A SMALL GROUP OF RESEARCH PROJECTS

IN

MACHINE DESIGN FOR SCIENTIFIC COMPUTATION

by

Bruce D. Shriver

DAIMI PB-14
June 1973

Institute of Mathematics University of Aarhus [T

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark -

Phone 06 -1283 55

=g

Sk

A Small Group of Research Projects in
Machine Design for Scientific Computation®

by

Bruce D. Shriver

1.0 Introduction

This paper outlines several research projects in an area which
can loosely be termed ""machine design for scientific computation'.
There are several sources of motivation for undertaking the line of

research discussed herein:

1) important and fundamental questions in numerical
analysis are raised within the framework of in-
vestigaring machine designs for scientific computa-

tion,

2) the extremely rapid growth of capability in hardware
technology both allows and compells us to re-examine
the utility of present day machines for scientific compu-

tation, and

3) there exists a growing need to establish standards

within this area.

The influence of the first source will be seen when reading the
descriptions of the research topics and their related projects, The
third source of motivation, the standards problem, will be delt with
in Section 3 . Let us here offer a few comments with respect to
the second source of motivation, increased hardware capability
through advanced technology. Developments in large scale integra-~
tion and solid state technology have led hoth Foster [1] and Auerbach
[2] to prognesticate the existence of mass produced '"computers-on-a-chip!
within ten years. If such computers are to be the tool of the numerical
analysts and scientific and industrial users of numerical algorithms,
then certainly these machines should have the computational proper-
ties required for this purpose. Consider a recent related statement
by Kahan [3]:

"There is a natural analogy beiween illness and numerical inaccuracy.

*) This work is being supported by the Danish Research Council,
Grant No. 511-1546.

Germs and rounding errors are small, numerous, and best combatted
by sanitary precautions,which, alas, are all to frequently neglected,
not so much because of their intrinsic difficuity as because of indiffe~
rence or ignorance.'" We can extend this medical analogy slightly by
enumerating a few illnesses. We have anomalies in floating point
units, undiagnosed underflows and overflows, unuseful treatment of
indeterminate values which some language processors inflict upon us,
and an incomplete knowledge of the finite floating point number system
which is used as a basis for a great deal of scientific computation.
Should we possibly not view mass-produced “computer's.-on-a-chip“ as
"carriers! of a potential epidemic and initiate preventative measures
to forestall any harmful effects?

Even if such mass-produced machines are not to be the normal
tool of the numerical analysts, they still should go through a re-exa-
mination of the usefulness of the machines they are using unless they
are (a) satisfied with machines as they currently are or (b) feel they
can do little to influence the design of machines. We support Cody's
contention [4] that we must "make a lucid statement of needs and desires
with supporting evidence!! if we are to effect change. The research out-
lined here may take many man-years of effort, however, the results of
the various proposed projects should, hopefully, assist in making such

a statement.

It should be the purpose of such research as this to provide the
numerical analyst with a more powerful, versatile, and efficient com-
putational facility than currently available, as well as providing a theo-
retical basis for the use of that facility. In this context, the proposed
research Is concerned with identi fying machine organizations, primitive
data types, and basic machine operations useful in scientific computation
and which can be supported by existing software techniques, as well as
developing a related mathematical theory. It is hoped to gain insight into
the impact of scientific computational requirements on overall computer

systems organization and implementation, and vise-versa.

The area termed ""machine design for scientific computation!
encompasses efforts in the design of arithmetic units for standard
and non-standard arithmetics, enhancement of matrix manipulation

facilities, provision for the efficient evaluation of the elementary

functions and of special frequency user routines (mathematical soft-
ware), -and the provision of related non-numerical techniques. In this
short note we will only concern ourselves with projects in arithmetic s

extending those presented in Shriver [5].

2.0 Studies in Machine Arithmetic

Numerical analysis is, by definition, concerned with the arith-—

metization of mathematical problems. The arithmetic unit of a com-
puter should be designed in such a way as to facilitate the work of the
user. That this is normally not the case has been documentated a
number of times in the literature; see, for example, Cody [4, 7],
Gregory [8], Kahan [3, 9, 10, 11], Levitan [12], and Lawson

[13]. Motivated by this fact and also because much numerical experi-
mentation requires a versatile arithmetic unit, we first suggest
investigations concerned with the theory, design, and construction

of arithmetic units. The mnemonic SIMA will be used to denote those
projects concerned with conducting theoretical and experimental

Studies in Machine Arithmetic.

The variety of arithmetics to be considered should at least consist
of the two standard arithmetics, fixed point and floating point, and the
following non-standard arithmetics, rational, significance-indicating
(end point interval, friplex interval, unnormalized, and significance
index), extended fixed point, extended floating point, residue, complex,
and polunomial. Each of these arithmetics is characterized by a set of
operations (represented by symbols such as +, /, etc.), a set of ope-
rands (objects upon which the operations are defined), and a set of de-~
rived properties associated with the operations and operands (such as
associativity, distributivity, etc.). The operations and operands will
frequently be named according to a particular arithmetic we are concerned
with. Thus we may write, for example, "a floating point add“.‘ The type
of the operation is floating point. We may also write, for example, "a
rational number®. The type of the operand is rational. This merely
allows us to write short hand expressions such as, 'fthe operation '+!

should be defined for operands of the same type'l,

Operands have abstract, finite~machine, and implementation repre-
sentations. In order to define these terms, let us introduce the following

‘concepts.

Definition: A representation tuple, r" =(r;,...,r,), is an n-tuple
whose elements, r;, are members of given sets, S,

called the representation sets,i.e., r; € S;, i =1,...,n.

Definition: A representation function, M® =M(y,,..,v,), is a
function whose domain, D, is a set of representation
tuples and whose range is a set H, i.e., M" associates

with the object y* € D a single object M(r") € H.
LLet t be anelement from a set of objects T.

Definition: A representation, R* = (M", r’), of t€ T is defined to
be a representation function, M", together with a repre-

sentation tuple, r”

, such that M" associates with
PP ED=S, x Sy x ... x S, a single object M(r*) € H

whereH =T,

Let x be an element from a set of objects X. L.etR be a relation which

exists between elements from the set X and elements from the set T.

Definition: A R-basis abstract representation, ARR’ of X is a represen-
tation R" = (M*, r") of some t such that
(i) st holds,
(ii) H=T =X, and
(iii) the representation sets, S;, i =1,...,n, may be
infinite,

Definition: A f-basis finite-4nachine representation, FR of x is a

)
representation R* = (M*,r?) of some t such tﬁat
(i) xft holds,

(il) H=T< X, and

(iii) the representation sets S, , i =1,...,q, are finite

seis.

The restriction of the (possibly) infinite representation sets of an

ARR to the finite representation sets of a FRR’ and the restriction

of the set T to be a subset of X reflect the finiteness of the machine.

Definition: Af-basis implementation representation, IRR’ of x is
a representation R® = (M’ , r’) of some t such that
(i) xRt holds,
(ii) H=Tc X, and
(iii) the representation sets S,, i=1,...,p, are
isomorphic to the set {0,1,...,8-1} where B
is the base of the machine upon which the repre-

sentation is implemented.

The restriction of the representation sets reflects the binding of

the representation to a particular machine.

Let us give an example of the above. Suppose we wish to represent

X € Si where

Sh: {set of n significant-digit, base b, real numbers} .

Let X =T =S;, J be the integers, N be the positive integers, and
R the reals.

(1) An abstract representation of x based on the relation of equality,

AR_, could be given by the following:

AR_ (M, r®)

where the representation function is
3 e
M® = M(f, b, e) =Tb .

Here the representation parameters are f, b, and e. f is called
the coefficient, e the exponent, and b the base. The elements of

the representation tuple r°® = (ry,rs,rs) have the following re-

presentation sets,

rL €5, {k|k€ Y, |Kk| <b},

i

r, €S, =N\{1}, and
g € SS = J.

The domain and range of M are D = S;x S,xS; and H = S € R,

(2)

(3)

Suppose we wish to model this abstract representation on a class

_ of word oriented finite-machine whose words arew units wide.

Furthermore,] units of w represent the value of the coefficient
and k units of Wrepresent the exponent. Let T = S,, {the set
of n significant digit, base b, real numbers representable in 1
Wor‘d} . A finite-machine representation of x € Sy based on the
relation |x-t] =6, (0< 6 < 1), could be:

FR : (MP, r®)

[x—t]Sé

where the representation function is

M =M(f,, by, &) =f,b, ® where 0= |g, | <

b7t =b |[f,| =p]

n » and j+ k =w, Here k is used to specify the

finite range of the exponent g, and j is used to specify the finite
precision of the coefficient, f, . The constraint on f, also indicates

that f, is normalized. The elements of the representation tuple

r? = (ry, rs, r3) elements of the following representation sets,
Py €5 < [/b]U[/bm71:l7
r2652={, 10, 16}, and
rs € Ss = {-bf, ~bf+1,...,0, 1,...,b5}.

The domain and range of M® are S xSxSy and H =Sy ,, CR.
Note the class of machines considered are given by S5 as binary,

ternary, octal, decimal, and hexidecimal.

If we wish to implement this FR on a binary computer with a
fixed | and k. A possible interpretation based on the relation
| x-t] =6, (0< 6 < 1), where T =S},, could be:

lRl 5 (M e pitky)

x-t] <

where the representation function is

Mj+k =M(bo,---,bj“‘l) Co,""ck"l):

b, 471 =5 A((=1)%0 kil c; 2')
(~1)% %7 b, 2879 2 2,
1=1

This representation function corresponds to a signed magnitude in-
terpretation of both the fraction and the exponent. The elements of the
representation tuple r!** =(p, ... Pj+x) are members of the fol-

lowing representation sets:
re €S ={0,1), i=1,...,jk
The domain and range of M'** are D = {0,1}’** andH = 5¢,, C R.

This example points out where some of the problem areas in the re-
presentation of the reals by a finite precision, finite range number

system implemented on a computer lie.

We have an incomplete knowledge of the properties of various repre-
sentations and of the mappings which are normally defined to exist be~
tween representations, e.g., a rounding or trunctation mapping which
establishes a correspondence between elements of an AR and an IR.
There has been recent theoretical (Matula [14, 15, 16, 17, 18, 19]
and Garner [20])and statistical investigations concerning various pro-
perties of given representations and associated mappings (Marosa and
Matula [21], Tienari [22], Kuki and Cody [23], Cody [24], Urabe [25],

Hull and Swenson [26], and Ashenhurst [27]). We should study alternate

representations to the positional notation normally used (such as loga~
rithmic, condinued fraction, continued produce, etc.) and consider the

realization of arithmetic units capable of handling such representations.

Definition: An arithmetic unit, AU, of type A is a realization of the
operations defined in arithmetic A upon operands of type A
in a fashion consistent with the properties associated with

arithmetic A,

This realization may be in hardware, software, or firmware. Having
given these introductory remarks, we are now prepared to introduce
several projects in the SIMA area. These projects fall into three broad

categories:

(1) the design of arithmetic units for the execution of

various standard and nonstandard arithmetics,

(2) the development of a theory of the mathematical
properties of various abstract, finite~machine,
and implementation representations of arithmetic

operands, and

(3) the development of a theory of error analysis and
functional approximation in various non-standard

arithmetics.

There are several research efforts recently or presently underway

in these areas; papers 3 and 5-27 already cited,as well as the presen-
tations at the recent symposium on Computer Arithmetic at the Univer-
sity of Maryland [20] should be mentioned along with a host of others.
Our projects should complement and extend some of these efforts. The
areas above are not disjoint and in the project descriptions given below
they will not be separated out. We begin by describing a project to
design a basic fixed and floating point unit and then extending it to allow

operations in several non-standard arithmetics.

SIMA. 1 Basic Arithmetic Unit

Propose and evaluate various schemes for the realization of the

following two arithmetics in 1 and 2 word precision.

a) fixed point arithmetic, and

b) normalized floating point arithmetic.

One of the objectives of this project is to gain historical perspective
and insight into the design and construction of arithmetic units (tech-
nology), the machine and implementation representations of numbers on

which they operate, and the desirable features in an arithmetic unit or-

ganization for the efficient execution of the above arithmetics. It is also

hoped to gain an understanding of the impact of arithmetic unit design on

computer organization and vise-versa. The following should be done with-

in the framework of this project:

a)

b)

c)

d)

An abstract, finite-machine, and implementation representation
should be chosen for fixed point numbers (F—_p), and normalized
floating point numbers (Nf) in both 1 and 2 word precision. The
rational as to the choice of the particular representations should

be given.

Several mathematically consistent, useful; and flexible schemes
for the treatment of underflow, overflow, indeterminate forms,
rounding strategies, catastrophic significance loss, and other as-
sociated phenomena should be defined and analyzed. A technique
whereby the user of a particular airhtmetic may optionally choose
which schemes he wishes to employ should be proposed. (That is,
the schemes are not bound with the design of the arithmetic unit,
but binding is delayed until execution time.) A default scheme
should be defined which can be employed by the user who does not
wish to worry about these phenomena. See, for example, Kahan [1 o],

Cody [4], and Neely [6].

Conversion algorithms should be constructed so that numbers of one
type can be converted to numbers of another type when such con-

version is meaningful. A mechanism should be developed whereby any
of the phenomena in (b) above (e. g. , overflow) which can occur or
have special meaning during such conversion can be recognized by

the user.

The arithmetic unit should be capable of executing the following ope-
rations when the operands are of the same type (see, for example,

Knuth [30]).

o (

¢

-~ Operations Comment
-F, - %, / add, subtract, multiply divide; r and n
A+, - %, /) double precision accumulation of sts, dif-
| dp ferences, products, and quotients; r and n

sighum(x) signum(x)=1 if x>0, 0 if x=0, —1 if x<0

x: X to the integer power i; r and n

[x] | floor of x

[x] ceiling of x
round rounding operation

where r means rounded
N means unrounded.

The arithmetic unit should be capable of determining the truth
value of the follwoing relations {see, for example, van Wijngaarden
[29] and Knuth [30]).

I h

Relation Comment
<€ approximately less than
%E approximately equal to
>& approximately greater than

e} The above operations and tests should be defined when the ope-

rands are not of the same type.

) Choose a machine on which to simulate the proposed arithmetic
unit. Establish techniques and criteria to evaluate the performance
of arithmetic uhits, Implement the arithmetic unit and evaluate
it, identifying what aspects of the system it was realized on
are not particularty useful or even hamper the implementation,

as well as what additicenal features might enhance it.

g) A logical design of a family of arithmetic units having variou
cost/performance ratios which would realjze these arithmeti
in hardware should be proposed. Any enhancements of or de-
letions to the requirements given here (e. g., additional prim
tive operations) should be clearly stated and justified. Propc

a virtual machine instruction set for the use of these units.

SIMA. 2 Extended Basic Arithmetic Unit

Extend Project SIMA. 1 so that all of the operations and test

defined for operands of

a) up to a specified constant length > 2 words,

b) arbitrary length.
Thus we could have, for example, extended/arbitrary precision fi
point arithmetic and extended/arbitrary range and precision floati

point arithmetic.

SIMA. 3 Interval Arithmetic Unit

Propose and evaluate various schemes for the realjzation of

a) end point interval arithmetic

b) triplex interval arithmetic.

This project should meet the same requirements set forth in the Ba
Arithmetic Unit Project (SIMA. 1) where the table of operations an
tests has been appropriately modified for this arithmetic (see, Moo
[31] and Apostollottos et al. [32]). The components of the machine
implementation representations chosen for interval numbers (lf) cat
be assumed to be the same as those chosen for normalized floating
point numbers in SIMA. 1.(A proposal for a unified number represe
tation giving normalized, unnormalized and interval arithmetic is g

by Kornerup in [33] and might be considered as a possible alternat

SIMA. 4 Extended Interval Arithmetic Unit
Extend Project SIMA. 3 in the spirit of the Extended Basic A
metic Unit Project, SIMA. 2.

SIMA. 5 Integer and Rational Arithmetic Unit

Propose and evaluate several schemes for the realization of

teger and rational arithmetic where the range of the numbers is

a) limited to 1 and 2 word precision

b) extended to n> 2 words, n a constant.

The project should meet the same requirements set forth in the B:
Arithmetic Unit Project (SIMA. 1) where the table of operations a

tests has been appropriately modified.

SIMA. 6 Complex Arithmetic Unit

Propose and evaluate several schemes for the realization of .
plex arithmetic. The components of the machine and implementatic
representations for compliex numbers (NC) can be thought of being
presented as floating point normalized numbers in fixed, extendec
arbitrary length. Representations are not to be restricted to this
terpretation. Alternate representations, using the bases 7—2’1 anc
for example, should be considered, (see Knuth [30]). This projec
should meet the same requirements set forth in the Basic Arithme
Unit Project (SIMA. 1) where the table of operations and tests ha:

appropriately modified.

SIMA. 7 Unnormalized Arithmetic Unit

Propose and evaluate various schemes for the realjzation of f

point significance of

a) the Ashenhurst/Metropolis type [34],
b) the Gray/Harrison type [35].

as an extension to the Basic Arithmetic Unit (SIMA. 1). The proje
should meet the same requirements as set forth in SIMA. 1 where
table of operations and tests remains the same. An Extended Unno
malized Arithmetic Unit along the lines of the Extended Basic Ari

metic Unit should also be designed.

It is certainly within the framework of these projects to encot
investigations of alternative number representations and algorithn
for the execution of the primitive arithmetic operations and tests.
logarithmic representation of Marasa and Matula [21], the combin
representation of Kornerup [33], the multiplication and division a
gorithms of Mitchell [36], the Cordic (coordinate rotation) repres
tation of Volder [40], and the negative base algorithms of Krishn
et al. [41] are examples of aglternate representations and algorith
The following project is typical of a project specification particul.
one of these effortsandcan actually be considered part of project
SIMA. 1.a.

SIMA. 8 "Reduced Significance!! Arithmetic Unit

The following references, Mitchell [36], Combet, et al. [37]
Hall, et al. [38], and Marino [39] deal with miltiplication and div
in what may be termed "reduced significance!' arithmetic using bir
logarithms. Propose and evaluate various schemes for the realize
of this arithmetic. This project should meet the requirements sef
in the Basic Arithmetic Unit Project (SIMA. 1) where the table of

erators and tests has been modified accordingly.
We can now consider the following project.

SIMA. 9 Combined Arithmetic Unit_

Propose and evaluate several schemes for the realization of f
arithmetics of projects SIMA. 1, SIMA. 3, SIMA. 5, SIMA. 6, ar
SIMA., 7 (or any subset of these containing at least two elements)
in the same arithmetic unit. The operands may be of fixed, exiend
variable length. The operatars should be polymorphic: for example
should be only one 4! operator even though the operands may be r

centinag Nl . 1.. etc. numbers.

14

After having completed the Combined Arithmetic Unit Project,

SIMA. 9, one has an arithmetic unit which is capable of executing ope-
rations and performing tests in the standard arithmetics (fixed and

floating point) as well as a variety of non-standard arithmetics. How-
ever, major problem areas still remain before the user has appro-
priate access to such a unit. How can one allow for the use of such

a variety of arithmetics in standard high level programming languages
such as Algol or Fortran? How can one 'switch!" from one arithmetic
environment to another ? How will the user bind his interpretation of
several features of the arithmetic unit which have not been frozen
into the design, for example, the treatment of underflow and overflow,
catastrophic loss of significance, rounding strategy, and the like?
How does all of this relate to the attributes of variables in a high

level language ? This leads to the following general project statement.

SIMA. 10 High Level Language Support for a Combined Arithmetic Unit

Study methods by which the user of a standard high level 'anguage
can utilize the full capabilities of a Combined Arithmetic Unit, the
language should allow the user to construct algorithms which

use anywhere from 1 to all of the arithmetics available on the unit.

Some of the uses of the Combined Arithmetic Unit, now that convenient
access to it has been made (i.e., SIMA 2.10 has been completed
and a given method implemented),are the following: (this list is not

exhaustive, but merely representative of work in this area)

(1) automatic error analysis; theoretical and experimental investi-
gations of the application of different types of error tracing
arithmetic, e.g. expanding and contracting interval arithme-
tic, on a given elass of problems - e. g. linear algebra; see,
for example, [42] and [43],

(2) conduct extensive tests of probabilistic models for the propa-~
gation of roundoff errors in various arithmetics; see, for
example, [217], [22], [23], [24], [25], [26], and [27],

(3) testing of function libraries of a given precision p through
execution and evaluation in a precision q, q> p;, see, for
example, [44],and [46],

15

(4) generation of accurate constants for tables and function
libraries in precision p; examples of this are the coef-
ficients in an expansion of a function, Gaussian quadrature

formulas, etc.; see, for example, [45],

(5) generation of accurate test data in precision p: an example
of this is to employ an integer preserving matrix inversion
technique to generate exact test inverses - this requires

extended precision integer arithmetic; see, for example,
[47],

(6) use of methods which are marginally unstable in precision

p or require an extended range in precision p,

(7) conduct tests of storage requirements required when)
using various variable or arbitrary length arithmetics in
particular highly used algorithms, e.g. polynomial zero de-
termination, linear system solution, etc. in variable range
and precision floating point arithmetic or variable length ra-

tional arithmetic.

3.0 Standards and Arithmetic Uniis
The MIX machine of Knuth [48] has an identifying number -~ the 1009,

It is formed as the average of the numbers associated with 16 different

actual machines,

"(360+650+709+7070+U3+SS80+1 1 07+1 604+G20+B220+S 200+920+601
+H800+PDP4+H)/13 =1009",

Now add to this list of machines additional familiar machines: 7094-11,
7030, 6600, 645, 370, PDP10, STAR, and on and on. The reader is

asked to answer the following and similar questions: "On how many of
these machines are the fixed and floating operations implemented in a

mathematically consistent and useful way for users for-

all operand pairs given to the arithmetic unit? On how many machines
would the fixed and floating point operations yield the same answer as
the result of an arithmetic operation if the same precision were being
used?!" The work of Kahan [3, 9, 10, 11], Cody [4, 7] and Neely [6]

16

as well as many others cited herein and the author's own expepn—
ience Jeaves one with the disquieting feeling that the number is
small. The author believes that current state of affairs with respect
to the non-standardization of the attributes of fixed and floating point
arithmetic units, after almost 30 years of machine construction and
programming effort, is a disgrace. It is hoped that the completion of
Project SIMA. 1, Basic Arithmetic Unit, will be accompanied by re=
sults which can be used to standardize these attributes. The de facto
standards which computer manufacturers and system designers im-

pose on users are not often the best standards.

17

REFERENCES

It should be obvious from the list of references here that we need at

least one additional project, SIMA. O.

SIMA. 0 Annotated Bibliography

(1]

[2]

[3]

[4]

[5]

(6]

[7]

Prepare and distribute a comprehensive annotated biblio-
graphy of theoretical and experimental studies in machine

arithmetics.

Foster, Caxton, "A View of Computer Architecture’', CACM,
Vol. 15, No. 7, July 1972, pp. 557-565.

Auerbach, Isaac L., "Technological Forcast 19711, Proceedings
of the IFIP Congress 1971, Vol. 2, Editor C.V. Freeman,
North-Holland Publishing Co., 1972, pp. 764-775.

Kahan, W., "A survey of Error Analysis!, Proceedings of the
IFIP Congress 1971, Vol. 2, Editor C.V., Freeman, North-
Holland Publishing Co., 1972, pp. 1214-1239,

Cody, W.J., "Desirable Hardware Characteristics for Scientific
Computation', ACM SIGNUM Newsletter, VVol. 2, No. 1,
January 1971, pp. 16-31 (and Appendix, not in SIGNUM, but
available from W. J. Cody).

Shriver, B.D., "Microprogramming and Numerical Analysis!,
IEEE Transactions on Computers, Vol. ¢c-20, No. 7, July
1971, pp. 808-811.

Neely, Peter M., "On Conventions for Systems of Numerical

Representations', in Proceedings of the ACM Annual Confe~

rence, Boston 1972, pp. 644-651,

Cody, W.J., "The Influence of Machine Design on Numerical
Algorithms', in 1967 Spring Joint Computer Conference,
AFIPS Conference Proceddings, Vol. 32, Thompson Pub-
lishing, 1968, pp. 305-309,

18

[8] Gregory, Robert T., "On the Design of the arithmetic unit of
a fixed word elngth computer from the standpoint of compu-
tational accuracy!", IEEE Transactions on Electronic Com-

puter, Vol, EC15, No. 4, pp. 255-257.

[9] Kahan, W., "Further Remarks on Reducing Truncation Errors'!,
CACM, Vol. 8, No, 1, January 1965, p. 40,

[10] Kahan, W., "7094-11 System Support for Numerical Analysis!
SHARE Publication # 159, itemC4537, December 1966.

[11] Kahan, W., "Four Aphorisms Concerning Floating Point Hardware
Design", ACM SIGNUM Newsletter, Vol.3, No. 2, July 1968,

[12] Levitan, E.S., "A Problem Resolved - Almost", ACM SIGNUM
Newsletter, Vol. 3, No. 3, October 1968.

[13] Lawson, C.L., "Study of the Accuracy of the Double-Precision
Arithmetic Operations on the IBM 7094 Computer!, Jet Pro-
pulsion l_Laboratory Technical Memorandum No. 33-142,

Pasadena, California, July 1963,

[14] Matula, D.W., "Number Theoretic Foundations of Finite Pre-

cision Arithmetic! in Applications of Number Theory to Nu-

merical Analysis, Editor S.K. Zaremba, Academic Press,

1972, pp. 479-4809.,

[15] Matula, D.W., "Significant Digits: Numer‘icél Analysis or
Numerology!, Proceedings of the IFIP Congress 1971,
\Vol. 2, Editor C.V. Freeman, North-Holland Publishing Co.,
1972, pp. 1278-1283.

[16] Matula, D.W., "A Formalization of Floating-Point Numeric Base
Conversion!, IEEE Transactions on Computers, Vol. C-19,

No. 8, August 1970, pp. 681-692.

[17] Matula, D.W., "Towards an abstract mathematical theory of

floating-point arithmetic!’, in 1969 Spring Joint Computer

Conference, AFIPS Conference Proceedings, Vol. 34,
Thompson Publishing, 1969, pp. 765-772.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

19

Matula, D.W., "In-and-Out Conversions'', CACM, \ol.11,
No. 1, January 1968, pp. 47-50,

Matula, D.W., "Base conversion mappings", in 1967 Spring

Joint Conference, AFIPS Conference Proceedings,
Vol. 30, pp. 311-318.

Garner, H.L.,"The Classification of Finite Number Systems',
in Proceedings of the IFIP Congress 1968, VVol. 1, Editor
A.J.H. Morrell, North-Holland, Publishing Co., 1969,
pp. 256-259.

Marasa, J.D., and Matula, D.W., "A Simulative Study of
Correlated Error Propagation in Various Finite Precision
Arithmetics", Department of Applied Mathematics and Com-
puter Science Report, Washington University, St. Louis,
Missouri, 1971.

Tienari, M., "A Statistical Model of Roundoff Error for Varying
Length F loating-Point Arithmetic", BIT, Vol. 10, 1970,
pp. 355-365.

Kuki, H and Cody, W. J., "A Statistical Study of the Accuracy
of Floating Point Number Systems!', CACM, Col. 16, No. 4,
April 1973, pp. 223-230.

Cody, W.J., "Static and Dynamic Numerical Characteristics of
Floating Point Arithmetic', to appear in IEEE Transactions

on Computers.

Urabe, M., "Roundoff Error Distribution in Fixed-point Multi-
plication and a Remark about the Rounding Rulet, SIAM
Journal of Numerical Analysis, Vol, 5, No. 2, June 1963,
pp. 202-210,

Hull, T.E., and Swenson, J.R., "Tests of Probabilistic Models
for Propagation of Roundoff Errors't, CACM, Vol. 9, No, 2,
February 1966, pp. 108-113.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

20

Ashenhurst, R.L., "Experimental [Investigation of Unnormalized
Arithmetic!, in Error in Digital Computation, Vol. 2.,
Editor L.B. Rall, John Wiley and Sons, Inc., 1965, pp
pp. 3-37.

Symposium on Computer Arithmetic, May 15-16, 19872, Depart=
ment of Electrical Engineering, University of Maryland;
presentations to be edited Into a special issue of the IEEE

Transactions on Computers.

van Wijngaarden, A., '""Numerical Analysis as an Independent
Science', BIT, Vol. 6., 1966, pp. 66-81.

Knuth, D.E., The Art of Computer Programming, \Vol. 2,

Seminumerical Algorithms, Addison-Wesley, 1968,

Moore, R.E., Interval Analysis, Prentice Hall, Inc., 1966.

Apostollottos, N., Kulisch, U., Krawczyk, R., Lortz, B.,
Nickel, K., and Wippermann, H., "The Algorithmic Language

Triplex—-Algol 60", to appear in Numerische Mathematik.

Kornerup, P., "A proposal for a unified number representation
giving normalized, unnormalized, and interval arithmetic oper-
ands!' , Department of Computer Science Note, University

of Aarhus, Aarhus Denmark,

Ashenhurst, R.L., "Number Representation and Significance
Monitoring'" in Mathematical Software, Editor J.R. Rice,
Academic Press, 1971, pp. 67-92,

Gray, H.L., and Harrison, C., Jr., "Normalized Floating-Point

Arithmetic with an Index of Significance, in Proceedings of

the Eastern Joint Computer Conference, AFIPS, Vol. 16,
1956, pp. 244-248,

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

21

Mitchell, J.N., Jr., "Computer Multiplication and Division
Using Binary L.ogarithms!, IRE Transactions on Electronic
Computers, Vol. EC-11, No. 8, August 1862, pp. 512-517.

Combet, M., von Zonneveld, H., and Verbeek, L., "Compu-
tation of the Base Two L.ogarithm of Binary Numbers',
IEEE Transactions on Electronic Computers, Vol. EC-14,
No. 6, December 1965, pp. 863-867.

Hall, E.L., Lynch, D.D., and Dwyer, S.J., lll, "Generation
of Products and Quotients Using Approximate Binary L.oga-

rithms for Digital Filtering Applications!, IEEE Transactions

on Computers, Vol. C-19, No. 2, February 1970, pp. 97-105.

Marino, D., '""New Algorithms for the approximate evaluation of
binary logarithms and elementary functions', Instituto di

Fisica Report, Universita de Bari, Bari, [taly.

Walther, J.S., "A unified algorithm for elementary functions',
in Spring Joint Computer Conference, AFIPS, vol. 38,
1971, pp. 379-385.

Krishnamurthy, E.V., Chakraborti, 5., and Sankar, P.V.,
"Arithmetic Algorithms in a Negative Base!', and "Determi-
nistic Division Algorithm in a Negative Base'', IEEE Trans-
actions on Computers, Vol. C-22, No. 2, February 1973,
pp. 120-125 and pp. 125-128.

Richman, P.L., "Automatic Error Analysis for Determining
Precision', CACM, Vol. 15, No. 9, September 1972,
pp. 813-817.

Chartres, B.A., "Automatic Controlled Precision Calculations'',

JACM, Vol. 13, No. 3, July 1966, pp. 386-403.

Cody, W.J., "Software for the Elementary Functions', in Ma-

thematical Software, Editor J.R. Rice, Academic Press, 1971.

[45]

[46]

[47]

[48]

22

Thatcher, H.C., Jr., ""Making Special Arithmetics Available",

in Mathematical Software, Editor J.R. Rice, Academic

Press, 1971.

Miller, T.H., "Accurach Enhancement of the Fortran VV Math.
Library', Univac Product Development, Salt L.ake City,
Utah, 1970.

Bareiss, E. A., "Sylvester's ldentity and Multistep Integer-
Preserving Gausian Elimination'', Mathematics of Compu-

tation, Vol. 22, 1968, pp. 565-578.

Knuth, D.E., The Art of Computer Programming, VVol. 1,

Fundamental Algorithms, Addison-Wesley, 1968,

	PB-014_Page_01_Image_0001.tiff
	PB-014_Page_02_Image_0001.tiff
	PB-014_Page_03_Image_0001.tiff
	PB-014_Page_04_Image_0001.tiff
	PB-014_Page_05_Image_0001.tiff
	PB-014_Page_06_Image_0001.tiff
	PB-014_Page_07_Image_0001.tiff
	PB-014_Page_08_Image_0001.tiff
	PB-014_Page_09_Image_0001.tiff
	PB-014_Page_10_Image_0001.tiff
	PB-014_Page_11_Image_0001.tiff
	PB-014_Page_12_Image_0001.tiff
	PB-014_Page_13_Image_0001.tiff
	PB-014_Page_14_Image_0001.tiff
	PB-014_Page_15_Image_0001.tiff
	PB-014_Page_16_Image_0001.tiff
	PB-014_Page_17_Image_0001.tiff
	PB-014_Page_18_Image_0001.tiff
	PB-014_Page_19_Image_0001.tiff
	PB-014_Page_20_Image_0001.tiff
	PB-014_Page_21_Image_0001.tiff
	PB-014_Page_22_Image_0001.tiff
	PB-014_Page_23_Image_0001.tiff

