systems is established. The
last Section 3c deals with Ol_~systems and deterministic Linden-
mayer systems with tables. For obvious reasons, the growth func-
tions in these cases become growth relations. It is shown that the
family of growth relations of DTOL -systems, properly includes the
family of growth relations of OlL_-systems although mutual overlap

holds between the corresponding language families.

131

132

2. INTEGRAL SEQUENTIAL WORD FUNCTIONS

In this section we shall study integral sequential word functions;
i.e., functions f : Z*¥ -+ N (I* is the set of all words over a finite
alphabet and N is the set of nonnegative integers) induced by a se-
quential integral system. The specific functions to be considered
here can be used for investigating growth functions of various ty-
pes of OL~-systems as explained before. On the other hand, simi-
lar functions of a more general character have been studied else-
where [see Paz (1971)] so that many theorems valid in the general
case, carry over to this specific model. Whenever a proof to a
theorem stated here is similar to an existing proof in the literature,
we shall skip the proof here and refer the interested reader to the
literature. We shall discuss here, in detail, only those aspects of
the integral word functions which are pertinent to their use as a
growth function and which exhibit a specific aspect different from the

general case and resulting from the specific integral assumption.

a. Definitions and Notations

All the vectors and matrices considered in this section are assumed

to have only nonnegative integral entries unless otherwise stated.

A state vector is a vector having exactly one nonzero value. The
notation 77 stands for a column vector of due dimension with all its
entries equal to 1. The notation 7 will be used for row vectors.
Superscripts for vectors will be used for distinguishing between them
and subscripts will be used to denote a specific entry in a vector. =
denotes a finite alphabet, Z* the set of all words over Z; A the empty

word; and o, an element of Z.

Definition 1: An n-state integral sequential system (IS) over a finite

alphabet Z is a triple QW = [, {Alo)} oCn? n] where 7 is an n-di-
mensional "initial" row vector and the A(0) are n-dimensional matri-
ces. When using the notation Q instead of qﬂ,, we shall assume that
the initial vector 7 is not yet specified, Whileqwl and qﬂg will

denote two IS which differ oizly in their initial vector 1.

133

Definition 2: An integral sequential word function (ISF) is a function

f &ﬁ: Z* + N (the superscript will be omitted when context is clear)
induced by the IS QJ{T and defined as f(x) = TA(x)y where x =0, ...
oy €2% and A(x) = Alo;)...A(o,) by definition. Also by definition
fQ)=nn.

Definition 3: Two initial vectors #t* and %2 for a given IS Qar‘e

: 1 2
equivalent if fﬁw (x) = fﬂﬂ (x) for all xez*,

Definition 4: Two ISQ 1,”1 and Q%ﬂg over the same alphabet Z,

are equivalent if
ﬂl Qz,
71'1 ~ s 'IT2

(x)

for all xei*.

Definition 5: Two IS Q 1 andﬂ2 are state equivalent if for any

initial state vector #* for the first IS one can find an initial state
vector 72 for the second such that Qlﬁl is equivalent to/l_zﬂg
(notation: 4177,1 == QZWZ), and vice versa.

Remark: One verifies easily that if :Ql is state equivalent to ﬂ__g
then for any initial vector 7' (not necessarily a state vector) there
is an initial vector 72 for A2 such that jllfrrl == Q%ﬁg and vice

versa.

Given an IS g'n” KﬁL and G/%T denote the ordered infinite sets of

column and row vectors respectively:

F’IT x)
T (%)

T (x)
WA = [0, 00) eyl). . 15 c;g“”'=

134

where by definition 7(x) = A(x)n; nA) =713 m1(x) = TA(X) ;
mA) =73 and x; % ... is a fixed lexicographic order on the

words in I¥.
Let K(m), GW(m) denote the ordered subsets of K d and G Qﬂ
respectively such that 7(x) € K’Q (m) (m(x)e G ﬂ) for all x

such that |x| <m (| x| denotes the length of x).

b. Some basic Theorems

Theorem 1 : For a given n-state 1S)Q,ﬂ, there exists an effective
algorithm for finding a set of linearly independent vectors in KQ(n—T)
such that all vectors in Kt depend linearly on them, and the same
is true for G&W(n-—l).
For proof see Paz (1971) p. 19.
Let n* ... 7" and #*... n° be the two sets of vectors having the
following properties:
1. Nt o=y At =n
2. nt,...,n" and wt,... ,Wk are the first vectors in K'Q- and

G U respectively accroding to the preassigned fixed order

- which are linearly independent and span their whole sets.

The matrices H& and L U are defined as:
)q: - b
bR o=t], T - 7t

[t is clear that the ranks of the above defined matrices are < n.

Theorem 2: Two initial vectors for a given IS are equivalent if and
only if

g ; =¢r2|—1& (1)
For proof see Paz (1971) p. 22.

135

Remark: It follows from the above theorem that for a given IS

/QW there are only finitely many other initial vectors 7' equi-
valent to . This follows from the fact that any such vector must
have nonnegative integral entries with their sum equal to the sum
of entries of 7. On the other hand, all the vectors 7' equivalent

to 7 can be found by using the above equation (1).

Let QW be an IS and let ﬁi (o) be the i~th row (assumed here to be

a nonzero row) in a matrix A(c) for some ¢. Let ¢! be an integral
vector such that &' (G)I—%'Q = g‘HQ: and let Q,ﬂ,, be an IS derived
from %W by replacing the row £' (c) of A(o) with the row £' and re-
placing ™ with an equivalent initial integral vector #! (with respect

to t%). We have the following:

t .
Theorem 3: The IS Q T and ﬁw, as above are equivalent.
For proof see Paz (1971) p. 23.

- c. Reduction Theorems

Definition: A state i of an IS »‘tﬂ is accessible if there is a word
x € ¥ such that m(x); > 0 (where m(x); denotes the i~th entry of
m(x)).

Theorem 4: If a state | of an n~state IS is accessible then it is ac-
cessible by a word of length < n. The set of accessible states can ef-
fectively be found.

Proof: Trivial.

Theorem 5: If there is a state i of an n-state IS %‘r which is not
accessible then the given IS can be reduced to an n-1-state equiva~
lent 1S.

Proof: Delete the i~th entry in 7 (which must be zero); delete the i-th
columns and rows in the matrices A(o) (if j is an accessible state
then the j-th row in A(o) must have a zero entry in its i-th column)

and reduce 1 to an (n=1) dimensional vector.

136

Theorem 6: Let ’Qw be an n-state IS such that its HQ matrix
has two equal rows, then QW can be reduced to an (n-1)-state
equivalent IS.

Proof: See Paz (1971) p. 23.

Example:

Consider the following IS &(ﬂ:

m=[1,1,1,1] E=i0’1;02}
— 7 — " —
1001 2000 1
0000 4000 1
Aloy) = 200 2 Alo2)= 19000 =0
1001 2000 1
then - -
12
HA = |10
1 4
1 2
L; e

Thus the first and fourth row of I are equal and therefore one can

¥
find a 3-state equivalent IS ft,ﬂ,

wt=(21 1) Z= {o,, 05}
200 1
Ao,)= |000O0 Ao,) = |4 00 nt= {1
000 1
with
. 12
I—!A: 1
1 4

Although it is clear that no further reduction is possible using the pre-

vious theorems 5,6 still the above IS is equivalent to the following

f:bjrnﬂﬂ

137

T =(0 2 2)

011 011 1

Ao,) =1 000 Alo,) =/ 0 2 2 = |1
022 000 1
! i
that ftﬂ, = 7%7” follows from Theorem 3. The first state is _

) i
not accessible in FLTT” and therefore, a 2-state equivalent IS 4%-
can be found:

7T=[2,2] A(Ul)z 2 2 A(02)= 00 77=

Notice that the deri\‘/ation of Aﬂ’“ from ﬂ was made possible by
the fact that in H' “the first row was a convex combination of the

other two rows. Such a condition is, however, not sufficient, and
there are other conditions, deriving from the requirement that the
resulting matrices and initial vector have only integral values, which
must be considered. These considerations lead to the following prob-
lem: Given an n-state IS, give an algorithm which will decide whether
there exists an equivalent 1S with less than n-states and, if the answer
is positive, will provide a procedure by which such an equivalent IS

could be constructed.

d. General reduction problem

Let f&ﬁ be a given IS gand consider the infinite ordered set of veciors
K&- and the matrix L m as defined in the previous section. Denote
by [KQ], the infinite matrix whose i~th column is the i-th vector in

kRt . Define the infinite matrix [K{ ™)) as
Ay LQW[K@

Theorem 7: Let /CLW and }L*W* be two IS over the same L. «Q,ﬂ is
equivalent to FL*’:T* if and only if there exists an integral non-negative
matrix (i.e., with all its entries nonnegative integers) B¥ such that its

first row is 7* and

B*[KQ*] =|_R'7T[K‘Q~ 1 (2)

138

Proof: Assume first that /Z /’C{* . Then for any x,, %, € 2%,

TE (%) Nn* () = m(x;) (%). If the |—th row in L is #{(x;)
choose the i-th row in B* tobe 7*(x;). (The first row in L 7

is m which will correspond to 7* in B*) This implies (2) for
*

N* (%) and 7(x,) are corresponding columns in K and Kq'

respectively.

Assume now that (2) holds for some matrix B* with first row

equal to 7*, then the first row of the equation (2) has the form
A«
7*F KT] =7 [Kél]

which implies that 7%7* (x) =m(x) for all x € Z¥ so that the two IS

are equivalent.

(’Q ,Tf).]: L 'ITI:K]
as above. It can be shown (see Paz (1971) p. 51) that it is possible to

(e, m)

effectively construct a matrix, to be denoted H

(Q,rr)

and all other vectors in the set are a linear combina~

Let /l,” be a given IS and consider the matrix [K
, such that

(1) The columns of H
(A ,m)

are linearly independent vectors from
the set K

tion of them.

(4,m)

fying the condition (1) above.

(2) The columns in H are the first columns in [K(Q,?T)] satis-

(R,m)

vectors of the form L Trn(x) with lx| < n-1 (given that Q’r/ is an n-state
1S).

In fact, one can show that the columns of H can be chosen to be

Theorem 8: Let an be an IS over an alphabet Z, let m be the number

T (Anr)

of columns in its H matrix. No m¥* —-state IS ﬂ_* over the same
alphabet Z with m* < m can be equivalent to Q
Proof: If Q ',’L* g% then by (2) there exists a matrix B¥* such that

B*[KQ 1= [KR'] [K Q”’W)] But I—E()%’w) is a submatrix of

139

Q,w)]

[K(Q ’ﬂ)] with m independent columns. Therefore, [K(
*
must have m independent rows which implies by (2) that [Kﬂ']

has at least tat many rows.

Let 977‘ be a given IS and consider the following equations with
&(o) an unknown (not necessarily integral) matrix, for all o€X.

A g

L "Ag) = alo) =" (3)

This equation has exactly one solution which can be found effective-

T

ly. This follows from the fact that the rows of L are Iiﬁear‘ly
w

independent while the rows of L ™ Alg) being in the set G =~ de-

pend on the rows of L .

It follows that the equation

L_)Q'WA(G)HQ’ = &-,(o)l_ﬁ’”H’Q (4)

has at least one solution.

Let 4(0) be any solution of the equation (4). Then Af{o) satisfies also
the following equation for all xeX* .

A
L™ Tniox) = L).% TAGN(x) = Ao Tp(x) (5)

This follows from the fact that the vectors 1n(x) are linear combina-

tions of the columns of HQ .

Let n(r,x) denote the vector L ’”'r](x). Thus, nir,x) is 't‘lie vector
corresponding to the word x in the matrix [K(AL’W)] =L M kA 7.

We have the following

Theorem 9: Given an IS QW, there are matrices A(c), for each

0€Z, (hot necessarily integral) such that

(R ,m)

Ao)[K 1 =TIntm,o)nim,ox),nm,ox)...] (6)

where A, %, ,% ,.... is the fixed enumeration of the words in Z*.

140

Notice that while A(oc) may have nonintegral entries both
[K(Q’ﬁ)] and the infinite matrix on the right hand side of the

equation (6) have only integral nonnegative values.

We are now able to prove the following

Theorem 10: Let A*W* and /g" be two IS over the same al-
phabet . {‘ffﬁ* is equivalent to /BW if and only if there exists
an integral nonnegative matrix B* with first row equal to 7%

such that the following equations hold true:
, g * Ax
B*n* =n(r,)), B¥ A* (o)H = Ao)B*H all g€2 (7)

where A(o) are matrices as defined in (6).
Proof: We know already that the conditions of the Theorem are
equivalent to the existence of a matrix B* as required and sa-

tisfying the equation (2); i.e.,
- [KQ*] e[K(/Q”’W)] (8)

We will show first that the condition (8) above is equivalent to the

following
B*n* =n(r,\) and B* A* (0)n* (x) = Al0)B*n* (x), all x€Z (9)
with the same matrix B¥*,

Clearly, A¥ (oln* (x) =n* (ox) and by (8) B*n* (ox) =n(w,o%x). On
the other hand, by (8), we have that B*n* (x) =n(r, x) and it follows
from (6) that ,&lon(r,x) =7n(m,ox). Thus, (8)====3(9).

Assume now, that (9) holds true, then we prove by induction on the
legnth of x that B*n*(x) =n(r,x). For x =X (9) and (8) are iden-

tical.

141

For x =ox' we have by (9) and by the induction hypothesis that

This implies by (6) that B¥n* (ox!) =n(m,ox') as required. Thus,
(9)=—X8).

We prove now that (9) is equivalent to (7) with same matrix B¥.
That (9)=>(7) is tiivial for the columns in H * are of the form
Nn* (x) for some x€L* . The converse is also easy, for any column of
the form 1™ (xj)%*can be expressed as a linear combination of the

columns of H by definition.

Corollary 11: L et /Q’%TT* and 477 be two IS over the same alpha-

bet 2. L.et J " be a matrix whose columns are the columns in
[K(] corresponding to the same wards in ¥ as the columns
in H and in the same order. fl,* is equivalent to 417 if and

only if there exists a nonnegative mtegr‘al matrix B* whose first

row equals 7* and such that

" A
*p = 7’)(77,)\) and B**H"t) =9 Mo), for allg€x. (10)
}% A (AT and 97 (o) = Ao).

A
(
therefore, all the entries in H (0) are nonnegative and integral.

f{fn‘

responding ot the same Wor‘di in L* as the columns in H (o) and

*
Notice that the columns of H o) are columns in [KQ’] and,

Similarly, the columns in J are the columns in [K ’IT], cor-
¥

therefore, the entries in J ﬂ(o) are alsononnegative and integral.

Corollary 12: Let l%* ¥ be an n-state IS and let Q be another IS

over the same alphabet 2. Thenj{* is equivalent to)‘% it and only
if there exists a nonnegative mtegr*a! matrix B* whose fmst row

equals #* and such that
B* [K’Q " ()] = [K(ﬁ"'”(n)] (11)

*
where [K‘?% (n)] is the matrix whose columns are the vectors 1* (x)

142

)y,

with |x| £ n and similarly for [K
Proof: K *(n) includes the vector 71 and it follows from Theorem 1
that the columns of H Q‘*(O') are columns in [KQ’*(n)] so that

(11) implies (10). On the other hand, we have as an immediate con-

se quence of corollary 11, that (10) implies (11).

Remark: One canh use now the above Corollary 12 and prove the de-

cidability of the equivalence problem of two IS. We shall postpone,

however, this problem and discuss it in a later section of this paper
where an easier algorithm will be suggested for it.

We are now able to settle the minimization problem for IS.

Theorem 13: Given an n-state IS Qf there exists an effective algo-

rithm which will construct another equivalent m-state IS ’QC* - with
m < n, if such an “ﬁ&’*w* exists, or will decide that no such /%*
exists. '

Proof: We shall exhibit an algorithm which will perform the required
task. Each step of the algorithm will be followed by an explanation if

necessary- We shall need the following notations:

Let &+, € ,...,£° be a set of n-dimensional vectors then

f (&1, Eg ,...£%) denotes the minimal hypersphere in n-space with
center at origin including the point vectors £',... ,£5 in its interior
or on its boundary. If \J is a matrix whose rows are ... , £ then,

by definition, y(\f) = ff(gl e, E5)

Algorithm for Theorem 13

Step 1: Given the 1S)% et t be the number of columns in the ma-

L
(<, m) and let n be the number if states of le Set m = t.

trix H
Step 2. If m =n stop. There is noJ% ¥ with less than n states and
equivalent to ﬂ’ﬂ (for m=1 this follows from Theorem 8). Else, go

to the next step.

143

Step 3: Construct the matrix [K(JQ:’W)(m)] and let p be the number

of its rows. (It is clear that t< p < n.)

Step 4: Construct a matrix B* with p rows and m columns

such that:
a) All its entries are nonnegative integers.
b) The sum of its columns is equal to the column vector n(m,A).
c) The matrix B* has not been used in a previous applica-

tion of step 4 of the algorithm.

If no such B* matrix can be found then set m =m+1 and go to step 2.

Else, go to the next step.

Explanation: The matrix B¥* as constructed in step 4 is intended to be
the matrix satisfying the equation (10) in Corollary 11, which implies
the conditions a) and b). The third condition c) is inserted here for the
case where the algorithm will come back to step 4 after going through
other steps. It is clear that there are only finitely many matrices B*
satisfying the conditions a) and b) for fixed m. Therefore, because of
condition c), the algorithm will pass through step 4 only finitely many

times before changing the parameter m.

Step 5: If the chosen matrix B* has no column with all its entries zero

eniries, then go to the next step. Else, go to step 10.

Step 6: Construct a matrix \f with m rows and same number of columns

as the matrix [K(Am)

(m)], with all its entries nonnegative integers,
with all its rows (when considered as point vectors) in the interior or
on the boundary of Y ([K(}Q"W)(m)]), with first column equal to 7, such
that \J has not been used in a previous application of step 6, and such

that U satisfies the equation B¥* V = [K(}%’W)(m)] .

If no such U matrix can be found, then go to step 4. Elsego to the next

step.

144

*
Step 8: Solve the equations A¥ (U)H’% =H

Explanation: The U matrix is intended to be the [K

A% (]

matrix satisfying the equation (11) in Corollary 12. According

(A

negative combinations of the rows ofv and every row of U

to that equation, the rows of [K ’W)(m)] must be integral non-
must be used in the construction of some row of [K(A’ﬁ)(m)]

(the matrix B* has no all-zero co Iumns bA\j step 5). It is thus
clear that no pointvector outside W)(m can parti-
cipate in the formation of the rows of [K()(m)] This implies
that there are only finitely many matrices Usatlsfymg the con-
ditions in step 6 so that step 6 will be used only finitely many times

before changing the matrix B¥*.

Step 7: Let the columns in Ucor'r‘espondlng to the columns 7(m, x)

in [K AW)

occurs in both vectors if they are in the same place. Choose a ma-

(m)] be denoted by n*(x) where the same argument x

ximal set of linearly independent column vectors in U such that the
vectors chosen are the first vectors, according to their order in U s
satisfying the required property (maximal linearly independent set).
Denote the matrix whose columns are the above chosen columns or-
dered according to their original order in V by H * (this step
relies on Theorem 1). Finally, construct the matrix HA* (o) as
follows: For*)q(‘a;/er‘y column 7N*(x) in HJ{* , let the corresponding

column in H (0) be the column n* (ox).

A*

subject to the condition that all the entries in A* (o) be integral and

(o) for every o€L,

nonnegative. [f for some ¢ no solution can be found then go to step 6.

Else go to the next step.

JQ*

equal to 1 while the entries in A*(0) be integral and nonnegative. [t

Explanation: The first column in H is a vector with all its entries

follows that there may be only finitely many matrices A* (0) satisfying

the equation in step 8 so that this step is decidable.

145

Step 9: Let 7* be the first row of B* then (7,{ A% (o)}, n*)
is an m-state IS equivalent to the given one. (The reader will
prove this easily on the basis of the previous Theorems and Co-

rollaries.) Stop.

Step 10: (This step is applicable only if the chosen B* matrix

in step 4 has one or more zero columns. For the sake of simplici-

ty, we assume here that B* has only one all-zero column, the

last one. The other cases are dealt with similarly. Of course, B*
cannot be an all-zero matrix.) Let B*! be the matrix derived from
B* be deleting its last (all-zero) column. Construct a matrix U.
with m-1 rows satisfying the equation B*!' V! = [K(R’ﬁ)(m)] with

all its entries nonnegative integers, with all its rows (when consi-
dered as point vectors) in the interior or on the boundary of

'.‘?([K(’W)(m)]) and with all entries in its first column equal to 1.
Let the columns in U corresponding to the columns (7, x) in

[KU.l ’W)(m)] be denoted ';')*‘(x) as in step 7. Let U (m-1) be the
submatrix of U'' with columns corresponding to words x with

| x| £ m-1. Construct the matrix U '(m-1)(0) as follows: for every
column N* (%) in VU 1(m-1) let the corresponding column in U '(m-1)(c)
be the column 1* '(ox). Finally, expand the matrix U' to a matrix U
with m rows as follows: The first m-1 rows of U are as in U!, The
subvector of the last row of U which belongs to columns corresponding
to words x with |x| < m-1 (considered as a point vector) is in the

interior or on the boundary of\ﬁU'(m—])o)). The entries in the last

o€l
row of W which belong to columns corresponding to words x with

\xl =m are left free at this stage of the algorithm and will be fixed, if
possible, at a later stage. The matrix U above should be chosen so
that it differs in its fixed entries, from any other matrix \J chosen in
a previous application of step 10 of the algorithm. If no such matrix\J

can be found then go to step 4; otherwise, go to the next step.

Explanation: Assume that the equations A¥ Y(g)U!'(m-1) = U'(m-1)(c)

)
have solutions A¥*(g), such that A* (o) is an (m-1)x(m-1) nonnegative
integral matrix, for every o€Z. Then an (m-1)-state equivalent IS to

the given IS QN can be constructed (by Corollary 12 and by the fact

146

that B* '\W1(m) = [K(Q’W)(m)]). This is impossible for in this case the
algorithm would have stopped with a positive answer at an earlier
stage. One may assume, therefore, that there is a 0€L such that
no (m-1)x{m=1) nonnegative and integral matrix A* (o) exists
which solves the equation A* I(g)Ut(m-1) = U(m=1)(c). One must,
therefore, expand this equation to the equation A* (0)U(m=-1) =
Vim=1)(o) withWU(m-1) having m rows, and try to solve this equa-
tion for an mxm matrix A* (o) having non-zero (and integral) en-
tries, in that part of its last column corresponding to first m-1
rows. This implies that the last row of J(m~1) must be in the in-
terior or on the boundary of (\Igzé)(lf'(m—l)((r)) as required. It is
easily seen that the number of possible matrices U as constructed

in step 10 for fixed m is finite.

Step 11: From the matricesU(m-1) and U(m-1){(c) as constructed

in the previous step, construct the matrices H‘%* and HA*(O') re-
spectively, as in step 7. Some, but not all, entries in the last row
of I—IA-* (o) may not be fixed yet. For example, the first column of
A (o) (for any o) has the form 7% (o) which is a column in Y(m-1)
provided that m= 2 and this will always be assumed (the other case
is trivial). Thus, all the entries in the first cdumn of H&*(G) are

fixed, for any ocZ.
Step 12: Solve the equations:
A* () HA* = HA* (g)

for mxm matrices A¥*(g) with nonnegative and integral entries. If

no such solution exists then go to step 10; otherwise, go to step 9.

Explanation: The matrix A*(o) must have nonnegative and integral
entries and the sum of its columns must equal the first column of
H’Q*(G) (which is fixed). This implies that there are only finitely
many possible solutions to the equations in step 12 which can be
ennumerated and checked one after another. This observation
(which is true also for the eighth step in the algorithm) leads to the

following.

147

Corollary 14: Given an n-state lSJ?W, there are finitely many equiva-
lent m-state ISJE*?T* to it for any fixed m (including the case where

there is no m-state equivalent IS for the given one).
Remark: If a solution to the equations in step 12 can be found such
that if fits the fixed entries in I—I’Q* (o), then the free entries in tho-

se matrices (and also inv-(m)) will be fixed by that solution.

e) Representability of integral word functions

The following problem will be considered in this section. Given an
integral word function f over an alphabet I, f: 2* 3+ N (where by
llgiven!! we understand that there is an effective procedure by which
the values f(x) can be computed in finitely many steps for each
x€L*). Is the given function representable in the form = &7 where

JQ’IT is an IS?

Definition 6: Let f: Z* 2 N be an integral word function. L.et

A, x! , NS , ... bea length preserving enumeration of the words in
Z* and let 3?(1’) be the infinite matrix whose i-j entry is f(x' x').
The rank of f(r(f)) is defined as the rank of the matrix ae(f); i.e.,
the maximal number of linearly independent rows (or columns) in it.

Notice that r(f) = r‘ankée(f) may assume an infinite value.

The following theorems can now be proved (the reader is refered to

Paz (1971) p. 134 for proofs of similar theorems).

Theorem 15: If f= f’qﬁ where f’lfn‘ is an n-state IS then f has finite

rank and r{f) < n.

Theorem 16: If f is a given integral word function such that r(f) < n,
then a "pseudo integral!! sequential system Jzﬂ, (meaning that the ma-—
trices Alg) and vectors 7 and 77 are not necessarily nonnegative
and integral, but the function f T has only nonnegative and integral

values)can be found with humber of states < n and such taht f=f ".

In addition to the above two theorems, one can also prove the follo~

wing additional theorem which is peculiar to the integral nonnegative

148

case (and is not true, in general).

Theorem 17: Let f be a given integral word function such that r(f) < n.
IF f=F"T" with A*Tf* a true IS then the true IS)Q*TT* (or an equi-

valent true IS) can beifound.

Proof: Let ’%ﬂ be the pseudo IS satisfying f = f}%ﬁ as constructed

in Theorem 16. For any m, the matrix [K(&’m(m)] has only integral
nonnegative values (the entries in that matrix are of the form

m(xn(y) = fﬂﬁ(xy) = f(xy) with x,y€Z*) although the matrices Alo)

and the vectors 7 and 7 may have negative and nonintegral values.

Delete step 2 from the algorithm proving Theorem 13 and apply the
modified algorithm to the pseudo TSAW above. It is easily seen
that the modified lagorithm will search for a true m-state equiva-
lent IS fl*ﬂ,* with m growing larger and larger until such an equi-
valent IS is found and then stop. The algorithm will not stop and

will run forever only if there is no true IS equivalent to the given

pseudo ISJL?T.

sary condition for an integral word function f to be representable
in the form f=f°7 with}{w an IS.

Theorem 18: L.et f be an integral word function. f is representable
in the form f= fjbn, with »Qﬂ_ an IS, only if for every x€I* there
exists a set of numbers co,c, ... , ¢, such that for every y, z€2%

the following equality holds:
n s
flyx'z) = T c, . flyx*"12)
i=l -

For proof see Paz (1971) p. 137.

f) _Closure properties of ISF

Theorem 19: Any word function f over an alphabet 2 of the form
f(x) = ¢ for all x€Z* with ¢ -a nonnegative integer is an-I1SF.
Proof: Let 7 = (c 0), Ag) = B(C)j for all ¢€X and g = [:] then
TA(x); = c for all x€n* . -

149.

Theorem 20: If f)q’” and f 7' are |SF over the same alphabet %

: !
then so is ¢, f + 021”’%77l where ¢; and c, are nonnegative inte~
’ ! ;
gers. and (le T+ sz m)(X) = le W(x) + Cgf W'(X)-
Proof: Let ﬁ;*w* be defined as follows:

= [c,m c,n'] A* (o) =é'g‘(0) 2\'(0)} ‘i}*g" 7]})

=
* , f
It is easy to see that f% T = c, fQW + cgf'q'ﬁ'I .

Corollary 21: The equivalence problem for two IS over the same alpha-

bet is decidable (i.e., one can decide effectively whether two IS are

equivalent).

.y
Proof: Let fA‘Tr and fA U be two ISF. Construct the IS A® with
A¥* (o)} andn* as in theorem 20. Let 7' = (70...0) and 7 = (0...0rn"')
where the number of zero entries in7' and 7° equals the dimension of

I
! if and only if 7' and

! and T respectively. It is clear that f M=y
7 are equivalent vectors for A%,

Now use Theorem 2.

Theorem 22: If fQTr and fﬂ,ﬁ' are ISF over the same alphabet Z
then so is fQW'fQI?T' where (fQW 'f&'w)(x) = fﬂ:ﬁ(x)' f&"ﬁ'(x).

Proof: Define the IS A*';’T* with 7% = 'H’@ﬂ", A* (o) = Ao) @A'(G)

and n* =7 Jn' where the operation &) stands for Kronecker pro-
duct of matrices; i.e., if A= [aij] and B = [bkl] are (not necessa~
rily square) matrices of order mxn and pPXa respectively then
AQRB=C=[Cip,;1]=[a; be1] by definiticn and the double indi-

ces ik, jl of the elements of C are ordered lexicographically

ik

i

11,12,...,1pycc.,ml,...,mp;
it=11,12,...,1q9,...,nl,...,nq;

* !
One proves easily that fQ' < f,%ﬁ'° fqﬁ' (see Paz (1971) pp. 101, 147).
Theorem 23: Let f&W be an ISF and define the word function g, over
the same alphabet Z with ye€L* as g, (x) = f%ﬂ'(yx). Then g,(x) is

an ISk,

Let f'QTT be an ISF and define the word function g over the same

alphabet 20 as g(A) =1 and g(ox) = f)%”(x) for all ¢€5 and all

150

x€2*., Then g is an ISF:

Proof: Define the 1S jl)eﬂ* such that #, =/ and 7% = TA(y) = 1(y).
Then T*¥A*(x)n™* = ?TA@)A(X)’W = feﬁ(yx). Thus, gy = f - as requi-
red.

Define the IS /Qjeﬂ,* as follows:

o m 1

7“1‘*=(10...O),A*(0')=1: Alo) n¥ =

.

where 7%, A%*(g) and 11* are vectors and matrices of dimension
n+1 if the dimen‘sicgen's of the vectors and matrices of)%n are n.

*
Clearly, g(x) = f’Q‘ T (x).

g) Single letter case

All the properties of IS and ISF proved so far, are true, of course,
for the case where the alphabet 2, over which the functions are

considered, consisis of a single letter. There are, however, some
additional properties peculiar to the single letter case. These pro-

perties will be discussed in this section.

Given a word function over a single letter alphabet X ={g} ,f:Z* 3 N,
we shall use the notation f(n) for f(o") so that the function is con-

sidered as a function f: N >N,

Theorem 24: For integral word-functions f over a single letter

alphabet the following 4 conditions are equivalent:
(1) f= f’gﬂ for some pseudo IS /{7 .
i

(2) The infinite Hankel matrix of f,X(f) such that its ij entry

equals f(i+j), is of finite rank.

(oo
(3) The generating function of the infinite series X f(i)x
is rational (i.e., there are two polynomials in x; p(x) a'r?ccl) a(x),
such taht p(x) = q(x) iz}o f(i)x* where equality means that the coeffi-
i

cients of x' are the same in both sides of the equation).

(4) There exists an integer n < the number of states of
and constanis c¢g,c; ... ¢ -;, such that for every integer

q'ﬂ’

m = 0 the following difference equation holds true
f(m+n) = c -1 f(m+n=1) + ¢ -, f(m+n-2) + ... + Cyf(m) (12)
n
For proof see Paz (1971, b).

Every one of the four aspects exhibited in the above theorem can
be helphul in the study of ISF and the growth function represented
by them. Thus, the generating function approach has been used
extensively by Szilard (1972) while the first and second aspect are

dealt with in this paper, in a more general context.

We would like to stress, here, also, the usefulness of the 4-th

condition which is exhibited in the following theorems:

Theorem 25: The growth of an ISF over a single letter is either
polynomial or exponential or a combination of polynomial and ex-
ponential growth.

Proof: The relation (12) considered as a difference equation, homo-
geneous with constant coefficients, has solutions of the types stated

in the theorem only.

Remark: The general solution of the difference equation (12) depends
on initial conditions and it may happen that the growth of a specific
solution is polynomial for at particular set of initial conditions and
the growth is exponential for another set of initial conditions. It

can also happen in other cases that the growith is polynomial for

any set of initial conditions. Those cases are worth mentioning

when applications to biological growth are considered.

Theorem 26: Let = fQ"T be an ISF over a single letter such that
for some integers m and n, f(m) = fm+1) = ... = f(m+n) but there
is i>n such that f(m+i) # f(m) then)%Tf has at least n+1 states.
Proof: if z%ﬂ, has no more than n states then (12) holds true with

n, £ n constants. Insert the values f(m+n,) = f(m+n,~1) = ... = f(m)

151

152

into it for the given m (and after cancelling the equal values) we

no—
get that {;0 c; = 1.

Let i be the first integer i> n such that f(m) # f(m+i) and insert
now into (12) the values f(m+i) # f(m+i-1) = f(mr-ji-i—z) = ... = f(m+i-n).
1 1
We have f(m+i) = .5, ¢ . f(m+i=j) = f(m+i-1) I, ¢ .= f(m+i-1) a

Fl 'ny - Fl 'ng—j

contradiction.

Corollary 27: Let f be a word function over a single letter alphabet

such that for every integer n there are integers m and 1 > n such
that f(m+i) # f(m+n) = f{m+n-1) = ... = f(m) then f is not an ISF.
Proof: By Theorem 26 any IS representing f must have infinitely

many states,

153

3. GROWTH FUNCTIONS OF LINDENMAYER SYSTEMS

a) Growth in DOL~systems

We begin by defining the notions of a DOL ~system and its growth func—

tion.

A deterministic informationless Lindenmayer system or, shortly, a

DOL ~-system is an ordered triple

s=(Z,v,90), (13)

where T is a finite nonempty set (the alphabet), vert (the axiom)
and & is amappingof T into Z* . (¥ was defined before. =t

is the set of all nonempty words over Z.) By considering 0§ as a
homomorphism, we define 6(w), for any w&i* . By definition,

6° (w)=w and 5i denotes the composition of i copies of &, for i>1.

The language generated by the DOL-system S is defined by
L(s) = {8"(v}|n20 }

and its growth function by

fS(n) = 6" (V)| , nd0,
where (as before) vertical bars denote the length of the word.

For 0€L , the pair (g, 6(c)) is written ¢ » 6(g) and called a produc~-
tion. Our system is propagating or, shortly, a PDOL-system if § is

a mapping into =t R i.e. , 0(o) # 1 , for each ¢€L . As usual, the sys-
tem being an LL-system means that rewriting happens in a parallel manner,
i.e., each letter is rewritten at every step of a derivation. The system
being a 0-system means that rewriting is context-free, i..e., the indi-
vidual letters (the ''cells!") do not communicate with each other. Final-
ly, the system being deterministic means that, for each ¢€X , there

is exactly one production with ¢ on its left side. The general theory

of integral sequential word functions developed in Part 2 is directly

154

applicable to the growth functions of DOL ~systems. In fact, the lat—
ter correspond to the single letter case of word functions. The ge~
neral case will be applied to DTOL ~systems in Section 3c. The
context~dependent DL ~systems considered in Section 3b possess

an entirely different theory of growth.
As an example, consider the PDOL -system
S =({a,b}, a, {a+b, b >abl).

The consecutive values of fs(n) in this case form the Fibonacci

sequence 1,1,2,3,5,8,13, 21,

The growth equivalence problem for the class of DOL -system is the

problem of deciding for any two DOL ~systems whether or not their
growth functions are the same. The growth equivalence problem for

any class of deterministic L.-systems is defined in the same way.

For DOL ~-systems, the problem of finding growth equivalent axioms
is defined as follows. Given a DOL~system (13), to find all DOL.~

systems with the same growth function, ~ and § as (13). Clear-

ly, the number of such systems is finite since the new axiom has to be -

of the same length as v. The cell minimazation problem consists of

finding, for any given DOL ~-system, a growth equivalent (i. e. , having
the same growth function) DOL-system with minimal cardinality of the

alphabet. The following problem of realizing a given growth with a

given humber of cells is more general: given any DOL-system S and

an integer I<_2_1 , to find all DOL -systems which are growth equiva-
lent to S and whose alphabet consists of k letters. (of course,
there may be no such DOL.-systems.) Finally the problem of realizing
a function g, from nonnegative integers into nonnegative integers,

as a growth function consists of finding, for any such g , a DOL.~

system S with g=fS , brovided such a system S exists.

155

We will now study each of these problems, using the results established

in Part 2.

For a DOL-system (13) with the alphabet Z={a;, ... , a/}, we defi-

ne the following matrices. The Iinitial vector, f , is the k-dimensional

e
row vector such that its ith component equals number of occurrences of
the letter a; in the axiom v, for i=1, ... , k. The final vector, 7 ,
is the k-=dimensional column vector with all components equal to 1.

The growth matrix , A, is the k-dimensional square matrix whose

(i, j)th entry equals the number of occurrences of a; in 0(a;), for
i,i=1,...,k. These matrices are introduced because from the point
of view of growth the order of letters in v and in each §(a;) is
immaterial. The following theorem is a direct consequence of the

definitions.

Theorem 28: For any DOL.-system S, its growth function can be

expressed in the form

= n
fs(n) 7TA7}) (14)
where A° is the identity matrix l. Furthermore, if m is the lengt

of the longest right side of the productions then

fs(n) < m*|v|, forall n30. (15)
The representation (14) reduces the theory of growth functions of
DOL -systems to the theory of integral sequential word functions
(single letter case). The inequality (15) can be replaced by more de-

tailed charac terization in Theorem 25.

We now use Theorem 2 to solve the porblem of finding growth equi-

valent axioms.

Theorem 29: An algorithm for finding all growth equivalent axioms
consists in finding all solutions 7* to the equation (1), where mt

is the initial vector of the given DOL.-system.

156

As an example, consider the PDOL ~-system with the axiom a°b® c®
and productions a =2 ab®c* , b»a°b*c® , c 3 a*b%c*® . Its repre-

sentation in terms of 7, A, is:

1 2 4 1
7 =(22 3) A=132 4 8 n = \1
4 8 16 1
The KM matrix for it is
1 7
H=13y1 14
1 28

The equation 7H = (x y z)H has only two solutions (x,vy, z):

(2,2,3) and (0,5,2).

The first corresponds to the original axiom. Hence, the only other

growth equivalent axiom is b°c® .

The generating function of fs(n) is defined to be the formal sum

F (x)= 2 f_(n)x" .
s oo 'S

Theorem 30: For any DOL-system S, the generating function of

its growth function equals W(I—Ax)"ln . The growth equivalence
problem for DOlLL-systems is solvable.

Proof: We note first that the matrix I-Ax is nonsingular because
the elements of its main diagonal are of the form 1-ax, whereas
the remaining elements are of the form a’x . The first sentence of
the theorem now follows by the representation (14) and the matrix

equation
(1I-AX)™t = & A,
n=0

The generating function thus obtained is of the form p(x)/q(x) ,

where p and g are polynomials with integer coefficients. For

another DOL-system S, with the generating function p, (x)/q; (x)
for its growth function, S and S; are growth equivalent if and
only if p(x)q; (x) = a(x)p, (x) , where the equality sign denotes the
identity of the polynomials. Hence, the second sentence of the

theorem follows.

The same decision method for PDOL ~-systems has been given by

Szilard (1972). Another method has been given by Doucet (1972).
A further decision method results as a special case of Corollary
21. Note also that Theorem 30 gives a method of determining the

growth function of any DOL.~-system.

By Theorem 13 and Corollary 14 (cf. also the proof of Theorem

17), we obtain the following results.

Theorem 31: The cell minimization problem for DOL ~systems is
solvable, and so is the problem of realizing a given growth with

a given number of cells.
We mention another application of Corollary 14:

Theorem 32: For any DOL-system S and integer k , there is
only a finite number of DOlL.-systems growth equivalent to S and

having k letters in their alphabet.

The problem of realizing a function as a growth function has been
studied extensively by Szilard(1972). His methods give the answer
for the case of PDOL.-realizations of polynomials. Theorem 17

gives the following general result.

157

Theorem 33: There is an effective procedure with the following proper-

ties. Given a function g (from nonnegative integers into nonnegative

integers) and a finite upper bound n for the rank of g, the proce-

dure will output a DOL_~-system whose growth function equals g,

provided such a system exists. If there is ho such system, the pro-

cedure will run forever.

158

The procedure of Theorem 33 does not work if no upper bound n
is given. However, if g results from experiments with a finitary

device, it is clear that such an upper bound exists.

In many cases the closure properties discussed in Section 2f

will give more practical methods for realizing functions as growth
functions. For instace, the growth function of the PDOL-system

with the axiom a and productions a-—ab, b»b equals the function n+1.

If one wants to realize (n+1)® as a growth function, then one simply
takes the Kronecker products of the matrices of the given system, ob-
taining the PDOL -system with the axiom a and productions a - abcd,
b-+ bd, c+ cd, d+ d. The new system realizes the growth (n+1)? but

it is not minimal in terms of the number of letters. (Kronecker products
usually give systems with more cells than necessary.) However, one

can always apply the cell minimizatinn procedure.

Following Szilard(1972), we say that the growth in a DOL~system
S is malignant if there is no polynomial p(n} such that
fS(n)gp(n) , for all n. The following theorem is easily obtained
from the results of Szilard (1972).

Theorem 34: There is an algorithm for deciding whether or not

the growth in a DOLL-system is malignant.

Whether or not the growth is malignant is determined by the
difference equation (12) and its initial conditions. As we pointed
out in Section 2g, it may happen that the same productions give
rise to both malignant and "normal'' growth, f or suitable choices
of the axiom. Of course, it may also happen that the growith is
malignant, no matter how we choose the axiom, and also that the

growth is normal no matter how we choose the axiom.

b) Context-dependent DL_-systems

We will now consider the case where the rewritting may depend

on the context. The productions are now of the form

(b,a,c) »>w, b,a,c€L, weD* ,

159

meaning that an occurrence of the letter a lying between b and c
is rewritten as w . If this occurrence of a is the first or last
letter of the word under scan, the missing context is provided by

a fixed letter g, so-called input from the environment.

Formally, a deterministic context—-dependent Lindenmayer system

or, shortly, a D2L.~system is an ordered quadruple S = (I,v, g,0),
where L and v are as in the definition of a DOL.-system, g&cZ
and & is a mapping of the Cartesian power %I° into L* . If §

is a mapping into E+ , the system is termed propagating or a

PD2L -system.

We now define a mapping 8 of ¥ into Z*¥ . For w=a,...a, ,

where nx2 and each a; is a letter,
67(w) = 6(g,a,,a,)0(a,,a5,as)...0(apm,a,a,)0(a-,a,,9 .

(Juxtaposition on the right side denotes the catenation of words.)
For w=a, €5, 64w)=06(g,a,,9) . Finally, 6% X) =X . The lan-
guage generated by S is now defined by

L(S) = {(6°)*(v)] nx0}
and its growth function by
fg(n) = [(67* (V)| , nzo.

A D2L~system is a D1L ~-system if and only if one of the following
conditions holds: (i) for all letters a,b,c,d, 06(a,b,c) = 6(a,b,d),
or (ii) for all letters a,b,c,d, &(a,b,c) =06(d,b,c) . Thus, the
numbers o,1,2 in the definition of LL-systems mean, respectively
that rewriting happens in a context~free, one-sided context-sen-
sitive or two-sided context-sensitive manner. (As regards cells

in filamentous organisms, the three alternatives mean, respecti-
vely, that individual cells do not communicate, or a cell may com-
municate with its neighbour which either is always the one on the
left or always the one on the rigth or, finally, that a cell may com-

municate with both of its neighbours.)

160

As an example, consider the PD2L.-system

S = ({a;byc, 9}, ba, g, 0),

where 0 is defined by

§(b, a, x) = b, for all x%c,

6(x,a,c) =c, for all xtb,

6(x,b,9) = ac, for all x,

d(x,b,y) = a, for all x and y such that y¥g,
6(a,c,x) = a, for all x,

6(g,c,x) = b, for all x,

6(x,y,2) =y, otherwise.

The sequence of words (§7)" (ba) is

ba, ab, aac, aca, caa, baa, aba, aab, aaac, aaca, acaa, caaa,

baaa, abaa, aaba, aaab, aaaac, aaaca, ... ,

and the first values of the growth function

29273’313’333’324’474’474)4’474)5757575’51575757575)67 e

This example can be given the following interpretation. A filamentous
organism grows only at its tail. Whenever growth has taken place,

a message goes to the head which, in turn, sends back an instruc-
tion for another piece of growth. The more the organism grows,

the more time it takes for these messages to get through.

By definition, the family of growth functions of contextdependent
DL ~systems includes the family of growth functions of informationless
DL.~-systems. By the previous example and Corollary 27, we obtain

the following theorem.

Theorem 35: There is a deterministic context-dependent L.inden-

mayer system whose growth function is not realizable by any DOL -~

system.

161

Our example for Theorem 35 is a PD2L.-system but it can easily be
replaced by a PD1L ~system. In fact, Gabor Herman (personal com-
munication) has constructed the following very slowly propagating
PD1lL.-system, where the lengths of the sequences of equal values
grow exponentially. The axiom is ad, the input from the environ-

ment Is g and the productions are

(g,a) »c, (c,a) » b, (c,b) »c, (c,d) »ad, (x,c) > a, for all x.

Rewriting depends always on the left neighbour only and, thus, the
right neighbour is missing from the left sides of the productions.
(For instance,the first production means that an initial occurence

of a is rewritten as c.) For all combinations not listed above, re-
writing preserves the original letter. The first words in the sequen-

ce are how

ad, cd, aad, cad, abd, cbd, acd, caad, abad, cbad, acad,
cabd, abbd, cbbd, acbd, cacd, abaad, ...

Note that growth can take place only after the messenger c¢ has
reached d. This, in turn, can happen for words cb*d only. In the
above sequence, the distance between two words of this form grows

exponentially.

Thus, the class of growth functions of PD1L~systems (resp. D1L~-sys—-
tems) properly includes the class of growth functions of PDOL.~-sys~
tems (resp. DOL-systems). It is an open problem whether or not
there exists a PD2lL.-system (resp. D2L-system) whose growth
function cannot be realized by any PD1L.~system (resp. D1l.-system).
This problem can be further extended to concern D(m, n)L.~systems,
i.e., systems where the rewriting of each letter depends on m og
its left neighbours and on n of its rigth neighbours. It has been
shown by Rozenberg (1971, 2) that the families of languages gener-
ated by such systems form an infinite hierarchy. This does not

imply that the families of growth functions also form an infinite
hierarchy. Another open problem is to give a decision method for

the growth equivalence problem of deterministic context-dependent

L.indenmayer systems, perhaps only for a subclass of them such as

162

PD1l.-systems. No algorithm is known for deciding whether or not

the growth in a context-dependent LLindenmayer system is malignant.

Comparing finite probabilistic and deterministic automata, it is well
known that the former save states, i.e., there is a probabilistic au-
tomaton with two states which, f or any k, accepts a language not
acceptable by any deterministic automaton with fewer than k sta-
tes but acceptable by a deterministic automaton with k states. A
similar phenomenon is observed when comparing the growth func-
tions of context-dependent and informationless LL~-systems. Inh the
statement of the following theorem, a semi-PDI1lL.-system means

a PD1L-system without the axiom.

Theorem 36: There is a semi-PD1l.-system S with three letters (in-

cluding the input from the environment) such that, for each k22,
there is an axiom v, and a PDOL -system T, with k letters
which satisfy both of the following conditions: (i) the growth
function of T, cannot be realized by any PDOL -system with fewer
than k letters, (ii) The growth function of T, equals the growth
function of S, , the PD1lL-system obtained from S by adding the
axiom v, .

Proof: Define S = ({a,b,c}, . , a, 0), where for all letters x,
6(b,a,x) =b, &(a,b,x) =a, 6(b,c,x)=aa

and 0(x,y, z) =y, otherwise. Furthermore, for each k2 , define

T, ={ay, «vvy, &}, a,¥ ay , &),
O.(ay) =a, , 8,(a) =a,a , 6 (a;) =a,., , for 2<igk-1.

Then the following function f is the growth functicn of both T,

and S;:

163 -

k for n<k-2,
f(n) =

k+1 for n>k-2.

Condition (i) is satisfied because in any PDOL -system realizing
T the axiom must contain at least two distinct letter and, for
all i{k-2, the ith word must contain a letter which is not present

in the jth word, for any j<i.

c) Growth relations of DTOL - and OL-systems

In systems considered so far, there is a unique sequénce of
words beginning with the axiom. We now consider cases where this
condition is not satisfied and, thus, we obtain a growth relation

rather than a growth function.

A deterministic informationless L indenmayer system with tables or,

shortly, a DTOL ~system is an ordered triple S = (Z,v, T) , where
Z and v are as in the definition of a DOL-system and T is a
finite nonempty collection of mappings t such that (Z,v,t) is a
DOL ~system for every €T . For each DOL~system (I,v,t) thus

obtained, we define the matrices m, A(t) and 1 as in Section 3a.

The growth relation RS of S is the binary relation defined as fol-

lows. For any m,nx0, Rs(m,n) holds if and only if either m=0

and n=fy , or else m>0 and there are elements t;,, ... , t, , or T

such that

TA() ..o Alty)n =n.

Two DTOL.-systems S (with matrices 7, A(t), n} and S’ (with

matrices 77, A’ (t), #°) are strongly growth equivalent if there is

a one-to-one correspondence between the set of matrices A(t) and

the set of matrices A’ (t) such that, for any m>0 and t;, ... , t, ,

TA(t) ... Alt,p =a"A°(t]) ... At n’,

164

where A’ (t}7) is the matrix corresponding to A(t;) . They are weakly

growth equivalent if RS = RS’ .

Intuitively, in a DTOL.~system any element of T (so-called "tables')
may be applied to the word under scan but different tables may not

be mixed. The language generated by the system consists of all
words obtained from the axiom in this fashion. A DOL.-system can be
viewed as a special case of DTOL.~system with only one table. If
there are more than one tabies, many words may be derived from

the axiom in m steps and, consequently, we have a growth rela-
tion rather than a growth function. By definition, strong growih
equivalence of two systems implies that the systems have the same
number of tables, i.e., the same degree of synchronization in the
terminology of Rozenberg (1971, 1) In weak growth equivalence, only
the lengths of the words are taken into account, not the number of

different ways in which words of given length may be derived.

The theory of integral sequential word functions is directly appli-
cable to strong growth equivalence but not to weak growth equiva~
lence. The results are summarized in the following theorem. The
notions in the statement of the theorem are defined exactly as for
DOL.-systems, with the convention that equivalence means always
strong growth equivalence. The theorem is obtained from Theorems
2 and 13 and Corollaries 14 and 21 in the same way as Theorems 29~
32. It is to be emphasized that because only strong growth equiva-
lenceisconsidered, in each of the results one considers a family

of DTOL -systems with the same degree of synchronizaion.

Theorem 37: There is an algorithm for finding all arowth equivalent
axioms for any DTOL.~system. The growth equivalence problem for
DTOL ~systems is solvabel. The cell minimization problem for DTOL~
systems is solvabel, and so is the problem of realizing a given growth
with a given number of cells. For any DTOL~-system S and integer

k , there is only a finite number of DTOL -systems growth equivalent

to S and having k letters in their alphabet.

165

Finally, we consider OL-systems. A OL~system is defined as a DOL.—~
system except that now 0 is a mapping into the set of all nonempty
finite subsets of Z* . One step in the rewriting process consists

in replacing each letter a by som word in §(a) . Different occurrences
of the same letter may be replaced by different words in &(a) and,
therefore, matrix approach will not be directly applicable. The growth

relation R_ of a OL-system S is defined as follows. For any

S
m, N0, Rs(m,n) holds if and only if either m=0 and n is the
length of the axiom, or else m>0 and a word of length n can be
obtained from the axiom as the result of m sieps of rewriting. Two

OL.-systems or a DTOL.-system and a OlL.-system are weakly growth

equivalent if they have the same growth relation.

There are Ol-languages which are not DTOL.~languages, ed. the
language {ag" \ngo} is generated by the OL-ystem S with the axiom

aa and productions a»aa and a-A but is hot generated py any DTOL -
system. However, the DTOL~system S; with the axiom aj;a; and
tables t such that t{a;) =w; , i=1,2, and the words w,; , indepen-
dently of i, assume the values a,?, a,®?, a;a, and X is weakly growth
equivalent to S . The same holds true also in general. The idea in the
proof of the following theorem is the same as in the example: introduce
new letters in such a way that if two occurrences of the same letter

are rewritten differently according to the OL~system then in the DTOL~:

system they are replaced by two different letters a; and a, .

Theorem 38: For any OL -system, there is a weakly growth equivalent
DTOL-system.

Proof: Let the given OL-system be S = (Z,v,) . Without loss of ge~
nerality, we assume that the following condition is satisfied for each
letter a in L : all letters occrurring in some of the words in 0§(a)
are distinct among themselves and also different from a . (For if
this is not the case originally, then we replace each a in X with
sufficiently many new letters a;,.....,a,, referred to as descen-
dants of a . The new set of productions consists of all productions
obtained in the following way. The left side is a descendant of some
letter a . The right side is obtained from a word in &(a) by repla-
cing every letter vith one of its descendants in such a way that the
new system satisfies the required condition. Since from the point of

view of growth the descendants do not change anything, the new sys-

166

tem is weakly growth equivalent to the original one.)

Thus, we assume that S satisfies the condition mentioned above.

Let m be the maximum of the two numbers: The lenght of v and the
cardinality of Z . Consequently, there are at most m words in §(a) ,
for any a in Z . (This holds true also if A is among these words.)
For each a in L, introduce m® new letters a;,...a,s , referred
to as descendants of a . lLet Z; be the alphabet of all the new let-
ters thus obtained. For a word w over L, denote by U(w) the
(finite) set of words over Z; which are obtained from w by repla-
cing every letter with one of its descendants. (Different descendants.)
Let v,€U(v) be such that different occurrences of the same letter
are, in fact, replaced with different descendants. (Such a v, exists
by the choice of the number m.) Let, finally, T be the collection of
mappings t of X, into I*, , consisting of all mappings obtained in
the following way. For each a in L, denote by U, (a) the union

of all sets W(w), where w ranges over the elements in 6(a) . Con-
sider the DTOL-system S, = (I,,v,, T). We claim that S and S,

are weakly growth equivalent.

In fact, if for some m and n we have Rsl (m, n) then we also have
RS(m, n) because we only have to erase the indices indicating des—~
cendants to get the same growth. The converse implication follows

from the subsequent observations: (i) in v, all letters are distinct,

(ii) a step w, = w, in a derivation according to S can be simulated
by a stem w’ = wJ in a derivation according to S; in such a way

that in wj the letters of w, -are indexed to take care of the next

step of the derivation. (Remember that from the growth point of view the
order of letters is immaterial.) Hence, R_ = R and Theorem 38

S S,
follows.

The language generated by the DTOL.-system S with the axiom a

and two tables (a~ a®) and (a~ a°) is not generated by any OL-sys~
tem. In the following theorem we show that no equivalent OL -system
can be obtained even if attention is restricted only to growth rela-

tions.

167

Theorem 39: There is no OlL~-system which is weakly growth equiva-
lent to the DTOL.-system S defined above. Consequently, the fami-~
ly of growth relations of DTOL ~-systems properly includes the family
of growth relations of OL.-systems.

Proof: Clearly, Rs(m,n) holds if and only if n=2""3! | for some
i such taht 0<ii{m . Assume that there is a OL.-system S, such
that RS = RSL
the mth step of the rewriting process according to S; it is pos-

. For each m; , there is an m>m; such that at

sible to replace an occurrence of a letter a in a word w by two
words w;, and w, of different lengths. (Otherwise, the cardina-

lities of the sets
R. = {n|Rg(m,n)} , m=0,1,2,....

would be bounded.) LLet u be greater than the greatest among the

differences |x,|-|x, | , where x, and x, are the right sides of
some productions of S, whose left sides coincide. Choose m; to
satisfy 2"7'>u . Then, whenever m>m, and n, and n, , n;>n, ,

are such that R_(m,n;)} and Rs(m,ng) hold, we have n,-n;>u.

S(
A contradiction now arises because the absolute value of the differen-

ce |w;|-|w,]| isless than u. This proves our theorem.

Clearly, the growth function or growth relation of any L.indenmayer
system is bounded by a function <p(n) = ab" , where a and b are
constants. Problems concerning malignant growth for systems more

general than DOL.-systems are left open.

Acknowledgement Most of the work in this paper was done during the

Open House in Unusual Automata Theory at DAIMI of Aarhus Univer-
sity, Denmark, Jan. 10 - Jan. 28, 1972. The authors express their
gratitude to the participants and organizers of this meeting, espe-

cially to Dr. Brian Mayoh.

168

REFERENCES

P. G. Doucet (1972) Growth of word length in DOL-systems, manu-
script ot be published.

A. Paz (1971) Introduction to Probabilistic Automata.

Academic Press.,

A. Paz (1971, b) Formal series, finiteness properties and

decision problems. Ann. Acad. Scient. Fennicae, Ser. Al 493,

G. Rozenberg (1971, 1) TOL-systems and languages, manuscript to
be published.

G. Rozenberg (1971, 2) L-systems with interactions, manuscript to

be published.

G Rozenberg and P. G. Doucet (1971) On OL ~languages. Information
and control 19, 302-318.

G. Rozenberg and A. Lindenmayer (1971) Deterministic developmental
systems with catenative, recursive formulas, manuscript to

be published.

A Salomaa (1973) Formal Languages Academic Press, to appear.

A. L. Szilard (1972) Growth functions of Lindenmayer systems.
Manuscript to be published.

169

stichting

mathematisch

centrum MC
REKENAFDEL ING MR 138/72 SEPTEMBER

P.M.B. VITANY|
DOL-LANGUAGES AND A FEASIBLE SOLUT|ON
FOR A WORD PROBLEM

2e boerhaavestraat 49 amsterdam

170

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsiterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit Anstitution aiming at the promotion of pure mathematics and its
applications. 1t is sponsorned by the Netherlands Governmment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amstendam, by the University of Amsterdam, by
the Free Univernsity at Amsterdam, and by industries.

171

ABSTRACT

L-Systems are automata theoretic developmental models for
filamenteous growth. In this report a subclass, the DOL-Systems, is
studied by considering a classification of letters with respect to
their productions. The notion of a recursive complexity structure is
introduced. The properties derived are exploited, yielding a feasible
algorithm for the solution of a "word problem" (i.e. the membership
question) for DOL-Systems.

Necessary and sufficient conditions for the finiteness of
DOL-languages are stated, and the size of a DOL-language is fixed
within sharp bounds depending on the size of the alphabet and the size
of classes induced by an equivalence relation on this alphabet. An
ALGOL-60 implementation of the above mentioned algorithm, and a
program for generating the sequence of subsequent words, are provided,

both capably written by F.A.L.M. Goossens.

172

CONTENTS

1.1

1.2

3.2.

3.3

INTRODUCTION

NOTATION AND PRELIMINARIES
LINDENMAYER SYSTEMS

THE GENERIC POWER OF LETTERS
RECURSIVE COMPLEXITY

DOL LANGUAGES AND A WORD PROBLEM
FINITE AND INFINITE DOL LANGUAGES
THE WORD PROBLEM

THE ALGORITHM

THE SIZE OF FINITE DOL LANGUAGES
APPENDIX

PROGRAM #1

PROGRAM #2

173

174

175
1 INTRODUCTION

1.7 NOTATION AND PRELIMINARIES

Let) be a finite set. Any sequence of elements of) is called a word
or string over). If a and B are two words over), then their concate-
nation is written as aB. A denotes the empty word. If an then a°
means aa, a3 means aaa, etc. ao = A, If L1 and L2 are two sets of
words over z then

L,.L, = {ocB[oceL1 and BéLg}.

Y* is the Kleenean closure of), i.e. 2* = v Ei where ZO = {1} and
i=0

Zi - Zi—W.z -'Z+ _ z*\{A}-
If we)* then y :) > ol is aefined by
v(w) = {ael| In,ze)” [w=nagl}

]Zl denotes the number of elements of z. Ial denotes the length of a
word a.

Let Seq = CO’C1""’Ck be a sequence of elements of E, then y(Seq) =
{ci€2|ci occurs in Seq}, and |Seq| = k+1.

A language over z is a set L & Z*. Further notation will by and large
conform to the one usual in mathematical linguistics.
Logical quantifiers: VY means "for all'

3 means "there exists at least one'.

176 e
1.2 LINDENMAYER SYSTEMS

Lindenmayer or L-Systems were proposed by Lindenmayer [6] as a
developmental model for filamenteous growth. They were studied
formally in e.g. [1, 4 and 71.

We shall investigate some aspects of a subclass of the L-Systems: the

DOL~Systems or Deterministic O-Input Lindenmayer Systems.,

Def. 1.1 A Semi-DOL-System (Semi DOL) is an ordered pair S = <) 6

where
(i) 7} is a nonempty finite set, the alphabet of S, and an element of
z is called a letter.
(ii) ¢ : z - z* is a total mapping, called the set of production rules,

and for §(a) = o we also write a -+ a.

A Semi DOL generates words as follows:
- +
Tet w a1 a2 ‘o am € Z and

w' =0, a. e 0 € 2* then
172 m ?

w produces or generates w' directly, written as w=sw',

iff Viel1,2,¢..,m} [aj > aj].

* .y . .
== denotes the transitive and reflexive closure of the relation ==,

* .
and w =é£2>w' denotes a chain of length k:

= =3 e = w'
w wo w1==> ==#wk w

. *
If wu' we say w produces, generates or derives ', and if w=iﬁzm',

. . . * . . .
then w' is derived in k steps from w, and w=££gw' 1s a k-derivation of

(k)

+ * ‘
w' from w. w==>w' means w=—===>w' and k > 0.

We extend ¢ in the obvious way to §' such that

6'(a1 8y e am) = 6(&1) §(a

and omit for convenience sake the " ' "

177
T (w) = w

st 0) = 0(65T(w)); e, wilddsi(w)
w'es™(w) iff w=su',

v(s*(w) 88 v y(w)

w'ed (w)
s3(7) 2Ly si(e) ana v(s7(D)) L U v(s%(a))
ac) ac]
s*(7) 2Ly 6%(a) ana v(s™(1)) $E£ U v(6%(a))
ac Z ac€

Def. 1.2 A DOL-System (DOL) is an ordered triple

G = <z,6,o> where
(1) 2 and 6 are as in def. 1.1

.. + . .
(ii) 062 is called the axiom of G.

Def. 1.3 The DOL-Language generated by a DOL G = <Z,5,o>

is defined by

L(G) = fwel™ | o =), i.e. L(G) = & (o).

L-Systems differ from traditional grammars in the following respects:

(i) All letters of a string are rewritten simultaneously at each
time step. This feature conforms to the state of affairs in
natural processes which are mostly parallel as opposed to the
sequential character of grammars.

(ii) Every string derived in this manner from o belongs to L(G).

(iii) As a consequence of (i) and (ii) there is no distinction between
terminal and auxiliary letters (in a sense there are no

terminals).

Def. 1.4 The sequence £(G) of words generated by G = <),8,0> i.e.

2

£(G) = 6,8(0),8(0),...

is called a propagation.

178
Example 1 G = <{a}, {a » aa}, a>

oy

—

[®)]

~
!

= g, aa, 4888, ...

t
(a? |t = 0}

=
[®)]
i

Example 2 G = <{a,bl,{a + aba, b ~ A}, a>

£(G) = a, aba, abaaba, ...

ot
{(aba)” |t > 0} u {a}

B
[]
]

Example 3 G = <{a,b},{a + b, b +» abl}, a>

'Aat

—

(]

~
I

= a, b, ab, bab, abbab,

=
]
1

= {a, b, ab, bab, abbab,}

Note that the lengths of the consecutively generated words
lal, |v|, |ab]|, |vab|, |abbab]|,

form the main Fibonacci sequence

Ty 15 25 35 55 vuns

Consider the DOL G = <{a,b,c}, {a > aa, b > bb}, a>

Y
—
[}
~

!

= a, aa, 8888, ...,

{agtlt >0}

E—i\
(]
]

Clearly, the letter b is superfluous since it does not appear in the
sequence and language produced by G.

Following Rozenberg and Lindenmayer [8] we define

Def. 1.5 A DOL G = <),8,0% is

(i) Quasi-reduced iff U Y(5t(6)) = 2
tell

(ii) Reduced iff VielW [u y(ét(sj(o))) = Z]
t el

2 THE GENERIC POWER OF LETTERS

What type of language a DOL G = <Z,6,0> generates depends on the
generic or productive qualities imbued to the letters by the semi DOL
S = <),8>.

Def. 2.1 Let S <),8> be a semi DOL, Y] = p.
A letter ae) is

(i) Mortal iff a=2). zm = {a]a is mortall. P, = |Eml°

(i) vital iff ed} . Jo=\L -« = [).]

*)

.) + *
(a) Recursive iff a=»naf for some n,Eez

Zr = {a]a is recursive}. P, = Xr“

If a=;>na£ with n,gez* then letter a 1s monorecursive.
m

= {a|a is monorecursive}. p__ = |} |.
mr

zIIlI‘ mr

(b) Recurring iff a%zr and there exists a letter bezr such that

bonac. I = (ae]\], |a is vecurring). py= [.

(¢) Initial 1ff a%zr and there does not exist a letter bezr such

that b=>nak. zi = {aez\im\a is initiall. p; = lEi

NB. The distinction between recurring and initial can also be made in

the case of mortal letters. Here we need this distinction only for

vital letters, and we shall talk about recurring vital (aezc) and

initial vital (aezi) letters,

The inclusion relation induces a partial ordering on

{0 Zm, ZV, zra Emr’ ZC, Zi} as follows:

Z‘m]."

*)
In the sequel we shall omit '"for some n,gez*

1"

when ever this is

obviously implied.

179

180
Clearly: (i) Zv U Zm = Z
(i1) Zi v Zc v Zrz zV’ Zmr = zr'
(iii) Zv n Zm = Zlﬂ Z(= Zl f Zr = Z‘c n Zr =/

(iv) p, <psp <D $P: Py <P P, <DP; P <D

(cf. proofs lemma's 2.1 - 2.4 and lemma 3.5).

When an arrow pointing from zk to Zj’ k,je{m,r,c,i} means that (by
def. 2.1) a letter aezk may generate a letter bezj, we easily see that

the diagram below holds:

181
A useful heuristic device in the investigation of aspects of the
generic power of a letter aez, S = <),8>, is the notion of the

propagation tree Ta of aj; related to the rule tree or derivation tree

as encountered in the theory of context free languages.

Def. 2.2. Let S = <),8> be a semi DOL.

The propagation tree Ta of aez is a labeled directed tree of which

the labels attached to the nodes are elements of Z. When we designate
the j-th node (from left to right starting with 1) at level k (from
top to bottom starting with 0) by (k,j) and biez is attached to (k,Jj),

then node (k,j) is connected by edges with nodes

(k+1,h)5+..s(k+1,h+n) labelled TN respectively, 1ff
1 n
b, > c. ...c. e 8. The root of Ta is the single node (0,1) at level O
1 Tn
labeled with a, A branch is a connected path in Ta' We shall identify

the labels with the nodes they label.

Example 1 S = <{a},{a > aal>

a
a a
T =
a
‘(g a a ja
; \ \ \
// \\ / “ '/ \ Il \‘

il

Example 2 s = <{a,b},{a + aba,b >+ A}>

182
Remark

For anm the propagation tree Ta eventually terminates, for aEEv never.
aezr occurs in Ta appart from the root. aezc occurs in Tb of some bezr,

ani does not occur in T. of some bﬁzr.

b

Def. 2.3 A pedigree of b is a sequence 1l(b) = bO’b1""’bt such that

Vie{0,1,2,..,,t}[bi+1ey(6(bi)) and b, = bl.

Lemma 2.1 Let S = <z,6> be a semi DOL and aez.

aéz iff Ae U {Gk(a)}
n O<k§pm

i.e. iff a derives A in no more than 1 productions.

*(k)
Proof <. If a === X, k i_pm, then aezm.

~. Suppose Ad U {dk(a)}
O<k§pm

Then Vke{0,1,...,p_} [v(6%(a))n]# #1.

D
Let bey(8 "(a))n], and let 1(b) = b_,b.,...,b
0" 1 P,

b, =aadb_ =D, be a pedigree of b.
0 P

m
case 1 |v(1(v))]| = p +1

But p = lz | and therefore
m m

v(1(0))n] # 0.
Hence v Y(ﬁk(a))ﬂzv 7 0.
Ojkipm

i.e. a derives a vital letter and hence is itself vital: aézm.

Case 2 |y(1(p))| < P,

But |1(b)| » p, end therefore
Hi,je{ogT,...,pm} [i < j and b, = bj].

Hence U Y(5k(a>)ﬂz 0,
Oikipm t

l.e. a derives a recursive letter and hence is vital: aégm 0

Remark
The proof is intuitively obvious when we envisualize the propagation

tree of a.

Lemma 2.2 Let S = <z,6> be a semi DOL and aez.
ae) iff A4 U (5(a)?
O<kﬁpm
Proof aéi iff Ad U {6k(a)}. Hence an\Z = z O
—— m m v
O<k<p
—m
Lemma 2.3 Let S = <z,6> be a semi DOL and aéz.

an iff ae U y(8 (a))
r 0<k<p
—1r

Proof < . If ae U y(SK(a)) then aez .
—_— r
O<k<pr

il k
> . I ae then ae U y(8(a))
by k=1
Let h be such that
(1) aey(s™(a)), and
k
(2) a¢ Y v(87(a))

O<k<h
Let 1(a) = CoaCqsCpsrte st

i

h-1’ch be a pedigree of the occurence

of a in (1), c, = ¢ = 8

. h
Clearly, V0<i<h [ciEY(5 (c.))], and therefore:

1
(3) vy(1(a)) ¢)

Suppose h > P,

.~

Because of (1), (2) and (3) l{c1,02,...,ch_1}| <P,

Therefore Ji,jel1,2,...,h=1}[i<] and c. = cj],

and we have

aey(@h_a(c.)) = Y(dn“J(ci)) < U y(dk(a)), contradicting (2).
J O<k<h-j+i

Hence h < p_ W

183

10

184
Corollary From the proof of lemma 2.3 follows that every aezr has a
pedigree
1(a) = 85Cy5-..5C, .58 such that

v(1(a)) e], end [y(1(a)] = k.

This means that every occurence of a in some propagation tree is
connected by a sequence of recursive letters without repetitions with
another occurence of a,.

We call such a sequence C(a) = a, c

1200 O g B connecting sequence

of a. (Such a connecting sequence is a special case of a dependence

path as defined by Rozenberg & Lindenmayer [8]).

Def. 2.4 TLet C(a) be a connecting sequence of a.

Then k = lC(a)’ is called a period of a.

ey
{1

K =

. {kelV |k is a period of a}.

Lemma 2.4 Let S = <),6> be a semi DOL and ae) .

aezc iff ae v y(ék(Zr)) n zv\zr
0<ksp,

Proof Along lines similar to the proofs of lemma's 2.1-2.3 [J
. k
Corollary aezi iff a¢ u v($ (Z)) n Z \Z and aéX \z .
r v ~r v &y
O<k<p
—e

Theorem 2.5 Let S = <Z,6> be a semi DOL. For every aez we can
effectively determine

(1) Whether a is mortal, vital, or recursive, by examining

k
U {8%a)} and U y(6(a))
0<k<p O<k<p
(ii) Whether a is recurring vital or initial vital by examining
k
U v(87(]))
O<k§_pv—pr

Proof By lemma's 2.1-2.4 and the corollary. [J

11

185
Theorem 2.6 We can effectively determine whether a DOL G = <z,6,o> is

(i) Quasi-reduced

(ii) Reduced.

Proof Hint (i) o v(8%(e)) =) iff G is quasi-reduced.
O<k<p
(i1) o y(8e)) = v(6%o)) = 7 irra
O<k<p p-p,<k<2p-p_,

is reduced.

12
186

2.1 RECURSIVE COMPLEXITY

Consider a language like

t .t .t
L(G) = {a° b° ¢ |t = 0}

Clearly, a pattern like
aa...a bb...b cc...c

can only be produced by another such pattern if

§(a) € {a}”

§(b) € {b}*

§(c) e {c}”
And wve easily see that

G = <{a,b,c},{a > aa, b > bb, ¢ > cc}, abc>.

We can investigate DOL-languages, as sets of patterns, and the semi
DOL's which give rise tothem, by studying relations between recursive
letters and developing a notion of recursive complexity. (This will be

the subject of a subsequent report).

Def. 2.5 Let S = <Z,6> be a semi DOL. The Recursive Complexity

Structure of S is a partially ordered set

RCS(S) = (Zr/%,s) such that
(1) Zr <) is the set of recursive letters.
(i1) Let a,be] . a b iff acy (6% (b)).
(1ii) Let a,bezr. avbiff a <band b < a.

Clearly, the relation v is an equivalence relation and induces a

partition on zr in blocks [a]i, i.e.
) = {[al.}, and we define [al. < [a], iff
T/ i i 3

¢ £b for some ce[a]i and be[a]j.

13

Lemma 2.7 [al

lu

u {y(c(a))|c(a) is a connecting sequence of a}.

Proof vy(c(a)) zr' (corollary lemma 2.3).

Let bey(C(a)). Then be U v(67(a)) and ae U +v(s5(p)).

Hence b < a and a < b [

That the converse of this lemma is not true follows from the counter
example

G = <{a,b,c},{a > ab, b > ac, ¢ > b}, a>

uiy(c(a))} = {a}u{a,b} = {a,bl}.
But cey(dg(a)) and aey(éE(c)) and cle

Hence celal and c% u{v{cla))l}.

Lemma 2.8 Let S = <Z,6> be a semi DOL. We can effectively determine

RCS(S) by examining v Y(Sk(a)) for all aez.
O<k<p

Proof We prove that for a,bezr (Zr determined by theorem 2.5):

a <b iff aeo U y(ék(b)).

Y(dk(b)> then a < b.

then there is a pedigree 1(a) = b,c,,...,cC

1°°
Suppose h > p. Clearly 1l(a) contains a repetition of letters and
there is an 1'(a) = b,d1,...,dh,_1,a with h'< h.

By iteration of this argument there is an

h=1 28

1'(a) = b,ew,...,ek_1,a such that k < p.

Hence ae v Y(Gk(b)) 0
O<ks<p

In section 3.2 we shall prove that if L(G) is finite then for all a,bezr

if a < b then a v b, i.e. the RCS consists of incomparable classes.

187

1h
188

3 DOL LANGUAGES AND A WORD PROBLEM

Consider the following "word problem'", given & semi DOL S = <) ,8>

and two words w, and w, over Z. Does there exist an algorithm which

decides whether or not w1=;?w2. In another version the problem is

posed in [3] and called the membership question for DOL's: given a

DOL G = <),8,0> and a word w_ is it decidable whether wTeL(G).

Doucet [op. cit.] proves, independent and preliminary to the research

reported here, that this question is decidable *), essentially by

showing that: !

(i) It is decidable whether L(G) is finite or infinite.

(ii) If L(G) is infinite then ISp(Si(o))]> i&i(o)l and therefore we
can decide the question by generating finitély many successive
strings starting with o.

(1i1) If L(G) is finite, the question is decided by writing out the
whole of L(G) where

|L(c)| = p(P-T)MKp+M
where p = |Zl
K=max{|a| |a+u}
ae
T {’wlv | ’w’v is the number of occurences of
weL(G)

vital letters in w}

(1ii1) suffers the same defect most decision procedures do, viz. it is
not feasible. The a priori bound on the computation length is not
proportionate to our present (and future) means of computation. Even

a very conservative estimate with p = 5, K = 2 and M = 5 gives us

5
L(6)] = 575 o 565

>

*)

The decidability of this word problem also is a corollary of the

inclusion of the DOL Languages in the context sensitive languages

L1,

15
189

which, for all practical purposes means the same as no a priori bound.
There is a profound difference between most mathematical decision
procedures and feasible algorithms which can be executed on a computer
and answer reasonsble questions in a reasonable time. Nobody is
0, 1010 which takes
5(1020) steps (when the TM has a one letter alphabet).

satisfied by a Turing machine computation of 10

In section 3.2 we devise a feasible heuristic algorithm which has been
implemented in an ALGOL program and delivers answers (to reasonable

guestions) in a matter of seconds.

16
190
3.1 FINITE AND INFINITE DOL LANGUAGES

We investigate some properties of DOL's which also form prerequisites
of the proposed algorithm.

Let lek denote the number of occurences in w of letters aezk where

ke{m,v,r,c,i,mr}.

lemma 3.1 Let S = <),8> be a semi DOL and w1,wgez*.
*
If lw1|V > lwzlv then w1:#:b Wy

Proof Since v(6&{(a)) n ZV # ¢ for aezv.

VteN [if l“1‘v >|w2'v then ldt(mi)lv >

It is easy to see that initial vital letters can only occur in

D.~1
0y, 8(6),eus, 8 * (0); and recurring vital letters not derived from

recursive letters can only occur in

p.+p -1
0, 6(0),...,8 * ¢ (o).

Lemma 3.2 Let G = <),8,0> be a DOL.
Vt zp, +p, [if bey(8%(s)) n Ev then y(1(b)) n Zr # §]

where 1(b) = PgaPysrsesby_qsb,, such that boey(o), b, = D.

(Every vital letter in St(o) t > p. + p , has been derived
’ — 1 c

1
from a recursive letter in &0 (0), 0 <t' < p; * pc).

Proof If beZv then v(1(p)) E-zv'

Suppose the lemma is not true, i.e. Y(1(p)) < Zi U Zc'

But then |1(b)| = t+1 > p; + p, while [y(1(p))] =< p; * D,
Hence 1(b) contains a repetition of a letter and

v(1(b)) n Zr # ¢, which contradicts the assumption. O

17

Corollary For all t = pi + pc holds:

if bey(6t(0)) n ZV then there is a cey(&t(o)) n zr such that

)
o)) n I, € v(6"(v(8%(e)) n [).

Hint: by lemma 3.2, repeated application of the corollary of
lemma 2.3 and by lemma 2.7.

Def. 3.1 A DOL G' = <)',8",0'> is the positive k-displacement of

G=<),6,0> if o' = Gk(c) and)'), 8' € & such that G' is

quasi-reduced. G is a negative k-displacement of G .

lenma 3.3 The positive p-p displacement ¢' =<)",8",0'> of

G = <z,6,o> is reduced.

Procf By the corollary of lemma 3.2 and by lemma 2.1 0

lemme 3.4 Let 8 = <),8> be a semi DOL. If aezmr then
[al = y(c(a)) < zmr’ where C(a) is the unique connecting

sequence of a. Moreover, & (a) < z; [a] Z;.

Proof Let C(a) = bo,b b be a connecting sequence of a,

1272 k=1

bO = a, and let bk = a.

Suppose cey(ﬁ*(a)) n ZV\Y(C(a)).

Then cey(éh(a)) and bpey(éh(a)) for some h and p = h mod (k).

+k —
Therefore léh k p(a)lV = 2. But from def. 2.1 follows
+k— * . . .
6h k p(a) = naiezm zmr Z;, which contradicts the assumptilion.

Hence C(a) is the unique connecting sequence of a;
. * * * * *
v{C(a))2lal; and 6" (a))~ y(C(a)) [<] 2 1 .

By lemma 2.7 also y(C(a)) < [al and therefore y(C(a)) = [a]

191

18
192

Lemma 3.5 Let S = <2,6> be a semi DOL.

(i) 1Ir aeir then ae U y(6k(a)) n Z

r
(i1) If an then U y(6k(a)) n z ¢
¢ O<’k$pc r
... k
(iii) If an. then U vy(§7(a)) n Z £
= 0<ks<p.+p r
i ‘e
Proof (i) follows from lemma 2.3.

(i1) 1lLet aezc. Then there is a bezv such that

Y
bey (8 c(a)) n zv'

Let 1(b) = b_,b

o b, b= a, bp = b, be a pedigree

ETEEELA
of b.
Since anc, v(1(p)) E-Ec U zr'

Suppose y(1(b)) E_Ec; then |y(l(b))| < D,

But |1(v)]| > p, and hence there is a repetition of a letter
in 1(b) which contradicts the assumption.
Hence v(1(v)) n Zr # @ which gives us lemma 3.5 (ii).
(iii) Analogous to (ii) with Zc U Z, and pc+pi substituted for
i
ZC and p 0

Remark Lemma 3.5 tells us that every vital letter derives a repetition

of a recursive letter within b, steps.

Lerma 3.6 Let S = <),8> be a semi DOL.

(1) If aezr\zmr, i.e, !Gk(a)| = x > 1 where kK = min Ka

v b

then Vnell [l&nk(a)lv > nx-n]
(ii) If asz , i.e. lék(a)(= 1 where K = {k},
mr v a

then Vtell [Iét(a)|v =]8t(a)]r = 1]

Proof (i) By induction on n.

n=o0. |6%a)| =lal =150

Suppose the assumption is true for n.

193
(n+1)k(a)|

I
o
»
O
jo
B
o
v

|6
v

|52 ()| - 1+ [65(a)] >

nx-n-1+x=(n+t)x - (n+1)

(ii) By lemma 3.4 O
Theorem 3.7 L(G) is finite iff v($ T %)) n z

Proof -—. L(G) is finite.
D.*Pp
suppose v(§ * (o)) n L\l ¥ 4.
p.+p

Let a.¢€ v($ T 7 %6)) n Zv\zmr'

. 1 .
. N . = X. > .= .
Case 1 aleir\imr’ ie. |6 *(a,)] x, > 1, where k., = min Kai
n*ki(a.)‘

|6 ;

> nx.-n (lemma 3.6),

and for all bdlN

b*ki(a H

|6 . > 16°i(a,)| > b x.,-b =1
1 v 1

1

Hence L(G) is infinite: contradiction.

Case 2 aiezc. Then by the corollary of lemma 3.2 there is a

Pi+PC *
bey($ (g)) n Er such that aiey(é (p)).
By lemme 3.k bézr\zmr; and by case 1 L(G) is infinite which

contradicts the assumption.

Pi+Pc
Case 3 aezi. By lemma 3.2 y(§ (o)) n zi = {.
pi+pc
From case 1 - case 3 follows v(§ (g)) n Ev S-Zmr'
p.*+D
coy(st o) n]l el .
pi+pc
Let |6 (c)]mr = m. By lemma 3.k
D +D D;+p
v 20 []6%(s & S(o))]. = %8t (o)), =ml.

v r

20
194

Denote the i-th occurence of a monorecursive letter in St(c),

> p.+ : i ' .
t 2 p.+p_, by al(t) and its period by k.

Since

(1) vt,t' = p;+P, Vie{1,2,...,m} [if t = t' mod(ki) then

a.(t) = ai(t')]

i
we have

(2) al(t)ag(t)...am(t) = a](t+u)a2(t+u)...am(t+u) where
u = l.c.m.(k1,k2,...,km) and t 2 P *P, -

By (2) and lemma 2.1, for all t > p,+p, end all

*
n-|9n25°"2nm+15£]3£2g--03£ ﬁzm holds:

m+ 1

In particular:
p.+p_*p p.+p_+p_+u
gt ¢ Mgy =t M (o) and hence

|L(@)]| < p-p, * l.c.m.(k1,k2,...,km)]

o)

Corollary Let G be quasi-reduced. L(G) is finite iff Zv = 21

mr’
<. If zv = zi U Zmr’ by the previous arguments L(G) is finite.

@

k
-+, Suppose kgOY(s (d)) n (ZCU Zr\imr) 0.
case 1 For some t = 0 bey(@t(c)) n zr\zmr' By the

previous arguments L(G) is infinite.
case 2 For some t = 0 bey(&t(c)) n zc. Since G is quasi-

reduced, by the def. of zc and lemma 3.4

21
' 195
y(ét (6)) n zr\zmr ¥ ¢ for some t', which gives us
case 1.

Hence if L(G) is finite the assumption is false, i.e. EC v zr \ zmr =

= ¢ 0

Clearly, if a,bezmr and a < b then a ~ b.

Hence, if L(G) is finite then RCS(S) consists of pairwise incomparable
classes of monorecursive letters. The converse is trivially true.
Therefore, the family of finite DOL-languages 1s contained in the
family of DOL-languages of which the RCS consists of pairwise
incomparable elements.

¢ = <{a,b},{a > aa, b > b}, ab> yields

t
L(g) = {a2 blt 2 0} and the RCS consists of pairwise incomparable

elements. Hence the containment is proper.

. - Pi¥P,
Lemma 3.8 L(G) is infinite iff v(§ (o)) n EV \ Zmr £
Proof By theorem 3.7 U

p.+2pc+pr p.+p

Theorem 3.9 L(G) is finite iff |& © (o). =18 “(o)]

4
Proof -, L(G) is finite. Since) _nY(S$ %)) =)
e v mr

p.+2p _+p D.+p
I6 1 C r(U)l

]
o
-
(g}
—
Q
N

v

p.+2p +p D.*+p
<, IG 1 C I‘(O>

[H
(oc)
-
O
—
Q
~

v

Clearl

v pi+pc pc+pr

Va.ez [if a.e$ (6) then ‘6 (a.)] = 1]
iSly i i'ly

case | aieir \ zmr'

\6 ¢ I‘(a.)‘ = IG l(a.)l > 1 where k. = min K
v i a;
contradiction.

case 2 aiezc. By the corollary of lemma 3.2 and lemma 3.L4 this

reduces to case 1.

22
196
case 3 aiezi: contrary to lemma 3.2.

Since cases 1 - 3 cannot occur, aiézmr and the proof follows by

theorem 3.7 0
e e . pi+2pc+pr P;i*Pe
Corollary L(G) is infinite iff |§ 0)|V> |s (o)lv.

Remark Up to now we have given several criteria for determining
whether L(G) is finite or infinite.

(i) If zc u Zr \ Zmr + § and G is quasi-reduced, then L(G) is infinite.
.. t . ..
(i1) If y(87(o)) n Zv < zmr’ t 2 p.*P,, then L(G) is finite.

. t B! . , ,
= - > + = .
(iii) If |6 (G)lv | 6 (o)lv, with t-t p,*p, and t' 2 p.+p_, then
L(G) is finite.

Relevant to the solution of the word problem are the following

observations.
Let L(G) be infinite.
p.*D n*k.
Eaiey(é %)) Vnew []s l(ai>iv > nl
If we take n = lelv, then after pi+pc+n*ki productions, surely, we

know whether o:iéwT.

(N.B. clearly, n is a very poor lower bound on]Gn*ki(a.)[).

ity
Let L(G) be finite.
+ .
Jx,uell [6%(c0) = 65 %), i.e.
L(g) = {6%(0)]0 s t < x+ul.
*
If v ¢L(G) then of=o_.
Lemms, 3.10 Let S = <),8> be a semi DOL and ae) _.
=t mr
pm+t p +t!
8 (a) =8 ™ (a) for t' = t mod (k)
p *t p *t'
8 (a) £ 6 (a) for t' ¥ t mod (k)
where t,t'elN and k is the period of a.
Proof Let C(a) = bO’b1""’bk—1’ bo=a, be the unique connecting

sequence of a.

23
197

(1) vy(c(a)) ¢ Zmr (lemma 3.k4)

(2) o%a) e ' I In (lemma 3.k)

(3) 1In c(a), b, # b for 0 <i < j <k (by definition).

(by definition of C(a) and
(1) and (2)).

t * *
(k) &7(a) = nby mod(x)® ¢ zm zmr zm

!
By (1)-(kL), ét(aJ ¢5t (a) for t % t' mod(k), t,t' > 0. More in particular:

pm+t p_+t'!
(5) 6™ (a)#6™ (a) fort F t' mod(k), t,t' > 0.
P, .
Since § (n) = X for all n € Zm and (4) we have:
P o
m, .t _ m -
§ "(87(a)) = 6 T(n by mod (k) £)
P p_t'
m, , 1y = o I
S (n bt' mod(k) g) S (‘S (a))
for t = %' mod(k), t,t' > 0, and 6t‘(a) =n'bD g! n'L,E' € .
> v LY t' mod(k) ’ ’ bm
Hence
p_+t p_+t!
(6) 6™ (a) =6™ (a) for t = t' mod(k), t,t' > 0.

From (5) and (6) the lemma follows. [

Lemma 3.11 Let S = <%,8> be a semi DOL and a € zmr’

p_+t p_+t'
s ™ (a) # 8 ™ (a)y with p e 2+

for all t,t' ¢ W.

Proof By (1)-(4) and (6) of the previous proof. [J

2k
198

3.2. THE WORD PROBLEM

The derived theorems yield an algorithm to decide the word problem.
.+

v : b.7p
According to the proof of lemma 3.2 all vital a; € v(s T %(0)) are
derived from previous occurrences of recursive letters and will recur

again.
P.+p p.+2p +p

By comparing |8 * C(o)lv and |8 * € r(0)!V we know whether L(G)
is finite or infinite (theorem 3.9). If L(G) is infinite we generate
along and compare ét(c) and W until either St(o) =w_or

t

§ (o > .
561, > o, -
If L(G) is finite all vital a, € S
(theorem 3.7).

€(¢) are monorecursive

p.tp,) %
Let § (¢) = Ny 8y My 8y eee N8N with no,.e.on o € zm
. and IR ,am € zmr
*
Since § m(n) = A for all n ¢ zm we have
P p.tp j P P P
m i7e _ m m m m -
(1) & 7(s (6)) =6 "ny) ¢ a,) § e) & T(n)
P p P
m m m
s (a1) $ (a2) veo 8 (gm).
By lemma 3.10 (let k, be the period of ai):
p,tt P+t
(2) Wa, e) _ ¥t,t' >0 [if t = t' mod(k,) then § (a.) =6 (2.)1,
1 mr 1 1 1
and by lemma 3.11
p +t p +t!
3 i + m m
(3) Va, e Zmr Ve,t' > 0 Yue] [87 (a) #9 (a;)ul.

(1)-(3) reduces the problem, for finite L(G), to the following:
do there exist t,,t_,...,t € N such that
1772 m

and if so, does there exist a

25

u =t mod(ki) 1<i<m (ef. (2)).
*(p-p,+u)
If u exists then o ========> @ . Because of (3) t1,t2,e,.

Theorem 3.14. (Generalized Chinese Remainder Theorem, cf. Dickson £27;

also Knuth [5, p. 2561).
Let kT"

There is exactly one integer u which satisfies the conditions

0<ucx l.c.m.(k1,...,km)

u = t. mod(k.) (1 <i<m)
1 1

iff t. = t,. mod (g.c.d (k.,k.)) (1 <i<J <m).
€ J 1 J - -

Corollary. A solution for u = t. mod(ki) (1<i<m) yields

u < l.c.m. (k1,...,km), when m denotes the number of monorecursive
pi+pc

letters in S (o).

Clearly, k; = l[ai]l and if a. € [ai] then kj = k. (cf. lemma 3.4)

Hence u < l.c.m (I[a]1l,...,1[a]q\) where
{[a]1,...,[a]q} = zr/% (G is quasi-reduced).

We conclude that, if we know that L(G) is finite, by examining the

propagations of the different letters in 0 for maximal o + D, + 1= +

+ pr = p steps we know whether or not

p-p_tu
w =6 T (o)

where u < l.c.m (k Lk) = 1l.c.m. (I[ajq‘,...,l[a]ql).

127" m
If we have to decide first whether L(G¢) is finite or not we need

+ + ions.
P P, P, generations

’tm are unique.

..,km be positive integers and let t1""’tm be any integers.

199

26
200

3.2.1. THE ALGORITHM

We present the algorithm written in pseudo ALGOL so as to make it at

once more unambiguous and comprehensible.
¢ Algorithm solves the word problem for DOL's ¢

begin procedure compare (G,wT)-

b
begin if lc]v > lelv
begin print (fno solution}); goto exit end

then

else if 0 = w_ then
(

T
begin print (fsolution found}); goto exit end;

end;
phase O: ¢ classify all a; € Z; by examining O<§< Y(Gk(ai)) and
k =
U 8 (a.), whether they bel to) . ..
0<bep (al,, ethe ey belong to zm’ Zr, or Zc u Zl

If ‘8 € Zr then determine its smallest period k., ¢

phase 1: compare (G,wT);

phase 2: for i:= 1 step 1 until p do
begin o:= §(0); compare (o,wT)
end; vital b:=]o]v;

phase 3: for i:= 1 step 1 until o do

begin o:= &§(0); compare (o,wT)
end; vital end:= lclv;

if vital end = vital b then goto phase 5;

phase U4: ¢ L(G) is infinite ¢
o:= &8(0); compare (c,wT);

goto phase L;

phase 5: ¢ L(G) is finite ¢
i:= 1,

next: for j:= 1 step 1 until ki do

¢ ki is the period of a; ¢

27

P 201

= 89(s m(ai))n then

=
Hy
€

T
begin t.:= j; w_:=n; 1:= i+1;
w # A A 1 < m then goto next else

w_ =X A1 =mtl then goto phase 6

print ($no solution}); goto exit;

phase 6: for i:= 1 step 1 until m-1 do

begin for j:= i+1 step 1 until m do
if t. t. d .c.d. . LK.
if &, % tymod (g.c.d. (kj,k,))

then begin print (fno solution}); goto exit end
print (fsolution found});
exit:

end

Def. 3.2. Let G = <},8,0> be a DOL. The growth function F: I > I is
defined by F(t) = |6t(o)|. [Szilard, 1971; paper by

Salomaa & Paz in preparation].

The following speed up of the algorithm, especially when L(G) is infinite,
was suggested by A. Paz.

Use the growth function of the DOL to determine the indexes of the
(finitely many if L(G) is infinite) words in £(G) which have a length

equal to]le. Then approach these words rapidly by generating

Va € Z : 87 (a) = b1 con bm
a“(a) = 62(b1) . éz(bm>
t
52 (a) = c, c,
t+1 t +
82 (a) = §° (c.) 5% (c)

In this fashion we approach with exponential speed a word of large index

without having to generate the intermediate words.

28
202

3.3. THE SIZE OF FINITE DOL LANGUAGES

Lemma 3.15. Let L(G) be a finite DOL language generated by G = <Z,6,U>.
A i — lj — j
: .+ m = = .
Vi > P;+D, [i:x {IG (o)lv} B (G>‘v B (U)Irj

Proof By lemma 3.4 and theorem 3.7. [

Theorem 3.16. Let L(G) be a finite DOL language generated by G = <z,6,0>.

u < L(ag) S utp-p,

where u = l.c.m, (k1,k2,...,km) and k1,k2,...,km are the periods of the

p.tp

.,a in § T S(q).

MONOYECUYrSiVe &, ,8, ,..
1772 m

Proof Denote the i-th occurrence of a monorecursive letter in St(o),

t .
.+ . . = . v
t i,Pl P.s by al(t) Let |5 (O)]mr m and kl be the period of a;

i

(1) vt,t! > py*p, Vi {1,2,...,m} [if t = ¢! mod(ki) then

a.(t) = a.(t') else
1 i
a.(t) # ai(t')].
Therefore:
(2) ¥t zZp*tp, i< l.c.m.(k1,...,km) [a1(t) a2(t) e am(t) #
a (t+]) a (t+]) ... am(t+j)]
Hence
@)[M@liLam(%Jan%)=m
By the proof of theorem 3.7
(%) |r(c)] < p-p tl.c.m. (k1,k2,...,km).

From (3) and (4) the lemma follows. []

29
203

Corollary. Since k, = [[aijl for a, € zmr’

u=l.c.m. (k1,k2,...,km) = l.c.m. (][a]1|,|[a]2i,...,‘[a]q\)

where {[a]1,[a]2,...,[a]q} = Zr/m if ¢ is quasi-reduced.

seeesk)

Remark. |L(G)| < p - p, *+ l.c.m. (k, <

S
SP-P,*tP,

-1
< p(1+p")

1

Mo
< p(1+p)

where s is the number of monorecursive letters with different periods
pi+pc . . .
in 8 (¢) (in Zmr if G is quasi-reduced), n is the number of different

Pi+P
mohorecursive letters in &

c .
(0), and m is the number of occurrences of
. . 1°¢
monorecursive letters in § (o).

For the numeric example given in the introduction to section 3 we find:

(m=5, p=5, K=2)

|lL(a)| < 5(1+5”) = 3130

which upper bound may be minimized by taking the different periods of

a8 RPN into account.

2

The reduction on the size of upper bound on |L(G)| we have reached:

(p=1 KP+M _(p=1)MKP-+ D
1)K
b = 2 = G’(p(P)).

m M
pt+p P+p

Strangely enough, it appears that K, i.e. the max. length of §(a), has

no influence on the size of L(G).

We are now in the position to tackle the following problems. Let

G = <z,6,0> be a DOL

204

(i) What
(i1) What
(iii) What
(iv) What
Let

be functions

30

is the minimal size of) such that |L(G)| =

is the minimal size of) such that |L(G)| > n

is the maximal size of L(G) when |}| =

is the maximal size of L(G) when |)| < n.

£afs g0t I

which map n onto

m
Z k.+d me WN;
1

f1(n) = min{
i=1
m
£ (n) = min{ Z k.+d | m € IV
2 . 1
i=1
f_(n) = max{ H K, +d | m € N,
3 1=1
m
f,(n) = max{ T k.+d | m e IV;
i=1 1

Open problems:

investigate f

13

> N

the asked sizes in (i)=(iv).

1,...,km € N are pairwise prime;
m

delN and T k.+d = n}.

.,k € N are pairwise prime;

d € N and

n=g

k.+d > nl.
;72

kT""’km € N are pairwise prime;

d € N and
1

INe~—s
=’
+
[o8
I
=
fu——

kq""’km € N are pairwise prime;

m
d ¢ IN and z k.+d < n}.
i=1 7

f,, £y and f).

31
AKNOWLEDGEMENT

I wish to thank Dr. J.W. de Bakker, Mathematisch Centrum, for valuable
discussions and criticism which resulted in an improved presentation,

and Mr. F.A,L.M. Goossens, SARA, who did the programming.

205

32

206

REFERENCES

(1] D. van Dalen; A note on some systems of Lindenmayer, Math. Syst.
Theory 5 (1971), 128-1k40.

[2] L.E. Dickson, History of the theory of numbers #2, Washington,
Carnegie Institute, 1920,

(3] P.G. Doucet, On the membership question in some Lindenmayer sytems,
Indag. Math. 34 (1972), L5-52.

[4] G.T. Herman, The computing ability of a developmental model for
filamenteous organisms, J. Theoret. Biol. 25 (1969),
L21-435,

[5] D.E. Knuth, Seminumerical algorithms, Reading, Massachusetts,
Addison-Wesley, 1969.

[6] A. Lindenmayer, Mathematical models for cellular interaction in
development I & II, J. Theoret. Biol. 18 (1968), 280-315.

[7] G. Rozenberg & P.G. Doucet, On OL-languages, Inform. Contr. 19 (1971),
302-318.

[8] G. Rozenberg & A. Lindenmayer, Developmental systems with locally
catenative formulas, Acta Informatica (submitted for
publication).

[9] A.L. Szilard, Growth functions of Lindenmayer systems, Tech., Rept.

#4, Dept. Comp. Sc. Univ. of Western Ontario, London,

Ontario, 1971.

33 207

APPENDIX

The programs are used in batch processing mode. Input to the program
is presented on the same medium as the program itself. Output appears

on the assigned peripheral.

PROGRAM #1
ARCHITECTURE

Description of input format: syntax

¢ spaces, tabulations, and carriage returns are skipped ¢

<letter>::= ¢ all characters available except "=" and "/" ¢
<nonzero string>::= <letter>i<letter><noﬁzero string>
<gtring>::= <empty>]<nonzero string>

<production rule>::= <letter>=> <string>

<grammar>::= <production rule>/|<production rule>/<grammar>
<grammar declaration>::= g/<grammar>/

<beginword declaration>::= b/<nonzero string>/

il

<endword declaration>::= e/<string>/

b/<beginword declaration> |

<follow up Jjob>::= job

job = e/<endword declaration> |
job = be/<beginword declaration><endword declaration>
<job>::= job = g/<grammar declaration><beginword declaration>

<endword declaration>
<long Jjob»::= <job>[<long job><follow up job>
<multiple job>::= <long job> job = /|<long job><multiple job>

Description of input format: semantics

To begin with, information concernihg the nature of the input 1is
presented. "job = g" signifies: "a new set of production rules (grammar),
a new axiom (beginword) and a new targetword (endword) follow".

"g/" identifies the subsequent grammar, written in the obvious way with
"=" followed by ">" acting as a production arrow. The grammar is ter-
minated by an additional "/". "b/" identifies the subsequent beginword,

i.e, a <nonzero string> terminated by an additional "/".

208
3k
"e/" identifiés the subsequent endword, i1.e. a string terminated by

an additional "/".

When we use the same grammar to test several beginwords and enwords

the <long job> job = / 1is appropriate, e.g.:

job = g/ ¢ expect a grammar, beginword and endword ¢
g/<grammar>/
b/<beginword>/
e/<endword>/

job = b/ ¢ expect a new beginword ¢
b/<beginword>/

job = e/ ¢ expect a new endword ¢
e/<endword>/

job = be/ ¢ expect a new beginword and endword ¢
b/<beginword>/
e/<endword>/

/

Job

When several grammars have to be tested in the same run the
<multiple job> is used: when one <long job> is finished, "job = g/"
is encountered and the program is ready for a new grammar, beginword

and endword. The end of the fodder is indicated by "job = /".

Example. S1 = <{a,b},{a>ab,b>bb}>

8 == zbbbbb ? & === abbbb ?
5, = <{a},{a>aal>

* *
ag ==> 8888 ? a === gagaa 7

*
a:—::;x?

35

Input:

job = g/

g/a => ab/b => bb//

b/a/

e/abbbbb/

job = e/

'e/abbbb/

job = g/

g/a => aa//

b/aa/

e/aaaa/7

job = be/

b/a/

e/aasaa/

job = e/

e//

job = /

Description of the output format

The program processes one <job> or <follow up job> at a time. First the
corresponding input is printed, then the jobnumber, the number of
generations which were needed to reach a conclusion, the phase of the
algorithm in which the conclusion was reached (cf. 3.3) and the

conclusion itself. More precisely:

<idgit>::= 1|2|3|4]5]6|T|8]|9
<digit>::= 0|<idgit>
<number>::= <idgit>|<number><digit>

<phase number>::= 1l2|3lhl5|6‘ 5<digit><digit><digit><digit><idgit>

<solution>::= solution found | no solution
<print input>::= <job>|<follow up job>
<job output>::= <print input>

jobnumber: <number>
number of generations: <number>
phase: <pha$e number>
<golution>
<multiple job output>::= <job output> job = /|
<job output><multiple job output>

209

The <jobnumber> is numbered consecutively from 1 to n (when the

<multiple job> contains n <job>'s and <follow up job»'s).

phase number: i signifies "in phase i (of algorithm 3.3) a conclusion
was reached".

phase number: 5 ... i signifies "in the finite case (phase 5) the i-th
monorecursive letter of 8Y(o) did not produce & prefix of the (reduced)
endword wT".

number of generations: n indicates 8" (o) = w_ or |6™(o) |
only in the finite case, n = 2p—pm.

. . . . * . . *
<solution> is "solution found" if o=— w_ and "no solution" if ¢ =% w,

Example. (output of first input <job> example)

job = g/

g/a => ab/b => bb//
b/a/

e/abbbbb/

Jobnumber:

number of generations: 3
phase: 3

no solution

Error messages

"

error job control input <« subsequent to "job =" one of the

following symbols is missing: "g", "b",

HeH’ or H/H.

error in input < (i) input format incorrect, e.g. grammar

inputted after begin- or endword.

(ii) insufficient input, e.g. no grammar,

begin- or endword.
(iii) the identification symbol
in front of grammar, begin- and endword

is not a "g", "W oang e,

no transition sign + a production rule without "=" has been

encountered,

37 211

symbol in grammar not <« a symbol occurs in the righthandside
defined of a production rule for which no

production rule is given, i.e., § is

not total.
symbol in word not in < a symbol occurs in the begin- or end-
grammar word, for which no production rule is
given.
array memory overflow < the production being executed overwrites

indispensable memory, e.g. production

rules.

program error « either program or algorithm (or computer)

ig defective.

program end < normal program termination.

ORGANIZATION

The program is written for use on the EL-X8 at the Mathematical Centre.
The characterset used is that of the MC-flexowritercode. Transput is
according to the ALGOL-60 compiler of the MC and only two procedures
make use of it: procedure error and procedufe nextsymbol.

C.f.: D. Grune, Handleiding Milli systeem voor de EL-X8, IR 1.1,
Mathematisch Centrum, 1971,

To promote efficient use of memory, the production rules, beginword,
endword, the concurrently produced word, the previously produced word,
and, if necessary, information for application of the Chinese Remainder

Theorem are stored in one array called "array" (see figure).

production endword memory used for beginword |
rules word generation E
i

Low core high core

"array"

212 38

The production rules are stored as follows (the figure depicts the

storage of a ~ &(a))

e
Information furnished J‘ class o+— a is mortal, vital, recursive
by proc classify L cycle «+— depending on class of a,
Entry of production — ——fws n —— n=|8(a)l.
rule proper '

n 2 j one location for each
\\ \\\\‘ letter in §(a).
AN

If a ¢ Zr cycle:= min Ka'

If a ¢ zm cycle:= number of generations needed to derive).
N

If a € ZV cycle:

To construct the correct pointers between the different entries in the
table of production rules an additional array "addresskey" is used.
"addresskey" has one location for each character in the characterset
(in our case 127), and only uses those which are defined in the

production rules.

Example. G = <{a,c},{arac,c>cc},a>

1
Y 2 L
"a"=10 2 c c c ¢ "
1 y 1 N /// :
"= g alci2fi0f12|ajc |2tz 12 [/
- S 1 S 1 7
"e"z12 T s | e i Z
WAL 0 1 2 3 Lk 5 6 7 8 9

"addresskey" "array"

39

Subsequent to the reading of the production rules, the pointers in

"array" to "addresskey" are replaced by corresponding pointers to "array"

itself (assemblage).

'_. S Y S
T | SRR B s
////// P -N; ! [ﬂh‘v{ . s
10 2 -4 c |ec c| ¢ ;
| 1 y 1 y i
11 ! alecleleltlalclelT!T]
i s l S l s
12 7 T s | e s e]]
NN o 1 2 3 4 5 6 T 8 9
"addresskey" "array"

All words are stored in a similar way. The entry point contains the
word length. Subsequent elements of the array contaln pointers to the
corresponding production rule. When the word 1s stored at high core,
the word length is taken negative otherwise positive.

Let the beginword be "a" and the endword "accecee".

endword beginword
AN
/
,? 6lelr |1 T7y7|T 2 |-1
i
P |
s AP S
Low core high core
1" arr ay 1"

Productions are executed as follows. The first production will trans-
form the beginword ¢ into the next word §(o) stored at low core from
the endword upwards. 62(0) will be stored at high core from the begin-

word downwards. 63(0) overwrites 6(c) at low core etc.

213

214

Lo

State of "array" after five productions.

Productions from individual letters, are, if needed, executed in a

similar fashion.

AAAL
CVVY H
production | endword 5 I beginword 5
§” (o § (o |
rules W, (o) (o) o {
)' £ e eiggresmn e é
LoAedicd.
AAAS S ;

narrayn

I
PROGRAM #2

The program generates a finite propagation of a given DOL G = <I,§,0>

e.g.

Only those §“(o) (0<i<k) are printed which are specified in the input.

ARCHITECTURE

The input format is similar to that of program #1 with the following

alterations:

Job = gp/ ¢ "p" stands for "print generated words as specified in
print command". When "p" is omitted, no word except the

beginword is printed. ¢

e/<number>/ ¢ <number> replaces <string> in <endword declaration> of
program #1, and determines the number of productions the

program executes, ¢

¢ followed by the printcommand ¢
p/f<number>l<number>s<number>/

which means:

for i:= 0 step 1 until F-1, F step S until k-L-1,
k-L step 1 until k do print (8% (o))

where F = <number> following T
L
5

<number> following 1

<number> following s

0
0
1

f<number> omitted: F:

l<number> omitted: L:

s<number>- omitted: S:

Error messages. Similar to ptogram #1, but for "program error'", and

in addition:
no separator after countcommand <« "/" omitted after "e/k/"
error in printspecification < "p/f<number>l<number>s<number>/"

is not correct.

215

Lo

216

19

fLNdN| aQv3Iy +AN3. PG
sQON3 1%
PCaCalndNE NI ¥0MN3,)) HoNY3 26
13573, (ONZW ANHLBGNILONOMANT 3LYHINID «N193g: 1¢
IN3HLE WY¥D v 323900 v AON3I= 441 neg
438734 QONIY $3NULZINIDIBIONOANIOIE ILVHINID I NIo3as v
sNdHLs WYHD v @8300D ¥ NIDIE= 404 534
$3ST30 1ONI G ANBLZIWVHO Y WNYYED QU3H I NIoIg:e %4
¢NIHLY 993000 v WYYD= , 41 9t
{0WASLX3IN=:300D INIS3E8 (14
1004 ON3“- A NID3B™ ~ WY¥O- ,3TIHA, 0F!AWNNG 44044 144
POACOONT WYH90Ud) i) HOUY3 WNEHL, GN3 v NIDIE v Wvad , 414 v
FCiCadndNt 0YLNOD GO HOM¥Y3 .).)HoHN3 v
$3S73¢ «3STVA=1ONT sNIHLY 353000 400 v
13873y 13SIV4isINI938 (NIWLs 8£330) V4 (2
#3873 135V4IFIQNIEIN'DIOTIWVYED (NIHLY 933400 sdis 6¢
+0Q+ HOLVYVdIS # 300D +37IHA, TOSWASLXIN 21300 +y04: g¢
£40Qs NOISTVNDI # 300D 13TIHMA, TOBWASLXIN 2:300D 4804+ L8
PAWWNQ ‘300D 1 H3DILNI¢ «NID38. 9¢
{LNENT QV3Y¥ ,3¥NQA3ID0Y4, 3}
. L
fdo3¥83 JAN3, o
L1X3I(GON0°2)LX1dSHY ! (4, 1 43QWANBOP)) IXILINI §d z2¢
TUDTING (ONIMLS)LXILLNING! (Z2) 3DV I HEYD 'NI193g, T
{ON(YLS JONIYLS I f(ONIYLS)INONEI ,38NA3D08d, 0
62
£3Z1IVILING WGN3. 8¢
(T=2YLIAIT=3A1SEND3Y 2
PCEIWYUDOANI {Z2m=tsSY 1D Tes!29DAD Q¢
fpT=:3¢ 9l=:19¢1T=:86 Ge
- 1g6=130vds (24
noﬂﬁu»mzspuwﬁﬁu"mqp”onu“zu_m4naou"non"a0F<m<aum ez
{0511V LHOWS 80" 'NID3G,) 2¢
L32HIVILINTD 4 380Q30084, e
ne
:) 61
AN3‘'NI938 'WYHD‘NCILATDS «NVY3008 . RT
: /T
o.z_zzom.z.qu.ﬂ.mmpkuJ.zJ.z><nz,wmm~a4w13w.zau.>mz‘_. 97
AWLIAIAISEND3R“IVLIYON " [
WOI*WOB‘SONMI'MI ‘Mg " 5T
ONZIVLIA‘MAIVLIAYGTIVLIA‘YAd‘Wd* g’ eT
ISVHA LNOOD ‘G0 ¢ 2T
WYHOO0ANL “SSYID ‘31040 ¢ 17
3‘c'g*“ ny
3OVdSUNAL QYL ND|STVNO3 ' YOLVYEYeIS +¥30IINT 4
H 2
[AMOW3W 40 AN3 ¢ A¥OWIW 40 NID3G)AVdny“’ L
(ANLSYIIAINLSH I 4 AINSSIHAAY +AVHYY, +HIOILN| «N1938, 9
(L2T=1A3NLsYN 4
(0=0AIN SYHI 3 4
‘0000£=2:AHOWIW 40 QN3 ¢
f151A40W3W 40 Nio3g 2
PAIALSYICAINLSY I 4 AHOWIANW 40 ONI'AYOWIW 40 NIDIE +¥39TIN . T

{SN3SS009 HNvVdd QNY

TANVL A l0yd

‘TL6T LSNDNY “HLTLZ «UINIWWOD. «N1D3g.

FANVLIA nvd 2o u/T1g2Y

Ly WVEDOYd

217

L3

19

43873,

fQHOMAN3 3ILvHINID +ANI,

fIMmalAVYEEV=ISONMS
f(WOoB ‘T M3)O¥OM Qv3IY
{m3=:wWo8

INTOZE

fQYOMAN3 ALVYHINID , 3¥NQID0Nd,

fQ¥OMN 1938 ILvy¥3INIO 2 aINT.

f(WO3'T~"M3)CYOM Qv Iy
{AHOWAW 40 ON3=iwW03

IN1O38

fQUOMN D368 FLVYNIANID ,3UNA3ID0¥d.

{QYOM QV3Y +AONJ,

NO|LD3¥1Qg=S83¥0AVE~SS34QQya=i[SSAYAAVE]AvYYY
f VNI

NOILO3Y'U+SS3¥QQVEaiSsIUIQY3

fd3M=: (SS3YAAVI) AvyyY

Co (4 dVWWYED NI LONQYOM NI MOBWAS))u0¥NI (NIHL: 08d93M 141

FIWAS)A3NSSIAAY =i dI3H N 193G

100+ ¥OLVYVYA3S % WAS 137 1HM: T0BWASLXIN=IWAS ¥04:
fQV3Y S| QUOATOULNOD 4O HOLYYYDIS 1 LNIWWOD
(I0BWASLX 3N

‘NOI LD3y 1 Q+5S340QvY I SS3uQQY3

{$S3¥Q00v3=1SS3¥qgQve

(A3 ' WAS (8393 NI

{5S3¥AAV3‘NOIAD3Y10°SS380AYE HIDILNI . INOILIINIC

iNTD3G
+307VA,

f(SS3¥AAY3‘NOI.ID3UIQ’SSIYAOYE)AYOM QVIY ,3¥NAID0Yd,

UYWWYNY AVIY «AN3.

(Wd*d)Ad1SSVYID
SVaN3
TedA3H*+Mral
AN
VTOBWAS=I [WAS+M) AYENY , 35113,

CoCiG3NI 430 LON HYWWYED N| 708WAS),)H0NY3 «N3HL: N=0QWAS s 41

(L IWASYA]AVHYY }AIXNSSIUQAY =L TOBWAS NI936,
+0Qy dTAH JTIALNNG T 4 dILS, TaIWAS 1804,
f{rlAvyEY=!g3K

(WYHOOANI+M=ir (N193Igs

s0Gs d (TLINNG T +d31Sy T2 L 404

L iTsar

PV QON3
fHILNNOCD TINHUYWWNYED + ANIWANOD,
{T+d=ld
PTmd 1IH=-WOR = (413 AVYYY
T1AN3L THWOE=IWORIWASES [WOBIAYYEY (NI9D3E,
YOLVUVYLAS $ WAS 1 37IHA: TUEWASLXINZIIWAS iH04s
{TTW08= W08 {W0E=: L 108KASI AINSS3AQY= 413N
0= [WOG]AVEYVYE: [SSYID+WOBIAVHEY R [3TDAD«WOE) ATLEY
(HYE90IN | +N0821 W08
{Qv3Y¥ S| NOISNOILISNVYL 40 NOISMONNY s LNIWNOD
308 WASLX3IN

SCoCINDIS NOILISNVYL ON4) .)U0HYT iN3HL), NOISTIVNOI4T08WASLXIN 1414 +NIDIGs

1001 HOLVUYQISEI0EWAS 4371 HAY TOSWASLXIN=Z:M08WAS 4§04
{QV3d S| QUUATIOULINOD 4O ¥OLVHYDIS 1 ANIWWOD:
{0BWASLXAN (Q=:d

{ASOW3W 40 GON3I =2:103 (ANOW3W 40 N!1938=:;w08

1022{1)A3X6S34QAV 0T, AINLSYT ,TILNNL T 434S, A3INLSHIJ=!1 +¥04s

SN CdNAHWAS I08WAS L HIDILNI

{Wo8z2:1mM3

iNTD38.

fHYWWYYD Qv3d . 38nQ3008d.

2) FANVLIAINYG 2 ¥4LTg2 v

61T
AR
¢l
2171
T1T
07T
61T
071
LT
a6t
SuT
POT
ent
eet
Tu1
007

2LT=2.(8040

Ly

218

19

sGN3

CAON3

ANIA=[SSYTID+N0BWAS AV YUY
P30 ID= [INDAY+TI0EWAS I AV HEY 1 AQY3d

(T=30GNIN

L1AN3

+ONZ AQY3IY 40409, 81353 1DHIDITSIANIY sNIDIG
+NIHLY TOBWAS=[IN+SSIHAAVIAYHYEY 441,
0 N WTIUNNG T= 4d308s T=‘N JILINAY T 1 d4iSs TEIN +¥O4
135734 1ON3,AQY3Y 10109, {T+*Wd=tWdiI0='ANIN iNIDIE,
iNAMLs 08N s 4t
f[SSANUAYIAVHAVE N .
£(SS3¥AAY)ILVHINTYD WN3HLe T < | idi14 (NIDIE,
400 d TUIANNY T 1 d3.Ss Fe| 4 ¥O4,
iNID38
' (NIHL, 0% MOBWAS 1 dia
F0=308 I {r)AINSSIANAAY = T0IWASE:SSINQAY (NIDIG
100 A3NLSYT 4TILNNG T ,d3LSs AINLSHIAZIC . HOds
{0z Wd
INFQNI® 308D T0ANAS‘SSIHAAY INFY 1 (H393IN1+ +N193Gs
Wd'd J¥3DIUNTIfe LINIVAL (WA d)AJISSYID ,38nA3D0ud,
IX1439ddW0D QN3
sAQY Y
(43080 4e2:X1438ddW0D
£AQU3Y 1OLO94 (N3HL, [(1)SEY +MITAVEIY $L1+QUOM]AVHLEY , 41,4
1001 WiTLANNY T~ sd3LSs T='W JTILNNG T +d3LSe T=t v H0 4
fAQY3IY 400D NIHLY (W)SOY > NMI ,Jt.
f(CHOM)AVHYEY= W
{43STV442: X1 438ddwoD
fWYL JH3D3LNIY ¢ N!1OD3E
INA3‘MITOMOM HIDALNI I INABYAI‘GUOM L 3NTVA L (NAI ‘AT THOMIX | 438ddWOD +3¥NA3D084s ¢NVY3T008,

{029 QN3
(v)s8v =:059
fVONT
NIVOY 0109

a=ig fa=ly
g#g8TVY~y=iM 'NID3g8
¢N3HL, N 328 414 :Nivoy
M (Y3OSLINIY uN193g.
YV LHIDIUNILIGY 130IVALI(8°Y)IADD 1 34NA3O0Yds +¥IOILIN |

¢
H
¢
H

{ST08WAS SSVID «GN3,
d7IHN=1ST108WAS Ssv1D
fT+d3AM=1d3H
SNIHL: ANINS[SSVID+ [+SSIUQOVIAVHEVIAVESY (3)4
100s N TTHANNG T= 4d3Lsi T='M JTTIINNG T 4 d31Se T2 s y04s

{02293
((Ss3YAQY)AVYHUY= N
EAIIRINT L L ¥IDIIN e 4N!93E.

PONIX“SSEHAAY (H3DILNI L FANINSS3INAAY 4 ANIVA,
f(ONIX“SS35AAY)ST08WAS SSVID 1 3¥N03D08d. +d83I0ILNI s

{T0BWASLXIN 1ON3.
WAS= 0B WASLXINS
AX3N 10L09: iN3IHL: YUNMLIZWAES ~ GV ZWAS A IOVISEWAS .41
f(WAS)NASHA IWASAY= 1 WAS PLX3N
fWAS JB393INIs WNIO38,
{I0GWASLXIN +38NA3D08d: + 8393 LNt

¢ IANVLIATNYd 20 HLTE2 v

£9T

.291

191
091
651
A61
LET
961
661
[0
£Gl
(4"
167
06t
61
AT

£eT
2¢T
8T
neY
[YA
921
XA
9273
[Tt
(22
[k
2¢t
11
[1FA
611
371
LTT
911

2{T=2.80¢0

219

L5

19

+N3HL

$$53¥QQv

+ 03,

‘T

(IRl AVYEYS i MEN
fadN3
(AP) 34Vvdwod
{T+LNADD=LANNDD
f(ME)ILVHINID (NID3G.
1004 HAE sTLALNNG T (d3LS,y T=:| 1804
{Wd=d=:iY4Ad
(REBAVLIASIHAVLI A
{g=:3sv4d
$9gN3
(ME)IYVEWOO
(T+LINNOS3=LINNOD
f(MB)ILVHINID INIOD3E,
00y d JNTANNY T 4d34S, T=8 18040
{2=2:138vVHMd
£{M8)3YYaW0D
f(IVLMOW M) STOEWAS S$SVID «SONMI=IONITIVLIA
t0=:LNNOD
fLNdNT Qv 3y
(1+80M=:80M¢(38TI¥442INOILNTIOS $T=:3SVHd
£32 1914 N

{3YVIW0D 1GON3,
1AQv3y
f0gNI

80rM 40 QN3 40109, 3NULi=INOILINTI0S

tAQv3aYd «0L09.

[1#d3LS+SSAYAAVIAVHYY [1 +MI]AVEEY 410

SONM3 L T1ANN T ,d34Ss T=31 +M0O4,
438734 T= aN3IHLs 0 > N ¢41,20d31S iNIOIR

AN3HLY [N)SEBY =SONMI 414

801 40 AN3 0Ll09s «NIHL: METIVLIA > ANIIYLIA (ds
§(IVLEOW ' MB) STI0RAKAS SSYID=(N)SHVYIIMEIVLIA

11Ss5380QVY)AvHEY=:N
fa34S4 1N (HIDILNIY aNiID3IG,

sYIOILINI ¢ £SSIYAAY s 3INIVA,L {1 (SSIHQAVY) FUYAWOD + 3UNAID0Ud.

L34 vEIANID +ON3
MAN=:SS3HAQY
(a3 [MANTAVENY

£ CADNJYIN0 AHOWIW AVAEY)4) HOHY3 INIHLe WO < NeMIN ~ WOH > X+MIAN , 411

100G,

N

VAN

LigN3e
VN3
[PedlAVHIVE IN+MIN]AVHYY
fd3Lls+dsiN (NID3E,

004 W (NI aNNG T d3LSs T®IQ 4604,

.ﬁ'

(Y] AvddEvYsIW
fli+5S380av)AvddY=iY JN1D3g:
+d3LSs T='N JTIINNG T 18318 TEii 1 y404e

C40NGy WOI=IAAN!T==22d34S WN193Gs
138734 1GR3 WOB=IMINIT=dILS NID3F
iNGHLe 0 > N 40
({Ss3HAQVIAVEBY=IN
PPN XAINEILSIN JH393INT aNID38
{SS34QAY JHADILNG L {(SS3¥AAY) ILVEINID ,38NA3004d.

fAdISSYID sON3I.

b] JANVLIATNYd 28 udTe2 v

ilyvls

N
~
=
or

(BT
98T
GRT
vRT
c81
2871
87
087
&7
84T
e
9L1

2LT=2.80b0

L6

220

39

fCuCL " NOTLNNOS ON

80 40 QN3

10409

1) dX3LIN | ud

13813,

13873,

L¥vis ,0L09,
‘ (0T)39v YYD
(T+{M3)AvEUVY+A3= W08
{T-(AHOWAW 40 ONI]JAVHUV+ANOWIW 40 ON3I=:WO3
fAYOWIW 340 QNI=:Mg
Cola*ANNOSA NOTLNTIOS 4)\)LIXILINING I NIHL, NOTLNI0S 404
PUDIN!(ISYMA U GILX I dSaY i, (48 13SYHd)) LXILUIN I ¥d i dDIN

OUINNOD ‘0 G)UX I 458V ¢ Co(oiSNOLLYHIANID 40 HIAWNN) 4 ILXILINI¥G I YDIN
{(gor‘g’ thx_umm<\n.h_.mumi:szﬁ.g.vkxwhkz_mn“mqu $80r 40 QN3 0n8e

eN3HL,

Aosm

I3

eN3HL

+0G.

naN

£43N8L 2 INO I LN0S
‘ {ION3,
PIAVYEV)HIANIVIWAY & (Q°[1)AVHEY)YIANIYWIN , 41
OIT+rYavyuy (T4 JAVHEY)AI9 =50 (N193E,
(00 NIWWOH JIANAG 2 2 d9480 2¢i2iP (504,
400y NIWWOA JTILNNY 2 41 d3LSs ¥!VdNIDIgE: | 41804,
: {2~-WO83:NiWWOg
{9=:3SyHd
. LI ONZ
¥ILLINLXIN
f4aN3
g0r 40 QN3 40109,
LN
JAN3 .
834L3ULX3AN 1 0L0D,
{2+n0E8=:Kon
{dzi [T+w0OBIAVNYY

PP+ Wd+LNNOD=: [WUE) AVNYY

IW=NMI=INMT
{W+dTIHMI= 1 dTIHMT
CCIMTIAVHEY)ISBY =W JN1938.
(NM3IdIIHAI MT)IX i 438ddw0> vdla
CUMT)ILYNINID (NID3IE,
004 W SMAND T 1 @30S IZir 1804,
$U3T0AD+ 43 L1311 AVYYY = g
f(M1)3.LvHINTD
400y Wd 4NN T (d31Ss ¥8:p 1404, .
t(1)sagvy +0000S=:35vHd «NID3Gs
s N3HLs 3AISUNDIY =[SSVID+UILLIV]AVHEY L, 414
fli+M@)AVEEY 2 HRLL3 =T (NIDIG,
$VIUINAG T (dd3LSe T=' MEN JMIANNY T 4d31S, T=:1 [X-HF N
f{WOgz=:¥1VdN1938
{T+MENTWOB= W08
" 43573, T-MEN+WOIEIWOI (NIHL. 0 > AGN 141,
{SONMISINMIIMI=: 4 13HMT

1GN3, 062
saN3, 662
882
14:24
98¢
GRe
tee
£8¢
22
T8e

[X24
8¢

PGz ASYMJION T ANYA 2be

£35nQ0¥d ,0.09:

£(M8)3yVdwWod
fT+INNODISLANNDD
f(M8)ILYEINGD

. :32n0oYd 8¢

‘p=:3ISVHY
0 goyy3 WYHOO0Ud) 4) HOUEI s NIHLIMAIVLIA < dIVLIA 141,
- +3873, ONIAYYA ,0109, NIHL U MBIVLIAEAIVLIA i

. g . PANYLIAINYG 22°¥8LTC2 v

8¢
Lee
9fc

2L1-2.8000

221

b7

*li wexdoag ul oTduwexs

we Se pesn §,7700 TT® I0J sBuTIyS Po3BILUSY

AT2ATINOSSUOD JO 3nojuTad B SBY gy WeIFoxg

*390d sU3 JO UOTRUSIUT 8Yg 309TJOJ

suotqnios peonpoxd syz ‘Argeumssig
reouataedxy Jo sSPuog :uT 9¥BIE WBTTTIM

(RaqommAs TnIaeal nnp surelJ prno2
ofs I0 puBy TRRJIOWMT 38YM

3Y3Tu 943 JO S3S3I0F dY3 UT
3431aq BuTtuanq ;I98LL ;I93L]

J23LL oyl

11

‘e-L qop

€N

. . t t¥3IGWANSOr
/8vE /3

/v /8

// 8vy<=g /8<=v /9
/9=gor

‘MO LNT0S ON

F $3SYHd

RS {SNOILVYYINTD 30 ¥ISWNN

£ t¥38WNNBOr

/ & AYLIWWAS INdH¥YI4 AWML 3IWYNI QN0
" A3 YO QNVM IVLNOWWI! LvkA /3

. /3z900

*ANNO4 NOILNTICS
2 t3SYHd
9 ISNOILVYIN3D 40 ¥IOWNN
. . . 2 ru3gwnNgor
/ LH9IN 3HL 40 SLS3IMO4 3KL NI /3
/3=gonr

*GNNO4 NOILNT0S
I3 23SyMd
£ 'SNOITLYYINID 40 N3IBWNAN

T 1¥38WNNEOr

/ LHDI¥E ONINYNG ‘dIDAL ‘¥39AL /3

/s/¢

/ / <=1/ <=A

/ <=1/ <=2y/ <50/ <=N/ <=W/ <=7/ <zt/ <=9/ <=4/ <=3/ <=q/ <33/ <=8/ <=y / <=¢

/ i<nb /6<=0/0<=H /HDINKEE /40<®9 /SLS3Y04<=G /3Hi<kz=b /Ni<=$ /RPY<=Z

/6Ye<sT /2T<=n /JLHOIBO<EX /ONINYNG<IM /XA<ED /¢<=® /HIDALLIA /#A®A<=d /Dd<=S /9
. /9=g0r

x

9 FANYLIAINYd SR HLWEZ v 2L1-2/.80»0

L8

222

([g] I9iBLUSPUTT % Sasquezoy)

‘utdaem sY3 JO suotjaod

BuihoIB 03 S33B3S ISYJO TT® UT STTID
FutuBTSSE PUB S32TIBIT IO S3QOT 3uUL0BLpe
ussnlsq suordtsod SutAdnooo urfaem

Je3T 943 uo (sayodjou) suorzzod Sutmoad
~Uou 01 ¥ 9383S UT ST Surulisse £q
JuTays a2yl 39adI9qUT By *S9QOT MIU EERv LY
oj3ut Fury3tTds ATTenjuess 2qOT Yoes

pue saqoi 03 Furpuodsaarod suotgaod
1314 ‘ut3IBm JesT Sy3 uo sBUTI4S I29UOT
ue 193u0T S238ISUSE Wo3SAS BYT °JesT
punoduod ® JO WOGSTISW TeulSIew oy Jo
FusHdOTIASD Y3 SB PI33IAISJUT 9q UBD

YOTYA 3dusnbss B s93BISULE TOQ SUL

“(€ ordumexs Z2°| *30o)
.-n@nhnMnNa—.aﬁ
*2°T S9TA3S TOOBUOQT UTBW SY3 WIOF
()8 (o)9 %o
e
SDIOM PR3BISUST

A75AT4N09SU0D BU3 JO SY3BusT oYJ

19

‘6=, qop

‘9=f aor

"ANNO4 NOILINT0S
14 L 3SvHd

3 ISNOILYYINID 4O %38wWNN

L tY3IBWNANGON

R IOHENIAH KN /3
/v/8

/O /A<=H /<=1 /30<EH /iH<ED /HI<=d /49<E3 /89<=q /33 <3) /A%<=9 /58<=vY /9

/9=g0r

*ONNO4 NOILNMO0S

b $3SvKd

9 ISNOILVY3INID JO =3IQWNAN
9 r¥ISWNNaOoPr

/8vegvevegveay /3

/3z=gor

‘NOILNT0S ON
13 $3SvHd
G $SHOLVY3INID 4O »3ISWAN
& 1Y3IGWNNEGOr
/8vegve /3
/3=gor

*GNNO4 NOILNT0S
Y t3SVYHd
Y $SHUILYBINGD 40 HIGWNN

FANVYLIAINYd 22 8lTE2 v 2LT-2/.80%0 -

223

*(Tenbss pus

L*€ WSX09Y3) SFTUTIUT ST (D)7 sousy
[=] fal

[®]

S0¥ BuTAOTTOS BU3 SBY TOG TWeS oYL ‘zl-0l qop

k9

'f BTy 99S NUTASPMIY Nep¥NIOQINNeDN NUINSPEIUN (0),9
‘gz "Biz 9ss "XJ0qBY XUTYePNIUY | %go09Y (2)g9
*L t81F ess ¥oP¥ ¥JO9SW ' Wepy onm@
AUTYOPNTYN on:m
X32a8y onmm
qopy (0)0
2q on@

B)

13’

S

"GNNO4 NOiLINTI0S

¢ P3SyHd
ISWOILVYINES JO 3IGWNN
TT :t@3gunngor

\uuuuuuvuuuuuuuuuuuuuuuuuuuuvuuuqmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmm\m

. S

/3=g0¢

*NOILNS0S CN
e 38Ymd
{SNOILVY3INED 40 *3EwNN
01T t¥38wnNEONr

/33222220000300002222052003059050v88886888888088084958680868808688688/ 3

. L

/’v/8
/ /88<=g /23<=D /ovE<=zv/9
/9=g0n

"ANNC3 NOILATDS
2 $3SvHG
ISNOILYYINID 3O ®3IQuNN
& iy3swnnagor

ZAHIAZAATHMNTAANADGOANITAN R I N2A% 1N /3

8 TANVLIATNYY

/3=gor

“NCILNT0S ON

4 $3Sved
SNOILYE3INAD 4O NIBWNN
8 1¥3I8WNNBOr
/AHINCIGH tHN /3
/3=800

eyl v 2L1-2L8000"

50

224

"NOILNATCGS ON
9 13SVHd
12) iSHOILVYINZD 340 »IEnnN
S1 :¥3QwnnNsor
/¢8+SW/3/3=80r

° o ° o

[=3 [+1 (11 003 .

13O S3STSUOD §OY 9y
ssuoTssaxdxs TBOTIOUR{GIIB
PIWIOF TIoM JO 88BNFurT 93TUTLI B

SUTLISLIP WOTX® UB DPUB TOQ TWeS 3yl °02-flL qop
‘NOILNTOS ON

g ISV

1 4% ISNOILYYINIO 40 ¥IGWNN

b1 y38wnngor

/LQ=2%/3/9v+$/8

/ /v¥<=3 /3<=Q /Q<=> /<28 /9<zy

/*<z~ Jecmt /T2l /(<39 /9¢zG /G<=b sp<ap /Pczg /282 /A<= /wW<=T /<=N /9

/9=g0n

*(Tenbss pus

L€ WOIOSYY) 93TUTJUT ST (D)1 sdusy

[®]
(2] aj
"NOILN10S ON
14 $3SVHd
(o] vT {SNOILVY¥INIO 40 NIQWNN
. €71 t¥3swangor
*SD¥ BUTMOTTOF 243 SBY T0Q TWSS oYL °€L qop /60@00gA0daQ0de0aaaaaaaa3aaagadacaaadaaduang

ocoocoooooomoooooooooocovooacooacooomoooooooooauooomooooDmDOQQOOOQQuOOQDQQOOmcao
ooooouooooomomooocooouaccooomooaooouoooonmoooaouoonomooooUQoomooouoomoouomoumq\u
/’v/8

//0<=Q@ /Qd3<=0 /Q8<=g /goev<=v /9

/9=gecr

‘NOELINTIOS ON

£ $3SYKd
9 $SHOILYE3NGD 40 ®IESWNN

) 21 :u3gwnneer
\0UUuuuuuuucuuuuuuuuuuuuuuuuuuuuu«mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm\w
/3=gor

19 . 6 VANVLIATTNYG E9°dl382 v 2LT~2.8040

225

*NOILNM0S ON
S000G t3SVHd
. 4% :SNOILVYY3NTO 40 »39WNN
61 i1y3gwnNgor
/A0=TX/373=600

. . *ANNO4 NOILINT0S
9 $ISYHY
(2% $SNOILVHINID 340 M3IBWNN
81 :¥38WNNEON
/{G=T%/3/3=g0"

51

"ONNO4 NOIANT0S

9 $3SVHd
oig = pe !SNO{LVY3INID 40 HIEWNAN
ANnmum‘Nv WD T = LY t¥3gwnNgor

. /6Q~9W/3/93+/N/0/38=g0r

3l fo o)) wort = (o)1)

18U 230N

“{€°€ Wy3TIcBTR JO) ‘uoTInTos ® uTBIqO
0% patidde ST WaJI0SY] JISpuUTBWLY
9S3UTYD 9Y] USYJ SWIUESW Y3 UT

1
P3I33UN0dUS 30U ST M JT Pajnosxs

5a® suoT3easusd w¢ = [{]| » 2 .

A NOILAT0S ON
A7 = { pus sqtuts st (D)1 @outg $063G :3SvHd
A be (SNOILVHINID 40 ¥3GBWNN

9T :x¥38wnNaor
/=Qal1X/3/3=g0r

19 . 0% .‘ IANVLIAINYA 28°4LTS2 ¥ 2LT-2£80%0

N\e/N\g/sTzlz Sk#9#Llagu(1)6xzxz= ﬁovm@
< o7
GONVABE SH9nlagrzez= (o) .
a/llz;z SH#94lxzgxgs= onqw
giecic m*w*m«mnﬁovm@
G ICEERRRON |
e
Cale 1z = (0)9
. | =0
. . cc iy¥3gwnneer
: . AN3 WYH90ud
. ' /=gor
‘ITen 9steasueay e £q pajeIedss y pus g 91B3S UT
STT3D 43U Om} 03 3STI SIATE PUB UOTSTATP So0F
—I9PUN | 9983S UT TT90 B 33YJ SUBSW f{ » 2 + |
‘L ®383S UT TS0 UYOUBIQ B PUB § 97BIS
N Ut T80 TBSBQ ® O3 9SII SOATS DPuUB SOPTATP
[T\ - .
83481S UT 30 ® 3B SuBam 3%
8 23¥1S UT T 1Bq3 (1)6 + g q ‘GNNO4 NOILAT0S
'L = 9 'STT®D useM39G STTes [0 onbITqo pus . . .2 :3SVHG
9sI9asueI] JO @ouasaad ayy 998OTPUT ug gt iSNOILVYINDD 40 »3GWPN
TeasuRas 3 ° 43 °3woTPAL 4 P . . T2 :¥3I8WANSOP
* STOQWAS TBUOT}TIPPE® OM3 3U3 DU®R *SoyduBIq . /CHIBLRBR(T IO
2580TPUT sTsoYauaged 3ySTX pus 3J9T ©ssqeas A#twvukﬁmtmtwvounmuo:wtmyO&Amuoumtwawvoaﬁm*ounamtwtmvouAm%ounumuﬁﬁvo‘wtwvowmummw
9SJISATP UT STTD szIToquhs (£ 1dsoxa)
6=1 wo3shs STH3 JIOJ ODTISTIDROBRIBYD OS ST
UOTUM STTBA TS0 SNDITQO 03 3SJIDASUBIY WOIJ
uotssaafoad 9Y3 JUNOOOB 04UT SOWBY TOG UL
‘ngn=SSh *(1L61L) OF °Totg
*38I09Yy ‘p ‘saewmead pus safendusl JTLUL
¢SUOTI0BISZUT JBTMTTSD JNOYLTA swogshs . *GNNO4 NOILNT0S
Tesusudorsasg fIsfsmusputi °y ‘3O 4 13SVHd
Xo) < 9 {SNOILYY3IN2D JO NIGWNN
~ (8878 paa B) WMSSOY UCTUEBYLITI8D 07 :¥3EWANGORr
N Jo jusudoTaAsp 9Y3 S93BTNWIS TOd STYL *L2~0g qof ' /GHROBLENK(T)I6%222/3
/T/8//8<=#

/u<3® /(<e(/)<B)/6<E6/(T)6<=8/8<a,/L<B9/GRIC=G/GuZ<ap/2<¢=2/pn2<T/D/ o=goOr

x

19 . 13 . IANVLIATINYS 28° 84582 v 2LT-2£8060

227

53

. fLNdN) QY34 ¢ONJ 14
. , ’ 1 ON3 »C
POaCoLnNdNY NI ¥0uY3)6) doyy3 ¢
#3803 «ON3, L 3INWL = 1YIINIHD ESANYWWOILN I ¥d AY3Y «NI9ig 26
! © UN3HLY d =3IQ0D v ¥ILNI¥D™ 410 T¢
¢3ST3¢ WAN3 +INYLi=IANITLINNOD CV3IY «NioIgs 06
sNIHLY Wyd¥9 v 323Q0D v GN3~ 41 6
43834 ¢ON3W G 3INYL=INIDIBIAYOMNIDIE ILYHINID WNID2g qv
sNIHLY WY¥9 v 823000 ¥ NIDIE- 4. LY
43873 ¢ 4 ONIy J3NYLI=IWYHO LHYWWYED QV3Y o N1I93g: 9b
WNIHLY 923000 v WYY¥9- 414 14
(I08WASLXINZI3Q0D 1Nin3gs vy
1004 Y3LNIYd™ ~ AN3- ~ NI93HE™ ~ WYUO~ ,3ViHA, 3Q0D=:300D 504 v
fCi(aONT Wyao0dd. i) ¥oNy3 R 2y
+N3HL, ¥3LN'¥dd v ON23 v NID3E v WVHD 41 iy
fCa lNdNT MOYLNOD gOf ¥O¥Y3.)4)¥oYu3 b
' 138734 4 3STIVAREIYALNIYD FNIHLY dE300D 40 6¢ |
+3873¢ 4 3STV4. = iANT ¢N3IMLY 353000 440 8¢
438730 «3STWWII=INIDIE 4NIWMLY §23000 , 41 Le
+3S734 43SV SIQNIEINIDZTIWYED ,NIWLY 933002 , 41 . 9¢
100y HOLYYYEIS F 3Q02 4 3TIMM, TOBWAGLXIN ®:13Q0D 1§04 13
44004 NODISIVADS F 30D 1 3TIMA 0BWASLXIN 213000 y04s , ve
£3003 J¥3I9ILNI yNID3IG, N
fLNGNI QV3y 4 3¥N303008d. 4%
Y
f¥o¥¥3 L, ANT, ' n¢
LIXIL(ONIYULS)LXALINIYA!(2)IOVINEYD iNIDIG, . 62
{ONIHLS 'ONIYLS I {(ONIULS)HOBYI 3UNA3D0OYL, ne
4
f3ZIVILING +AN3, 9
$0234SVI= LU I4{Tuat AINITZIWNVADSANI : 14
. tg2=:8 ve
’ (12=:1 {gT=i3igg=: 2
. {pT=:3f 9T=19¢11=:8 ' 22
f06=130vdS T
Noﬂauumzak:mﬂﬂa.mqk 0L2INDISIVYND3 492 H0LYEYdIS) ne
f0=:80" iNID3Q. AT
£3Z1VILING 43¥AQ3008ds . at
. s
IWVEOANINIDIR'YILNI YD +NVYII00E 9T
u cT
zqmwomz vT
1 'WO2‘WOB ‘ME* LNNOD "HOM LSV LSE]I 4 WONA‘ 1 4°d" eT
i‘o‘g"’ 21
d4315°g* 1
AR aT
JOVHS 'HNMLGYLINDISIVADI‘BOLYAVEIS +¥39ILNI, 6
[
! 8
[AMOW3W 40 ON3I ! AYOW3W 40 NI93glAVyuy'’ !
LAIMLSYIIAINLSHEI ITAINSSINAAY (AVEYEY, JHIOTLNI+ ¢NIOD3E: 9
$LE2TE AINLSYT %
f0=3A3MLSH! 4 b
{0000E=: AHOW3ANW 40 ON3 ¢
(T2 AYOW3W 40 Ni9ag 2
ABNLSYI AINLSH I 3 AHOWIW 3O ONI“ABOW3IW 40 NIO3I8 +¥393LN1. T

fSNISS00Y JNVY4 ONV IANVLIA “Invd - ‘TL6T LSNONY ‘ULTE2 +LN3WWOD. «NiID3g,
: . FTANYLIA INvg‘ge 87182V

T 24 WY¥D0o¥d

5k

228

e

WAS=;T08WASLX3IN!

AX3IN 40L0D, N3IHL: UNAL=ZWAS A GVLIZWAS » 3IDVASSWAS 411
C(WASIWASYHI {WASINT I WAS
fWAS JH393 NI

SLX3N
NT93g.

:) {08WASLXIN +3¥NAID0Uds +8IOILNI 4

fQYOMN 19238 3Jlvy3INIO 4ANZ.

f(WO3*“T=-"Ma)Q¥0OM Qv 3IY
{AYOWIW 40 ON3=:w03

eNTO3a

{QYOMN 1938 ILVHINID ,3¥NA3IO0NL.

. . {Q¥0M QV3Y +AN3,

NO1LD3¥10=~S5330qVg~55340ava=: [SSIJAAVE) AvayY
f4ON3

NOILO3¥!I(+5SS3¥Q0Y3a:SS3ayAQY3

’ . {43 [SSINAAVIT AV HYY

¢3873, (W (L UVHWVYD NI LONQYOM Ni M08WAS)i)YONYI (NIHL: 0=d73H 441,
N PIWASIAINSSINAQY=a3H INID3g
¢0Q+ ¥OLYEYAIS & WAS 137 1HM, TOHWASLXINZ!IWAS ¥04s
QY38 S| OYOMTOULNOD 40 NOLVYVd3s LANIWWOD
{TOBWAS LX3N
“zo_FUMm_a*mmumaaquu“mmumaa«u
{553300Qv3=:SS3yqQve
(dIIHWAS (H3IDBLNI|

{SS3¥AAVINOILO3YI0“SS38AAYE s HIOILNI ¢ENOILDIHIQ

iNID38.
+30TYA

{(SS3¥AQY3‘NOILOIY 1A SSIYAAVE)OHOM QV3IY 3¥NGA3ID0Nd,

(HVWWYYD QV3¥ +aN3.

fVQN3
T+dNIHer=ip .
{1 ON3)

TOBWASZ I [WAS+I) AVHYEY , 35713

(4C1Q3N1 430 LON HYWWYYED N| 09WAS):)¥08Y3 iNIHL+ 02710HWAS vl
CLIWAS* Pl AVHYEY] AINSSAUAAY=:108WAS (N1DIB
$0Qy dI3M sIUNNY T (d2LS. TrIWAS 1804,
({rlAvady=id3H

CWYNBOANI+r=ir W Nioags

200 d 4TTIANNG T 40d3iSs T2t 4 y04s
ATss0
{ s ON3 e
(AIUINNOD ITNHUVWWYED + LNIWWOD
(T+d=id
FT*dNIH=WOR = [d1IHIAYEEY
f40N3, T+WOB=:WOQ!WAS=:[Wod)AYEYY ,NID38,
100+ YOLVUVLIS 3 WAS 137 1HM: TOBWASLXINEIWAS (¥04.
{T*WO08= 1 WOE IW0EEt [M08BHWASI AINSSINAAYS: ¢ 13H
£08WAS= [AIN+WOB) AVYYEY
(0= {WoalAVYYY
{WYEDOAN | +WOB=tWOE
Y38 S| NO|SNOILISNVYL 40 NOISAONYEY i LNIWWOD,
- {JOBWASLXIN
fCiLiNDIS NOILISNYYL ONy) 4)¥O¥Y3 'N3HL, NDISIVNOI+I0GWASLXIN 1411 +NioiIgs
100:30LVUYd3SF109WAS +3TIHA, TOBWASLXINZ:T08WAS 1 HO04s
f{QV3Y¥ S| QUOMTOYULNOD 40 ¥OLYHVAIS +INIWWOD:
{T08BWASLX3EN {g=:d
' fAJOWIW 40 ON3 =2:W03 {AYOW3IW 40 NID3E=;wWo8
{05 [1]A3NSSIYCAV A AINLSYT s TIANNG T (434S AINLSHIS=:! . ¥04s
(4P 1 dTIH " WAS* V0BWAS (U393 NI

IN19D3g.

fUYWWYES Qv3y «38NA3IO0¥d.

TANVLIANYd £E°¥LTE2 v

e

- (M)
et vl v A
vt e

{0¢-2/800¢

229

55

e

0T > X v I~ < X =z:14191Q

(X4 ¥AD3IENT G X ANAVALE(XILI91Q «34NT3D08ds +NV3ITO08

fQV3¥ +GON3.
WAS=:iQv3ayd
IX + O0T#WAS=IWAS

100 (XYLI1D1Q (391 HM, MOBWASLXINE! 1404

‘

+ 04

f0=3WAS
fWAS +¥393LNI «N!9D38s
X G¥3DIUN| E(XIQYIY +3I5NC3008ds 1 ¥IDILNI

{SANVYWWODLN I ¥d OVIY +ANI,

(e CaNOQILVDIAIDIASINIYd NI ¥O¥¥3I))¥ouy3
i3S73: (WASIQVIN=ILSY™ W NIHL: IZWAS 410
13873, (WAS)QV3I¥=1dIALS iNIWLL S=WAS , 41
3573 (WAS)IOYIY=:LS¥I a4 sNIHLY 4=WAS ,dis
¢ HOLYYVE3S # WAS 43V IHM, WAS=IWAS 4041
{Y0BWASLXIANS ; WAS

{10BWASLXIN

{WAS JHADILNI W NIDFg

[SONVYWWOD LN ¥d dvid +38A0IO0N4.

fLNNOD QV3IY +ANT

(o (o ONVWWODLNNOD ¥3LJV JOLVHYJIS ON4)) JO¥EI (NIHL. HOLYEYIIS ¥ WAS 40

f(WAS)QYIYE=ILNNOD
{T0BWASLX3IN
fWAS +¥393IN1e «NID3G.
¢LNNDOD Qv3Y¥ 4 3¥NAID0Nd

1Qu0M LNIN¥deaON3
fY2N
ECLAINT{ 1 +MGIAVHUV I AVHUY) WAS YD

+0Qs NITITLNA, T= 19318 F=“N 4M1INNG T +d3LSy T=i1 4 y40d

{hg

R PRL

((mElAvHdYEIN
EN'Y W H3DAINI aNTOIE,
VHIOIINT ¢ EAB INTIVAL LI MB)IQUOM LNI¥d (3¥NA3D0Yd.
fALvHINID +ONT

MIN=:SS3IyaAQV

%23 [M3N]AVEYEY

£0o(MOTIUIA0 AUOWIW AVHEY) 4)BOHYI IN3HLe WO3I < Y+M3IN ~ KO8 > X+M3IN d1

04,

N

1 HLAND

LN
+aON3
[P+ AVHEVS [N+MINTAVEHEY
fd3LS+NmsX (NIO38,

00y W GNIUND T 0 d3Lse T=ir 1804

T=

(o) Avddy=iW
§{1+5s38QQVIAyNdY=iY «NI938s
sd3Ll8s T='N JIINAY T 4d3LSs T2il 4 y04
"cunx
$4ON3, WO3=iMINIT-=1d3LS «NiO3E:
138730 +ONIe WOBZIMINIT=14345 iNID3E
sNIWls 0 > N 41
{{Ss3I¥AQVIAVHYY=IN
N8N AAN'IILS'N (HIOILNI sN1D38.
{SS34QAY «¥ADILNI {(SS3¥AQY)IILVHINID +38NQG3IV0Yd.

{MOEWASLX3N +ON3.

[TANVLIAINYd £€°8L082 ¥

<Lt
»(T
cLt
2.7
TLY
Ll
6971
Q91
(97
9971
<97
v91
c91
291
191
0971
AGT
a6t
(ST
9%y
Q51
vGT
a4
2¢T
151
0671
691
9y 1
L1
9T
(1A
(22t
cel
A A1
b7
nvl
AET
8¢1
/8T
9¢ T
aed
re€1
ey
281
T¢T
net
621
pcy
27
9¢Y
cel
$27
221t
¢t
nel
611
elT
(1T
911

L0¢-2.800¢

56

230

e

Ldvis ,0L09,
‘T = [AYOW3IW 40 ONIJAVHYY + ANOWIW 40 GN3I=:w03

+ON3, 6T
+ON3 “67
£6T
261

f(0T)39VIyyYY . T67

f4aNT,
(MRIQEOM LNI¥d «NIHLs
0=(d3iS LSy id=1)Y3ANIVWIY A LNNODZ| w WONA<| 4 T+LSH! 4>! cAla
f{ME)3LYYINID JN!D3g,
100 LNNOD 4ANNS T 1 d34S, T3:1 804,
{LSYT=AINNOD = WOouS

0671
6€71
88T
[87
987
<81

f(g)3oV I vy b87

{LNdNI Qv3y
321N
{(BOR02)LX14S8Y (4, 1HIBWANBOLM 1))LXILLINI NG
{0=2d315
{0=:LSvistisy|d
£73NYL 3 UIINI Y T+EOr= GO0
{321V ILiNt

¥) FANVLIATNYG £2°384702 v

SRT
28t
181
0|7
6LT
tLlyvils 2T
LLT
2.1

L08=-2/800¢

231

o7

m<¢m<m<mm<mm<m<mm<m<mm<mm<m<mm<mm<m<mm<m<mm<mm<m<mm<m<mmqmm<m<mm<mm<m<mm<m<mm<mm<mqmm<mm<
gveeveygavegyvgvagvEvEgBry88vEyEgVEdvEvEEVY8YE8vEEyaYESY8YS
avegveysgvagvavegyevagva8y8vegveay

€8vggv8veaydev8vyeavave

]

. /b7 0TS T4 /4

70173

. /Y /8
// 8v<=8 /8<=V /9

/d49=g0pr

2 t¥3EWNNEBON

LLLHO | ¥BON INYNG 'HIDAL‘UIDALLHO [HBON INENG ‘¥39AL ‘¥39ALL
COXMRARAXMRARAS

0NBdod0

LHD INIHL40SLS3YOI3RINI

. 6Rb9GHE
021

LHD | BN INYNG ‘YIDAL ‘H3IDAL

XMeAwA

od

/6474

/7673

/s/49

/ / <=t/ <=A

/ <=1/ <=¥/ <50/ <=N/ <=W/ <=7/ <a|/ <39/ <=3/ <=3/ <=Q/ <=d/ <=9/ <zv / <='

/ L1<36 /6<=0/0<=H /HDIN<C=E /d40<=9 /SLIS3Y¥pd<=G /IHI<=p /NI<=g /879<=g

/6v€<=T /728T<=n /LHOI¥B8<=X /ONINYNG<SM /XKCED /<34 /HIDALLEN /#A®ALK=d /Dd<=S /9
/do=gonr

T sY3EWNANBON

4 TANYLIAINYY £€°¥LT82 ¥ (0f-2/800¢

58

232

. uuuuuuUuuuuuuuuuuuuuuuuuuuuuvuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuUUUuuuuuuuuuuuuuuuuu
uuouuuuuuuUuuvuuuuuuubuuuuuuuuuuvvuuQ@UUUuUuuuuuuuuuuuuuUwuUuuUUUUuuuyuuuuuuuuuuuuuUuuuuuuuuuuuuuu
uuouuuuUUuuuuuuuuuuuuuuuuuuuuuuuqmmmcmmom¢mmmm
mm

/74

/8713

AL

/ /88<=g /32<=3 /3vE<=v/9

' /49=g0nr

14 1¥38wWwnNNEON

: AFAANADBOANICAAIDIGONNH | XIAN [HXN 308
ox¥uuxthuu¥¥uox¥kumw¥¥I_xucx_rgxmumwxyx_!mox_Ixxmozxmummxxmoxxr_xuox_Ixymumwxxr_xuox_Ixxuumwxyuoxxmumwxxuoxxuumwxxr_xuox_IxxuumuyymoxXLUQGxxuox

xx_xmoy_xxyuoxx;umwxyuoxx:_ymox_xxxuoxxuumwxxuoxxmumwxxr,xuox_rxzuumuzxmoxxuumuxxmoxx:_ymox_zxxuoxxmumuyxmoxxx_ymox.rx
ALDBOARHINIAN IKAAIDGONNH I HIAN T HNNIANN IDGONNIANNH I HITAN I HHNHADBONNH I X TAN i NN 4989

. HIAANIDEOANIANNIDEONNH I HIOH I HAN SI8OANIONN IDEO %A 3AN

HHIAAN EHNINIANNIIGONNIANNK T HION | HN

NADGOANH I NIGN | HX% 4080

HIORNIDESHNZAN

M I XI AN HX

X989

X300

28

/11/d

/Tv/3

/v/8

/ /A<=) /¥<=| /3Q<=zH [/ |H<z=9 /HI<=3 /4D<=3 /89<¢=Q /%3 <=5 /Qi<=g /%8<=v /o
/d9=g0n

Y s¥3gwnNgonr

o , _ 9 TANYLIATINYY £8° 84782 v L08-2/800¢8

233

59

ve

[8+9N
by =0
T3+LW
L8=97
AD+Gy

S8=PW

/67 T0Ts Y4 /4

/772/3

/vv+8/8

/ /y<=3 /3<=Q /Q<=D /d<=g /8<=y

/¥<s= [e<zt /T2 /L<E9 /9<¢=sG /G<=p /p<=g /82T /=T /M<EW /W= /N<=x /9

/d9=800

9 (¥IWNNBOr

§ga0acdgaags>@deeQaaudgQaaadaaaandaaddaaagadaaccads>adidaagaseaaaaaaraaedadQguaaaaasduaaasdadadoaaQagdqaao6aggdadsaagaadnagansy

aaQ>4Q8qQao0gado8y
guogeasay

asev

/LS 24 /4
/u%/3

/v/8

//Q0<=Q /Q2<=> /Q@8<=g /qajav<=vy /9
/d9=80r

S ty3gwnNEofr

FANYLIANYG £2°8LTE2 v [0¢=Z/800¢8

60

234

AN3 WYNOOMd
/ =80r

8 tHIBWNNSON

muounumumﬂvouﬁVtwvouamcmtmVounmuovmtmvouam*ouNtwtmvm*nmueunuwtmtwvouhmuounuwuﬁﬂvoxmtmvomﬂmuonnnmuﬁﬁvmuhvtwvowwamvauﬁmuwunuwuhﬂvouAquvmuﬁawmemv
o«muwvouﬁmaonnumuﬁﬂvouAv#mvauﬂmtmamvouAmuctm*mvovm:mvouﬁmnounuwxAHvouhvumvonﬁmcmtmvonAmucnavovowAmuounxmtmvotmtmvouﬁmuounuwuﬁﬁvauﬁvvwvouﬁmow:mvo
uﬁmnonwamvmnﬁmaoun:w*wvonnmuounumtmtmVo&mtwvouhm*oun*m*Aﬂvmuﬁv:mvouHmtmamvouﬂmuozmamvouAmuonn¢mtmvouAmuonn*mtmtmvouﬁmuounuwumﬂvoumamvatmamvoam.m

) muouxumuAﬁvmnnvtmvouﬁmvmamvanﬁm*ozmxmvouamuouxtmsmVonﬁmuo
uaum¢wgmvouﬁmuoauumaﬁﬂvoam.mvouﬁmuounwmuﬂwumanvtmvmtmomvouﬁmuoumumuAﬂvouﬂvtwvouﬁmtmmmv0¢nawvonﬁmuonnum*Aﬁvounvgmvouﬁmaw*mvonnmuoawzmuotw:wv}am'm

m&oun*wuﬂﬂvmaAvtwvonﬁmcwtmvmuﬁm%otmtmUouﬁmuoumvmtmvouAmucamnmumgmvouﬁmuoumumaﬁﬂvaamamvmtw:w
muounumuﬁﬂvo*AvcmuanAmamamvmuﬁmuocmtmvonAmaounuwvwvoxﬁmuoumumumnmvoomcm
muo»h*mkhﬁvo&h¢nmvouﬁmtmngouﬁmucamtmvouamuounumamv¢tmtm
SEIRLHBA(T)6R(Du)OR(GRZu2I6H(GHI*2Z RS 6#252
muoumum&ﬁﬁvnuwvnmvoﬁmm‘momvm:m:m

SRORLABH(TIEH (502164282

CHROR/HRH(TI6x282

CHOu(H#Re2 w2

L L YE A ¥

SHGuZ#2

GeZug

b2

/T €5 214 /4

/0173

: /1787 /%<4
\tAua\AAu.\vAnv\oAuo\Aﬂvounm\mAunxnAuo\mueanm\m‘NAuv\NAnm\v.mAuﬁ\o\ uwumoa

L i¥3awnNgonr

¥o ’ ’ g TANVLIAGNYY £0°9L7¢2 v L08-2/800¢

235

stichting
mathematisch
centrum MC

REKENAFDEL ING NR 24/72 APRIL

P.M.B. VITANYI
CONTEXT-VARIABLE LINDENMAYER SYSTEMS AND
SOME SIMPLE REGENERATIVE STRUCTURES

2e boerhaavestraat 49 amsterdam

236

Printed at the Mathematical Centre, 49, 2e Boethaavestraat 49, Amstendam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
Progit Anstitution aiming at the promotion of pure mathematics and 4its
applications. 1t is sponsored by the Netherlands Governmment through the
Netherlands Organization fon the Advancement of Pure Research (Z.w.0.},
by the Municipality of Amstendam, by the University o4 Amstendam, by
the Free University at Amsterdam, and by industrics .

Contents

0. Introduction

1. Context-Varieble Lindenmayer Systems
2. The Extended French Flag Problem

3. Open Problems

Appendix

References

13

15

18

237

238

1 239

0. Introduction

An sutomats theoretic model for developmental growth in filamenteous
organisms has been proposed by Lindenmayer (1968). In a (k,1) L-System
we rewrite every letter of a string simultaneously according to its
context, consisting of the k left and 1 right letters. Here we shall
introduce Context-Variable Lindenmayer-Systems, where a letter of a
string is rewritten according to a selection of letters from that
string. The criterion for the selection is an attribute of the letter
concerned. These Systems will appear to be especially suited to model
certain properties of "full-growthness" and "regeneration". The

accompanying languages are called Context-Variable languages.

1. Context-Variable Lindenmayer Systems

Differences between Chomsky generative grammars and Lindenmayer Systems

as language. generators are:

(i) In the former one letter of a string is rewritten in each time

step while in the latter all letters are rewritten simultaneous-
ly.

(ii) 1In the Chomsky approach only terminal strings are elements of the
language while in L-Systems all strings derived are elements of
the language, i.e. no distinction is made between terminal and

non terminal letters.

The main feature that distinguishes Context-Variable L-Systems from
(k,1) ones is that in Context-Variable L-Systems the relative place of
the context of a letter can vary from time to time and from place to
pPlace. This feature makes the concept difficult to handle but we shall
give some simple examples below. In these examples the Systems seem to
strive at attaining a certain full-grown size and structure, which,
however, is not terminal. Cells, i.e. letters, are changing state,
dividing, and dying all the time. When we chop off a piece we observe

a certain regenerative behavior..

240 2

Def. 1.1. A Context-Varisble Lindemnmayer System or C-V L-System is a

3~-tuple G = <Z,6,G> such that

(i) The alphabet Z is a nonempty finite set and elements of Z are
called letters.

Cs . . + . *
(ii) The transition function & maps strings x € Z onto strings y € Z

. *
such that each element bj of y has a superscript Tj eI , i.e.

_ 1,2 n
6(a1a2. .an) =D, b," ... b
where
X = a1a2 . an
T, T T
2 m
y = b1 b2 . bm
T, = p(J)p(J) .o p(J) 1<3j<m
J 1 n. - -
with J
ai,b. € Z
(3) e T ith 1 < 1 < 1 <3< 0 < h <
ph wi <1 <n, <J <m, < __nj.

In the above definition & is deterministic; the generalization to

the non deterministic case is done in the obvious way. In this

report we shall only be concerned with the deterministic case.,

(iii) The axiom 0 is a word over Z, each letter possessing a supers -

script which is a string over I, i.e.

- 12 m
g = &y 85 ... &
where
. = p(J)p(J) ool g
J 1 n.
J
a. €) T<J <m.

We also call the axiom the initial description of the C=-V

L--System,

3 241

Remark 1. The superscript Tj = po p1 N pn selects in string
J
b%bé ves bé cen b& the context h(bj) according to which bj is going
to be rewritten:
h(b.) = b .\ b N cy .
J L G) T, () Lo (3)
+ + +
J pO J p1 J pn.
J
If J + pﬁJ) <0 or if § + pﬁJ) > m we substitute the empty word A for
b (3) in h(bj). We will henceforth assume that péJ) = 0 and omit péJ>
J+p.
i
from the superscript of bj
The C-V L-System generates words as follows:
T T T
Let x = 8y 8y ee B be a string. Then x generates y directly, written
as Xx==»> y, if
_ aT1 o 'n
T8 5 *n
Y=ot .0
and for every j, 1 <Jj < m,
u.—é(aa (J)ﬁ. (J) eee 8 J))
J 3 dtey o, S e
with ‘ J
3)_(3) (3) _
Py Po °n. Ty
J
* . .. *(k)
= denotes the reflexive and transitive closure of ==—> and x >y
denotes a chain of length k:
X = Xpm X, = .= X =Y.
* . . *(k)
If x==> y we say x produces, generates or derives y, and if x ===t» ¥y
then y is derived in k steps from x and x=;;§2> ¥y is a k-derivation of
1 T "m
y from x. A string x = 8y 8y ... o8 is called a description, and an

element of x is called a cell.

242 4

Def. 1.2. A C-V_L-Language is a set L(G) ¢ " where

x . .
L(G) = ta, ... a | 0. = &y «..oa’l .

Example 1
Let
-1 +1)
G=<{a}, {a>a a ', aa > A}, a> .
Then
-1 +1 -1 +1 =1 +1 -1 +1 =1 +1
a=> g a == g &8 8 a =g a g a

=1 41 =1 +1
=B ... g 3 a a = ,,, .

We notice that when the description has reached a certain full-grown
size it does not change any more although the individual letters cer-
tainly are not terminal or static, i.e. letters are dividing and dying
all the time but the structure, complete with context relations, stays
unaltered.

The language generated by this example is

L(G) = {a, aa, aaaal.
-k +
Let G(k) = <{a}, {a > a K k, aa > A}, a>.
The language produced by G(k) shall be called L%*(x).
Then 1#(1) = {a, aa, aaaal}.

In a similar way we obtain

L#(2) = {a, aa, aaaal
L#(3) = {a, aa, aaaa, aaasaaaa}
L3(L) = L%(3)

1*(5) = {&" | n = 1,2,4,8,12}

L2(0) = {1, a}

L#(-1) = {A, a, aa}

=
o
|
no
1}

{a, aa, aaaal}

(o
o
1
w
~—
"
=

-2)

We describe the general form of an L%(k)-language by:

Theorem 1. Let G(k) and L%(k) be as above.
a) For k » 0 and k is even

2t

L%(k) {a

For k » 0 and k 1s odd

L%(k) = 13(k+1).
b) For k < -1

(k) = 1¥(-k-1).
c) L*(0) = {1, a}

1%(-1) = {1, a, aa}.

Proof. By §%(a) we mean aaaé ces aﬁ if

(i)t < “log(k) . |s%a)| =2% <x .

[xf denotes the length of x.

| 0 <t < Plog(k) + 1} u {a°F}.

243

244
Tk . t .
There are no cells ai in 6 (a) such that production rule aa - A
. .. t+1 t+1
1s to be applied. Therefore all cells divide and [6 (a){ = 2 .
.. 2 2
(ii) log(k) < t < “log(k) + 1.
+ - . .
For all cells a & and a & (i>0), such that 2i+k < 2t, pro-
21 t .. —
2 -21+1
duction rule aa + A will be applied. Let j = max ,(i); then
& 2i+k<2
there are 2j cells in 6 '(a) such that aa > X will be the applied
production rule. For k is even: 2j+k = 2t or 2t—2j = k., 2j cells
disappear and k cells divide in the next production, so
|57 1(a)] = 2k. . For k is odd 2i+k = 2521 or 2%-2j = k+1, 23
cells disappear and k+1 cells divide in the next production, so
16 1 (a) | = axee.
... 2
(ii1) t > “log(k) + 1.
The last production gave us lét(a)! = 2k (k even), so half of
the cells divide and the other half disappears in the next pro-
i . +
duction: 6t+1(a)’ = 2k. For k is odd we get |6t](a)[= 2k+2,
b) is proven in a similar way as a).
c) follows from the productions.
a Un .
Corollary u L(k) ={a" | n>0}vu{a, aal.

kel

The C-V L-Systems we have been considering all start from a single

cell, and, according to the predetermined genetical instructions (i.e.

6 and the specification of k),they grow at an exponential rate until

the full-grown size is reached but for one move. Next the C-V L-System

grows on the remainder and stays at the same size and structure,

although at each generation individual cells disappear and divide. Note

that there is a limited interaction all the time between the cells to

achieve this goal.

We can investigate regenerative processes in these systems, by
removing part of the (full-grown or growing) description. The missing
part then is regrown again. When we divide a description into several
parts, all of these will eventually reach a full-grown stage. This is
reminiscent of the remarkable regenerative properties of flatworms.
The discussed C-V L-Systems are very simple, i.e. there is no differen-
tiation of cells. It would be interesting, to investigate similar re-
generative processes in more complex C-V L-Systems, e.g. with more
cellular states. Does there exist a complexity bound, e.g. expressed
in the size of thé“alphabet (and presumably §), above which only
partial regeneration is possible?

We may qualify questions like this by distinguishing several kinds of

regeneration, e.g.
(i) Starting with one cell in a special state, i.e. reproduction.
(ii) Starting from arbitrary parts of a full grown description.

(i1i) Starting from arbitrary parts of a description at some stage of

the growth process.

(iv) Starting from selected parts removed from the full grown descrip-

tion, etcetera.

Note that there is a differente between cases where we remove an end
part of a full-grown description, and cases where we remove a middle
part. We illustrate this with the following example (k=2).

The full grown description is:

-2 +2 -2 +2
a a a a .

Regeneration with the left-end (skin) cell removed:

+2 -2 +2 -2 +2 =2 +2

a ' a & == a g g a .

The two cells right have divided, while the new leftmost cell has
disappeared in the production. Regeneration with the third (middle)

cell removed:

245

246 8

-2 _+2 +2 -2 +2 =2 +2 -2 +2 -2 +2 =2 +2
a a a = g a8 a a a g =>a g a a

All three cells divide in the first production. In the second produc-
tion only the two outermost cells divide and the others disappear: the
full-grown size is reached.

We observe that the removal of different parts of the full-grown descrip-
tion may yield different courses for the regenerative process. The
above is suggestive of biological interpretations like the surrounding
of a wound by wound-tissue which is discarded after the healing process
has been completed.

In the appendix we shall consider some closure (or rather non-closure)
properties of L%(x) languages, so as to get an insight into what

place the considered structures take with respect to the other language

generating devices.

2. The Extended French Flag Problem

Usually the French Flag problem is states as follows: suppose we have g
string of cells all of which are in an identical state but because of
some disturbance produce the pattern of a French Flag, i.e. one third
red, one third white and one third blue. Moreover, when we cut off any
piece of it which is large enough it produces this pattern again.

The above is supposed to be (e.g. Herman, 1972) a meaningful statement
of problems of biological regeneration. However, as we have stated be-
fore, what seems more meaningful is the design of structures which,
starting from a single cell,attain a certain full-grown stage, no cell
staying static, and furthermore,.when we chop off a piece of this
structure regrow the missing piece until the full-grown stage has

been reached again.

When we discuss the French Flag in this context what we want is:

(1) One cell divides and gives rise to a full-grown French Flag of a
certain size which retains the same pattern and structure while

individual cells are disappearing and dividing all the time.

(i1) When we chop off a piece of the full-grown French Flag it regrows

the missing piece.

9 247

We will present a C-V L-System which does (i) and (ii).

As the system has to reach a certain full-grown size, clearly the pro-
duction rules depend on this size. When we want a different full-grown
size we will have to find a new set of productions.

Furthermore, in the discussed system the a's serve as some kind of
"head" of the structure, i.e. the front part always regenerates a new
end part but an end part does not always regenerate a new front part.
When part of the head is contained in it, however, it does. The biolo-
gical interpretation of this phenomenon is so obvious (lizards!) that
such a kind of partial regeneration has not to be Justified further. We
may point out that "higher'" organisms which are more differentiated
mostly lose regenerative properties to a certain extend which seems to
be the price to be paid for a more complex structure.

(Is there a maximal number of letters above which unlimited regeneration
is not possible anymore? What about other types of regeneration?)

We shall exhibit an example of a Context Variable Lindenmayer System
with maximal a two neighbor context, which, starting from a single cell

attains a full-grown description, i.e. the French Flag
a'a’a’a’®’ b b'e’cee’ .

When this French Flag is cut, the left part always regenerates complete-
ly; the right part mostly not, depending on where the cut was placed.

We will call a'a’a’a’ the head, b'b’'b'b’ the trunk and c'c’c’c’ the
tail of the French Flag.

Z = {a, b, c}. The transition function is specified by the following

rules (we only write those we need and leave the others open):
=1+1. -1+
a 1 1b 1+1

- +1-
b o> b 1+1c 1-1

+1-1 +1-1
c > c c

248

aa

bb

ce

ab -

be

ba

cb

a.8a.8a

bbb

cce

aab - a

bbe

absa

beb

+ D

>

+Db

>

cbe ~

bac

cch

bab

bece

cbb

cba

ach

A
+1=1 +1-1
c c
+2+1 =1+1
a a
+2+1 -1+
b 1+1
-4 -
b 1 TC+1 1

+1-1 +1-1
c c

-1+1 =242
a a
b—1+1b~2+2
-1+1 «141

a
=-14+] -

1 Tb 1+1

-14+1 -2+2
8 a
b—1+1b—2+2

+1=1 +1=1

c c
b+2+1b—1+1

+1-1 +1-1
c c

10

11 249

Starting from axiom a we obtain the following production:

1+ 1 =141 +2+71 =141 =1+1 +1-
(1) g = & 1 Tb 1 ' 2 1a 1 1b 1 10 1-1

f)

- — - - + - +1=1 +1=-1
a-1+1a 2+2a 1+1a 1+1b+2 1b 1+1_C 1 o

=11 =242 —1+T w141 =1+ =242 =141 =147 +1=1 +1=1 +1=1 +1-1
a a a a b b c c c c

b b

- ~242 ~1+7] =1+7 = 242 - -1+ -1 +1- - -
a 1+1a 2 2a 1 1a 1 1b 1+1b 2 2b 1+1b 1 1C+1 10 1 1c+1 1C+T 1
== 1dem.

We call this full-grown description FF, and observe that FF is the de-
sired French Flag; it stays at this structure although the individual
cells are dividing and dying off continuously. Note that the head grows
fastest and is completed first.

Next we investigate the regenerative properties.

There are eleven places at which FF can be cut.

When we look at the left part resulting from such a cut we see:

(N.B. We will sometimes omit superscripts when no confusion can result,

e.q. aub_1+1 for a-1+1a-2+2a-1+1a-1+1b-1+1°>

(2.1) & s T A B by (1)

(2.2) a-1+1a"2+2'm9 a—1+1b—1+1 P FF by (1)

(2.3) g 1T m2A2 =T B A R by (1)

(2.4) a"1+1a—2+2a—1+1a_1+1sm@ a—1+1a_2+2 o> FF by (2.2)
(2.5) aub-1+1ES% ahb-1+1c+1—1§§§ ahb+2+1b—1+1c+1—1c+1—1%g% FF
(2.6) ahb-1+1b—2+2$$$ aub-1+1c+1-1 = TP vy (2.5)

(2.7) atpT Tl T b1 et vy (2.5)

250

12
(2.8) ahb-1+1b-2+2b-1+1b-1+15g$ aub-1+1b-2+2 - vy (2.6)
(2.9) alﬁtbl+c+1-1%:i> ahbucﬂqcﬂ_]ﬁ?—; FF
(2.10) e

(2.11)

bl +1-1 +1=1 +1-1
abc c c &

= FF.

Hence all left parts regenerate completely.

The reader may verify that the full-grown descriptions reached by the

right partsare according to (3.1) - (3.11) (when the cuts are placed as

in (2.1) = (2.11)).

(3.1) 23t
(3.2) N .
(3.3) o et e
(3.4) ool e
(3.5) plet —
(3.6) b2e? s
(3.7) N
(3.8) L
(3.9) 03—
(3.10) RN
(3.11) o e

FF

2. L L

Fr

Lok

Loy

2L

Loy

13

We may also cut a piece out of the middle of FF. It may be verified

that

(L.1) Every part of FF containing cells of the head regenerates

completely to FF except parts of the form

-1+1 =1+1
a a n

=1+1 =1+1
a, a, P

(i) > A

a_1+1a—1+1n sia aQthh for n # A.

(ii)
(k.2) Every part of FF containing cells of the trunk but no head cells
cgrows'to afull-grown description bucufexcept parts of the form

—1+1 =1+
b 1 1b 1 1n

-1+1, =14+
11 =141

(i) b ===)

~14+1 =141 * 2L
n C

(ii) b b == b for n # A.

(L.3) Every pert of FF consisting of tail cells grows to a full tail

¢, i.e. a full-grown description.

3. Open Problems

Def. 3,1. A C-V L-System G = <Z, §, o> stabilizes at w if w is the

full-grown description of G.

A C-V production scheme is a pair § = <), &>.

Def. 3.2. A C-V production scheme S = <Z, 8> stabilizes at w € Z* if
*
for all o € Z the C-V L-System G = <Z, 8§, o> stabilizes at w.

*
1. Given an w €) ,does there always exist a C-V production scheme

that stabilizes at w. Find an algorithm which produces such.a C-V

production scheme.

251

252 h

2. If the answer to 1 is begative in general, then characterize the

class (or a sub-class) for which the answer is positive.

A sub-class as meant in 2 is e.g.

{ahn |

n >0},
. . 2k
By example 1 G(k), k is an even natural number, stabilizes at a for

. *
every axiom o e {al} .

3. Given w € Z*, does there always exist a C-V L-System
G = <Z', §, a>, Z') z and a ¢ Z s such that G stabilizes at w.
Give an algorithm to obtain such a G. (Can every word be generated
by a C-V L-System with a one letter axiom such that the word is a

full-grown description of that C-V L-System.)

b, If the answer to 3 is negative, then characterize the class (or a

sub-class) for which the answer is positive.
) hn .
Again, {a | n > 0} is such & sub-class.

5. Given w € Z*, does there always exist a production scheme
S = <Z', 8>, Z' 2), such that for all o, w = nok, G = <Z', §, o>
stabilizes at w. (Is universal regeneration possible for every
word?) If not, characterize the class (or a sub-class) for which
the answer is positive.

{a

Ll-nl

n > 0} is such a sub-class.
One criterion for the finiteness of C-V L-Languages is whether the pro-

duced description ever stabilizes.

6. Can we indicate conditions under which a C-V L-System stabilizes.

15 253

Appendix

Theorem 2. The family of La(k) languages is not closed under
(1) complementation, (ii) union, (iii) Kleenean star (*),
(iv) Kleenean cross (+), (v) concatenation, (vi) intersection with

regular sets; but it is closed under (vii) intersection.

Proof.

(i) {a}* \ L%(1) contains aaa, and aaa § U L%(k).

kel
(i1) 1*(6) v 1®(10) = {a" | n = 1,2,4,8,12,16,20}. From theorem 1
follows L%(k) = 1.2(6) u 1.2(10) for all k.
*
%(x)" contains aaa and asa kX U L8(k).
kel

(iii) L
(iv) as (iii).

(v) L(1) . n(1)=1{a" | n=2,3,4,5,6,8} = L%(k) for all k.
(vi) L%(1) n {aasa} = {assa} = L%(k) for all k.

ot 2 2
| 0 <t < min(“log(k,), log(k,)) + 1} = L3(k)

)},

(vii) La(k1) n La(kg) =
t=1 t

for k = max{2 |2 i_min(2k1,2k

2

Lemma_3. The family of L%(k) languages is strictly contained in the

family of regular languages over a one letter alphabet.
Proof. All La(k) languages are finite.

Lemma 4. The intersection of the family of La(k) languages with the
family of OL-languages [Rozenberg & Doucet, 1971] consists of those

1%(k) languages for which L¥(k) = 1#(-k-1), viz. (L¥0), L¥-1)1.

Proof. Consider the following OL-Systems:

254 16

5, = <{a}, {a > a, a > A}, al>
then
L(s,) = fa® | 0 <t <n}
and
L(s,) = L2(-1) for h =
L(s,) = L2(0) : for h =
If h > 2 then
a3 € L(S1) and a3 x L%n) for all
s, = <la}, {a > a}, a
L(s,) = {a"} and |L(8)] =1 = [L%(k)| for all
33 = <{a}l, {a » A}, alts
L(s,) = {a®, 2} = 1.3(0) for h =
L(S3) z 1,%(0) for all
and
|L(sy)| =2 = 1%(k) for k #

All other OL-Systems over one letter alphabet have a production

where x > 1, and therefore generate an infinite language.

L3(-1) L2(0)

\ /
N/
\ 7
A

OL

Regular

C-S.

17 255

Remark. L2*(k) languages are finite (containing usually more than 2
elements) and are generated in a deterministic fashion. It is not
possible to generate finite languages containing more than two elements

deterministically by either formal grammars or OL-Systems.

256 18

References

G.T. Herman, Polar organisms with apolar individual cells, in: IV Int.
Congress for Logic, Methodology and Philosophy of Science,
1971 (in press).

A, Lindenmayer, Mathematical models for cellular interaction in

development I & II, J. Theoret. Biol. 18(1968), 280-315.

G. Rozenberg & P.G. Doucet, On OL-languages, Information & Control
19(1971), 302-318.

CELIA MANUAL. by Adrian Walker
GCENE PJ\L: DRSCRIPTION

CRILIM (CFllular Tinear Tterative Arrav sirulator) 1is a
special purpose simulator written in FOPTPAY which simulates the
expansion'of filarmerts by Lindenmaver models, Information about
the filament to he expanded and the control of the simﬁ]ation are
specified by the wuser with CELIA control and data cérds and
subproarams. A general description of an earlier version of the
program can be found in Baker & llerman "Fimulafion of organisms
using a developmantal model"”, International Journal of Bioredical
Computing, in press. The present program incornorates some

AY

additional features.

The delta function (or expansion rules) is provided by the
user in the form of either a subroutine (subroutine DRITRA) or a
+able. Tf a subroutine is used, the user has the abilitv to
change the state of any cell in the filawen£ or even the whole
filament at any time during expansion and to do somre statistical

survev on any attribute of the filarent.

The states of cells in a filament are snecified hy a number
of attributes. Attributes specifying the state of a cell in a
filament can be real numbers or alphanumerical character stringos.
CEL.IA can handlé a filament containing up to 1200 cells (with 2
attribﬁtes at'most) ot cells containina up‘ to 100 attributes
(with at most about 28 cells in a filament). Gererally, the

product of the number of cells and the numher of attributes can

. 257

258

Y

he up to 2400, TIf the storage space i= not larae enocuch for the

simulation, an error messace will be nrinted onut.

The I/0 formats and arrangements are snecified bv the user.
The user can also nrint or punch out the filament at certain

moments,

The simulation is done in suck a way that CELTA internrets
the control statements step 'by step. If the statement beinq
interpreted is a specification, then that specification will be
used from that roint on, and the vprevious specification on the
samé feature is overridden by the current one. Therefore, the

user can change the situation from time to time,

CELIA COMTROL AMD DATA CARDS

CELIA control and data cards (or control cards together
with data cards) are prepared by the user and are read in as
input during execution to control the execution of CELTA. Control
cards snecify the control statements, while data cards snecify
additional information which is necessary for the simulation.
Every data card (or set of data cards) bhelonas to one of the
user-written control statements and must anpear immediately after
that control statement. Yot every control statement has data

card(s) attached to it.

-

Of the 13 control statements of thé current CELIA, 12 of
‘ ,

them are actually specifications or declarations. nly one
statement (EXECUTE) is executable. The command EXECUTE means
expanding the filament aunder a specified situation. To expand
filaments under different situations from time to time, the user
just repeats this EXECUTE étatement as many times as he Qants,
with some declarative statements put in between to ‘change the
situation. MNote that ‘the user need 'notA‘éﬁecify evervthing.
Declarative statements specifying the situation are necessalry

only. when the specified information is needed and is different

from that assumed by default.

Before any EXFCUTE statement is interpreted, all the
information concerned with that EXRCUTE staterment should be

complete. Otherwise CELTA will use the previously specified

3

259

260

L]

information or assume default valves (if not specified by the

user at all) durino the exnansion o€ the filarent. The order of
TM—'M

the control statements specifyina the situation ic irrelevant
e

except for some locical reasons. For exarnle, input forrmat should

have been specified hefore CFLTA reads ir thre original filament.

Each control statement consists of one ingtfuction command
and two data fields. They are Cormand, Field A, and Field B. The
format of CPLIA control cards is

cc 1=-10 Command
cc 21-30 TField A

e cc 31=RN TField B

In general, the Cormand field and Field B consist of character

strings, Field A consists of nurbers. All nurhers and character

strings in these fields should be [géit ju§£ified./ Illeqal
statements will cause error- messaqges, but the expansion of ‘the
filament will still go on with assumed dpfault specifications
unlesé there is no filament, to be exnanded. TFf the first column

of a card is "*" or blank, it will be treated as a comment card.

The 8 control statements which do not neeg attached data

cards are the following:

1. Command: NATT

This command tells CRELTA how many attributes are

&

Field A:

Field B:

NDefault:

Command:

Field A:

Field B:

Default:

Example:

261

.
used to svecifv the state of a cell.
Tumber of attributes specifyinag the state
of a cell.

Not used.

Field » = 1

I=-FORMAT

This statement srnecifies the input forrat for CELTA

to read in (if needed) the original filament to be
expanded,.left and right environments, dead state
specification and delta function tabhle from data

cards, |

Maxium number of cells the user wants to snecify

in a data card. If the state of a cell is specified

by more than one card, put 1 here.

PORTRAN format specifying the structure of each ceil.
Note that no I-format is allowed in this format specifi-

cation and also *that a pair of vparentheses should he

included.,
Field A = 80 '
. y \ el
Field B = "(A1)" .) /é“““lémn
TN
I=-FORMAT 15 (2a1,1X,71.0,1X)

means that there are at most 15 cells specified in an
input card, each cell occupies 5 columns. The first
two attributes are renresented by Al an& the third
attribute is represented by F1.0. (Iﬁ this case, the

number of attributes is 3.)

5

262

3. Command: O=FORMAT
This statement specifies the outnut format for
CELTA to print out the filament.
Field A: Mumhber of cells to he printed on an output line.
Field B: FORTRAN format srecifving the struétnre of each
cell appearing in outnut. The restrictions are

the same as those of I=-TORMAT.

i

Default: rield A 100

Field B (a1

il

4, Command: P=FORMAT
This staterent specifies the format for CELTIA to
punch out the filament. |
Field A: Mumber of cells to be punched on a card,
Field B: The same as thosSe of I=FORMAT and O=FORMAT,

Default: Field A = 80

it

Field B "(A) T

- 5. Command: O=RENUEST
This command asks CELIA to print out the‘filament
accordina to O-FORMAT at the morments snecified bhv the
codéd number in Field a,

Field A: 0 érint ériqinal and final filament.onlv. Also vrint

the dead filament if it becormes dead during

4

6.

Field n:

Default:

Command ¢

Field A:

expansion,

1 Print the filament only when the variable OFLAG is
set bv the user.

2 Print the filament only when the user-vritten
function EKPRIMT(T) is egual tc 1.

3 Case 1 OR case 2.

OO P

It Print every filamert during exnansion,

£f "NGAP" . filaments will he wriﬁggg“gonsecutive]y
without any ogan bhetween two filaments.
TEf "SINGLE", a blank line will anpear hetween twn
consecutive filaments..
If "DOURBLE", two hlank lines will avrear hetween two
consecutive filaments.
If "PNV=XXX" ("ENV=NOGAP", "ENMV=-SINGIR", or "FNV-
DOUBLE") , it means the sare as_zﬁg;eggept that the

. Llavhs < .
left and right environments at that moment will also
be printed out tooether with the cells of the filarent.

Field A 0 A

il

Field B = "sSINGILE"

P=REQUEST

This command asks CELIA to punch the current filament
in P-FOTMAT at the moments snecified hv the coded
number in Field A,

0 Mothing will be punched.

1 ;uhch final filarent onlv.

2 Punch dead filament only.

5

263

7.

264

Field R:

Default:

Cormand:

3 Case 1 Oﬁ case 2.

i Punch out the filament onlv when the user-written
function PO (T) is eqmal to 1.

ot used.

Field A =D

BEXrEcuTrT

This command initiates the exnansion of the oricinal

Field A:

Field R;:

Default:
Command :
Field A:

Field B:

Default:

filament specified by the user., T€ no oricinal filament
has bheen specified hefore this command, an error
message will be printed out., If no original filament
has heen specified betwéen two BXECUTE'statements,

the final filament of the first evecution will be
treated as the original filament of the second
execution,

Numbher of iterations to expand the filament while

the filament is still alive.

Not uéed. ‘a

If Field A is blan¥, Field A = 30,

LND

This cormand tells CELIA to terminate the simulation.
Not used.

Not used.

END assumed when EOF card encountered.

{or cards)

9.

10.

265

+

Fach of the following 5 control staterments needs data card

Cormand:

Field A:

Field BR:

attached immediately after it.

ENVIPR

This command specifies the left and right environ=-
ments of the model.

Mot used.

If "FIXED", the environments are fixed during the

expansion of the filament. The data card svecifying

the left and right environments (left first, then

Default:

Command:

Field A:

Field B:

right, specifv consecuﬁivelv on the card) should
follow this control card using I~FORMAT,

If "SUBROUTINE", the enviromnments varv according
to the user-written subroutine ENVIRN(T). In the
latter case, no data cards are needed.

Field B = "FIXED"

No environments assumed.

D=STATE

This command specifiés the dead state of the cells,
Not used.

If "FIXED", the dead state is fixed thouahout thé
expansion of the filament. The specification card
should be attached immediately after the D=STATE
card using I=-FORMAT, |

If "SUBROUTINE", dead state varies according to

/

266

11.

12,

Default:

Command :

Pield A:
Field n:

Default:

Command :

?

the user-written subroutine DFEADST(T), In this case,
no data carcds are necessary.
"o dead state assured, i.e., the filament is always

alive,

D=1pCK

Sometimes onlv some of the attributes are relevant
in determining whether a cell is dead or not. The
execution will he faster if CILI2 knows

which attributes are relevant and which are not in
checking whether the filament is dead or not. The
data card following tﬁis command specifies this
information., If the i-th column of this data card
is "1", the i-th attribute is relevant in
determining the dead state. A "0" means irrelevant,
If the number of attributes is more than 89,

a second data card_is necessary and the F-=th
column of the second data card is treated as the
{80+k)th column.

Not used.

Not used,

Tf D=-STATE is specified, all attributes are relevant.

TABLE
In case a delta function tahle is used instead
of the delta function subroutine, the user should

use this control card to initiate the read-in of

/o

267

the tabhle.
Field A: Not used.

Field B: Not used.

If g(l,m,r) = e;ey...e;, then the data cards following this
control card are prerared in the following way. First df‘
all, divide all the entries in the delta function table
into groups according to the relevancies of cells 1, m, r,
and the number i, then specify the table group by group.

Each aroup consists of the following cards:

g

Ccard 1 (Indication card of the grdup)

C1 IL Relevance indicator for the left cell "1",
"0" means left cell is irrelevant in determining
€1€, +o. €F
"1" means :relevant, i.e., this cell should bhe
matcﬁed in searching the corresnonding entry.

c2 IM Relevanceqindicator for the middle cell "m".
The meaning is the same as IL.

C3 IR Relevance indicator for the right cell "r".

Same meaning as ‘I, and IM.

-~
/

f/ CC 9~10 NEW Number of cells to be replaced for the
W f . cell "m", i,e., the number i.

&\wCC 18=20 ENTRY Number of entries in this group.
‘Card 2 to Card (ENTRY+1) |

Specifying 1,m,xr,e,e,;, ...,e; corresponding

to the 1ist,2nd, ..., and (ENTRY)th entries in

268

E
this groun. Use I=-FORMAT, Irrelevant cells in

l,m,r do not have to he specified, i.e., just
specify (IL+IM+IR+i) cells.

Fxample: For the group of the following two entries

(X,m,,r;y) = e e,,e,.
irrelevant
(erllrz) = ezlez.:.e:_}

"the set of cards corresponding to this group is

c1 c10 Cc20
{ ¢ ¥
011 3 2

Mz ¥ r= Y en(e-\es

In order to indicate the end of the table specification and

to bhave default action, the indication card of the last
group must be IL»= IM = IR = 0 and ENTRY = 1, The card
following this then specifies the cells to be replaced if
CELIA fails to find a matched entry after searching the
wHole table. Wwith ﬁcurfent CELIA, the maxium number of

entries the user can specify is 2n0,

13. Command: FTLAMENT
This control statement is used to specify the
original filament to be exnanded,
Field A: Mumbher of cells in the original filament,
Field B: Not used.
Data cards:

Use I~FORMAT to specify all the cells of the filarent

269

consecntivelv, Tf the numher of - cells in the original
filament is more than the numher specified in Field A of I-
FORMAT statement, use as manv cards as needed to specify

the oriaginal filament,

/3

270

USER~WRITTEN SUBPROGPAMS

The subprograms described in this section are sunplied by
the user to control the execution of CFRLIPF, All of them are
optional. If the user does not sunply therm with CRLTA, he will
get these T"unsatisfied externals" in his output core man. Tt is
not harmful except the simulation needs some of these subvnroarams

and the user forgot to suonply them,
1. SUBROUTINE DELTA(L,M,R,M)

“This subroutine specifies the delta function of the
Lindenmayer modg& CELIA requires this subroutine unless a delta

function table is specified by the user using TARLDI control card.

This subroutine should start with the folloring statements:

Pyt {L{"« o
/ U ;/‘ (éi‘ Yt £, C“:;; .

[7

SURRQUTINE DELTA(L,MaR,N) wipa Lo Be 'w!,iﬁ::i @} ol
\—————-——»? v i ol ¢ [

COMMON /DEL/ CNEW(20,100) s e
¢ z; FA AT R A0 f

COMMON LINF. (1200) ,NODFE (1200) ,C(2600) MNATT ke eldy ({;4, atail
COMMON /FLAG/ FO,F1,F2,F3,Fl4,F5,F6,F7,F8,F9,0FLAG
kif these flags are used in this subroutine)
INTEGER R,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,0FL.AG
REAL namel,name?,... ,namei
(if these names are not of type REAL by default)

2 DATA Mname1/1/,Mname?2/2/,+..,Mnamei/i/

/¢

E S

Also add the following function statements immediately

before the first executable statement in this subroutine.

namel (J) = C{(J+Mnamel=1)
name? (J) = C{J+Mname?2~1)
N namei (J) = C(J+Mnamei-=1)

lhere L, M and R are pointers pointing to the left neighbor,
Amiddle, and right neighbor cells respectively. namel, name2, ...,
namei arc the names of the first,l gsecond, ..., and the i-th
attributés given by the wuser., 1 is the numher of attributes
specifying the state of a cell. The reason for addina these
function statements is to make fhis subroutine more user-
oriented. The user does not.have to know how CFLTA structures the
information, He need only spécify namei (J) and CELIA will give
him the "value of the i-t}h atﬁribute of cell J. For example, if
CONC 1is one of the user=given names standing for the
concentration of some material in a cell, to ohtain the

‘concentration of the right neighbor cell, just write CONC(R).

N is the number of new cells (at most 20) to be replaced.
The user should assign new cells intova two-dimensional array
called CNEW. The firét subscript tells CELIA which cell we refer
to, the Second subscript stands for the attribute of the cell

concerned, Use "M" concatenated with user-defined names to denote

(&

271

272

the attributes. For example, CMEM (2, MCONC) denotes the
concentration of the second cell in the new-lorn secuence of
~cells,Thus, for the instruction "If the concentration of the
middle cell is less than 3.5, go to ?1,.otherwise return 2 cells
with the concentration of the second cell equal to 10 and .,..",
we code it the following way

IF(CoNC(M).LT.3.5) GO TO S1

=2 o _ . . ot

4 i o iy ans ol It Z!LA . 1”{.@ -
o Aol ol v Aulnd A2 ‘,n ; f d / 3 f 4

CNEW (2,MCOMC) =10, -

Note . that if the attribute of a cell is represented by & nunber;

it is of floating point mode.

The ten flags ¥0,I't,...,F9 are used to switch the control
of CELIA execution . to the user-written subroutiﬁes
S0,%1,...59(described later) temporarily to do some statistical
survey or to change the content of the current filament. Thus, if
Fi 1is set (Fi=1) in this subroutine, control will be passed to
subroutine Si after the currrnt iteration expandina the current
filament 1is finished. The flag Fi will be reset to zero again

when the execution of subroutine Si is finished.
2. SUBROUTINE ENVIRI(T)

This subroutine is required if the user 'puts "SUBROUTINE"

in PField B of ENVIR control card. It determines the left and

A

273

F

right environments accofdinq to how "o0ld" the filament is, i.e.,
the current number of iteration T. The suhroutine should start
with the following statements.

SURROUTINIT “NVIRMN(T)

COMMON LINK(12Q0),NODE(1200),C(2600),ﬂAmT

COMMON /ENV/ LENVR,RENVR

INTFEGER T,REWVR>
"There LENMVR and REMVR are the locations of the ieft and right
environment specifications respectivelyv. The attributes of left
environment should be put from C(LENVR) to C{LEMVR+NATT-1) ,
-where IATT is the number of attributes. Specify richt environment

the sahe‘way as left environment. The order of attributes should

be the same as that of the cell attributes.

3. SUBROUTINE DEADST (T) s

This subroutine is fequired if the user puts "SURROUTINE"
in Field B of D=STATE control card. It specifies the dead state
according to the current ﬁumber of iteration T. This subroutine
'should start with

SUBROUTINE DEADST (T)

COMMON /DD/ DMASK(100),DEAD(TOC)

INTEGER DMASK,T

Put the attributes of dead state into DEAD(1) -to
DEAD (NATT) , where MNATT is the nurher of attributes. As that éf

subroutine ENVIRN, the order of these NATT attributes should be

17

274

,
the same as that used to specifyv the cells in the filament. They
should correspond to each other. DMASK (1) to DMASY (MATT) are the
variables holding the "0"s and "1"s specified in D-MASK data
card, their values carn also be dynarically chanced by this

subroutine.
4, FINCTION KPRIMT(T) and FUNCTION KPUNCH (T)

These two functions are required when Fields A of N=REOURST .
and P-REOQUEST control cards are 2 and 4 respactively. If the
returned values are integer 1, CELIA will print or punch the
current'filament. Start these function codes with

FONCTION KPRINT(T)

INTEGER T

and
FUNCTION KPUNCH(T)

INTEGER T
5. S[IBR(){JTIPIES SO'S1'..0’S9

Once the command "EXECUTE" is interpreted by CELT? and the
expansion of the filament starts, the user 1loses coﬁtrol of
execution until the expansion is finished, i.e., the user cannot
ase CELIA control statements to control the state of simulation
iluring expansion. However, in case the user wants to change the

content of the current filament or to do some survey on some

/8

275

+

attributes during expansion under some circumstances, the use
can use up to ten subroutines to do thinas like: |

(1) Chanae the filament, includina its length and states
of cells,

(2) Change the situation of expansion previously snecified
by CELIA control card, inclvding the current iteration
number, number of iterations to expand the filament anc
the conditions on which CELIA will print or punch the
filament.

{3) Print out some information abont the ¢urrent filament.

(4) Store some information concerning the filament.

These ten user-written suhroutines are 80,81,...,59. Thi
execution of these ten subroutines is controlled hy ten flags FN
F1, ...,' Fo, TIf flag Fi is set, i,e., Fi=1, subroutine <i wil
he executed aftef the current iteration expandina the curren:
filament is finished. If more than one flag are set, th
subroutine with the leastnumber will he executed first. Fo
example, if F2 and I8 are set, S2 will he executed nrior to S8
rfter the execution of 8§i, CELTM will reset Fi to zero. Althoud
the setting of these flags is usyally done in subroutine DRTLTA

N WVl ~
the user can set these flags anvwhere in anv user-vritte
subroutine as long as he is aware of the execution senquence o
those subroutines, The values of these 10 flags are initialize
to zero at the very beginning of the execution of CRLTA. If n

state~change or survey are to he made during evxecution, the flac

need not be chanaed.

[g

276

There are no narawetérs in these subroutines, but the user
can have access to some information from the following common
blocks:

comio /FLAG/ FO,F1,F¥2,F3,F4,F5,F6,F7,F8,F9,0FLAG

COMMON /CHNG/ IPRINT ,IPUNCH ,N.HZ\"I K
where FO,F1,...,F9!ére the ten flags just mentioned ahove., IPRINT

/
and TPINCH are the variables which hold the values in Fields A of

0-REQUREST and P=-REQUEST control cards respectively. IMAX is the
value of Field A in EXCCUTE control card, i.e., number of
iterations for CELTA to expand the original filament. K is the

current number of iteration. The user can change anv one of these

values whenever he wants.

In order to store, refrieve or change the étate of the
cells in the current filament, the folléwing 7 subroutines are
provided and éan be used by the user in any user=written
subroutine. The user can store das many as 10 filaments. Each

e]
stored filament is identified by a user-defined integer numher,

*lote that the number 0 is always the identification number of the

current filament under expansion.

(i) SUBROUTINE STORE (ID)
This subroutine stores the current filarent in memory.
ID will be the identification numher of the stored
filament. The current filament is not affected by this

subroutine call.

(ii)

277

SUBRNUTINFE RETURN(ID)
This subroutine returns the stored filament with
identification number ID to availahle space. After this

subroutine call, filament ID no longer exists,

S

(iii)

(iv)

(v)

(vi)

FUNCTION LENGTI(TD)

This function returns an integer wvalue which 1is the

length of filament ID,

SUBROUTINFE COMETIM(ID,IATT,A)

This subroutine puts the values of the IATTth
attribute% of all cells of filament ID in array A. The
IATTth attribute of the Nth cell is put in the Mth
element of array A.

+

SUE‘ROUTINE GOBACK (ID,IATT ,A)

" This subroutine c@aﬁqes the IATTth attribute of every

cell in filament ID to the values specified in array A.
The value of -the Nth element of array A will be the

IATTth attribute of the Nth cell of filament ID.

SUBROUTINE NEWFIL(ID,LENGTH)

"This subroutine creates an empty filament (its cells

are not specified) of length LENGTH and stores it with
identification number ID, If ID=0, the current filament

will be destroyed and this newly created filament will

2/

278

Y

be treated as the current filarent beina expanded. Note
that this created filament is an empty one, the user
should specify the states of its cells after +this
subroutine call unless he is interested in an empty

filament.

(vii) SUBROUTINE REPLES (ID)

+3

his subroutine call will cause the. renlacement of
current filament by the stored filament ID. Filament ID
will he exnanded from that point on. After - the
replacement, the original current filament no longer
exists and there ié no filament with ID as

identification number either.

There is another subroutine which the user can use to
tabulate some statistics and to print the histogram‘correspondinq

to that table. It is
SURROUTINE STATIS (IDUO,TITYPF,A,N,INISTO,RBL,BU,INT)

The parameter TDUN is the user-given identification integer
number of the table., A is the array in which N data items are
stored which are to be tabulated. ITVPT is the indicator which
indicates the type of data stored in array A, ITYPE=0 means the
data stored in array A are real numhers and their values are
continuous, i.e:, Eﬁeir values may be any real ﬁumbers. ITYPE=1

means the data in array A are real numbers and they are discrete,

22

279

i.e., each number helong to a finite'set of real numbers. ITYPE=?
means the data stored in arrav A are character strings. If ITYPE
equals 1 or 2, CELIA will tabulate the data in such a way that
the data with the same value will he grouned tooether. If ITYPE
equals 0, CELIA will divide all the data with values between
BL(lower bound) and BU(uprer bound) into IMT(interval) groumns,
The table will show some statistical information about the whole
array of data items and each groupn, such as nurber of items,
rmean, deviation, etc. If INISTO is 1, a histoqfam corresnonding
to that table will be printed‘out. The parameters BU, BIL, and IMT

are not used for the cases ITYPE = 1 or 2.

’

‘It is helpful to know the sequence of execution inside each

iteration if the user wants to use the above subprograms and

flags effectively. The execution sequence is

| Expand the current filament (apply subroutine DELTA or
search delta function table).

If F0=1, execute subroutine S0,

&

If F1=1, execute subroutine S1.

If F9=1, execute subroutine S9,

Check whether it is necessary to print or punch the
filament.

Check whether the filament is dead or not.

280

NXAMPLES OF CONTROIL AND DATA CARDS

* FIBONACCI MUMBERS
* (USING DELTA FUNCTION TARLE)

TARLE
010 1 1
AR

010 2 , 1
BAR

000 1 1
X

O=REOUEST I
FILAMENT
A
EXECUTE 15
END _

——tt

* FRENCH FLAG PROBLEM

* (USING SUBROUTINE DELTA)
NATT 3 :

T-FORMAT 20 v (A1,2F1.0,1%)
O=FORMAT ‘ 25 (A1,2F1.0,1X)
0~REQUEST 4

INVIR FIXED

GO0 GOO "

FILAMENT 15

I00 SO0 S00 SNO SO0 SO0 SO0 SO0 SO0 SO0 SO0 SO0 SN0 SO0 SO0
LXECUTE 30

FILAMENT oy

T00 S00 S00 SO0

0O-REQUEST 4 ENV=SINGLE
EXECUTE 10

END

CARD DLCY. PRIIPARPTION

SDoo

(2151H~m767f6éwﬁ> FrsSo00 (e, ,

(1) Yith user=-written subprograms

Job card (P=55000.)

T ——

FAIOADTR, PPLOADR. -

(

NATTACH, CELTA, TNTTRIM, CY=1, 1)

RINT (S}

/

~ LOAD (LGO)Y +.
{ YK\
2§ LOAD (CTLIA)

’
-

EXDCUTH {CELIA) VEEa OEF D
‘ 7=8=0 IS -
e e / b g - G?
CRELIA control and data cards
- 7=8=-9
6= T=8=9

3

{2) without any userwwritten‘subproqram
Job card (F=50000.)
ILOADER,PPLOADR,

ATTACH,CELIA ,INTRRIM,CY=1,
CFLIA,

7-8=9

CﬁLIA control and data cards
7-8~9

G T=8=0

24

281

e {viqy

SugPade g

