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(i)

Abstract

A dynamically microprogrammable processor called MATHILDA
is described, MATHILDA has been designed to be used as a tool in
emulator and processor design research. It has a very general micro-
instruction sequencing scheme, sophisticated masking and shifting
capability, high speed local storage, a 64-bit wide bus structure, a
horizontally encoded microinstruction, and other features which make
it reasonably well suited for this purpose. Also, hardware modifi-
cation is relatively easily undertaken to enhance the experimental

nature of the machine.
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Foreword

It is the purpose of this document to give an introductory (yet
reasonably detailed) description of the MATHILDA System, The bus
structure, the registers and functional units attached to it, and the
control which can be exercised on these components are discussed,
The document is not a reference manual, Rather, it is written en-
tirely from the pedagogical point of view, with the system described
in a modular fashion, Examples are introduced after each component
is added to the basic bus structure, The examples are written in an
imaginary (syntatically sugared) microassembly language. The ex-
amples are deliberately kept simple so the reader will not spend time
learning a complicated or clever algorithm but will learn the control
mechanisms of the particular components involved, Thus, many of the
examples are "contrived" and do not perform any particular '"useful!
data transformations, [t is hoped that this approach enhances the
reader's understanding and underscores the overall simplicity and

homogeneity of the structure and its components,




A Description of the MATHILDA System
by
B. D. Shriver

1.0 Introduction

MATHILDA is a dynamically microprogrammable processor
which has been designed to be used as a tool in emulation-oriented
and processor design research. For the sake of completeness we
will discuss briefly a short history of the unit and then some of the

criteria which served as a basis for its design.

1.1 Historical Notes

In the spring of 1971 the Department of Computer Science of the
University of Aarhus was considering the purchase of a standard mini-
computer to act as a controller for a variety of peripherals and to
simulate a medium speed batch terminal to the Computer Center's
large system. A group of people were, at this time, working on the
design of an integrated software and hardware description language called
BPL [1 ]. To support this group and to make the use of such a mini-
computer more flexible, it was decided to design and construct a

microprogrammable minicomputer within the department itself.

The design was started and completed during the summer of 1971.
The resulting machine, RIKKE-0 [ 2] , was constructed and began run-
ning in early 1972. In the meantime a number of projects were pro-
posed which were considered not to be compatible with that design.
Among these were various projects in numerical analysis [3, 4] in which
it was found that the word size and bus width of the RIKKE-0 (16-bit)
was too short to obtain an efficient implementation of even standard
arithmetic operations on numbers. It was then suggested that a micro-
programmed functional unit with a wider data path and special features
could be attached to RIKKE-0 as an 1/O device, or 'functional unit',
together with a wider memory, for use with these projects. A proposal
was made to the Danish Research Council to obtain a grant to design
and construct such a functional unit. A grant was made in June 1972

in which funds were awarded for hardware and a memory (32K, 64-bit

* This work is supported by the Danish Research Council, Grant 511-1546




wide, 1.4 .s access time). The manpower for the construction of
the unit was, in part, granted by the Research Council; two staff
engineers and one staff technician were provided by the Department.
The design was started in May 1972 and completed during the summer
of 1972. The construction of the resulting machine, MATHILDA, is
due to be completed in June 1973,

The motivation for building the MATHILDA instead of purchas-
ing a commercially available machine can be summarized as follows.
First, there were (to the author's knowledge) no commercially avail-
able dynamically microprogrammable processors at the time we started
our efforts which: (a) were in the price range we could afford, (b) were de-
signed for or supported user written microcode . or (c) offered a
reasonable experimental and growth oriented structure. We felt that
we had the in-house capability to design and construct the machine,
The availability of LSI circuits and convenient mounting techniques

and our experience with RIKKE-0 supported this view.

1.2 General Design Criteria and Constraints

The MATHILDA machine is intended to be a research oriented
machine. lis main design criteria then, within the money and timing
constraints on the project, was to provide a machine on which a large
variety of experiments related to processor and emulator design and
evaluation could be performed. We attempted to use the ""top-down!! de-
sigh approach which quite frequently was tempered by the "forces from
below', see Rosin [5] . We, therefore, tried to have various appli-

cation-oriented and software ideas be reflected in the design.

Two general software concepts had a reasonable impact on de-
sign. The one being the ability to multiprogram virtual machines and
the other being the concept that virtual machines would be defined
through several layers, (e.g., R. Dorin [6]). The effect of these
ideas is apparent in the design of the control unit, especially with
respect to the capabilities of addressing. Many addressing feattires

known on the virtual level are present here on the micro level,

Another criterion was to have a clean and consistent way of

dealing with timing problems. We decided not to force the speed;




rather we would have a slower machine than obtainable with the com-
ponetry at hand, and thus one, hopefully, with a reduced set of timing
idiosyncrasies. It was also decided to be able to control all elements
of the system from an immediate control or a residual control capabi-
lity, or some combination of both. The residual control was made
homogeneous to the user by having a reasonably !"standard control
register group!' whereever such control was provided.

Another designh criterion dealt with the actual construction of
the unit. It had been decided, prior to the obtaining of the grant from
the Danish Research Council, to construct additional RIKKE's by
other funding. It became apparent, during the design phase of
MATHIL DA, that the machine would be reasonably complex and that
several features of MATHIL DA included or extended similar features
on RIKKE-0. Because of the complexity of the design, the limited
funds and manpower available, and the fact that we wished to design,
construct, and test the machine within 1 year, it was decided that the
additional RIKKE!'s (nhow called RIKKE-1!s) should be modeled after
the MATHILDA System. Thus, one design criterion was to ensure a
modularity in the hardware design. This would enable an economy in
print-lay out and construction to be achieved. As an example, the
bus structure is laid out on one print board, 8-bits wide. Two of
these boards, interconnected, comprise one RIKKE-1 bus structure
with all registers, shifters, etc. Four of these RIKKE-1 boards,

interconnected, give the MATHILDA bus structure.




2.0 The MATHILDA System

MATHILDA, as has been stated earlier, is a microprogrammed

controlled bus structure. The major elements of the system are shown
in Figure 2.1 and are the: 1) bus structure, 2) control unit, and 3)
auxiliary facilities. In the following sections we will describe each

of these systems independently and give examples of their utilization.

Control Unit

Control Instruction

Store Sequencing 4

Functional unit
or Register

[ System Counters ]

Bus Shifter

‘ Status Registers J *

Functional unit
or Register

Bus Selector

{ Snooper Registers

Auxiliary Facilities
Bus Structure

MATHIL DA System
Eligure 2.1

‘2.1 The Register Group

We begin by introducing a fundamental building block which is
used in the various control mechanisms of the system, viz, a Register
Group, RG* , as shown in Figoure 2.2. ARG is a set of 16 or 256 re-
gisiters. The width of the registers and the number of registers in a
specific RG will be stated when it is introduced. The element of a par-
ticular RG, which is to be used as a source or destination for the trans-
fer of information, is pointed to by the RG address register. This
register is called the Register Group Pointer, RGP, as shown in

Figure 2. 2.

*) After a particular system element is first introduced, an abbrevia-
tion for its name is given which, for the sake of brevity, is then
used in the text; see the "Tables of First Occurrance of Abbrevia-
tions and Symbols!, beginning on page 115, for the page of first
occurrance,
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| —a= Destination
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Typical Register Group

Figure 2.2

There are four microoperations associated with an RGP. They are
marked L, +1, -1, and C in Figure 2.2 and all subsequent figures and

are explained below in Table 2.1.

Symbolic Notation Microoperation

L.} RGP := Pointer Source | Load the RGP from the Pointer Source

+1 | RGP + 1 Increment RGP by 1
-1 { RGP -1 Decrement RGP by 1
C | RGPC Clear (i.e., set to zero) RGP

Table 2.1

Microoperations for the control of an RG

The symbolic notation RGP+1, RGP-~1, etc. is the notation which is used
with our microassembler, and all of our examples will be shown using
this notation. The abbreviation 'RG' will often be replaced by the abbre-
viation of the name of the functional unit with which that particular RG
is associated. Not all of the RGP's will have the microoperation

RGP := Pointer Source

associated with them . For those RGP!s which do have this micro-




operation it will be seen that the Pointer Source data itself can usually
be selected to come from any of four different sources.

There is one additional microoperation required for the control
of an RG; namely the function labelled "LLoad" in Figure 2.2. If the
loading of an RG can be initiated by a microoperation it will be indicated

by an "L" on such a diagram.

2.2 Counter A

We will, from time to time, give small segments of microcode to
illustrate the use of a device and its control. In order to make these
examples clearer and also to give a more realistic view of how such a
code is actually written we introduce the system counter, Counter A, CA.

CA is a 16-bit wide counter as shown in Figure 2. 3.

+1 -1C

CAS
3 Pointerg

-

CA
Save Registers

o]

CM sB EX CAS L +1-1C

Sel.—a Selector CA

Counter A, CA
Figure 2.3

CA has four microoperations associated with it as shown in the box

tabelled 'CA!' in this Figure. These microoperations are given in

Table 2, 2.




Symbolic Notation Microoperation

Load CA from either CM, EX,
SB, or CAS. Note the use of

L | CA:i=CM|EX|SB| CAS "|" to mean "or! in the symbo-
lic notation for this microopera-
tion.

+1 | CA+ 1 Increment C Aby 1

-1 1 CA -1 Decrement CA by 1

C | CAC Clear (i.e., set to zero) CA

Table 2,2

Microoperations for control of CA

Both the box labelled "Selector! in Figure 2.3 and the explanation of
the microoperation "LL" in Table 2. 2 state that CA can be loaded from
one of four possible sources:

1) immediate data within the Current Microinstruction, CM,
2) a 16-bit External Register, EX (discussed in Section 2. 20. 5),
3) bits O through 15 of the Shifted Bus, SB (discussed in Section 2, 5),
and 4) from an element of a 16-bit wide, 16 element RG called the
Counter A Save Registers, CAS.
Thus the microoperation

CA = 37
loads CA with the constant 37 from a data field within the CM. While the
microoperation

CA := CAS
loads CA with the contents of the element of CAS which is pointed to by
the CAS Pointer, CASP. Notice that the CAS can be loaded with the con-
tents of CA thus allowing one to save the current value of CA., The four

microoperations associated with the CAS and CASP are in Table 2, 3.

Symbolic Notation Microoperation
L CAS := CA L.oad the element of CAS pointed to by
CASP with CA
+1 CASP + 1 Increment the CASP by 1
~1 CASP -1 Decrement the CASP by 1
C CASPC Clear (i.e., set to zero) CASP
Table 2.3

Microoperations for control of CAS and CASP




We can test to see if CA contains zero. We will demonsirate the use
of this condition and the microoperations in Tables 2.2 and 2.3 in sub-

sequent examples.

2.3 Bus Transport

Having introduced some elementary notions we will how examine
in some detail the hus structure, the registers and functional units at-
tached to it, and the control which can be exercised on these components.
We will consiruct the bus structure in a modular fashion - hopefully to
enhance the reader's understanding and to underscore the overall sim-

plicity and homogeneity of the structure and its components.

Let us introduce the concept of a bus transport by considering
a sub-system of the bus structure consisting of the Working Registers A,
WA |, Working Registers B, WB, and the Bus Shffter‘, BS, as shown
in Figure 2. 4. The exact nature of WA, WB, and BS ‘is not inportant

to us here.

» Shifted Bus
Working B Bus Shifter
Registers A S
o
° Bus
n
: )
- Working - 3
Registers B m

Sub-system of the Bus Structure

Figure 2.4

The BUS is a 64-bit wide data path. The input to the BUS (its

SOURCE) is obtained from a bus selector which has eight inputs, two




of which are shown here, i.e., WA and WB. The particular input which
is selected as the SOURCE for bus transport may be shifted a specified
amount in the BS. The output of the BS, called the Shifted Bus, $SB, can
then be stored in at least one of seven possible 64-bit destinations
(called Bus Destinations, BD, or DESTINATION). Two such BD's are
shownin Figure 2.4, i.e., WA and WB. We will in this report.specify
bus transport information as we do in our microassembler, viz,

DESTINATION = SOURCE, BS Specification.
If the BS Specification field is empty, i.e., the BS is not to be used (no
shift occurs) then the bus transport is given by

DESTINATION := SOURCE.
As an example, the bus transport WB := WA has the obvious meaning of
a register to register transfer from WA to WB. If a SOURCE is chosen
to be transported but not stored in any of the BD's, the bus transport in-
formation is written

SOURCE, BS Specification
or

SOURCE

as is appropriate. The SOURCE may be stored in destinations other
than BD's during a bus transport. We will learn what functional units
or registers can serve as these "other destinations!' as this report
develops. If the SOURCE is to be stored in more than one destina-
tion, the DESTINATION portion of the bus transport specification is
written as a list of destinations separated by commas, i.e.,

LIST (= SOURCE, BS Specification
or

LIST = SOURCE

where
LIST::=d;,. . .,d . The value of n and the units which can

serve as destinations, d; , will be discussed later.

2.4 Working Registers
WA and WB, introduced in the previous section, are not single re-

gisters but each is a 64-bit wide, 256 element RG. Figure 2. 5 shows

WA; WB, not shown, is identical.

The first thing we wish to point out in this figure is that the WA Pointer,

WAP, is a mechanism identical to CA except that it is 8-bits wide and




10

not 16-bits wide. (Note the dashed- line box in Figure 2.5.) Therefore,
WAP not only points to which element of WA can be used as a SOURCE

for bus transport (or used as a BD), but also can be stored in an RG

l—.— +1—1C_ o o o - o _I

WAPS )
I 3 Pointer o T

b

WA
Pointer
I Save
Registers

4

o

WA

Sel. .
; Pointer

_ bEiD Load
256
Shifted Bus Working Bus
SB(0:63) Registers Selector
WA
63 ¢}

Working Registers, A, WA
Figure 2.5

called the WAP Save registers, WAPS. This is identical to CA being
saved. Also, as indicated in the box labelled ""Selector" in Figure 2.5
the WAP can be loaded from any of four sources: 1) immediate data from
the CM, 2) the least significant 8-bits from EX, 3) the least significant
8-bits of the SB, and 4) an element of WAPS. This is identical to the
loading of CA. Thus the microoperations WAP := 37 and WAP := WAPS

have well defined analogous meanings.

The WA (and WB) registers are not loaded by a microoperation but rather
as a result of being chosen as a BD in a bus transport specification; thus
the loading of these registers is shown by the function "BD Load!" on Fi-
gure 2.5. This notation will be used in all subsequent drawings. There
are 8 microoperations shown in Figure 2.5 associated with the use of WA,
These are listed along with the corresponding microoperations for WB in
symbolic form in Table 2. 4. The actual microoperation descriptions can be

extracted form the previous tables and are not repeated here,



WAP := CM| EX| SB |WAPS

WBP := CM| EX| SB|WBPS

WAP + 1 WBP + 1
WAP -1 WBP -1
WAPC WBPC

WAPS = WAP

WBPS = WBP

WAPSP + 1 WBPSP + 1
WAPSP -1 WBPSP - 1
WAPSPC WBPSPC

11

Table 2. 4

Microoperations for control of WA and W3

2.4.1 Microinstruction Format and a Few Examples

In order to present a few examples we will introduce the micro-
instruction format which we use in our imaginary microassembler. The
format of a microinstruction is:

“A: bus transport; microoperations and data; microinstruction
sequencing. " s
where

a) "A" is a symbolic name for the address of the microinstruc—
tion,

b) "bus transport! is a field giving the bus transport informa-
tion as explained previously in Section 2. 3,

c) "microoperations and data'' is a field of up to 7 micro-
operations and immediate data to be executed or used during
this microinstruction (the exact combination of microin-
structions and data which can be included in this field and
precise details of the timing of microoperations are given
in Section 3, 0),

d) "microinstruction sequencing'' information will be written in
the form

if ¢ then At else Af

which is to mean: if a particular selected condition is true then
choose address At as the address of the next microinstructi on

else choose Af.
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It is not necessary or appropriate at this point to list all of the con-
ditions which are testable by the system nor how At and Af are func-

tions of the address of the current microinstruction, n. These mat-

ters will be dealt with in Section 2.20.1. However, conditions and address
functions will be introduced as needed for examples. If no condition

is to be considered, i.e., if At = Af, the sequencing information will
merely be written At (and not "if ¢ then At else At“wher‘e c is an

arbitrary condition) .

Thus, the microinstruction labelled n,

n: WA:=WB; WBP+i; n+1..
means: load the element of WA pointed to by WAP from the element of
WB which is pointed to by WBP without shifting it during the bus
transport; then increment WBP by 1; then obtain the next microin-
struction from n+1. The action associated with every microopera-
tion specified in a microinstruction is completed before the next
microinstruction is executed. For example, in the above microin-
struction if WBP had been set to 9 before the beginning of the execu-~
tion of this instruction, then WB9 would be the SOURCE for the bus
transport. At the end of execution of the instruction, the WBP would
be set to 10. If, in the next microinstruction WB were again selected
as the SOURCE, then the contents of WB10 would be gated onto the
BUS.

In order to give an example of a microinstruction using condi-
tional branching, we establish the following convention for the test-
ing of conditions which will be used in all of our examples (unless
stated explicitly otherwise): all conditions which arise as a result of
bus transport and microoperation execution specified by a particular
microinstruction, M, are testable in the next microinstruction to be
executed after M is executed. This means that all the conditions avail-
able or changed during the execution of microinstruction M are "saved!.
These ''saved!' conditions are those tested in the next instruction to
be executed. Therefore,.  our microinstruction can be thought of be-
ing executed in the following sequential way:

(a) save the conditions of the previous microinstruction
(b) execute bus transport

(c) execute microoperations
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(d) execute microinstruction sequencing based on saved
conditions. '
Let us introduce the notion that bit 63 of the WA input to the bus se-
lector is testable, that is, bit 63 of the element of WA which is pointed
to by WAP. If we wish, for example, to test bit 63 of WA7, and if it

is set to 1, jump to the microinstruction labelled BITON, else continue

with the next microinstruction, we could write,

n-1: ;WAP:=7
n s if WA(63) =1 then BITON else ntl.
n+1

We could not write

n s WAP :=7; if WA(63)=1 then BITON else nt+l.
according to our current convention. It is possible to conditionally
exectte the same instruction. l.et us give an example of this. Assume
there is at least one register in WA which contains bit 63 set to 1,
the following four microinstructions will: search WA starting with
register 0 and transfer the first register of WA encountered with bit
63 set to 1 to register 0 of WB; then, store the address of the WA
register which was transferred in register 0 of WAPS; and then con-

tinue with the next microinstruction.

. WAPC, WAPSPC, WBPC.

LOOP: : WAP +1 ; if WA(63) =1 then SAVE else LOOP.
SAVE: ; WAP — 1.
WB = WA ; WAPS = WAP. ]

We have introduced some standard defaults in this example:

a) If the bus transport field is empty it means that an unspeci-
fied source is selected for bus transport but is not stored anywhere.

b) If the microoperations field is empty it means that no mi-
crooperations are to be executed during this particular microinstruc-
tion.

c) An empty microinstruction sequencing field implies the next
microinstruction to be executed is that in n+1 if the address of the
current microinstructionis n. If the microinstruction sequencing
field is empty the specification "'; microinstruction sequencing.!" is

replaced by " . ',
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d) The instruction sequence shown is assumed to be located sequen-
tially in control store and the symbolic address name is used only when n
needed in the microinstruction sequencing field. ‘

e) The symbol B will be used to indicate the end of the group of mi-

croinstructiions in the example.

The symbolic names HERE~1, HERE, and HERE+1 are used often
in the microinstruction sequencing field to mean A-1, A, and A+1 assuming
the address of the current microinstruction is A. As an example, the
instruction labelled LOOP above could have been written

5 WAP+HT 5 if WA(63) =1 then HERE+1 else HERE. B

Through the use of CA the assumption that at least one register
of WA contains bit 63 set to 1 is not required. CA can be used to con-
trol the number of elements of WA we will search. If we establish a
routine labelled NONE which handles the situation when no element of WA
contains bit 63 set to 1, then the code to perform the same task as related
above is,

y WAPC, WAPSPC, WBPC.
3 CA = 255 ; HERE+2.
y WAP+1, CA-1 ; if CA = 0 then NONE else HERE+1 .
5 if WA(63) =1 then HERE+1 else HERE-1.

WwB:=WA ; WAPS := WAP. B

The final example in this section uses the capability of loading
CA from the SB. In the previous example CA was loaded with N=1 where
N (2=N=256) is the humber of registers of WA to be searched. Let us
suppose that this humber is in register 0 of WB and furthermore that
you wish to save it in register 0 of CAS because it may be written over
if a transfer is made to WB. A possible code segment is,

;y WARC, WAPSPC, WBPC.
wB ; CASPC, CA = SB.
; CAS := CA ; HERE+2.
; WAP+1 ; if CA = 0 then NONE else HERE+1 .
; CA-1 ; if WA(63) =1 then HERE+! else HERE-1,

WB:=WA ; WAPS := WwAP, R
If the Ay address is HERE+1 we will only write, from now on,
if ¢ then A, . Thus, the fourth instruction of the above example
would be written

y WAP+1; if CA=0 then NONE. B
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2.5 The Bus Shifter
The Bus Shifter, BS, introduced in Figure 2.4 and shown in

more detail in Figure 2.6 is a 64-bit wide right cyclic shifter which can
be set to shift n bits, 0=n:=63. There exists a dedicated bit in each
microinstruction to control the BS which indicates whether or not the
BS should be used (enabled) during the current bus transport. If the

BS is not enabled, no shift will occur.

i [
Save 1 L Save 2
Sel , Registery , Register,
o L+ -1C
5 N
EX — © pB,St =
CM L% ointer o i
BS
. Register
SB(0:5) —ad Group

CM EX BE BSSG

Sel. —l Shifter
Control
Enable
. Shifted Bus
Bus(0.63)——a~@ Bus Shifter . — " SB(0:63)

N
Right Cyclic Shift

Bus Shifier, BS

Figure 2.6

If we wish to use the BS, the amount of shift can be selected from
one of four possible sources as shown in the box labelled "Shift Con-
trol' in Figure 2.6, i.e., from 1) a data field in the CM, 2) the least
significant 6 bits of the EX register, 3) the output of the Bit Encoder,
BE (discussed in Section 2.16),and 4) an element of a 6-bit wide 16
element RG called the BSSG. The bus transport specification
WA::=WB
means: take the element of WB pointed to by the WBP and store it in
the element of WA pointed to by the WAP without shifting it. While
the bus transport specification
"WA::=WB, + 3
means: take the element of WB pointed to by the WBF, shift it 3 bits
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right cyclic and then store it in the element of WA pointed to by WAP.

A 64-bit left cyclic shifter and a 64-bit right cyclic shifter are
related by the expression
Ics = 64 - pcs
where
Ics is the amount of left cyclic shift and
rcs is the amount of right cyclic shift.
We can therefore write as a notational convenience
WB 1= WA, « 24
to mean the same thing as
WB := WA, -+ 40
thus using «+(left shift) or @#(right shift) whichever makes the understan-
ding of the processing clearer. The microassembler will make the above

computation and insert the correct amount for left shifting.

The BS specification in the bus transport field of the microinstruc-
tion is given by

{—9

.} cmlex|BE|BSSG

where the microassembler makes the above computation only if the first
alternative is selected as the source of BS control. The useof « 11 =

are dummy when used with the three other alternatives.

Having seen how the BS is controlled and how we specify this con-
trol, let us turn our attention to the BS register group Pointer, BSP.
We see in Figure 2.6 that the data which can be loaded into the BSP can
also be loaded into an additional register called the BS Savel register,
BSS1. If, for example, we know in advance the address of a particular
register fo the BSSG, which we will want to use as shift data (e.g., some
highly used shift constant), we can store this pointer in BSS1 by loading
BSS1 from the CM,

BSS1 (= CM.
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Whenever we wish to use this stored pointer we can load it into the
BSP by executing !

BSP:=BSSI1.
Now notice in Figure 2.6 that the BSP not only points to the element
of the BSRG which can be chosen as data for the shift control unit,
but also can be stored in a register called the BS Save 2 register,
BSS2., Suppose we are pointing to a particular element of the BS3SG
for the current shift control data and in the next microinstruction we
wish to have register 9 of the BSSG to be used as shift data, but
we do not wish to loose the pointer to our current control data., The
following microinstruction achieves this,

; BSS2:=BSP, BSP:=9. B
Thus at some later time if we execute

BSP:=BSS2
the pointer information which had been saved in BSS2 would be
restored,

A 16 element RG with the two Save registers and Pointer as
shown in Figure 2.7 is a fundamental control element in the system
and will be used with many devices in the subsequent sections. It will
be referred to as a Standard Group (SG) and will be noted on drawings
as such, i.e., it will not be explicitly be drawn out each time as it
was in Figure 2.6. Each SG will, however, be given a name closely
associated with the particular functional unit to which it is connected
as, for example, in the current discussion the SG associated with

the BS is called the BSSG.

[ 1 L
Save 1 Save 2
, Register ; Register

L+ -1C

EX
CM

Selector

Pointer
0

Source. 16 Selector

Registers

o

* The width of the registers
depends on the particular selector involved.

Typical Standard Group
Figure 2.7
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Table 2.5, below, lists the seven microoperations associated with
the BS in their symbolic form; their meanings should be obvious
from previous tables and the text. Note that the BSSG is loaded
with the least significant 6 bits of the SB i.e., SB(0:5).

BSP:=CM|EX |BSS1 [BSS2

BSP+1

BSP-1

BsSPC

BSSI:=CM!EX’BSSI IBssz

BSS2:=BSP
BSSG:=SB
Table 2.5

Microoperations for control of the BS

Example:
Let us assume the following information to be in the regis-

ter of WB to which we are currently pointing:

WA wB L shft

o0& O
63 22 | o1 Adr w | 1s Adr s | s Data o

We wish to take a given WB register (WB Adr ), shift it a given
amount (_shft Data), and store it in a given WA register (WA Adr:).
The following code will: load the BSSG with the Lshft Data, Save
the current WBP, load WBP with the WB Adr ., load WAP with the
WA Adr , transfer the WB register pointed to by WB Adr. to the
register pointed to by WA Adr shifting it left cyclic by the amount

Lshft Data during transport, restore the old WBP, and then continue.

WB, +14 y WAP:=SB.
wB y BSSG:i=SB, WBPS:=wWwBP.
WB, +6 y WBP:=SB.

WA =WB, +BSSG ; WBP:=WBPS.




2.6 Bus Masks
Let us now expand the initial bus structure given in Figure
2.4 by adding the Bus Masks (BM) as shown in Figure 2.8,

Shifted Bus

Bus Masks —a

Bus Shifter

Working Bus

Registers A

Bus Selector

Working
Registers B

Expanded Bus Structure

Fligure 2.8

The BM allow one to specify which bits of the SOURCE (i. e. , the
particular input to the bus selector which has been selected for bus
transport) are actually to be transported. A mask is a string of
64-bits. If bit i (0=i=63) of a mask is a 1, then bit | of the SOURCE
is to be transmitted; if bit i of the mask is a 0, then the value 0 is
to be transmitted. Since the BM are not an input to the bus selec—~
tor but affect the transmission of the SOURCE, they are shown
connected to the bus selector with the symbol —o (which we will
interpret to mean ""mask!") and not by the symbol —-= (which means

"input"),

The SOURCE is masked during every bus transport by the
mask which is specified to be
MA v MB
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where,

MA = an element of a 64-bit wide, 16 element RG called
the Mask A registers,

MB = an element of a 64-bit wide, 16 element RG called
the Mask B registers,

\V = logical "inclusive or",

MA and MB are shown in Figure 2.9. Upon dead start, the system is

Sel.
CM 5 L+ -1C
EX g
SB—s ° pMAt
SG—T 0] - | _Pointer JBD Load
Mask Registers MA
MA
3 o
L+t -1 C
i {44
MB MA V MB [——0Bus Selector
3 Pointer . BD Load
SB(0:63)~ Mask Registers MB
MB
Q

Bus Masks, MA and MB
Figure 2.9

such that the '""no mask", i.e., 64 I's, is in register 0 of MA and
the "bus clear mask'', i.e.,64 O's, is in register 1 of MA. We will
assume this to be the case throughout normal operation of the system.
One can then look upon the pointer MAP as a switch for the use of
the bus masks: if MAP = 0 then the BUS is not masked, if MAP = 1
then the BUS is masked by the mask specified by MB. This is, of
course, nhot the only interpretation of the use of the BM but it is a
convenient one and one which we will normally employ unless other-
wise stated.

As an example, assume we are representing floating point

numbers in the following sign magnitude format,
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ca| gz €XPONENt 4gl 4,1 4 COefficient g

L L sign of coefficient

sign of exponent
Suppose the following 4 masks are available in the first 4 regis-
ters of MB.

MBO 110 & 30
MB1 0 l¢—1 0 |¢ —>0
MB2 Ol¢—201| 1 | 0& >0
MB3 Ol | O | 1€ >

63l a2 48l 4746 0

The following code will decompose a floating point number found in
the register of WA pointed to by WAP and store the information as
follows,

a) sign of the exponent in bit 63 of WBO0

b) magnitude of the exponent shifted 1 in WBI

c) sign of coefficient in bit 63 of WB2

d) magnitude of the coefficient shifted 16 in WB3.

;y MAPC.

; MAP+1, MBPC, WBPC.
WB:=WA ; MBP+1, WBP+1.
WB:=WA, « 1 ; MBP+H1, WBPH+1.
WB:=WA, « 15 ; MBP+1, WBP+1.
WB:=WA, « 16 5 -]

It is suggested by this example that when one is decomposirg formatted
information (e.g., 2 virtual machine instruction) one may wish to co-
ordinate the use of the BS with the use of the BM. L.et us therefore
suppose the shift constants 0/, 63, 49, and 48 to be stored in the first
4 registers of the BSSG. The above decomposition and storage could
be written as the following 3 microoperations

; CA:=3, MAPC.

; BSPC, WBPC, MBPC, MAP+1.
WB:=WA, +BSSG; BSP+1, WBP+l, MBP+1,CA-1; if CA #0 then HERE.

|
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The MA Pointer (MAP) and the MB Pointer (MBP) both of which were
used in the above examples are loadable either separately or together;

thus we can execute the microoperations

MAP := CM| EX|SB|SG,
MBP := CM| EX|SB|SG, or
MAP, MBP := CM| EX|3SB|SG.

The name of the SG associated with the BM is the Bus Mask Pointer
(BMP) Standard Group. The following table lists the microoperations
associated with MA, MB, and BMP.

MAP+1 MBP+1
MAP-1 MBP-1
MAPC MBPC

MAP:=CM|EX|SB|SG | MBP:=CM|EX|SB|SG

MAP, MBP:=CM| EX|SB|Sc

BMP:=SB
BMPP:=CM| EX |BMPS1 | BMPS2
BMPP+1

BMPP-1

BMPPC

BMPS1 :=CM|EX| BMPSI | BMPS2
BMPS2:=BMPP

Table 2.6

Microoperations for control of the BM




23

2,7 Postshift Masks

The Bus Masks, as described in the previous section, are
applied to the SOURCE as it is gated onto the BUS and thus before
the SOURCE is shifted in the BS. There is also a possibility of masking
the SOURCE after it has been shifted by using the Postshift Masks
(PM) as shown in Figure 2.10.

Shifted Bus
- Bus Masks 0O - Postshift Masks ———‘\
.
e
3!
- ¢ Bus Shifter
Working .
"] Registers A 0
2 Bus
[14]
Working
Registers B

Expandgd Bus Siructure

Figure 2.10

One of the purposes of the PM is to apply a mask to the output of the
BS which will mask off the unwanted "cyclic!! bits and replace them with
O's thereby simulating a logical shift. As an example, if the bus trans-~
port

WB:=WA, « 2

is executed with the postshift mask

1 ————3»100
a3 210

applied to the output of the BS, then we have taken a WA register, shifted
it 2 bits left logical, and stored it in a WB register. Similarly, the bus .

transport



WB:=WA, + 6

with the mask

000900

a3 58 57 i)

0l -1
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applied to the output of the BS means a WA register is shifted 6 bits

right logical and then stored in a WB register. The output of the BS

is masked during every bus transport by the mask which is specified

the Postshift Mask A registers,

to be
PA V PG
where,
PA =
PG =
V = logical "incl

usive or't,

an element of a 64~bit wide, 16 element RG called

a functional unit called the Postshift mask Generator,

FA and PG are shown in Figure 2.11. This is quite similar to the BM

where PG now takes the place of MB.

CM

| ——© Bus Shifter

Sel
+1 -
oM ] 5 L+l -1C
EX - © RER!
SB — < PA
T s Pointer 4 lI
Postshift BA
" Bus(0:63) ~——et Mask Registers
PA
83 (o]
PAV pG
Li+; —*1 C CM EX BE SG
PG Sel. PG Control . PG
,Register o Source Selector Postshift Mask Generator, PG

Postshift Masks, PA and PG
Figure 2.11
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The PG is a functional unit which can generate a string of j
0's (0 =< j < 64) starting from either the least significant bit (by ) po-
sition or the most significant bit (bgz ) position. The remaining k
bits, j*+k = 64, are set to 1. The PG can generate the 128 masks re-
quired to view the BS as both a logical and cyclic shifter. As is seen
from Figure. 2.11 the postshift mask generation data can come from
one of four sources, CM|EX|BE|SG. Which particular source is to be
be used as data for the mask fgeneration is determined by the contents
of a 2-bit Postshift mask Generator Selection register (PGS) as shown

in this figure and in Table 2.7 below.

Contents of PGS | Source of DATA

00 CM
01 EX
10 BE
11 SG

Table 2.7

Source of Data for Postshift Mask Generation

If, in some previous microinstruction, the PGS has been set to point to
the CM as the data source, then the PG data are specified in the "mi-
crooperations and data'' field of the microinstruction in the following sym-
bolic way,

PG "arrow!! n
where,

n = the number of O's to be generated and the "arrow! (¢ | =)
indicates from which direction they should be generated; 0s<n<64.

Thus, the previous two examples could have been written (assuming PGS
points to the CM as the data source)
WB:=WA, « 2; PG-2
and WB:=WA, -+ 6; PG=6

v
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Upon dead start, the system is such that the mask of all 1's is in re-
gister 0 of PA, and the mask of all O's is in register 1 of PA. This is
identical to the situation in MA. We will assume this to be the case
throughout normal operation of the system. One can then look upon the
pointer PAP as a switch for the use of the Postshift mask Generator:
if PAP = 0 then the mask generator is not used, if PAP =1 then the post-
shift mask iwhich is to be applied will be that generated by the mask
generator. This is, of course, not the only interpretation of the use of
the postshift masks, but it is a convenient one and one which we shall
normally employ unless otherwise stated.

Table 2.8 is a list of the microop erations associated with the PM.
The first half of this table deals with PA. The second half of this table
deals with the PG. The name of the SG associated with the PG control
is the Postshift mask Generator SG (PGSG). Note, the name of the SG
associated with the PA pointer is the Postshift AB Pointer (PABP). It

is not discussed here but in Section 2.25,

Operations associated with PA

PA := BUS

PAP := CM|EX|SB|SG
PAP +1

PAP -1

PAPC

Operations associated with PG and PGSG

PGS = CM
PGS +1

PGS -1

PGSG := SB

PGP := CM| EX|PGSI |PGS2
PGP +1

PGP -1

PGPC

PGS = CM|EX| PGS | PGS2
PGS2 := PGP

Table 2.8

Microoperations for the control of the PM
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Let us extend the example of Section 2.6 in which we emulated a virtual
machine instruction which performed a register to register transfer
combined with left/right cyclic shifting. As shown below, if we use the
PG we can execute an instruction which will take a given WB register
(WB Adr), shift it left/right logical or cyclic (Shift & Mask Data), and
then store it in a WA register (WA Adr). If the data for the instruction
is ‘in the current WB register pointed at by WBP in the form

O = ) \%,”A WB Mask Shift

Adr Adr Data Data
21120 iatie 8 5 [e]

63 29 pg

a possible code sequence would be,

wB, -+ 21 y WAP:=SB.

WB ; BSSG:=SB, WBPS:=WBP.

wB, » 6 y PGSGi=SBy

wB, + 13 ; WBP:=SB, PAP+!, PGS:='gG!.
WA:=WB, + RG ; WBP:=WBPS, PAPC. »

Note well, there are two important assumptions in this example. The
first is that MAP = 0 upon entry to this code, i.e., a bus mask is not
applied to the source, and the second is that PAP = 0 upon entry to

this code, i.e., no postshift masking occurs. Indeed, we will make
these assumptions in all examples which follow (unless stated explicitly
otherwise). They can be summarized as follows: bus transport normal-
ly occurs in an unmasked fashion; if a particular code segment requires
the use of a masking facility it is responsible for leaving the system in

this normal state after such masking occurs.
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2.8 The Arithmetical and L.ogical Unit

We will now add additional computational capability to the bus
structure in addition to the shifting and masking already encountered
by introducing the Arithmetical and L.ogical unit (AL). The AL, shown
in Figure 2.12, is a functional unit with 2 inputs which, for the moment

we will call A and B.

A
laa o
SET SET
CM EX SB SG L1 A‘l‘*B B
Function and
Sel. —mi . Selector ‘75 carry-in o - AL 0——-— Bus Selector
B
63 0

Arithmetical Logical Unit, AL
Figure 2.12

6 bits are required to control the AL.: 5 bits to select one of the 32
operations listed in Table 2.9 which this unit can execute on A and B
and 1 bit which specifies the carry-in bit into the AL for any arithmetic

operations.



ARITHMETIC LOGICAL
A A

AV B ANB
AV B ANB
minus 1% all O's
A+ (AAB) AVB
(AVB)+(AAB) B
A-B-1 A=EB
(AAB)-1 ANB
A+ (AAB) AV B
A+B AEB
AVB + (AAB) B
(AAB)-1 ANB
A+ A all 1's
(AVB) + A AVE
(AVB) +A AV B
A-1 A

.29

* in 2's complement; the arithmetic operations
are shown with the carry-in set to 0. If the
carry-in is 1, then the AL Function is F+1 where
F is the specified arithmetic function. The logi-~
cal functions are not affected by the carry-in.

Table 2.9
AL Functions
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The 6 control bits which specify the current operation for the AL are
the contents of the AL Function and Carry-in r*egister*_(ALF) which

can be loaded, ALF := CM|EX|SB|SG, set to the arithmetic addition
operation A+B and set to the logical function B. The SG associated with
the ALF is called the AL. Standard Group (ALSG). The microoperations

associated with the AL are given in Table 2.10.

ALF :=CM EX SB SG

SET ALF +

| SET ALF B

ALSG = SB

ALP := CM|EX|ALSI |ALS2
ALP +1

ALP -1

ALPC

ALST := CM|EX|ALS1 | ALS2
ALS2 := ALP

Table 2.10

Microoperations for control of the AL

ITf the ALF is to be loaded with an operation specification from the CM,
we will note this symbolically merely by writing the required function
in the symbolic form which appears in Table 2.9 in the ALF assignment

statement, i.e.,

ALF = A+B,
ALF (= AAB
etc.

The AL is always running. If the ALF is changed in 1 microinstruction,
then the result of the newly computed function is available for bus trans—
port in the very next microoperation. Thus the microinstructions

y ALF = all1's, PAP +1, PGS := ICM!.
WA = AL ; PG~ 48, PAP -1. B
will put a string of 16 1's in the WA register pointed to by WAP. The

1's will be least significant bit, by, justified.
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There are many testable conditions concerning the operation of

the AL.. A few of these are

Symbolic Notation

AL
AL.(0)
AL (63)
ALOV

Condition

result of AL operation all O's

bit 0 of the result of the AL operation
bit 63 of the result of the AL operation
AL overflow (equivalent to a carry-out
during addition and a berrow-in during
subtraction)

Before giving examples of the control of the AL let us first discuss

the nature of its inputs, A and B.

2.9 The Local Registers

The Local Registers, LR, serve as the A input to the AL in the
context of the AL Functions shown in Table 2.9. The LR, shown in

Figure 2.13, are 4 64-bit wide registers which have independent input

and output pointers. The input pointer, LRIP, points to a R which

can be used as a BD for the current bus transport. The output pointer,
LLROP, points to a LR which can be used as either the A input to the
AL or as the SOURCE for the current bus transport.

L +1-1C L +1-1C
DS(Viv+1T) ln.put Output
Pointer o , Pointer o
BD lL.oad
LRO
) LRI
SB(0:63) ___ . Bus Selector
> LR2
l—a= A Input of AL
LLR3

lez

Local Registers, LR

Figure 2.13
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Both the LR input pointer, L-RIP, and the LR output pointer,
LROP, are incrementable, decrementable, clearable, and loadable
with two bits from the Double Shifter, DS(V:V+1), see Section 2.12.
The utility of this last feature will be demonstrated with examples
when the Double Shifter is introduced. Table 2.11 gives the micro-

operations associated with the control of the LR.

LRIPC

LRIP + 1

LRIP - 1

LRIP := DS(V:Vv+1)
LROPC

LROP + 1
LROP - 1
LROP := DS(V:V+1)
LRPC

LRP + 1

LRP -1

LRP = DS(V:V+1)

Table 2,11

Microoperations for control of the LLR

The last four microoperations allow for the clearing, incrementing,

decrementing, and loading of both the IP and the OP simultaneously.

2.10 The Accumulator Shifter
The Accumulator Shifter, AS, serves as the B input to the AL

in the context of the AL functions shown in Table 2.9, The AS. can
serve as a bus DESTINATIONF but to be r'ead, its contents must be

gated through the AL with the ALF set to AS. The AS, shown in Figure
2.14, is a 1-bit shifter which can shift left, shift right, be loaded, or

remain idle during the execution of any given microinstruction.




CM sB EX SG

Shifter Control

Sel. Selector

LC i_oad/Shift c
AS(63)S AS(63) Accumulator AS(0)
2 Registery Selector 63 Shifter Selector
L+1 -1C 01234567 j 01224587
As(V)S by ~bg 5
s Registery, Selector AS(V)
Source AS(63) AS(0)
no. Input Input
o] 0 o
1 1 1
2 AS{0} AS(63)
3 AS(63) B8US(63)
4 CR S8(63)
5 DS(V+1) | DS(V+1)
6 AS(V) AS(V)
7 VS(V) VS(V)

Accumulator Shifter, AS

Fligure 2.14

There are 2 interesting features of this shifter: a) its variable width
characteristic and b) its connection to other elements of the system.
The features are discussed in the following:

a) Although the shifter is 64-bits wide it may, in conjunction
with either the BM or PM, be viewed as being m-bits wide (1=m = 64).
This is accomplished by having each of the 64 bits of the AS input to
a selector (labeled the by ~b,, selector in Figure 2.14). The output
of this selector (called the variable bit, V) can then be a possible in-
put into either the left or right end of the shifter, depending upon
what particular type of shift one requires. When the AS is selecied
as a source for bus transport by gating it through the AL, after the
desired shift has occurred, the bits not considered to be a part of
the shifter must be masked off. This can be done either by using the
BM or the PM. The width -of the shifter is then determined by the con-
tents of the AS(V) Selection register, AS(V)S, as shown in the above

figure and the use of an appropriate mask.

33
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The AS(V)S can be loaded by the following microoperation
AS(V)S := CM [EX|SB|SG.

Thus, for example, if we wish to consider the AS as a 48 bit left

cyclic shifter, we would execute the microoperation
AS(V)S := 47

while making sure that AS(V) be used as the input to bit AS(0)
during the shift operation. Subsequent use of the AS as a source

could be accompanied by use of the PG masking off bits b_,-b,g, €. g.

y SET ALF AS.
WA := AL; PG16 | B

b) In Figure 2. 14 it is seen that bits AS(0) and AS(63) can
be filled by 1 of a variety of sources during a shift operation.
Which source is to be used to fill the vacated bit position is deter-
mined by the contents of the AS(0) and AS(63)Source selection re-
gisters, AS(0)S and AS(63)S respectively. An examination of the
table in Figure 2. 14 shows that the AS can be considered a logical
shifter, a 1!'s fill shifter, a cyclic shifter, and a right arithmetic
shifter. It can also be connected to another 1 bit shifter, called
the variable width shifter, VS, to yield a long variable width shift-
er. It can be connected to a 2 -bit shifter called the Double
Shifter, DS, so it can be used in the merging of 2 bit streams into
1 or the diverging of 1 bit stream into 2. It can also be connected
to the BUS, SB, and an entry in a condition register, CR. These
latter inputs are of an experimental nature and uses will be demon-

strated in later examples.

Thus to use the AS,one must load the AS(V)S to set the width
of the shifter and must load either the AS(0)S or AS(63)S to point
to the source to be used as the input into the vacated bit position,
i.e., one must set what the type of shift is, e.g,, logical, 1!s fill,
long, etc. That both of these operations need not be done each

time the shifter is used, but only when one is '"changing'' the width
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or type of shifter is obvious. Table 2.12 lists the microoperations
associated with the control of theA S. Note the AS can be set to a

logical left, ASLL, or logical right, ASLR, shift.

AS(0)S = CM|EX|SB|SG
AS(63)S:= CM|EX|SB|SG
AS(V)S (=CM|EX|SB|SG
ASLL (= AS(0)SC)
ASLR (= AS(63)sC)
AsS(V)sC
AS(V)S+1
AS(V)S-1

Table 2.12

Microoperations for control of the AS

Ther*e are 2 bits in each microinstruction which control the
operation of the AS: shift left, AS+, shift right, AS =, load, i.e.,
AS: = SB(0:63), or be idle. When the AS is to be shifted, the opera-
tion is put in the '""microoperation and data' field of the microinstruc-
tion; when the AS is to be loaded, the operation is specified in the
"bus transport! field of the microinstruction. As an example, the

microinstruction
WA = AL, AS«.

stores the output of the AL in a WA register and then shifts the AS
left, while the microinstruction

LR, AS:=WB; WBP + 1.

H
stores a WB in both the AS and a LR and then increments the WB
pointer. If the AS is not employed during a given microinstruction,

it does not appear in the specification of that microinstruction.
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Having introduced the AL and its inputs, LR and AS, we now have

knowledge of the expanded bus structure as shown in Figure 2.15.

Bus Masks
Working ]
Registeps A Postshift Masks
‘- -
Working 2 Bus Shifter
Registers B 3
)
)}
0
>
m

Local Registers

Arithmetic
L_ogical Unit

Accumulator
Shifter

Expanded Bus Structure

Figure 2.15

Let us now give a few examples using these resources to demon-~

strate the use of their associated microoperations.

Example 1) Let us consider WA as a stack as shown below.,

WA

stack pointer — op
(WAP)

83 Q
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We wish to take two operands, a and b, and an arithmetical or logical
operator, op, from the stack and place a op b on the new top of stack.

The following microinstruction sequence does this.

WA ; ALF =SB, WAP +1, LRPC.
LR = WA ; WAP +1.

AS 1= WA .

WA = AL . B

Example 2) Let us again consider WA as a stack.

WA

stack pointer -——= shiftspec
(WAP)

a

83 [¢]

We wish to treat the AS as a left shifter whose characteristics are given
by shiftspec. We wish to shift a n-times and return the result to the new
top of stack after removing shiftspec and a. L et us assume shiftspec to

have the following format:

0 =0 n | pgmsk | width type
63 21le0 15l14 ols 3le 0
where type = encoding found in the table of Figure 2.14 for

logical, cyclic, etc. shift,
width of shifter -1, 1 = width of shifter = 64

i}

width

pgmsk = PG mask specification,

n = humber of shifts -1, 1 = number of shifts = 64

The following microinstructions execute the desired operation.
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WA ; AS(0)s := SB.

WA, + 3 ; AS(V)S = SB.

WA, =+ 9 ; PGSG := SB.

WA, + 15 ; CA =SB, WAP +1.

AS 1= WA . PGS := SG, PAP +1, SET ALF AS.

: CA -1, AS «; if CA # 0 then HERE.
WA 1= AL : PAP -1. B

2.11 The Variable Width Shifter
The Variable Width Shifter, VS, is a shifter functionally identical

to the AS. The reason one is called the Accumulator Shifter is that not

only does it serve as an input to the AL, but also it will serve as the ac-
cumulator required in the realization of the basic arithmetic operations
(e.g. multiplication). The VS can be a SOURCE or DESTINATION for

a bus transport. It is shown in Figure 2.16.

CM SB EX SG

Sel. Shifter Control
Selector

oad/Shift LC

VS(63)S vS(63) Variable Width
Regxster‘o Selector Shifter o

HHHHT
L+ -1 C 012345 87

sRegister Selector

VvS(0)
Selector

012325867

VvS(V)

Source VS(63) VvS(0)
no. Input Input
0 0 [}
1 1 1
2 Vvs(0) VS(63)
3 VS(63) BUS(62)
4 CR sB(62)
5 DS(V) Ds(V)
6 Vs(V) vS(V)
7 AS(V) AS(V)

Variable Width Shifter, VS

Figure 2.16
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The microoperations associated with the VS are identical to those as-

sociated with the AS and are listed below in Table 2.13.

VS(0)S 1= CM|EX|SB|SG

VS(63)S := CM|EX|SB|SG

VS(V)S := CM| EX|SB|SG

VSLL (= vs(o)sc)

VSLR { =2 vS(63)SC)

VS(\V)SC

VS(V)S +1

VS(V)S -1

Table 2.13

Microoperations for control of the VS

One of the important features of the AS and VS, as seen from the
tables in Figures 2.14 and 2.16, is that they can be connected together.
This allows, for example, the AS and VS to be viewed as a ""long" shif-

ter when coupled together. The microinstiructions,

5 AS(63)S := VS(V), VS(63)S 1= AS(V).
3 AS{V)SC, VvS(Vv)sC.

connhect the AS and VS together so that they can be viewed as a right

cyclic 128-pbit shifter as shown below.

i————) AS L VS
[5%] 0 . L83 el

Just as with the AS, there are 2 bits in each microinstruction which control
the operation of the VS: shift left, VS «, shift right, VS 2+, load, i.e.,
VS = SB(0:63), or remain idle,
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Assuming the previous AS/VS connection has been made, subsequent

execution of the microoperations

AS »+, VS
shifts this 128-bit shifter 1 bit right cyclic. Other '"long shifters', e.g.
left logical, right logical, right arithmetic, etc., result from appro-

priate set up sequences.

2.12 Double Shifter

The Double Shifter, DS, is a shifter with functional characteristics
similar to those of the AS and VS, except that it shifts 2 bits at a time
and not 1. Bits DS(0) and DS(1) require input during a left shift and DS(62)
and DS(63) require input during a right shift. The DS is shown in Figure
2.17. The DS can be a SOURCE for or a DESTINATION of a bus trans-

port.

CM SB EX SG

Sel . Shifter Control
Selector
f Load/Shift
DS(62:63) DS(62:63) . Ds(0:1) DS(0:1)S
» Registerg Selector 63 Double Shifter o ?ﬁlﬁ:ﬁr‘! »Register o
L+1-1C 0123 4587 \—‘ 01234567
DS(V)S by ~bg 5 .
5Reg(is)tero Selector DS(Viv4l)
inputs ) Inputs
Source DS(63) DS(62) DS(1) DS(0)
Q 0 0 0 0
1 1 1 1 1
2 Ds(1) DS(0) DS(63) Ds(62)
3 DS(63) DS(63) BUS(63) BUS(62)
4 CR CR SB(63) sB(62)
5 DS(V+1) DS(V) DS(V+1) DS(V)
6 AS(V) VS(V) AS(V) VvS(V)
7 BUS(1) BUS(0) spare spare

Double Shifter, DS

Figure 2.17
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The microoperations which are associated with the DS are directly

comparable to those for the AS or VS and are shown in Table 2.14.

DS(0:1)S := CM|EX| SB|SG

DS(62:63)S := CM|EX| SB|SG

DS(V)S := CM|EX| SB| SG|

DsLL { = DS(0:1)SC)

DsSLR (= D3(62:63)SC)

D5(V)sC

DS{VIS +1

DS(V)S -1

Table 2.14

Microoperations for control of the DS

There are 2 bits in each microinstruction which control the operation of
the DS: shift left, DS «, shift right, DS -+, load, i.e., DS = SB(0:63),

or remain idle,

2.12.1 Two examples using the shifters

The AS, VS, and DS are collectively referred to as the "Shifters"
whereas the Bus Shifters are not included in this term. The expanded bus

structure is shown in Figure 2.18,
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Shifted Bus

Bus Masks —C

Working
Registers A

Working

Registers 8 Postshift Masks —————\o

¢ Bus Shifter
Local Registers g

o
L Bus
o
0

Arithmetic @

Logical Unit i}

Accumulator
Shifter

Variable
Shifter

Double
Shifter

Expanded Bus Structure

Figure 2.18

Example 1)

Suppose we wish to count the number of bits which are set to 1
in the WA register pointed to by WAP and leave this number in the same

cell. The following algorithm will do this

a) LLoad the LR with the following constants
LRO:=0
LR =1
LR2 =1
LR3:=2
b) Clear the AS (considered here as an accumulator)
c) Set the AL to addition
d) Transfer the data to the DS
e) Do the following 32 times and then do (f)

i) if DS(0:1) = 00 then accumulate LRO + AS
if DS(0:1) = 01 then accumulate LR + AS
if DS(0:1) = 10 then accumulate LR2 + AS
if DS(0:1) =211 then accumulate LR3 + AS

i1) shift DS -

}

i

f) Store the accumulated result which is in AS



The following microinstruction sequence accomplishes this. It is assumed
the PG data source is the CM.
Ds = WA y ALF
AS, LR = AL, ALF :

It

all 0's, LRPC.
all 1's, LRP +1, PAP +1.

LR := AL ; PG 2?63, LRIP +1, Ds(V)SC, PAP -1.

LR = LR y ALF (= LR + AS, LRIP +1,

LR :=LR, «1; CA:= 31, LROP :=DS.

AS = AL ; CA -1, DS~ 1, LROP :=DS; if CA # 0 then
HERE, .

WA = AL . B

The subset of the bus which is used during the counting loop instruction
(AS := AL) is shown in Figure 2.19. This may help in understanding the

algorithm and code.

DS(0:1)

Local Registers

Arithmetic

%
Logical Unit ]
5}
°
[
Accumulator &2
Shifter 3
m
Double
Shifter

Counting L oop for Counting Number of Bits set to 1 in a Word

Figure 2,19

Example 2)
Consider the contents of the current WA register as a string of

64 bits. It is desired to pack all of the even numbered bits (b, by, etc.)
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in the left 32 bits of the current WB register and then odd numbered bits
(b, , bs, etc.) in the right 32 bits of this register so that the result ap-

pears as

Because the DS, AS, and VS can be connected as shown below,

DS(V+1
DS (V1) AS

DS(V) VS

one can accomplish the stated requirement in the following way:

; ALF :=all 0's, LRPC.,

AS, VS i= AL ; AS(63) := DS(V+1), VS(63) := Ds(Vv), DS(Vv)sc.
DS := WA y CA = 31,

3 CA-1, AS 4, VS 3, DS +; if CAL0 then HERE.
LR :=VS, » 32 ; ALF := LR V AS.
WB = AL . B
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2.13 The Common Shifter Standard Group

The Shifter Control Selector shown in Figures 2.14, 2.16, and
2.17 is the same selector, This is, perhaps, made a bit clearer inFi-

gure 2. 20,

CM SB EX SG

Shifter Control
ot
Sel. ___Selector ‘

L C Load/Shift L{ (i:
| aseas | AS(63) | Accumu lator AS(0) AS(0)S
L, Register g} Selector " Shifter o Selector Register
L+l ~1C
AS(VIE LT b ~baa .
h—mre Reglsler__] |__Setector AS(V]
_.7[ i ?oad/Shiﬂ l_ c
“vsteas |l vsiea Variable Width ,( vS(0) vs(o)s ol
. Register -| Wl Se!ecxorr aa Shifter Selector Registery
\\.\ //
Lo+ .
- . /
LLi_Ll \] i
vSsiv)s 2 —Os 3
{F{Pglslel J Setlector vsiv
Load/Shift
i
(62 63)S DS(62:63% Double DS(0:1) Ds(o 1 )c
Reg.s\er Selector e Shifter Selector Register 01
\
\\
Lid \
b 0s(V)S v e, et o e 45 e be =g 5 DS(WViv+t)
wRegisterq Selector

AS, VS, and DS Control

Figure 2,20

The SG which is associated with this selecior is called the (Zommon
Shifter SG. Various shifter control data can be stored in this 8G for
various shifter interconnections and then used in environment prologues

The microoperations associated with the CS SG are shown in Table 2.15.
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2.13 The Common Shifter Standard Group

The Shifter Control Selector shown in Figures 2.14, 2.16, and

2.17 is the same selector. This is, perhaps, made a bit clearer iInFi-
gure 2.20.

CM SB EX SG

Shifter Control

Sel Selector
l_oad/Shlft T (i
AS(63)S AS(63) Accumu tator AS(0) AS(0)S
Register o Selector Shifter Selector Register ¢
L+ -1C
AS(V)S by —bss
Register, Selector AS(V}
L Load/Shift
£t
< VS(63)S VS(63) Variable Width VvS(0) vs 0)s L
gRegistery Selector as Shifter Q Selector Registery
L+ -1C \
VS(V)S | bo-bss vsv)
s Registery Selector
Load/Shift LcC
i {

DS 62 63)S S(62:63 Double DS(0:1) DsS(0:1)S
Registerg Selector Shifter o Selector o Register o
L+ =-1C
Ds(Vis bo ~bg 5

s Register

DS(V:V+1)
Selector

AS, VS, and DS Control

Figure 2. 20

The SG which is associated with this selector is called the Common
Shifter SG., VVarious shifter conirol data can be stored in this SG for
various shifter interconnections and then used in environment prologues.

The microoperations associated with the CS SG are shown in Table 2.15,
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CSP := CM|EX|S1|S2
CSP +1

CSP -1

CsPC

CSSl := CM|EX|S1]|S2
CsSS2 := CSP

CSSG := SB

Table 2.15

Microoperations for control of the CS SG

In addition there are several microoperations which allow control of the
AS, VS, and DS to be executed in parallel. These are shown in Table
2.16.

Notation Microoperation
cCsLL Set AS, VS, DS to logical left shift
CSLR Set AS, VS, DS to logical right shift

CS(0)S:=CM| EX|SB|SG |[Load AS(0), VS(0), and DS(0:1) Source
register from CM|EX|SB|SG

CS(63)s:=CM| EX|SB|SG [Load AS(63), VS(63), and DS(62:63)
Source register from CM|EX|SB|SG

CS(V)S:=CM|EX|SB|SG |[Load AS(V), VS(V), and DS(V) Selection
register from CM|EX|SB|SG

cs(v)sc Clear AS(V), VS(V), and DS(V) Selector
register

Table 2.16

Parallel CS Microoperations

2.14 Loading Masks

Associated with WA there is a SG of loading masks called LLoading
Masks A, LA. Associated with WB there is a SG of loading masks called
Loading Masks B, LB. In what follows we will describe only LA; LB is.
identical in function. The purpose of the loading masks, LA and LB, is
to be able to specify which bit positions in a working register WA can be
loaded as the result of WA being chosen as the DESTINATION of a bus
transport while leaving the nonspecified bits unchanged. As an example,

if the loading mask



47

00...... 00 111111
6°5 0

83

were pointed at by the LA pointer, LAP, then, when the bus transport
WA = AL

is executed, bits SB(0:5) would be gated into the WA register pointed
to by WAP in bit positions by through bs respectively while bits bg
through bg; would not change their value. When WA is selected as a
SOURCE for bus transport the mask LA acts in the following fashion:
if bit i (0= i< 63) of the mask is a1, then bit i of WA is transmitted.

If bit i of the mask is a 0, then bit i which is transmitted is indeterminate,

The relationship between the loading masks and the working registers is
represented by the symbol ——@ ‘where the script £ in the mask nota-
tion__@ indicates the special nature of these masks. Figure 2.21 shows

the expanded bus structure with the loading masks added.

Shifted Bus

Bus Masks

'—'-l Loading Masks A L
ading sk Working

Registers A

Loadi 3
oading Masks B l Working

Registers B

Bus Shifter
1 Local Registers

Bus

Postshift Masks

Arithmetic
L ogical Unit

Bus Selector

Accumulator
Shifter

Variable Width
Shifter

Double
Shifter

Expanded Bus Structure

Figure 2.21
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Figure 2. 22 shows a more detailed sketch of LLA; LB, not shown, is

identical.

)

EX —

CM —d

Selector

L

i

L

i

LA Save 1 |

L Register |

I Register,

A Save 2

L+1-1C

LA

Pointer

1

b ™

e

SB(0:63)

_—

Loading Mask
Registers A

6 3 0

Loading Mask Registers A, LA

Figure 2.22

Inhibit Lines of

Working Registers WA

There are 7 microoperations shown in Figure 2.22 associated with the

use of LA, These are listed along with the corresponding microopera-

tions for LB in symbolic form in Table 2.17.

LA := SB(0:63)

LASZ = LAP

LB := SB(0:63)

LAP := CM|EX|S1|S2 | LBP := CM|EX
LAP +1 LBP +1

LAP -1 LBP -1

LAPC LBPC

LASI := CM|EX|S1|Ss2| LBS1

LBS2 :=LBP

= CM|EX|S1|S2

|s1]s2

Table 2.17

Microoperations f

or control of LA and LB
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Upon the dead start, the system is such that the ""full load" and
"fyull read out!" mask, i.e., 64 1's is in register 0 of LA and register
0 of LB. We will assume this to be the case throughout normal operation
of the system. One can then look upon the pointers LAP and LBP as se-
lection switch for the use of the loading masks. If LAP = 0 then no load-
ing mask is applied to WA, if LAP # 0 then WA is masked by the mask
specified by LAP; a similar statement can be made for LBP. This is, of
course, not the only interpretation of the use of the loading masks, but
it is a convenient one and one which we will normally employ unless other-

wise stated.

As an example, suppose we wish to place the high order 48 bits of
the output of the DS into the least 48 bits of WBO0 leaving the high order
16 bits the same. If the mask

63 48 47

is in LB9, the following microinstruction sequence accomplishes this:

s LBP := 9, WBPC.
WB :=DS, +16; LBPC. R

This mask could have been generated by use of the PG and AL. The code,

y ALF :=all1's, LBP := 9,
; PGS 1= CM, PAP +1.
AL ; PG2 16, LB := SB, PAP 1. -

generates the mask and stores it in LB9. [t should be reasonably obvious
now how the loading masks can be used to store the result of various da-
ta transformations as they are determined, e.g., in the implementation of
signed-magnitude arithmetic, the magnitude of the exponent, its sign, the
magnitude of the coefficient and its sign can be stored in a given word

as they are obtained.
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We will henceforth assume in all examples (unless explicitly
stated otherwise) that LAP = 0 and LLBP = 0, i.e., that no loading masks
are applied to either set of working registers. If a particular code seg-
ment uses the loading mask facility it is responsible for leaving the sy-
stem operating in this fashion. The treatment of the loading masks then
becomes quite identical with that of the bus masks and postshift masks as

stated in Section 2. 7.

2.15 The Parity Generator

The parity generator is a circuit which determines the parity of the
64 bits which compose the bus transport. It posts the result of this eva-
luation as a testable condition, the bus parity, BP, condition. If BP =1,
the BUS is odd parity; if BP =0, the BUS is of even parity. This condi—
tion can be used, obviously, in any processing wherein parity information
is viable, e.g., in communicating with devices which transmit words of a
particular parity. The parity generator functions during each bus trans—
port and has no microoperations associated with it. Since its input is the
BUS, we show it attached to the bus structure as shown in Figure 2,23,

Note, however, no output is shown ‘as its only output is the BP condition.

Shifted Bus

Bus Masks }—-(
—0-1 i I 2
toading Masks A i Working
Registers A !

Loading Mask 2
. Registers B Postshift Masks —_‘_‘\(3

I Bus Shifter t

Local Registers

Bus

Bus Selector

Arithmetical
Logical Unit

Accumulator
Shifter

Parity
Generatlor

Variable Width
Shifter

Double
Shifter

Expanded Bus Structiure

Figure 2.23
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2.16 The Bit Encoder
et us label the bits of the BUS in the following way:

bes bes .« . by by

Let us scan this string of bits from the right to the left, i.e., starting
with bit by, and finishing with bit bg . LLSB will denote the value of

the subscript of the first, nonzero bit encountered while MSB will de~
note the value of the subscript of the last nonzero bit encountered in this

string. This can be shown as

0 &> 0 &~ 0 =0

b63 L S bk "qu L t)0

1T

MSB=k LSB=j

where k z j. If k = j there are, of course, no bits between b, and ;b; ;
if k> j, the k=j-1 bits between b, and b; may be any arbitrary string
of (k=j-1) O's and 1's. If the BUS = 0, then a condition is set true and
LSB and MSB are set to 0.

There is, on the MATHILDA System, a functional unit called the
Bit Encoder, BE, which, during every bus transport, encodes the MSB
and LLSB associated with the BUS. The BE, shown in Figure 2. 24, can

also manipulate these quantities.
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Lo

BUS(0:63) (] ,
LS8 LsB, ] Lsg,
Sel. Encoder o IS ol
Lo g
CM _ud ¢
g Functi
EX o anction i Function and Condition Generation Control Ports
@ s Selection o
S8 o 3 and
SG .ed L Condition Selector
i
e MSB
4 Encoder :j; MSB};} MSBSQ

Bit Encoder, BE

Figure 2. 24

During each bus transport an "LSB encoder!' and an "MSB encoder!
determines the LLSB and MSB associated with the current BUS, The result
of these encodings can be loaded into the LSB; and MSB; registers

shown in Figure 2.24, A load of the LSBi register causes the old con-
tents of the LSB1 register to be moved to the LSB;, register\,‘ Similarly,

a load of the MSB; register causes the old contents of the MSB1 register
to be moved to the MSB» Pegister‘; The contents of the LSB, and L.SB; re-
gisters can be interchanged and the contents of the MSB; and MSB, regi-

sters can be interchanged,

The BE can compute 16 different functions with the variables LSB, LSB,,
MSB 4, and MSBg.b These functions are given in Table 2,118 where L.; =
MSB-LSBi, i =1, 2,
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Function

LSB,

LSB, -1

MSB

MsSB; +1

L

A.l_ = L_l—L_g

LSB,-LSB,

MSB,-MSB;

5

[ ] ::= integer
part of

Table 2.18

Bit Encoder Functions

Which particular function is to be the output of the BE is determined

by the contents of the BE Function Selection register
BEF := CM|EX|SB|SG.

When the BEF is loaded from the CM we will note this symbolically
merely by writing the required function in the symbolic form in Table

2.18, e.qg.,
BEF := LSB,.

The output of the BE can be used to control many devices in the system.

It may, for example, be used to control the BS (see Section 2.5), it may
be loaded into Counter B to control a process (see Section 2.23.1), or it
may be used to generate a Postshift mask using the PG (see Section 2.7).
There are only 6 bits of output from the BE. When it is used to generate

a postshift mask using the PG, the direction from which the mask is to be
generated must be specified in advance by use of either of the microopera-

tions
BEPGIL. or BEPGM,
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The first microoperation will cause a mask to be generated from b,
(the Least significant end of the SB) whereas the second microopera-
tion will cause a mask to be generated from bgz (the Most significant

end of the SB).

The microoperations which control the BE are given in Table 2.109,

Note the SG associated with the BEF is called the BE SG.

Notation . Microoperation
BEL Load LSB, :=L.SB and then LSB, :=LSB encodihg
BEM Load MSB, :=MSB,; and then MSB, :=MSB encoding
BELM Load BEL Load and BEM Ldad ’
BELI Interchange LSB; and L.SB;
BEMI Interchange MSB, and MSB,
BELMI BELI and BEMI
BEF:=CM| EX| sB|sG Load BE Function register from
CM|EX|SB|sG
SET BEF LSB; Set BEF to LSB,
. BEPGL Set PG to generate from b, if BE is
' control input
BEPGM Set PG to generate from bgy if BE is
control input
BESG := SB
BEP := CM|EX| S |S2
BEP +1
BEP -1
BEPC
BES! := CM|EX|S1|S2

]

BES2 = BEP

Table 2.19

Microoperations for control of BE

Example 1

We wish to take the contents of the WA register pointed to by WAP
and shift it left so that its MSB before the shift is shifted to bit position
bes.' The result of this operation is to be placed back in WA.' The contents

of WA is shown below.'
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WA before shift 0 «— 01 10 0

t

MSEB
WA after shift 1 Qs 1 0 i ()
MsSB

The following microinsiructions accomplish this.,

DS := WA; BEM Load, BEF :=MSB, +1,
WA :=DS, « BE. B

Note in.this example that the DS is merely used as temporary storage.

Example 2
Consider the example of Section 2.12.1 in which we counted the

number of bits which were set to 1 in a given 64-bit WA register. In-
stead of doing the counting 2-bits at a time in a loop which is exercised

32 times, we could still count 2-bits at a time, butonly count

[(MSB-x ~LSHB, )} + 1,
2

times, provided we shift the data LSB, places to the right before coun-

ting. The following microoperations accomplish this,

DS := WA ; BELM Load, BEF :=LSB,.
DS := DS, #BE ; BEF := [ (MSB, -LSB, )/2] +1.}
; CB = BE . '
; ALF :=all 0's, LRPC.
AS, LR := AL ; ALF :=all 1!s, LRP +1, PAP +1.
LR := AL ; PG~ 63, LRIP +1, DS(V)SC, PAP -1.
LR := LR ; ALF :=LR + AS, LRIP +1.
LR:=LR, «§ ; CB -1, LROP := DsS.
AS = AL ; CB =1, DS- 1, LROP :=DS; if CB# 0 then HERE.
WA = Al. . B

Note that this code is only 2 instructions longer than the code on page 43.
Counter B, CB, used in this example can be loaded from the BE (see
Section 2.23.1).




2,16, 1 Bit Encoder Conditions

There are conditions associated with each of the BE functions,

These are listed below along side the entries of Table 2,.'18 as a mat-

ter of convenience,

Function Conditions
LSB, LSB, = all O1s
LSB,~1 LSB;-1 = all O's
MSB, MSB,; = all 1's
- MSB,+1 MSB;+1 = all 1is
Ly MSB,=LSB; (i.e., L,=0)
Al =l p-L_; Lz =Lgq, sign {Ls-L4), Ly =0
LSB,-LSB, || LSB; = LSB;, sign (LSB:-L5B,)
MSB.-MSB, MSB; = MSB,, sign (MSB:-MSB,)

F :' +1
2
[ ] ::= integer
part of

same as above

Table 2, 20

Bit Encoder Functions and Conditions

The important thing to understand about the conditions is that all of
them are avialable for testing irrespective of which particular BE
function is specified, The LLSB and MSB encoding process vields a
testable condition which indicates whether bits bo through bgs are
all zero; this condition is noted 'BUS = 0'., Thus we can write, for
example,

it BUS =0 then A else Ag,

And, as a last condition on BE, we can test BE(0), i.e., bit 0 of the

BE output,'

56
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Example

Suppose we wish to test if there is only one bit set to 1 in a par-

ticular piece of data, say the contents of the VS, we could write

VS ; BELM L.oad.
y if L; =0 then ONEBIT.

where ONEBIT is the address of the next microinstruction to execute

if exactly one bit is set to 1.

Since the BE has as its inputs encodings from information on the
BUS, we show it attached to the bus structure as shown in Figure 2. 25,
Note that the output of the BE is shown going to various ""control ports'

in accordance with the prior discussion.
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1 Loading Masks A 2
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1 ostshi asks

Registers B
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| Var‘lab'le Width Bit Encoder Control Ports
Shifter

Double
Shifter

Bus Shifter

Bus

Bus Selector

L—J

Expanded Bus Structure

Figure 2.25
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2.17 lnput Poris
There are two input ports through which external devices may

be connected to the bus selector. They are called Input Port A, 1A,
and Input Port B, IB. Up to 16 devices can be connected to each of
these input ports. 1A is shown in Figure 2.26; 1B, not shown, is iden-

tical.

CM L C+l
sB
EXO0

EXI1

Device
sRegisterg

Selector

Reset Set

o Deviceg

Cond.o

Data - l »
from o Device, Buffer °

Device,

Activate
Device

et

Device Selector

o Input Port A
of Bus Selector

15 Device s

Device Selector

Cond. 5
[
—

Data R 15
from . Device,s Buffer

Device,s

Input Port A, 1A

Figure 2,26

The particular device which is selected to be read is pointed to by a
Device Register. There are two conditions associated with a selected
device: a) data available, IADA, and b) data condition, IADC. All de~
vices must be able to set the first condition. The second condition can
be set by devices which can transmit two different sorts of information,

for example control information and data. When a device is read, both
the 1ADA and IADC conditions are reset. The microoperations associated
with the control of IA and IB are given in Table 2. 21.



Notation Microoperation

LAA Activate Port, i.e., read IA

IAD:=CM| EX0| SB|EXI1 | Load IA Device Register from
CM|EXO0| SB|EX1*

IADC Clear IA Device Register
TAD +1 Increment [A Device Register
IBA Activate Port, i.e., read IB

IBD:=CM| EXO0|SB|EX1 | Load IB Device Register from
CM|EX0|SB|EX1*

IBDC Clear 1B Device Register
IBD +1 Increment IB Device Register
Table 2. 21

Microoperations for control of A and IB

As an example, if we wish to read a piece of data from device 9 on IA

and store it in AS, we can write the following classical wait loop:
y 1AD =9,

; 1AA; if IADA then HERE + 1 else HERE.
AS :=1A. B

The expanded bus structure can now be shown as Figure 2. 27.

* SeeSection 2, 20.5 for a description of EXO and EX1.
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2.18 Output Ports

There are four output ports through which output to external de-~
vices may occur. They are called Output Ports A, B, C, and D; OA,
OB, OC, and OD respectively. They are identical in operation with the
exception that OA and OB are loaded from the SB and can be selected
as bus DESTINATIONS whereas OC and OD are loaded from the BUS
and cannot be selected as bus DESTINATIONS, but must be loaded by
a microoperation. OA is shown in Figure 2. 28; OB, OC, and OD, not

shown, are identical.

CM

sB
EXO
EX1

Selector

Device
Registerg

° Set Reset Device,

1

' Data to
Device, Buffer Device,
= Qi

Activate
Device

Device Selector

Set Reset

Output Port A l | _J Device,s Buffer Dala. to
s Register of - S ol Device,s

Output Port A, OA
Figure 2.28

"
[

Device g

The particular device which is selected for Ooutput is pointed to by a
Device register. There is a condition assocjated with a selected de-
vice:! space available, OASA. The microoperations associated with the
control of OA and OC are shown in Table 2.22. The microoperations
for OB are identical to thosg for OA and the microoperations for OD

are identical to those for OC.
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Notation Microoperation

OCAA Activate Port, l.e., write OA

OAD:=CM| EX0|SB|EXI1 | L.oad OA Device Register from
CM|EX0|sB|EXI

OADC Clear OA Device Register
OCA Activate Port, i.e., write OC

OCD.‘=CM} EXO! SB] EX1 Load OC Device Register from
CM|EX0|sB|EXI

oCcDC Clear OC Device Register
OC:=BUS Load OC from BUS(0:63)
Table 2.22

Microoperations for conirol of OA and OC

As an example, suppose we wish to write out the output of the AL onto

device 13 of output port C. We could then write,

AL ; OC :=BUS, OCD :=13,
; iIf OCSA then HERE+1 else HERE.
; OCA. B

There is one additional feature associated with the "activate!' micro-
operation. Recall that on the input ports it is possible to test a data
condition which is set by a device. Analogous with this, it is possible
on output to write out an extra bit in addition to the data. The device
can, for example, treat this extra bit as a data condition. The micro-
operations for output port activate are now given by

OAAT activate with additional bit set to 1

OAAD activate with additional bit set to O

OCAA activate with additional bit undefined.

2,19 The Bus Structure

With the introduction of the output ports in the previous section

we have completed a description of {with only very minor modifications)
the MATHILDA Bus Structure, the registers and functional units attached
to it, and the control which can be exercised on these components, The

Bus Structure is now shown in Figure 2, 29,
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Let us summarize some of the information with respect to bus SOURCESs

and DESTINATIONs, We have the following SOURCESs and DESTINA-

TIONS for a bus transport:

a)

SOURCESs for Bus Transport

WA
wB
LR
AL
VS
DS
A
=
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b) DESTINATIONS for 64-bit L.oad of SB with BD L oad

MA
MB
WA
wB
LR
OA
oB

c) Shifters which can load 64-bit SB via dedicated bits in
every microinstruction

AS
VS
Ds

Thus in the bus transport specification
LIST := SOURCE,

the LIST can consist of 1 destination from (b) above and any or all of

the shifters, i.e.,

BD [, As] [,vs] [,DS] := SOURCE,
where the [ ] indicates the option of inclusion in the LIST,

Recall that the SB can be loaded into LA and LLB by execution of
appropriate microoperations and the BUS can be loaded into PA, PB,
OC, and OD by execution of appropriate microoperations. Also, a sub-
field of the SB (always a contiguous string starting with bit by ) can
be loaded into various SG's and conirol ports throughout the system by
executing the appropriate microoperation. Thus, many parallel loads

of both the BUS and the SB may occur in any given microinstruction.

There are three important restrictions on the above bus transport spe~
cifications:

a) the specifications WA := WA or WB := WB are not allowed,
b) the specification LR := LR is only meaningful when LRIP # LROP,
c) one cannot use a mask (MA, MB, PA, LA, LB) and load the regi-

ster containing that mask in the same microinstruction.
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2.20 The Control Unit

The control unit of the MATHILDA system, shown in Figure 2.1
on page 4, consists of (1) a control store and (2) a microinstruction se-
quencing capability. The random access control store consists of up
to 4,096 words of 64-bit wide, 80 nanosecond monolithic storage. The

microinstruction sequencing is described below.

2.20.1 Microinstruction Sequencing

The microinstruction sequencing hardware is a physical embodi~
ment of the "if ¢ then A else A;" clause we have been using in our
microprogramming examples. This is accomplished in the following
way. The addresses A; and A; are selected from 8 possible ad-
dress sources. Let A be the address of the current microinstruc--
tion and let B be data which is specified in the current microinstruc—
tion. The 8 possible address sources, which are explained in more

detail shortly, are listed in Table 2. 23.

Notation Interpretation

A-1 Current address - 1

A Current address

A+1 Current address + 1

AL(A,B) A function of A and B as computed by an

arithmetical logical unit

RA + B The contents of the top of a return jump
stack, RA, added to B

RB+ B The contents of the top of a return Jjump
stack, RB, added to B.

SA The contents of the Save Address register,
SA
EX The contents of the External register, EX

Table 2.23

Microinstruction Address Sources

These address sources are realized by providing a microinstruction

address bus which is shown in a limited form in Figure 2. 30.
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Figure 2.30

One can see from this figure how the "if, then, else''-clause is rea-
lized. There are 3-bits in each microinstruction which specify one of
the 8 address sources of Table 2.23 to be used as the true branch ad-
dress, denoted A;. There are 3-bits in each microinstruction which
specify one of the 8 address sources of Table 2. 23 to be used as the
false branch address, denoted A;. There are 7 bits in each microin.
struction used to specify 1 of 128 conditions which are testable in the
system; the selected condition is denoted c. The state of the selected
condition ¢ determines which source, A; or A;, will be used to se-
lect the next microinsiruction address source. If c=1 then A, will be
used to select the address of the next microinstruction; if c=0, then A;
will be used for this purpose. When a microinstruction address is selec-
ted, it is loaded into the Control Store Address Buffer so it can be used
to fetch the microinstruction, and it is also loaded into the Current Ad-
dress register so that it can be used Iin the next address computation,

if required. The contents of the Current Address register has been used
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in previous examples under the symbolic hame HERE. The "Force 0
Address'' capability, the Interrupt Recovery Address register, and
the Status Registers shown in Figure 2.30 will be discussed in later
sections. Let us now discuss the address sources in detail.

The address sources A-1, A, and A+l are straight forward and
need not be dealt with. It should be mentioned, however, that Control

Store addresses are interpreted modulo the size of the Control Store.

2.20. 2 The Control Unit Arithmetical Logical Unit
The Control Unit Arithmetical Logical Unit, CUAL, is function-

ally identical to the arithmetical logical unit which is connected to the
MATHILDA bus structure except that it is 12-bits wide and not 64-bits
wide. The CUAL functions are identical to those of the AL and are

given in Table 2.9. The "A input! to these computations is the the ad=
dress of the current microinstruction and the "B input" is data speci-
fied in the current microinstruction. The CUAL is shown as in Figure

2.31.

Current Microinstruction Address

A
SET SET
T A+B B
Microinstruction
CM -
. Function X CQAL . Address Selector
\— carry-in (c or c)

: B
' e -
Data from Microinstructiion

Figure 2. 31

Control Unit Arithmetical L_ogical Unit
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First, note that the CUAL Function register can only be loaded from the
CM, i.e., CUALF := CM. One can set the CUALF to add A and B, i.e.,
SET CUALF + and also to the logical function B, i.e., SET CUALF B.
These are the only three microoperations associated with the CUAL. On-
ly 5 bits are used to specify the function; the carry-in, when required, is
specified in another way. L.et c denote the selected condition used to con-
trol the address selection and let ¢ be its negation. There is a bit in each
microinstruction, called the Carry~Input Selection Bit, CISB, which is

used to determine the carry-~in as shown in Table 2. 24,

cisB Carry-=in

0 <

1 c

Table 2. 24

Carry~in Selection

Example 1) Suppose the CUALF is set to A+B; this is a relative
jump. If CISB =0, the specification
if ¢ then CUAL else HERE
can be interpreted to mean:
if c then HERE + B else HERE.
Whereas, if CISB =1, the specification can be interpreted to mean:

if c then HERE + B + 1 else HERE.

Example 2) Suppose the CUALF is set to B; this is an absolute jump.

This is a logical function and not affected by the carry-in,
if ¢ then CUAL else CUAL
canh be interpreted to mean:

if c then B else B.

In our microassembler, the specification of the CISB will be given
implicitly. If one chooses the CUAL output as microinstruction ad-

dress source, we write

CUAL + Carry-in.,
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Choice of this specification as either an A, or A; will dictate the

setting of the CISB.

For the first interpretation of Example 1 to be valid the specification
would have to be written
if ¢ then CUAL else HERE
whereas if we meant the second interpretation we would have to write
if ¢ then CUAL +1 else HERE.
It should be obvious that the specification
if ¢ then CUAL. .+ 1 else CUAL +1
is an example of a microinstruetion sequencing specification which is
imcompatible with the specification capability described above. Indeed
if one wished to choose the address specification CUAL + 1 irrespective

of condition, one merely need write

CUAL + 1
in the microinstruction sequencing field of the microinstruction. This
would have the same effect as writing, for example,
If TRUE then CUAL+else CUAL | |,
where TRUE  is a manifest system constant set to 1. There is also

a manifest system constant, FALSE which always has the value 0.

In order to complete the discussion of the CIUUAL we must discuss
the specification of the data B. There are 2 6-bit fields in the micro-
instruction which we shall call T andt. T andt are input into a func-
tion box which makes the computations shown in Table 2.25. There
are 2 bits in every microinstruction, called the B-Input Selection
Bits, BISB, which determine which of these computations will be used

as the B data, if required, in the current address computation.

BIsSB B data

00 0
01 Tt
10 tsignt
11 TO

Table 2. 25

B data Selection
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The notation tsignt means the 12 address bits are given by

55t & it ty ty b t; 1o,

i.e., in "sign extended'" form. With the CUALF set to A+B and BISB=10
we then have a relative addressing capability of £+32. The notations Tt
and TO denote concatenation.

In our microassembler, the specification of the BISB will be given
implicitly One specifies the B value explicitly as a decimal number in the

address specification and this will dictate the setting of the BISB.

We will hence forth write the CUAL specifications as

CUAL (A, B) + Carry-in.
Both CU and A are redundant information since this is written in the
microinstruction sequencing field of the microinstruction and we will
use the shorter form

AL(B) + Carry-in
where B is a signed integer, ~2048=B=2048, when combined in an
arithmetic function with A, but may obviously lie in the interval

0=B=4095 when used for absolute jumps.

Example 1) If the CUALF is set to A+B and BISB=10, then the
specification
if ¢ then AL(-18).
can be interpreted to mean
if ¢ then HERE-18 else HERE+!.

Example 2)  If the CUALF is set to A+B and BISB=10, then the
specification
if ¢ then AL(12) else AL(12)+1
can be interpreted to mean
if ¢ then HERE+1 2 else HERE+1 3
thus givingaconditional branch to one of two sequen-

tially located microinstructions.

2.20, 3 Return Jump Stacks A and B

There are two return jump stacks associated with the microin-

struction addressing facility. They are called RA and RB. Each is a
12-bit wide, 16 element RG. RA is shown in Figure 2.32; RB, not

shown, is identical.
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C —1+1
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Pointer

(L)

1

RA,

16 registers

Q

Adder f—= Microinstruction Address Selector

carry-in (¢ or ©)

B

Data from Microinstruction

Return Jump Stack A, RA

Figure 2,32

The microoperations associated with RA are shown in Table 2. 26,

The instructions for RB are identical.

Notation Microoperation
+1 A(L) RA | Increment RAP and then Load RA with
the address at the current microinstruction
-1 RA 1 Decrement RAP
c RAPC Clear the RAP
Table 2.26

Microoperations for control of RA

Whenever the top of the RA stack is used in the computation of the ad-
dress A the next microoperation, the microoperation RA 1 is executed,
i.e., the stack pointer is automatically maintained any time something
is added to the stack or whenever the stack is used in an address com-
putation. The use of RA is specified by writing

RA + B + carry-in.
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This is seen immediately from Figure 2.'32,' The B data and the carry-in
selection are exactly the same as those specified for the CUAL, The spe-

cification RA+1 or RB+1 will be interpreted to mean B=0 and the carry-in=1.

M Example 1) Suppose we are in a routine at step n and wish to jump
to a routine at step n+tm. At step ] of the second routine we
wish to return to n+l. Assuming the CUALF := A+B we could write

n: s RA L 3 AL(m).
m:
j: 3 sRA+T .

Example 2) It should be noted that the availability of 2 return jump
stacks may facilitate the implementation of coroutines. For example,
the microinstruction

n: s RA L yRB+H .
stores the current address in one stack while simultaneously using
the other stack as a source in the computation of the address of the

next microinstruction.

Example 3) A conditional return entry point.can be obtained by
using the specification

if ¢ then RA+B+1 else RAR.

An important point must be raised here. It was stated on
page 12: "The action associated with every microoperation speci-
fied In a microinstruction is completed before the next microjn-
struction is executed." There is only one exception to this rule
and it is the action associated with the microoperation RA! (and
RB! obviously). It was not important at the time the rule was jin-
troduced, but it is important now. The action associated with
RA! and RB! require 2 microinstruction cycles to be completed
and not 1 microinstruction cycle. Thus, if one loads RA in a given
microinstruction, RA cannot be used as an address source in the
very next microinstruction executed. The same is, of course, true

for RB. (This is discussed further in Section 3. 2.1 .)



2.20,% The Save Address Register
The Save Address register, SA, is shown in Figure 2, 33.

L+1-1C
. ‘ Microinstruction
SB(0:11)— 11 SA o Address Selector

The Save Address Register, SA

Figure 2,33

The microoperations associated with this register are shown in Table
2,27,

SA =SB
SA +1
SA -1
SAC

Table 2,27

Microoperations for control of SA

SA provides a data path between the bus structure of MATHILDA and the
control unit which controls the transactions on this structure, It can be
used, for example, during the loading of control store, and recovering from
an interrupt (see Sections 2. 20. 8 and 2. 20.6 respectively).
2.20, 5 The External Register

The External Register, EX, is a 16-bit wide right cyclic shifter

which shifts 4 bits at a time, EX is loaded from an external device. If, for

example, MATHILDA is to be connected as an input/output device to another
processor, then the EX register provides one form of communications area
for data sent to MATHILDA, The 16— bits of the EX register can be thought

as consisting of four 4-bit bytes as shown in Figure 2, 34,

T
External Microinstruction
Device 15 EX313 11 EX2 glv EX1 4la EX0 0 Address Selector

The External Register, EX
Figure 2,34
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The microoperations associated with EX are shown in Table 2,28,'

Notation Microoperations

EX Load LLoad the External register
EX 4 Shift the External register 4 bits right cyclic

Table 2. 28

Microoperations for control of EX

EX can not only be used as a possible source for the address of the
next microinstruction, but it can also be used as data for many of the
control registers in the system, e,'g,', CA.' When EX is to be used as
the source of a microinstruction address, the right most 12-bits are
used, i, e,, bytes EX2, EX1, and EXO, In fact, in all circumstances
(except in conjunction with the Device Registers of the input/output
ports) the datumfrom the EX is always considered to be a contiguous
string of bits of the required width starting with bg ..'For example if
EX is designated as the control source for the BS, the bits EX(0:5) are
used to specify the shift amount.-‘ When EX is used as a data source for
the loading of input/output port Device Registers (IAD, IBD, OAD, OBD,
OCD, and ODD) both bytes EX1 and EXO are considered data; not conti-

guous data, but 2 separate 4-bit data items.

2,20,6 The Force 0 Address Capability

There are 4 conditions which if they occur during the execution of
any microinstruction will disregard the address computation specified in
the microinstruction sequencing portion of the microinstruction and fetch
the next microinstruction from Contirol Store address 0. These conditions

are listed ih Table 2.29.

Force 0 Address Conditions

External Signal

Real Time Clock Overflow
RA Overflow

RB Overflow

Force 0 Address Conditions
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An external device may be connected to the External Signal condition
to interrupt the operation of MATHILDA. A Real Time Clock, RTC,
(Section 2.22), is available in the system which can count up to 60 sec.
The overflow of the RTC causes the next microinstruction address to O,
If either RA or RB overflow, i.e., we have stacked more than 16 ad-
dresses, we will also force the address to 0. This capability is shown

in the following way:

INTON INTOFF

b

External — o
Real Time Clock _J o o
RA Overflow s o 5
RB Overflow - LI? 2
)
Current Address
(C)
Selected Control Store
Address Address Buffer
(L)
Interrupt Recov- Status
ery Address Registers

The Force 0 Address Capability
Figure 2.35

Whenever a Force 0 Address Condition arises the following occurs:
both the Conirol Store Address Buffer and the Current Address re-~
gister are cleared, i.e., set to zero; the selected address is loaded
into the Interrupt Recovery Address register, IRA; and the interrupt

facility is turned off. The IRA contains the address of the microinstruc-
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tion which would have been executed had the interrupt not occurred.
The contents of the IRA can be gated onto the BUS through the Status
Registers explained in Section 2. 23. 3. The IRA can then be used in
conjunction with the SA facility previously described to restore the
continuation address. The interrupt capability can be turned off and

on by executing the microoperations INTOFF and INTON respective-

ty.

2.20.7 The Microinstruction Address Bus

Having gained insight into the nature of the various address sources
which can be used during microinstruction sequencing, we can now pre-
sent a more detailed picture of the microinstruction address bus and it
is shown as Figure 2.'36.‘ Because the number of control elements is

small, they are also shown on this figure,

The microoperations associated with the control unit are brought to-
gether, for convenience, in Table 2, 30, All but the last microoperations
have been explained in previous sections, The CS Load operation is dis~

cussed next,

SA =SB

SA +1

SA -1

SAC
CUALF 1= CM
SET CUALF B
SET CUALF +
RA 1

RA ¢

RAPC

RB 1

RB |

RBPC

EX Load

EX +4

INT ON
INTOFF

CS Load

Table 2, 30,

Microoperations associated with the Control Unit
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2,20, 8 Control Store Loading

Control Store has, of course, both an address buffer and a data

buffer, as shown below,’

Cs

Address Buffer-o
1

Ccs
Data Buffer .

63

Control Store, CS

(4096 words)

The CS Address Buffer is loaded from the Microinstruction Address Se-

lector as shown in Figure 2,'30, The CS Data Buffer is actually Device

number 15 associated with Output Port A, OA. Let A be the address of the

current microinstruction, The microoperation CS Load, if executed in the

current microinstruction, can be interpreted as follows:

CsS Load 1=

Example

L.oad the contents of the CS Data Buffer into
the CS storage location pointed to by the CS
Address Buffer and then choose A+1 as the

address of the next micr‘oinstr-uction,'

L.oad the contents of WA 1 into the CS storage location specified
by the rightmost 12 bits of WAQ,"

WA .

OA = WA

; WAPC, OAD := 15,

; SA 1= SB, WAP +1,

; if OASA then HERE +1 else HERE,
: OAA.‘

; Cs Load; SA,

; continue n

2,'21 The Conditions, Condition Selector, and Condition Registers

There is the possibility of testing 128 conditions in the system, At

this writing there have been 100 specified, leaving a reasonable amount

of expandability in the system. The conditions and their symbolic nota-

tion are given in Table 2. 31,




The conditions in this table are grouped according to the functional

unit with which they are associated, For convenience, the units are

listed in alphabetical order,

Symbolic .
Unit Notation Condition
AL are bits AL (0:63) =0
AL OV AL carry-out and borrow=in bit
AL AL (0) bit 0 of AL input to bus selector
AL.(63) bit 63 of AL input to bus selector
ONEOV 1ts complement overflow
TWOOV 2's complement overflow
AS(0) bit 0 of the AS
AS AS(V) the variable bit of the AS
AS(63) bit 63 of the AS
LSB1 is LSB; = 000000
MSB1 is MSB, 111111
L1 isLi1=0 (i.e., MSB,=LSB,)
L2 isly =0 (l.e, MSB,=LSB,)
LSB1 -1 is LsB:~1 = 000000
MS3 1 +1 is MSB,+1 = 111111
BE LSBD is (LsSB,-LSB:) =0
SGNLSBD sign of LSBD (SGNLSBD=0=_S8D=20)
MSBD is (MSB,-MSB3z) =0
SGNMSBD sign of MSBD (SGNMSBD=0=MSBD =0)
LD is L.l-—|_2 = 0
SGNLD sign of LD (SGNLD=03L,2_5)
BEPGD BE postshift mask generator director
BEPGD=0=L, BEPGD=1=-M
BE(0) bit 0 of the output of the BE
BP BP BUS parity, BP=1 = odd parity
BUS BUS BUS(0:63) =0
CA is CA zero
CA(3) bit 3 of CA
CA CA(4) bit 4 of CA
CA(5) bit 5 of CA
CA(6) bit 6 of CA
CASPOV CASP =1111 (CASP overflow)
CcB is CB zero
cB(3) bit 3 of CB
cs cB(4) bit 4 of CB
CB(5) bit 5 of CB
CcB(6) bit 6 of CB
CBSPOV CBSP =1111 (CBSP overflow)

(cont. )
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. Symbolic

Unit Notation Condition

CR CR output of condition save registers
EXDA data available on EX
RAP OV RAP = 1111 (RAP overflow)
RAPUN RAP = 0000 RAP underflow)

cu RBPOV RBP =1111 (RBP overflow)
RBPUN RBP = 0000 (RAP underflow)
INT INT=1=INTON, INT=0=INTOFF
CUAL OV CUAL. overflow

DS DS(i),i=0,. .., 158 the indicated bit of the DS
DS(j),j=V,V+1 |the variable bits of the DS
IADA data available on IA
1ADC data condition on IA
IBDA data available on IB

I/O IBDC data condition on I3
CASA space available on OA
OBSA space available on OB
OCSA space available on OC
ODSA space available on OD

LR LR(0) bit 0 of LR input to bus selector
L.R(63) bit 63 of LR input to bus selector

RTC RTCOV Real Time Clock overflow toggle
sSB(0) bit 0 of the shifted bus

sB SB(1) bit 1 of the shifted bus
SB(62) bit 62 of the shifted bus
SB(63) bit 63 of the shifted bus

Svstem TRUE a binary one

y FALSE a binary zero
VvS(0) bit 0 of the VS

VS VS(Vv) the variable bit of the VS
VS(63) bit 63 of the VS
WA(0) bit 0 of WA input to bus selector
WA(15) bit 15 of WA input to bus selector

WA WA(63) bit 63 of WA input to bus selector
WAP OV WAP =11111111 (WAP overflow)
WAPSP OV WAPSP = 11111111 (WAPSP overflow)
WB(0) bit 0 of WB input to bus selector
wB(15) bit 15 of WB input to bus selector

wiB WBI(63) bit 63 of WB input to bus selector
WBP OV WBP =11111111 (WBP overflow)
WBPSP OV WBPSP = 11111111 (WBPSP overflow)

Table 2, 31

*

Pariial Listing of System Conditions

* See also Table - 2. 38
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All 128 conditions are input into a condition selector. There are 7
bits in each microinstruction, called the Condition Selection Bits,
CSB, which select a particular condition. The selected condition is
input into

a) the Ay -A; address selector (Section 2.20.1),

b) the carry-in selector (Section 2. 20.2), and

c) a SG called the Condition Save Registers, CR.
This is shown in Figure 2. 37.

L L

i t
CR Save 1 CR Save 2
Register o sRegister o

cs8 . L+1-1C
2 !
Conditions _wfo Ex o | cr
Condition; e 1 CM % |z Pointer d L
Conditions _guf 2
s IS
23 16 Condition
% g ’ Save
% g Registers,
on At-A¢ Selector cR
Carry-in Selection
Condition 157.md 127

Condition Selector and Condition Registers

Figure 2, 37

It can be seen from this figure that we can save ‘the state of any condition
as it arises and use it later when required. The microoperations associa~

ted with CR are given below in Table 2. 32.
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CR = sSC

CRP := CM|EX|S1|S2

CRP +1

CRP -1

CRPC

CRS1 = CM|EX|S1|S2

CRS2 ;= CRP

Table 2, 32

Microoperations for conirol of CR

In the loading microoperation CR := SC (Selected Condition), we can,
instead of using the notation SCyuse the symbolic notation given in Table

2.31. Thus, for example, if we wish to save the state of the ALOV con-

dition in an instruction we would write:

CR = ALOV

It should be obvious that since the SC goes to both the CR and the
A -A ¢ selector that one cannot specify a condition in the microin-
struction sequencing field different from the SC in the CR := SC

microoperation within the same microinstruction. Thus
WA = WB; WAP +1, CR := BUS; if CA=0 then RA +1,

is not allowed, [t would have to be written as 2 microinstructions:

.

WA = WB ;s WAP +1, CR := BUS,
if CA = 0 then RA +1,

A X

Statements of the following type are obviously allowed:

WB := DS; PG?3, AS +, CR := BP; if BP then HERE -1,
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2.21,1 Short and Long Cycle

It is obviously important to know when one can test a condition., The

system can execute microinstructions in two different cycle times: a
"short" cycle time and a ""long" cycle time. The difference in these two

cycles as it relates to the testing of conditions can be easily stated:

long cycle When the machine is operating in long cycle mode all
conditions which arise as a result of bus transport and
microoperation execution are testable in the same mi-~

croinstruction in which they arise,

short cycle When the machine is operating in short cycle mode all
conditions which arise as a result of bus transport and
microoperation execution are testable in the next mi-

croinstruction to be executed,

Thus if we are in long cycle and we write
WA = WB; WAP +1; if BUS =0 then RA +1.

we are testing whether or not if the current bus transport (WA := W)

is such that BUS =0, Whereas, in short cycle, this microinstruction

would mean we are testing the pPrevious bus transport's condition. In

order to test WA := WB we would have to write 2 microinstructions,
WA = WB WAP +1,

if BUS =0 then RA +1.:

e

e

Thus, a microinstruction can be thought of being executed in the fol-

lowing sequential way;

Long cycle: a) execute bus transport
b) execute microoperations
c) execute microinstruction sequencing based on the

current conditions
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Short cycle: a) delay the conditions of the previous microinstruction

b) execute bus transport
c) execute microoperations
d) execute microinstruction sequencing based on the

delayed conditions from the previous microinstruction

It is obvious that all of the examples given previously have been execu-
ted in the "short cycle! mode (see the discussion in Section 2. 4.1 ).
This is, of course, the more difficult of two concepts; however, a rea-
der who has started the document from the beginning should now be in-

tuitively familiar with this concept.

2.22 The Real Time Clock
The Real Time Clock, RTC of the MATHILDA system is shown in
Figure 2, 38.

C Use of EX as address source

Clock Clear Conditions

L
‘!

CM—> Real Time Clock

Real Time Clock
Figure 2,38

The clock can count up to 60 seconds. Whenever 60 seconds is reached
two things occur, provided the INTON microoperatinn has been executed:
1) a Real Time Clock overflow Toggle, RTCT, is turned on and the
clock is reset to O,
2) the next microinstruction to be executed is obtained from

control store location 0.

The clock is cleared whenever the microoperation RTCC is executed
or whenever the EX input is selected as the address source for the
address of the next microinstruction capability (see Section 2. 20. 6).
One does not need to have the RTC count up from 0 before it over-
flows. A base ‘'value can be loaded by execution of the instruction

RTC := CM.
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In the microassembler the data will be specified in seconds. Thus, 4

seconds will elapse between the execution of the microoperation
RTC := 56

and the turning on of the RTC overflow toggle. The RTC overflow

toggle can be turned off by executing the microoperation RTCT OFF.

2.23. Auxiliary Facilities

The auxiliary facilities associated with the MATHILDA system as
shown in Figure 2.1, i.e., the system counters, status registers, and

snooper registers, will now be discussed.

2.23.1 Counter B
The system has 2 counters associated with it: Counter A, CA,
has been introduced in Section 2.2, Counter B, CB, introduced here

is shown in Figure 2. 39.

+1 -1 C

]
cBS
s Pointer o

L
R

cB

Save Registers

| 1S O

CM sB BE £BS L+l -1C

Sel. —» Selector cB

Counter B, CB

Figure 2.39
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A comparison of this figure with Figure 2, 3 which shows CA shows that
CB is identical with CA except that CA can be loaded from the EX regis-
ter whereas CB can be loaded from the output of the BE, 1. e.‘, we have
CA := CM' SB‘ Exl CAS
and cB := cM| sB| BE| CBS .

Note, the output of the BE is 6 bits, whereas CB is 16 bits wide, When-
ever BE is selected as input to CB the high order 10 bits of CB are set
to 0, The microoperations associated with CB, CBS, and CBSP are
given in Table 2. 33. These are, of course, apart from the above dif-
ference,identical to those associated with CA and merely shown here

for convenience.

cB := cM|sB|BE |cas
CB + 1

CB - 1

cBC

CBS := CB

CBSP + 1

CBSP - 1

cBSPC

Table 2, 33
Microoperations for conirol of CB, CBS, and CBSP

An example of the use of CB has been given as Example 2 in Section 2. 16,
It should be quite obvious that CA and CB are not connected in any way
whatsoever and may be used independent of one another., One may count
up in CA while counting down in CB, for example,

sCA+1,CB -1, .
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2,32.2 The Snooper Store and Snooper Registers

The Snooper unit provides a facility for the gathering of data con-
cerning the operation of the system, The facility consists of (a) a
Snooper Store and (b) 16 Snooper Registers. The Snooper Store con-
sists of up to 4,096 words of 4-bit wide, 80 nanosecond monolithic stor-
age, It has the same number of words as the Control Store and is ad-
dressed in a cyclic fashion consistent with its size, The Snooper Regis-
ters are 32-bit wide registers which can be cleared and counted up, The
Snooper unit works in the following way: when the address of the next
microinstruction to be executed is sent to the Control Store Address
Buffer, it is also sent to the Snooper Store Address Buffer; at the same
time the microinstruction is fetched so that it can be executed, the con-
tenis of its associated Snooper Store location is fetched; the contents
of the associated Snooper Store location identifies which of the 16
Snooper Registers is to be incremented during the execution of that par-
ticular microinstruction, Thus, during the execution of every microin-

struction, a specified Snooper Register is incremented,

The Snooper Store can be written and the Snooper Registers
read through the normal input/output facilities of the system, Snooper
Store is writeable so that different data gathering routines can be
associated with the same segment of microcode without changing the
microcode. Snooper Store is loaded via OB, Device 1, If we load OB

with the following information

cB - 0¢—0 Contents | Address
63 16 | 15 12]11 0

then the execution of OBA when OBD is set to 1 will store OB(12:15) into
the Snooper Store location specified by OB{0:11),

The contents of any particular Snooper Register, SRi, i=0,...,15,
can be read through 1B, Devices 1 through 8 of IB are associated with

the Snooper Registers as shown in Table 2. 34,
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Device | IB(32:63) 1B8(0:31)
1 SR 0 SR 1
2 SR 2 SR 3
3 SR 4 SR 5
4 SR 6 SR 7
5 SR 8 SR 9
6 SR 10 SR 11
7 SR 12 SR 13
8 SR 14 SR 15

_Table 2, 34

IB Devices and the Snhooper Registers

Thus, for example, if we wish to place the contents of SRB in bits 0
through 31 of LRO, we could write
; IBD =5, LRIPC, PAP+1.
LR:=IB, BS~+ 32 ; PG~ 32, PAP-1. &

A few points should be stated about this example. The IBA microopera-
tion was not used, nor were either of the conditions IBDA or IBDC
tested before input was made. This is explained as follows. The Snoo-
per Registers are '"dedicated" input devices, always available to be
read. The IBA microoperation when used with Devices 1-8 is used to
clear both of the Snooper Registers associated with the particular De~
vice number.

There is also a tally of the total number of microinstructions
which have been executed in the system. Device 9 on IB is a 64-bit wide
- Micro Instruction count register, MI, which is incremented everytime a
microinstruction is executed. It can be cleared by executing IBA when
IBD is set to 9. Thus the MI appears functionally identical to a Snhooper

and is included in this section.
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2,23,3 The Status Registers

The Status facility establishes a data path between various con-
trol registers, address registers, and counters of the system and the
BUS. Just as with the Snooper facility, this is done through the normal
input facility of the system and, again, IB is used., L.et us consider IB
to be made of eight 8-bit bytes labelled IBj where IBj = lB(0+j8:7+j8),
i=0,. . .,7, For example, IB Byte 2, IB2 = 1B(16:23), Table 2, 35
shows which system elements are associated with Devices 10 and 11 on
1B.

Device | 1B7 IB6 | IB5 B4 | IB3]I1B2 |IB1 |IBO
10 CUF BEF | WBP | WAP cB CA
11 CUALF| BE EX IRA SA
12 Spare

Table 2, 35

Status Information

Devices 10, 11, and 12 on IB are the ""Status Registers! of the
system, Just as with the Snooper Registers, they are "dedicated"
input devices, The IBA microoperation and the IBDA and IBDC con -
ditions have no meaning when used with these devices, Suppose, for
example we wish to store the output of the BE in the AS - recall the
output of the BE had previously only been input to various control ports
in the system, The following instructions connect it to the BUS and
store it in the AS

JIBD =11, PAP+I,
AS = 1B, BS*48 ;PG*56, PAP-1, |
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2.24 An Alternate View of the Working Registers

The description of WA which was given in Section 2, 4 introduced
WA as a 256 element RG, In Figure 2,5 the address pointer, WAP, was
shown to be 8-bits wide so that the WA registers could be addressed as
256 contiguous r‘egisters.v In fact, the address pointer actually consists
of two 4-bit pointers which had been "coupled! together to give the 8-
bit wide pointer described in Section 2, 4, Figure 2,40 shows WA with
its two 4-bit pointers called the Group and Unit pointer; WB, not shown,

is identical,

+1 ~1 C 1 -1 C

WAU Save
Pointerr o

WAG Save
Pointer

L

WAG
Save
Regi-
sters
,

CM EX SB WAGS CM EX SB WAUS

Sel. Selector Sel. Selector

Uncouple
Couple

Sel.
Couple
Switch e
WA Group
2 Pointer |

WA Unit
= Pointer o

‘ 8D Load

256

Shifted Bus Working Registers, Bus
SB(0:63) WA Selector

2. )

Werking Registers A, WA (Detailed)

Figure 2.40

When the microoperation COUPLE A is executed, the Group and Unit
pointers are connected together to give the 8-bit wide pointer, WAP,
After the microoperation UNCOUPLE A is executed, the Group and
Unit pointers function as independent pointers, The low order 4-bits
of the 8-bit address required to specify a particular register are given
by the WA Unit pointer, WAU; the high order 4-bits of the address are
given by the WA Group pointer, WAG, Thus, WA can be considered

to be 16 RG!s, each RG having 16 registers,

The microoperations associated with the WAU and WAG pointers
are given in Table 2, 36.v (The similar microoperations for WB are not

shown, 1)
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WAU := CMIEXISB WAUS

WAU + 1

WAU ~ 1

WALIC

WAG := cM|EX |SB|WAGS

WAG + 1

WAG - 1

WAGC

Table 2, 36

Microoperations for control of the WAU and WAG pointers

If we wanted to point to the 9th unit of group 3 and then transfer its
contents to the DS, we could write, assuming the pointers are uncoupled,
; WAG :=3, WAU:=0,
DS :=WA, L]
The microoperations associated with WAP in Table 2, 4 can now be given
their appropriate meaning in terms of the microoperations in Table 2, 36,'

Assuming WAU and WAG are coupled, we have

WAP + 1 1= WAU + 1

WAP ~ 1 ::= WAU - 1

WAPC  ::= WAUC. and WAGC

WAP := CM |EX| SB| WAPS ::= WAU :
and WAG:

cm| ex| sBlwaus
cM|EX| SB|WAGS

i

L et us now turn our attention to the pointer save capability shown in
Figure 2,40, When WA is considered as 16 groups of 16 registers,
the WAU and WAG pointers may be saved independent of one another,

The microoperations associated with this facility are given in Table 2. 37.
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WAUS := WAU

WAUSP + 1
WAUSP - 1
WAUSPC

WAGS = WAG

WAGSP + 1

WAGSP - 1

WAGSPC

Table 2, 37
Microoperations for control of WAUS and WAGS

As an example, suppose we are in group 3 and wish to work in group 8.
Before working in group 8 we want to save the unit which we
are pointing to in group 3. This is done by executing
s WAUS :=WAU, WAG:=8, ,
The microoperations associated with WAPS in Table 2. 4 can now be
given their appropriate meaning in terms of the microoperations in
Table 2, 37. Thus we have,

WARPS ;= WAP 1= WAUS := WAU and WAGS 1= WAG

WAPSP + 1 = WAUSP + 1 and WAGSP + 1
WAPSP - 1 = WAUSP - 1 and WAGSP -1
WAPSPC = WAUSPC and WAGSPFC.

There are a few additional conditions which can now be added to
Table 2. 31, the partial listing of system conditions. These are given

below in Table 2, 38,
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Unit Symbolic Condition
notation
wWAULIOV WAU = 1111 (WAU overflow)
WAGOV WAG = 1111 ( WAG overflow)

WA WAUSP OV WAUSP = 1111 (WAUSP overflow)
WAGSP OV WAGSP = 1111 (WAGSP overflow)
WACS WACS = 1 > WAU and WAG are coupled
WBUOV WBU = 1111 (WBU overflow)
WBGOV WBG = 1111 (WBG overflow)

WEB WBUSP OV WRBUSP = 1111 (WBUSP overflow)
WBGSP OV WBGSP = 1111 (WBGSP overflow)
WBCS WBCS = 1 ® WBU and WBG are coupled

Table 2, 38

Additional WA and WB Conditions

Thus we can deal with WA or WB as either 256 contiguous registers or
16 groups of 16 registers. We can switch back and forth between either

interpretation in a relatively straightforward way.

2.25 An Alternate View of the Postshift Masks

The description of the Postshift Masks which was given in Sec-
tion 2,7 was structured to make the Postshift Masks look as much like
the Bus Masks as possible, to enhance the understanding of this unit,
In fact, the output of the BS is masked during every bus transport by
the mask which is specified to be

PAVPB VPG
where
PA = an element of a 64-bit wide, 16 element RG called
the Postshift Mask A registers
PB = an element of a 64-bit wide, 16 element RG called
the Postshift Mask B registers
PG = the Postshift Mask Generator

V' = logical "inclusive or!t,
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In Section 2,7 we had introduced the mask to be PAVPG; here we had
merely assumed all elements of PB to contain all O's, The actual situa-

tion is shown more clearly in Figure 2. 41,

cM . L+ -1C
EX 9
sB 9 PA
se 3 5 Pointer ;_
Postshift
Mask Registers B
PA
3. a
L+1 ~1C
PB
Pointer Bus
PA YV PB ¥
BvpPe Shifter
Postshift PB
BU :6
$(0:63) Mask Registers
P8
63 g
L+t -1C CM EX BE SG
| S N B |
CM, PG Sel. PG Control f 1 PG
L Registero Source SelectH Postshift Mask Generator, PG l

Postshift Masks, PA, PB, and PG

Figure 2. 41

The most important thing to note from this diagram is that the PA/PB
structure is indeed the same as the MA/MB structure (see Figure 2, 9).

The microoperations associated with P3 are then

PB = BUS

PBP :- CM|EX|SB|s6

PBP + 1

PBP —- 1

PBPC

Table 2, 39

Microoperations for control of PB
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The name of the SG associated with the PA pointer and the PB pointer
is the Postshift AB Pointer, PABP. The microoperations associated
with this SG are given in Table 2, 40,

PABP := SB

PABPP := cM|EX|S1 |52

PABPP + 1

PABPP - 1

PABPPC

PABPSI := CM|EX| 51|52

PABPS2 = PABPP

Table 2, 40

Microoperations for control of PABP

We will assume that all elements of PB contain all 0's so that the effective
mask is PAYPG and all of our previous standardizations for the use of

this facility are still valid,

3.0 Microinstruction Specijfication and Execution

We will in this section discuss the microinstruction format, the man-
ner in which the instruction is executed, an then give a comprehensive

table of all microoperations,

3.1 Microinstruction Format

Microinstructions are 64-bits wide. There are 4 major fields in a
microinstruction, These fields specify

(a) bus transport

(b) microoperations and data
(c) microinstruction sequencing
(d) control of AS,VS, ‘and DS

These fields are shown below with their sub-fields named and their

actual bit location in the microinstruction,
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(a) bus transport (7 bits)

BS BD SOURCE
22 21 19 |18 18
1 3 3

T—“'*'Bus Shifter Enable Bit

(b) microoperations and data (35 bits)

mops mops/data mops/data mops/data
56 a7 | 46 39 |38

57 29

7 10 8 10

mops = microoperations

(c) microinstruction sequencing (16 bits)

BISB cise Condition As Ay
Selection
15 14 13 12 gis 3|2 0
2 1 7 3 3

L«)Carr‘y~in selection bits

—3 B-input selection bits

(d) AS, VS, and DS control (6 bits)

AS VS DS
28  R7 |2 2B |24 23

- J

Shift/L.oad Control for the Shifters

L.et us discuss each of these in more detail.



(A) The Bus Transport Field

Table 3. 1 shows the correspondence between the symbolic nota—

tion for SCURCE's and BD's and their binary representations,

SOURCE BD
Symbolic Binary Symbolic Binary
Notation Notation Notation Notation

LR 000 no 000
destination
AL 001 MA 001
Vs 010 MB 010
Ds 011 LR 011
WA 100 WA 100
wB 101 wB 101
1A 110 CA 110
B 111 oB 111
Table 3.1

Symbolic and Binary Notation for SOURCE's and BD'!s

If the BS Enable bit = 0, no BS occurs ; if the BS Enable bit = 1

a BS Shift occurs, The control . source for BS control is given in

the microoperations and data field as is seen in (B) below. Thus the

specification

BS BD SOURCE

0 101 011

is the binary representation of our bus transport specification

WB = DS . We will show this symbolically as

W
)

BD SOURCE

WB Ds

as we have no need of binary representations in this r‘epor‘t.'

o7
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(B) The Microoperations and Data Field

The microoperations and data field can be considered to be made

M M M

up of the following fields: F,, S,, o Fso, D.? Fs, Sa, D, F, as
2] 3 4.

shown in Figure 3.1,

7 [ 2] 7 [1] 7 [ 2 |1] 7
F1 S g\; F2 [’\32 F3 S3 l% F4
a3 57 568 55 54 53 47 48 45 39 38 37 38 35 29
mop Seli M mop M mop Sel M mop
D data D da’caBS D data
Figure 3.1

Microoperation and Data Field

The following comments should assist in understanding this diagram.

B.1) Field F, always specifies a microoperation (1 of 128 mops).

Therefore

example,

= 1 then F, specifies a microoperation (1 of 128 mops).
= 1 then F; specifies a microoperation (1 of 128 mops).

=1 then F, specifies a microoperation (1 of 128 mops).

up to 4 microoperations may be specified in this field; for

; BSP +1, WBP +1, MBP +1, CA -1;

B. 2) We have seen that many microoperations concern the loading of a

register from various sources, e.d.

MAP := CM|EX|SB|SG.
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Such a microoperationmust be placed either in field F; or Fz. If it

is placed in Fi; then the 2 selection bits S, specify which source will

be used. If the source specified is the CM then %2

is used as data (similarly L\EA)
4
MAP := 7

could be symbolically represented

0L

MAP := | CM

is set to D and Fy

and F, are used with F3). For example

Thus one sees that there can be at most 2 microoperations of this type

in a microinstruction.

B. 3) Figure 3.1 also shows that if the BS control data is to be taken
from the CM then F; is used as data. If the BS has been enabled, the

control source is selected via field S;. Thus the specification

WA := AL, BS ~+ 3

could be symbolically represented

%"- Fs |S, Bs| BD
2

SOURCE

3 |ICM BS WA

AL

L/\/\/\/\,«-v>

B. 4) All of the possible microoperations are not ‘available in each field

Fi, Fo, Fa, andF,. The microoperations which can be specified in each

field are given in Section 3. 3, the Comprehensive Tables of Microopera-

tions for Individual Functional Units.

C} The Microinstruction Sequencing Field

Table 3.2 shows the correspondence between the symbolic notation .

for A, and A; and their binary representations.
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A; and A
Symbolic | Binary
Notation Notation

EX 000
AL 001
RB 010
RA 011
SA 100
A-1 101
A+l 110
A 111

Table 3.2

Symbolic and Binary Notations for A, and A,

A similar table can be given for the symbolic and binary notations for
the conditions but is not given here because of its length. Tables 2. 24
and 2. 25 present this information for the CI1SB (Carry-in selection bit)
and BISB (B-input selection bits) respectively. We will give all of our

examples symbolically.

Example 1) If BUS = 0 then HERE. could be represented

Condition
BISB |CISB Selection As Ay
0 BUS A1 A

Example 2) If ALOV then RA + 12. could be represented

Condition
BISB |CISB Selection A A,
t .t ALOV A+1 RA+B
signh
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However, this is incomplete and immediately raises the question where

do T and t come from? That is easily answered. T is always the leasts

significant 6 bits of F; and t is always the least significant 6 bits of F,.

BISB tells us, of course, how we will combine T and t (i.e., 0, Tt,

tsignt’ or TO, see Section 2. 20. 2). Thus, the complete specification would

be
M Condition
BZ Fa BISB | CIsSB Selection Ay A
l S A VAVaVATN Ly
12 tsignt AL OV A+l | RA+B
D) AS, VS, And DS Conirol Field

The dedicated bits for shifter control are interpreted as shown in

Table 3.3.

Binary \
Notation Shift/l_oad Control
00 Do Nothing
01 Shift Right
10 Shift Left
11 Load
Table 3.3
Shift/Load Control Bits

Thus, the specification

AS +, VS ¢, DS «

could be represented symbolically as

AS | VS| DS
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The binary representation,

AS | VS| DS

o1 {t1o0}10

does not interest us here. The specification
AS, LR = AL ; DS «.

would be given by

AS | VS| DS | BS | BD |SOURCE |BISB [ClsSB | Condition | Ay | A
Selection

L « LR Al 0 TRUE A+l | A+l

{&\m"’W‘y

3.2 Microinstruction Execution
As introduced in Section 2. 4.1 and then explained in more detail in

Section 2.21.1, the machine has both a long cycle and a short cycle. The

result of that discussion, which is repeated here for convenience is that

microinstructions can be thought of being executed in the following se-~

quential way:

long cycle: a) execute bus transport
b) execute microoperation

c) execute microinstruction based on the current
conditions

short cvcle: a) delay the conditions of the previous microin-
struction

b) execute bus transport
c) execute microoperations

d) execute microinstructions sequencing based
on the delayed conditions from the previous
microinstruction.
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Let us now examine each of the sequential steps in more detail.

A) Bus Transport

The following actions occur during this step:

0) if short cycle, delay: the conditions of the previous microinstruc-
tions (this has been combined with Bus transport for convenience)

1) the SOURCE is selected
2) the SOURCE is masked by the BUS masks and gated onto the BUS
3) the BUS is shifted as required by the BUS Shifter

4) the output of the BS is masked by the Postshift masks to
yield the Shifted Bus, SB.

5) at this point, both the BUS and the SB are stable and can be
loaded into various destinations: call this time 1.

B) Microoperation Execution

The following actions occur during this step:

0) the microoperations are decoded and divided into two types,
those which can be executed at time 1 and those which can be
executed at time 2; this decoding is completed by time 1.

1) all SB, and BUS loads are executed together with AS, VS,
and DS operations and time 1 microoperations.

2) when time 1 microoperations are completed, time 2 microope~-
rations are executed.

C) Microinstruction Sequencing

0) the condition specified by the condition selection bits is selec-
ted. In short cycle this can happen immediately upon the com-
pletion of B, above, as one is testing delayed conditions. In
long cycle this cannot happen immediately upon the completion
of B, above, but must wait until all conditions are stable and
can be tested. Thus, one sees that in long cycle the microin-
struction sequencing is delayed and hence its name,

1) select the carry-in and B-~input into the CUAL and the RA and
RB adders,

2) select the next address using Ay if c=1 or A; if ¢c=0 unless a
force 0 address condition has arisen;

3) fetch microinstruction go to A, above.

3.2.1 Clock Pulse 1 and Clock Pulse 2

Recall that the RG is a basic building element used in the system.
A very common operation is to load an RG and then change its pointer
(e.g. this was done quite frequently in our examples). Often, one also

wished to save the address of the current element pointed to-before
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the pointer is changed. It was decided that this capability should be
allowed in one microinstruction and, furthermore, every RG in the

system should be treated in the same uniform way.

Example

The microinstruction
AS = WA ; WAPS := WAP, WAP +1.

means: take the element of WA pointed to by WAP and store it in the
AS ; then store the WAP in the WAPS registers and then increment
WAP by 1. It means this because the BD load and the microoperation
both occur at time 1 and the microoperation WAP +1 occurs at time 2.

Thus, every RG in the system can be looked at in the following way:

a) it can be loaded or used as a source
b) its current pointer can be saved, if it has a save capability

c) its pointer can be changed after a) and b);

all with one microoperation. The only exception to this rule, as noted in
Section 2.20. 3, is RA and RB because they are driven as hardware
stacks and not RG's; i.e., their address space is changed first and then

loaded (the inverse of the above) when RA | or RB | is executed.

Those microoperations which are exectuted at time 1 are said to have
begun at Clock Pulse 1, Cp =1, while those which are executed at time 2
are said to have begun at Clock Pulse 2, Cp = 2, This notation is used in
Section 3.3 which follows. This notation, along with the description of mi-
croinstruction execution given in 3. 2 above, completely define what a

given microinstruction means. As an example
WB := AL, BS» BE ; SET ALF +, WBU :=9
means: store the output of AL in WB register pointed to by WBP after

shifting it the amount specified by the BE; then change the ALF to AS + LR,

and change the WBU to 9; then go to the next microinstruction.
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3.3 Comprehensive Tables of Microoperations for Individual Func—

tional Units

The following tables (presented in alphabetical order based on the

abbreviations associated with the functional unit) show which microope~

rations can appear in which fields and at which clock pulse these micro-

operations are inftiated. In these tables we use the following notation:

XX = EX|sSB|saG,
zz = EX|S1 | S2

WU = EX|SB| WS
WG = EX|SB| ws.

Some particular points perhaps should be recalled and emphasized here:

a)

use of these tables will show what space and time conflicis
arise in the construction of a microinstruction. The reader
is encouraged to review some of the examples of the earlier
sections by consiructing symbolic microinstructions similar

to those presented in Section 3.1,

t comes from field F,, so if it is being used, for example in
relative addressing, a microoperation should not be specified
inF4.

T comes from field F3, so if T is being used, for example Iin
absolute addressing, a microinstruction should not be specified

inFs.

Selection bits which determine the BS control source al-

ways come from S;3'.

data for the BS, if the CM is the control source, comes from F3.

data for the PG, if the CM is the control source, comes from Fy.




MICROOPERATIONS FOR

Arithmetic Logical Unit, AL

I 7 [ 2 I1] 7 [ ] 7 [2 [7] 7
M M| M
Cp F1 St lz F2 S F3 S3 E F4 MICROOPERATION
22z
2 ALP := CM JD d ddd|LlLoad the AL SG Pointer from CM|EX|S1 |52
2 ALP +1 Increment AL. SG Pointer
2 ALP -1 Decrement AlL. S .G Pointer
2 ALPC Clear AL SG Pointer
2z Load the AL SG Savel register from
2 M| ALST := M| ALST = CM |D dddd]CcMEX|SI|S2
Load the AL SG Save2 register from
1 ALS2 1= ALP the AL G Pointer
1 M} ALSG := SB Load the AL SG with S8(0:5)
XX Load the AlL Function register from
2 | ALF := CM|D] _dddddd cMm|Ex|sB|SG
2 M| SET ALF + Set AL Function to LR + AS
2 M] SET ALF A Set AL Function to AS
MICROOPERATIONS FOR Accumulator Shifter, AS
[ 7 [ 2] 7 | 7 [ 2 1] 7 ]
M M M
Cp F1 s' 5 F2 ol F3 S3 Y a4 MICROOPERAT ION
XX Load the AS(0) Source register from
2 [AS(0)S ;= S & ddd M| AS(0)S := |CM|EX|SB|SG
XX Load the AS(63) Source register from
2_| AS(83)S := cM]D ddd M| AS(63)s := |CM|EX|SB|SG
XX Load the AS(V) Selection register from
2 | AsS(V)s := CMID] dddddada Ml As(v)s ;=  |CM[EX|SB|SG
2 M| AsLL Set the AS to a logical left shift
2 M| ASLR Set the AS to a logical right shift
2 M| AS(V)SC Clear the AS(V) Selection register
2 M| AS(V)S +1 Increment the AS(V) Selection register
2 M| AS(V)S -1 Decrement the AS(V) Selection register
MICROOPERATICNS FOR _Bit Encoder, BE
[ 7 [2 T 7 | 7 2 I ? }
C F1 s M F2 IM F3 s3f F4 CROOPERAT
p Y o oY Mi 1= ION
2] BEMILOAD Load results of MSB encoding into MSB,
1 M | BEMI MSB; and MSB, are interchanged
2 M| BEL LOAD | Load results of LSB encoding into LSB,;
1 M| BELI LSB; and LSB, are interchanged
Load results of MSB encoding into MSB, AND
2 BELM LOAD M| BELM LOAD] load results of LSB encoding into LSB,
MSB,; and MSB, are interchenged AND L.SB,
1 BELMI] M| BEL MI and L SB, are interchanged
XX
2 | BEF := CM |D dddd Load BE Function register from CM|EX |SB|sc
SET BEF Set the BEF to LSB;
2 MILSB1 (clear the BEF Function register)
Sets PG to generate from LSB if BE is
1 BEPGL control input
Sets P.G to generate from MSB if BE is
1 BEP.GM control input
ZZ
2 M| BEP := cMiD ddddj Load BE pointer from CM|EX|S1 |52
2 M| BEP +1 Increment BE pointer
2 BERP -1 Decrement BE pointer
2 M} BEPC Clear BE pointer
2z
2 Ml BEST = Ml BeST i= cM|D| d ddd] Load BE Savel register from CM|EX|S1 |2
1 BES2:=BEP Load BE Save2 register from BE Pointer
1 M| BESG:=5B Load BE SG from SB(0: 3)
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MICROOPERATIONS FOR Bus Shifter, BS

[ 7 [z 7] 7 [T] 7 [2 T 7 ]
1 St % F2 % F3 S_3§ =4 MICROOPERATION
Yy THIS SELECTION IS REQUIRED WHENEVER
D dddddd{CM THE BUS SHIFTER IS ENABLED * )
ZZ

BSP = CMID. dddd Load BS regjster group pointer from CM|EXIS1IS2 |
BSP +1 Increment 85 _SG Pointer
BSP -1 Decrement BS SG Pointer
BSPC_ Clear BS SG Pointer ‘
BSS1 érﬁ D dddd I_oad BS Savel register ffom CM|EX|S1|S2

M| BSS2:=BSP Load BS Save?2 register from 8S Pointer

M| BSSG: =58 Load BS SG from SB(0:5)
*) vy = EX|BE|BS|S6

MICROOPERATIONS FOR __Counter A, CA

[ 7 [2 It 7 I 7 [2 [ 7 ]
M Mi M
1 =3 i F2 [5Y F3 S3 E 4 MICROOPERATION
XX Load CA from CM (16 bitls), SB (16 bits), EX
CA := CM[D[dddddddD|ddddddd] dd ful ca := (16 bits), or CAS (16 biis)
CA+1 M| CA +1 M} CA +1 Increment CA
CA -1 M| CA -1 M| CA -1 Decrement CA
CAC M| CAC M| CAC Clear CA
M| CASP +1 Increment CAS Pointer
M| CASP -1 Decrement CAS Pointer
M} CASPC Clear'CAS Pointer
M} CAS := CA Load CA Save RG from CA
MICROOPERATIONS FOR _Counter B, CB
7 [ 2 J1] 7 [t] 7 [2 I 7 ]
M M| M
F1 St i F2 ol 3 S3 S =4 MICROOPERAT ION
A% Load CB from CM (16 bits),_*_ SB (16 bits), BE
cB = CMEDl dddddddfDl ddddddd|ldd M| CB := (6 bits), or CBS (16 bits)
cB_+1 M| CB +1 M} CB +1 Increment CB
cB -1 M| CB ~1 Mj CB -1 Decrement CB
cBC M| CBC M| CBC Clear CB
M| CBSP +1 increment CBS Pointer
M| CBSP -1 Decrement CBS Pointer
M| CBSPC Clear CBS Pointer
M| CBS :=CB Load CB Save RG from CB
- _ [ +) when BE is selected as the source, the high
1 vv=sg|BE/CBS order 10 bits of CB are set to 0
MICROOPERATIONS FOR Condition Save Register, CR
I 7 [2 1] ? [T] 7 [2 ]7] i J
M M M
F1 St F2 o F3 S3 Y 4 MICROOPERATION
2z
M| CRP := CM |D dddd] Load CR RG Pointer from CM|EX|S1|S2
M CRP +1 Increment CR RG Pointer
M CRP -1 Decrement CR RG Pointer
M} CRPC Clear CR RG Pointer
ZZ
M| CRST := Ml CRS1 := CM ID dddd| Load CR RG Savel buffer from CM| EX|S1 |52
CRS2 (= CRP ] Load CR RG Save2 buffer from CR RG Pointer
CR := SC M| CR:= SC M| CR:= SC Load CR RG with the current Selected Condition
%Miglwxlep,er{dj g.on. short orliohg cycle
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MICROOPERATICNS FOR Common Shifters (AS, VS, DS) Standard Group and parallel

options, CS

L 7 [2 1] 7 [1] 7 12 J7] 7 ]
M M M ]
cp 1 st b5 F2 &Y F3 S3 Y Fa MICROOPERATION
1 ZZ
2 M| CSP := C™m [D d dddjLoad the CS Pointer from CM|EX|S1|s2
2 M| CSP +1 Increment the CS Pointer
2 M| CSP -1 Decrement the CS Pointer
2 M| CspPC Clear the CS Pointer
22
2 Ml Csst = M| CSS1 ;= Cm D d d’dd] Load the CS Savel register from CM| EX|S1 |s2
1 CSS2 :=CSP Ml CSS2:=CSP Load the CS Save2 register from the CS Pointer
1 (M| CSSG = 5B Load the CS SG from SB(0:5)
2 CsLL Set AS,VS, and DS to logical left shift
2 M| CSLR Set AS,VS, and DS to logical right shift
Clear AS,VS, and DS Variable Bit Selection
2 Ml CS(Vv)sC register B
XX Load AS(0), VvS(0) and DS(0:1) Source register
2 ] C3(0)s := CM[D ddd from CM| EX| SB|SG
XX Load AS(63), VS(63) and DS(62:63) Source roc
2 | cs(63)s := [e1¥] [5) ddd gister from CM|EX|sB|sG
X Load AS(V), VvS(V) and DS(V) Selection register
2 | csv)s = CMID] dddddd from CM| EX|SB|sG
MICROOPERATIONS FOR Control Unit, CU
L 7 [2 ] 7 1 7 [ 2 1] 7 J
M M M
C 1 St Y F2 foY F3 53'5 4 MICROOPERAT ION
p
1 M| SA =SB Load Save Address register from SB(0:11)
1 M| SA +1 Increment Save Address
1 SA -1 Decrement Save Address
1 M| SAC Clear Save Address
1 M| CUALF := D ddddd]|Load CU AL Function register withddddd
SET CU
1 ALF + Set CU AL Function register to A+B
1 M| RA 1t Decrement RA Pointer
x [RA Y M| RA | M| RA Increment RA Pointer and then Load RA
1 M| RAPC Clear RA Pointer
i RSBt Decrement RB Pointer
17| re M RB ! M RB ! Increment RB Pointer and then Load RB
1 RBPC Clear RB Pointer
i M| EX Load L.oad the External register
1 EX -+ 4 Shift the External register 4 bits right cyclic
Load control store and then choose A+l as the
1 CS Load _ address of the next microinstruction
1 INTON M| INTON M| INTON Ehable interrupt conditions to force 0 address
1 INTOFF Ml INTOFF M| INTOFF Disable interrupt conditions from forcing 0 address
1 SET CUALF B Set CUAL Function register to B
1 M| RTCT OFF Turn Real Time Clock overflow toggle off
*) requires two microinstruction
cycles to complete this action




MICROOPERATIONS FOR

Double Shifter, DS

L 7 [ 2 [ 7 ] 7 T2 1] 7
M M; M
M M s3M Fa "
=1 S ) F2 5 =3 ) MICROOPERATION
XX Load DS{0:1) Source register from
DS(0:1)S := CM|D ddd CM|EX|SB|SG
XX L.oad DS(62:63) Source register from
DS(62:63)S := [CMID ddd CM|EX|SB|SG
XX Load DS(V) Selection register from
DS(V)S = CM[D] dddddd CM|EX|SB|SG
mMf DSLL Set the DS to logical left shift
M| DSLR Set the DS to logical right shift
M| DS(V)SC Clear DS(V) Selection register
M| DS{V)S +1 Increment DS(V) Selection register
M| DS(V)S -1 Decrement DS(V) Selection register

MICROCPERATIONS FOR

Input Port A, and Input Port B, |A and 1B

I 7 [ 2] 7 '] 7 [ 2 11 7
M M M
F1 a5y F2 oY F3 S3 ) F4 MICROOPERAT ION
EE
1AD ;= CM D dddd L.oad IA Device register from CM|E>(():SB ] EX1
IAA Ml IAA M| TAA Activate Port, i.e. read
M| IADC Clear IA Device register
IAD +1 Increment [A Device register
EE
1BD := cMlD dddd Load IB Device register from CM|EX0[sB | Ext
IBA := M IBA M IBA Activate Port, i.e., read
M] 18DC Clear IB Device register
IBD +1 Increment |B Device register
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MICROOPERATIONS FOR L_oading Mask Registers A, LA

L 7 [ 211 7 [T ] 7 [ 2T] 7 }
M) M
1 St % F2 E_i =3 Sk F4 MICROOPERATION
2z
LAP := CMID dddd Load LA Pointer from CM|EX|S1 |52
LAP +1 M{ LAP +1 M| LAP +1 Increment LA Pointer
LAP -1 M| LAP ~1 M| LAP -1 Decrement LA Pointer
LAPC . M| LAPC Clear LA Pointer
ZZ.
LASI := CM]D dddd M LAST := Load LA Savel register fromCM| EX|S1|52
M| LAS2:=LAP Load LA Save2 register from LA Pointer
LA = SB Load LA from S8(0:63)
MICROOPERATIONS FOR _| oading Mask Registers B, LB
[ 7 [2 It 7 ] 7 [ 2 [ ? J
M Mi M .
=1 St E_é F2 E_b =3 S3 E F4 MICROOPERATION
ZZ
MLl BD = CM D dddd|Load LB Pointer from CM|EXisl|s2
M [ LBP +1 LBP +1 M| LBP +1 Increment L.B Pointer
M LBP -1 M| LBP -1 M.LBP -1 Decrement LB Pointer
LBPC M| L.BPC Clear LB Pointer
Z2Z
M{LBSI := M| LBST := cM b ddddiload LB Savel register from CM|EX]|S1|s2
LBS2:=LBP Load LB Save2 register from LB Pointer
M| LB = SB Load LB from SB(0:63)
M| LPC Clear both LA Pointer and L.B Pointer

MICROOPERATIONS FOR _Local AL Registers, LR

[ 7 [2T7] 7 | 7 [2 17 7 J
M M| M
=1 St E F2 E—& 3 S3 E =4 MICROOPERATION
LRIP :=
DS(Viv+1) Load LR Input Pointer with DS(V:\/+1)
LRIP +1 Increment LR input Pointer
LRIP -1 Decrement LR Input Pointer
LRIPC Clear LR input Pointer

LROP :=
Ml DS(V:iv+ ) Load LR Output Pointer with DS(\V:\V+1)

M| LROP +1 Increment LR Output Pointer
M] LROP -1 Decrement LR Output Pointer
M} ILROPC Clear LR Output Pointer
LRP := LRP :=
M DS(\/:V+1) M| DS(\v: v+ ) Load both LRIP and LROP wijth DS(\/;\/—H)
M} LRPC M! LRPC Clear both LRIP and LROP
LRP +1 M| LRP +1 Increment both LRIP and LROP

LRP -1 M[ LRP -1 Decrement both LLRIP and LROP




MICROOPERATIONS FOR __Bus Masi Registers, MAandMB

L 7 [ 2 1] 7 1] 7 [2 [ 7 J
M M) M
F1 St ES F2 5y, F3 S3 E F4 MICROOPERATION
XX
MAP := cMm|D dddd M| MAP := Load MA Pointer from CM| EX|SB|SG
MAP +1 M MAP +1 M| MAP -+t increment MA Pointer
MAP -1 M| MAP -1 M| MAP -1 Decrement MA Pointer
MAPC M| MAPC M| MAPC Clear MA Pointer
XX
8P = CcM|D dddd MBP = Load M8 Pointer from CM| EX|SB|SG
MBP +1 M| MBP +1 MIMBP +1 Increment MB Pointer
MBP -1 M MBP -1 M} MBP -1 Decrement MB Pointer
MBPC M MBPC M MBPC Clear MB Pointer
zZ
M| BMPP := CM {D dd d d [ Load BM Pointer SG Pointer from CM| EX|S1|S2
BMPP +1 Increment BMP S G Pointer
M| BMPP -1 Decrement BMP SG Pointer
M| BMPPC Clear BMP SG Pointer
ZZ
BMPS! ;= M| BMPST = CM §D| d d dd|Load BMP SG Savel register from CM|EX|S1|S2
BMPS2 =
BMPP [oad BMP SG Save2 register from the BMPP
M} BMP := SB Load BMP SG with S8(0:3)

MICROOPERATIONS FOR Output Ports A, B, C and D, OA, OB, OC and OD

L 7 [ 2 Jt] ? [T 7 [ 2 T 7 ]
M M ™
F1 S 5, F2 Y F3 S3 Y 4 MICROOPERATION
EE
M] OAD := CM[D d ddd| Load OA Device register from CM|EX0|sB|EX1
OAA d M| OAA M| OAA Activate Port, i.e., write OA(0:63)d
M| OADC Clear OA Device register
EE
M| OBD := CM|D d d dd[ Load OB Device register from CM| EX0|sSB|EX1
OBA d M OBA M| OBA Activate Port, i.e., write OB(0:63)d
M OBDC Clear OB Device register
EE]|
oCD := cMID d d d d] Load OC Device register from CM|EX0|sB|EXI
OCA o OCA M OCA Activate Port, i.e., write OC{0:63)d
ocDC Clear IC Device register
L 1 IMOCi=BUS . Load OC from BUS(0:63)
EE
M| ODD := CM [D d d d d|Load OD Device register from CM|EX0|SB|EX1
ODA d M| ODA M | ODA Activate Port, i.e., write OD{0:63)d
M| ODDC Clear OD Device register
oD:=BUS | Load OD from BUS(0:63)




MICROOPERATICNS FOR _Postshift Masks, PA, PB, and PG

[ 7 2 17] 7 '] 7 T2 Irf ? ]
M M M
Ft s 5 F2 o F3 S3 5 F4 MICROOPERATION
Mask Generator Control Source Selection re—
M| PGS := dd gister is set to dd; dd = CM|EX|BE|SG
M| PGS +1 M| PGS +t Increment PG Selection register
M P =1 Mi PGS -1 Decrement PG Selection register
M| PGSC M| PGSC Clear PG Selection register
THIS DATA IS REQUIRED WHENEVER THE MASK
Diddddddd GENERATOR CONTROL IS USING CM AS DATA
zz
M| PGP = CM D dddd|toad PG SG Pointer from CM|EX|S1|S2
M| PGP +1 Increment RG SG Pointer
M| PGP -1 Decrement PG SG Pointer
M| PGPC Clear PG SG Pointer
zZZ
M| PGS1 ;= M| PGSI_:= CM D] d d dd| Load PG Savel register from CM|EX|S1 |52
PGS2:=PGP. Load PG Save2 register from PGP
M| PGSG (=SB Load PG SG from SB(0:6)
XX
PAP = cm]D dddd Load PA Pointer from CM|EX|SB|RG
PAP +1 PAP +1 Increment PA Pointer
PAP -1 PAP -1 Decrement PA Pointer
PARPC M PAPC Clear PA Pointer
M| PA:=BUS Load PA RG from BUS(0:63)
XX
PBP ;= CMID dddd Load PB Pointer from CM| EX|SB|SG '
PBP +1 M| PBP +1 increment PB Pointer i
PBP -1 M| PBP -1 Decrement PB Pointer
PBPC M| PBPC Clear PB Pointer }
|
M| PB:=BUS Load PB RG from BUS(0:63) d
}
Mi{ PAB +1 increment PA and PB Pointer
M| PAB -1 Decrement PA and PB Pointer ’
}
M| PABC Clear PA and PB Pointer
zZZ Load PAB Pointers RG Pointer from
M{ PABPP := [CM |D dddd|cMm|EX]|sST|S2
PABPP +1 increment PABP pointer
M| PABPP -1 Decrement PABP Pointer
M| PABPPC Clear PABP Pointer
ZZ
PABPS! := IM| PABPSI := [CM D d d dd|Load PABP Savel register from CM|EX|St|S2
PABPSZ 1=
PABPP Load PABP Save2 register from PABP Pointer
M|PABP:=SB Load PABP from SB(0:3)




MICROOPERATIONS FOR _Variable Width Shifter, VS
L 7 L2 11 7 It1 7 [ 2 1] 7 ]
M M) M
— =1 S3E F4 3 R
P F1 St Y F2 o F3 ) MICROOPERATION
XX Load the VS(0) Source register from
2 | vs(0)s := cM[D ddd M| vs(o)s ;= |CM|EX|SB|SG
XX Load the VS(63) Source register from
2 | vS(63)5:= |CMID ddd M| vs(63)s := |cM|EX|SB|SG
XX Load the VS(V) Selection register from
2 | vs(Vv)s = CMID] dddddd M| vS(V)s =  |CM|EX|SB|SG
2 M{VSLL Set the VS to a logical left shift
2 Ml VSLR Set the VS to a logical right shift
2 VS{\V)SC Clear the VS(V) Selection register
2 | vs(v)s +1 Increment the VS(V) Selection register
2 | vsiv)s -1 Decrement the VS(V) Selection register
MICROOPERATIONS FOR _Working Registers, WA
[ 7 [2 7] 7 It 7 [2 i} 7 ]
M M) M
= = s3fe F4
b 1 St D, F2 o 3 oY MICROOPERATION
Wl
2 | WAU := cM o dddd Load WA Unit pointer from CM|EX|SB|uUS
2 | WAU +1 M} WAU +1 Increment WA Unit pointer
2 | WAU -1 M} WAU -1 Decrement WA Unit pointer
2 | WALIC M| wWAUC Clear WA Unit pointer
WG
2 MIWAG := CM] D] d ddd| Load WA Group pointer from CM|EX| SB| GS
2 M| WAG +1 Increment WA Group pointer
2 MIWAG -1 Decrement WA Group pointer
2 M| WAGC Clear WA Group pointer R
wl wgl Load WA Unit pointer from CM| EX|SB|US AND
2 | WAP := CM |D dddd CM[D d d d d] load WA Group pointer from CM|EX|SB|GS
2 | WAPC Clear WA Unit pointer and WA Group pointer
Couple WA Unit and Group pointers to form an
1 MICOUPLE A 8 bit counter
Uncouple WA Unit and Group pointers to form two
1 MIUNCOURLE Al independent 4 bit counters
MICROOPERATIONS FOR WA Unit and Group Save Registers, WAUS and WAGS
L 7 [ 277] 7 il 7 2] 7 ]
M M M
b F1 St [S F2 ‘i F3 S3 i F4 MICROOPERAT (ON
MIWAUIS:=WAU | L.oad WA Unit Save RG with WAU
2 MIWAUISP +1 increment WA Unit Save RG pointer
MIWAUSP -1 Decrement WA Unit Save RG pointer
2 MIWAULISPC Clear WA Unit Save RG pointer
WAGS:=WAG Load WA Group Save RG with WAG
2 WAGSP +1 Increment WA Group Save RG pointer
2 | WAGSP -1 Decrement WA Group Save RG pointer
2 | WAGSPC Clear WA Group Save RG pointer
Load WA Unit and WA Group Save registers
M WAPS:=WAP| with WAU and WAG respectively
2 M WAPSP +1 Increment WA Unit and WA Group Save pointers
2 M WAPSP -1 Decrement WA Unit and WA Group Save pointers
2 M WAPSPC Clear WA Unit and WA Group Save pointers




MICROOPERATIONS FOR Working Registers, B, wB

L ? [ 2 I 7 [*] 7 [217] 7
M M M
= ~1 S3 Fa4 :
F1 St Q F2 5Y F3 ) MICROOPERATION
wul

M| WBU := CMPp dddd]|Load WB Unit pointer from CM|EX|SB|US

M | WBU +1 M| wBU +1 Increment WB Unit pointer

wBul -1 M| WBU -1 Decrement WB Unit pointer
wsuC Mi wBUC Clear WB Unit pointer
WG
WBG = CM D dddd Load WB Group pointer from CM|EX|SB|GsS

M} WBG +1 ihcrement WB Group pointer

M | WBG -1 Decrement WB Group pointer

M| wBGC Clear WB Group pointer

WG wu L.oad WB Unit pointer from CM|EX|SB|US AND
wBp ;= CMm D dddd CMJD d d d d| load WB Group pointer from CM|EX|SB|GS
M} WBPC Clear WB Unit pointer and WB Group pointer
Couple WB Unit pointer -&nd Group pointers to
MICOUPLE B form an 8 bit counter
Uncouple WB Unit pointer and Group pointer to

M]UNCOUR_E B form two independent 4 bit counters

MICROO®ERATICNS FOR

WB Unit and Group Save Registers, WBUS and WBGS

| [2 T 7 '] 7 1217 7
i =! EML F2 5 F3 S3 % Fa MICROOPERAT ION
M} wBUS:=wBU| Load WB Unit Save RG from WBU
M| WBUS +1 increment WB Unit éave RG ;:;ointer*
wBuS -1 Decrement WB Unit Save RG pointer
M| WBUISPC Clear WB Unit Save RG pointer

WBGS:=WBJ

Load WB Group Save RG from WBG

WBGSP +1

Increment WB Group Save RG pointer

M| WBGSP -1

Decrement WB Group Save RG pointer

M| WBGSPC

Clear WB Group Save RG pointer

M| WBPS:=WBH

Load WB Unit and WB Group Save register with
WBU and WBG respectively

M WBPSP +1

wBPSP -1

Increment WB Unit and WB Group Save pointers

Decrement WB Unit and WB Group Save peointers

WBPSPC

Clear WB Unit and WB Group Save pointers

MICROOPERATIONS FOR Common WA and WB Operations, WC

L 7 [ 2 T17 7 ] 7 [ 2 ]r] 7 ]
=1 St % F2 % F3 S3 % Fa4 MICROOPERATION
M WCU +1 Increment WA and WB Unit pointers
M} WCU -1 Decrement WA and WB Unit pointers
M| wcus Load WA UNnit Save RG and WB Unit Save RG
M| WCGES Load WA Group Save RG and WB Group Save RG
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BSSG Bus Shifter Standard Group 15
BsSS1 BS Savel Register 16
BSS2 BS Save2 Register 17
BUS the BUS 8
CA Counter A 6
CAS Counter A Save Registers 7
CAsSP Counter A Save Register Pointer 7
CB Counter B 55
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CsSsSG Common Shifter Standard Group 45
Csst CSSG Savel Register 46
css2 CSSG Save2 Register 46
cu Control Unit 64
CUAL Control Unit Arithmetical Logical Unit 67
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