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INTRODUCTION

During the life of a cellular organism, the individual cells grow,
divide and die. Our aim in this paper is to examine various mat-
hematical models that represent this process as a sequence of

discrete events.

In section | and Il we give models in which the development of a cell
is not affected by the spatial arrangement of the neighbouring cells.
In section 111 we drop this restriction for one-dimensional orga-
nisms to get thé L indenmayer model [4]. The models in the remai-
ning sections represent attempts to generalise the Lindenmayer
model to higher dimensions. The Von-Neumann cellular array mo-
del of section IV proves unsatisfactory. The geographical models
of section V, VI and VIl are somewhat better for higher dimensional
organisms. The final section gives a precise definition of a class of
models, that includes those models presented earlier in the paper.
The hope is that biologists will find these models suitable for dis-
cribing real organisms and that mathematicians will be stimulated

to prove biologically interesting theorems about them.




I. GRAPH MODELS

Let us focus on the biological phenomen of cell division and death.

In figure 1, we give a pictorial and graphical representation of the
development of an imaginary cellular organism. HHow can we represent
this development by a mathematical model ? Suppose we have a set N
of cell nhames. We can represent a stage in the life of anorganism by
giving for each cell in this life stage, its name and the names of its
neighbours. The representation of the next stage in the life of the

organism is then produced by:

1. using local transformation rules to convert each cell

into a latent organism;

2. using an embedding rule to combine these latent or-

ganisms.
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Fig. 1
The normal development of an imaginary organism
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In figure 2. we show the local transformation rules used in our imagi-

nary organism.

Name of rule Condition Latent organism

SPLIT 0, 1 neighbours O 1
THORN 2 neighbours @

DEATH more than 2 neighbours doesn'!t exist
STABLE none O
Fig. 2

Some local transformation rules for graph models

We note that latent organisms are graphs in which the vertices are

divided into strong border cells (double rings), weak border cells

(single rings) and interior cells (points). The reason for this vertex

division is so that we can formulate the graph model embedding rule:

Give distinct cell names to the vertices of the latent orga-
nisms. If an edge in the latent organism goes from cell i
tocell j then j is a neighbour of i. If iis an interior
cell, then it has no other neighbours. For border cells we
must look at the neighbours of the cell which produced
them. For a strong (weak) border cell the neighbours also
include the (strong) border cells of the neighbouring latent

organisms.




This sounds intricate but figure 3 should make it intelligible.

Cell name 1 2 3
Neighbours 2 1,3 2,4
“w Rule SPLIT|THORN|THORNISPLIT
Latent organism|@ @5:09 @-—-—'-f} @—b‘
11 qujgt 2|3t 3niar 4n
Cell name T ar fau 3t y3ni4al p4n
'/T\, 4D 1l gt fonigr fantarfanlgt
Y 20 ! 21 1t far | ar |3t
3 Neighbours
on 31131212
3n o 3n
Fig. 3

One epoch in the life of an imaginary organism

We have yvet to explain the condition on the local transformation rules.

This expresses a requirement on a cell and its neighbours. If we can

map each cell into a rule in such a way that all these requirements are

met, then the result of the process we have described is said to be a

normal life stage. Sometimes it is convenient to make further distinc-

tions between life stages: e. g. arrested life stage if the local trans-

formation rule STABLE is used.
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Fig. 4

Possible stages in the life of an imaginary organism

At last we can give a precise description of the growth of an organism.
We define a grammar "to be a finite collection of local transformation
rules and seeds (initial life stages). The language generated by I" is
the set of normal life stages that can be grown from a seed by repeated
use of the process we have described above applied to hormal life sta-
ges.For our imaginary organism the appropriate grammar is (sPLIT,
THORN, DEATH, cell with neighbours). If we were also
interested in arrested life stages, we could add rule STABLE to this
grammar. Indeed there is nothing to stop us assigning probabilities to
the various rules and studying the resulting destribution of life stages
at different points of time. This can be done for each of the models in
this paper and it is likely that the existing theory of stochastic automata
[ 7 ]would give biologically inter‘estiné results. However we shall

not discuss this possibility further.




1. WEB MODEL.S

It is not unnatural to suppose that the behaviour of a cell is dependent
on its age and chemical constituents. L.et T be a set of cell types. We
must extend our mathematical model of a life stage in an organism by
requiring an assignment of atype to each of its cells. This extension
increases the range of organisms that can be modelled, because the
conditions in a local transformation rule can now use type information

about a cell and its neighbours. Figure 5 gives an example that is

common in the literature.

Age 0: (seed) *a
Condition a b c d e f g h
l_atent b@b b e@f (o) g h@h
organism c d d a
Fig. 5

A model of Callithomnion roseum




Our mode!l is now very close to the theory of web grammars [5 ]

developed by computer scientists interested in pattern recognition.
Web grammars are like Chomsky grammars in that they have auxiliary
symbols and no parallelism, but even so their theory may prove biolo-

gicially relevant.




1. LINDENMAYER MODELS

~Consider a one-dimensional organism in which an internal cell can divi-
de. Our web model is inadequate, if the state of daughter cells depends
on their order. Even if the context does not effect the particular states

taken up by the daughter cell (0-L. systems), it does affect their order.

The new extension to our mathematical model of a life stage is: not

only must one give the names of the neighbours for each cell, one must

also say which of them is the left neighbour and which is the right

neighbour. With this extension we have still more freedom in expres-
sing conditions in local transformation rules. However we need a new

kind of latent organism and a new embedding rule. A latent organism is

a non-empty word on T. The embedding rule becomes:

Give distinct cell names to the letters in the words of the

latent organism. Join these words according to the ordering

of the original cell-first (last) letters of latent organisms

usually acquire left-(right) neighbours and become right

(left) neighbours. We now have a long word from which one

can read off the left- and right neighbours of each cell.

In figure 6 we show an organism that can be simulated by a Lindenmay-

er model but not by the models we have presented hitherto.

Grammar: seed @ rules name | condition | latent organism
A type a bab
B type b bb
Fig. 6

(cont. )
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Fig. 6

A simple LLindenmayer model

We have chosen to present Lindenmayer systems in a form that can be

generalized to higher dimensions. The price is that the presentation

is somewhat more complicated than that in the extensive literature on

one-dimensional systems |

3 ] This literature pays particular at-

tention to the degree to which context influences local transition rules

(the distinction between 0-L. 1-L. and 2-L. systems) and contains many

interesting results.
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V. ARRAY MODEL.S

How can the model of the last section be extended to dimensions higher
than one? Even although the von Neumann celliular automata are not sa-
tisfactory because they cannot handle cell division, they have been used
to model biological phenomena. Furthermore they may provide insight
into the properties of more general models, because their theory is

well developed [1] .

The array model resembles the Lindenmayer model in that each cell

in an organism has a fixed number of neighbours in a distinguished or-
der. It is simpler than the Lindenmayer model in that the latent organisms
are restricted to being a single cell of some type. This can be seen from
figure 7 which gives an example that Conway has called LIFE-reputedly
for antitheological reasons [ 2 | . We have chosen LIFE be-
cause it cannot be simulated by a graph grammar in spite of the fact

that the rules do not use the order of a cell's neighbours. If the reader
computes one more step in figure 7, he will see that this is because
separate organisms can move about and even combine. Indeed this pos—
sibility can be exploited to such a degree that VVitanyi has been able to
design a cellular model that simulates the whole process of sexual re-

production [10] .

Rules:

Name Condition L atent organism
LLONELY Type x and less than 2 x~-neighbours 0
THRIVES Type x and 2 or 3 X—-neighbours X
SQUASHED | Type x and more than 3 x-neighbours 0
BIRTH Type 0 and precisely 3 x-neighbours X
STABLE Type 0 and not 3 x—-neighbours 0

Fig. 7

(cont.)
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Transformation:

Fy : A

X X X becomes

Cell name K1, 1>K1,2>K1,3>K2, 1>K2,2>K2, 3>(K0, 2>K3, 1>K 3, 25K 3, 3>
x-neighb. 3 5 3 5 6 5 3 3 3 3
t Rule T sQ T SQ | sQ | sQ B B T B
L atent orgd X 0 X 0 0 0 X X X X
Fig. 7

A cellular model

In the theory of (cellular) array models one usually requires that cells
can have a type that is quiescent in the next sense that a cell does not
change from this type if all of its neighbours also have this type. With
this requirement organisms can only grow by extending their skins o-
ver quiescent cells.

In our earlier models latent organisms also had skins: border cells in
graph and web models, 1eft and right ends of words in LLindenmayer
models. Why did we need such a skin 7 In order to formulate the em-
bedding rule for the model, and thereby to specify precisely a new
life stage of an organism in terms of a previous life stage and the de-

velopment of its individual cells.
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V. MAP MODEL. S

Consider a map of continental Europe. How would this change if France
should suffer a revolution and be divided into two parts? The point to
note is that Germany and ltaly cannot be neighbours of the same part
unless this part also has either Spain or Switzerland as a neighbour.
Rosenfeld and Strong [ 8 ] have formulated this restriction

in terms of n-multigraphs graphs whose edges are cyclically ordered
at each vertex. However J. Thatcher has suggested that the resiric-
tion be formulated in terms of a function from an alphabet into words

on the alphabet. This prompts the introduction of circular words on an

alphabet S as ordinary words on S with:

1. a clockwise or anticlockwise orientation;

2. the understanding that the first (last) letter is the
right (left) neighbour of the last (first) letter.

The context of France, its neighbours in their precise ordering, is
given by a circular word on country names. The contexts of the parts

of France after the revolution must be subwords of the context of France.

Before returning to biology it is instructive to extend the geographical
example further by supposing that countries do not divide arbitrarily.
Suppose all revolutions are due to religion, that a revolution only ari-
ses in a state if two of its neighbours have differing religions, and that
the state divides in such a way that each part has a co-religionist as a
neighbour. Then the division of the context of the state depends on the

religions of its neighbours.

Now consider the arrangement of cells in a leaf. Figure 8 uses circu-
lar words to give a mathematical model of such a cell arrangement.
[Nageli 6 |. We also use the convention that the orientation of
clockwise circular words is not shown and leave the mathematical rea-
der to discover why orientations are not needed here and elsewhere in

this section.
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Fig. 8

Representation of a leaf




Now we can present the map model of the life stage of an organism. It
consists of a finite set of cells, each with a name , a type and a con-

text. A context is a circular word on the cell names.

consist of:

1. a finite set of cells, each with a name, a type and a

context;

2. a circular word on the cell names, the skin;

3. a restriction on the way the latent organism can be

embedded (religions in our geographical analogy).

We get the skin of a latent organism by running along its outside edge
and reading off the names of the cells we truck. The restriction limits
the way the skin can be broken into subwords in the embedding process.
Before plunging into the details of this process, let us look at the rules
for the leaf of Phascum Cuspidatum. In figure 9 we have cheated a little
by using a picture instead of giving the latent organisms in the form re-

quired by 1. and 2.

Rules:
Name Condition Latent organism
BUD Primary cel! Division touches
ANTI Secondary cell @ Division touches <o
PERI Secondary cell @ s touchs
STABLE | Tertiary cell @ NONE

Seed: @

cell type:

p

Fig. ©

cell context @

The map grammar for Phascum Cuspidatum

14

The latent organisms
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The reader should consult figure 10, 11, while we give the details of the
embedding rule for the map model. Suppose we have a collection of la~
tent organisms, one for each cell in the current life stage. The first
step is to modify the context of the skin of one of the latent organisms
using the context C of the corresponding cell. We do this by splitting

C into ordinary words, one for each skin cell, then substituting these
ordinary words for occurrences of « in the skin cell contexts. In split-
ting C, we must pay attention to the restriction associated with the la-
tent organism. Having split C, we are ready for the second step — of
substitutingordinary words on skin na'hnes for occurrences of ¢ In the
context of neighbours of c. We repeat this process for each latent orga-

nism in turn.

( \ first word: «© 2 3
second word: 3 «

l.o. Context (B) l.o. Context (T)

1}
N
8
\—/

i}
N
N\

T
Context (B) = 3/ \\QQ Context (T) = /\OO
2/ o/

c (2) 7 e Context (3) K
ontext = onitex =
.../

Fig. 10
Splitting and joining
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. w0 N2 /1 TTNoo
Context (1) = Q ) Context (2) = Q
~— KR/
RN O/'l\\]_
Context (3) = ( ) Context (4) = R)
- \

Fig. 11
Disintegration and rejoining

For a more complicated example we can take a life step in the organism

whose grammar is given in figure 9.

We note that the embedding restriction on the latent organisms are sa-
tisfied in figure 12; « divides the words for the context of cells to
which we applied BUD and ANTI, « is in the second word for the con-

text of the cell to which we applied PERI.
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An epoch in the life of a Phascum Cuspidatum leaf

Cell Name 1 2 3
o 1 1
Context (// \ (/ \\ (//
Rule BUD PERI ANTI
Latent organism @
Context words 3w , © 2 3fjw 31, 1 © , 0 1 2 o0
Name it 1 21! AL
[ele]
Context \
( 1
N
Name 3!
3
Context
(ee]
Fig. 12




In our last example we have a case of multiple touching: cell 3" has two
occurrences of the environment in its context. Paying due attention to

the fact that the order of occurrences of a in the context of b is the re-
verse of the order of occurrences of b in context of a, this can be un-

ravelled mathematically.

However there is another interesting solution: to suppose our circular
words have a pointer like the hand of a clock. The embedding rule

would have to be changed but the alterations are slight. Having made the
changes, one can mention the pointer in the conditions of the transfor-
mation rules. One possibility would be to make the rules dependent on

the direction of the light falling on the organism.

19
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V1. ISLLAND MODELS

Before eggs and other 3-dimensional organisms cah be modelled, we
must generalize our map model to allow islands. How can we use circular
words to describe the relation of England to the rest of Europe? The
answer is to use more than one c.ircular word to describe the context

of the sea. An example which looks more biological is given in figure 13.

Fig. 13

(cont.)
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13

Internal components of an organism
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The description of cell division in the last section (figure 11) must be mo-
dified to allow for the presence of islands. If we assume that the line of di-

vision never splits an island, this modification is easy:

Islands can be distributed arbitrarily between the daugh-

ter cells.

If the line of division is allowed to pass through an island, the modifica-
tion of the cell division rule is not so easily formulated. A related prob-
lem is that of islands, that disintegrate into several islands. At the end
of the next section we shall indicate how these problems can be treated.
Here we shall only describe how the formation of an island affects the
context of a cell. If an island m is formed in a region n then n adds the
counter clockwise circular word m to its context, and m takes the clock-

wise circular word n as its context. Figure 14 should make this clear.




Life history:

Rules:

Name Condition L.atent Organism
BABY Primary @ p
SPLIT Secondary A v
HOLE Secondary s @
STABLE | None o

Fig. 14

(cont.)
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Cell name 1 2 4 6 8 10
00 1 1 2
Context
Q1O O1O
QQ O
VR
&
Rule STABLE | SPLIT HOLE SPLIT HOLE STABLE
L_atent . V @ v @
organism ' A S A S ®

Fig.

14

(cont.)




Cell name 21 Al 41 4n 6! 6! a1 8

Context !

OO

Fig. 14

The development of internal organs
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An island model can be represented as a labelled tree in two ways (figu-
re 15). Either we can have a node for each island or we can have a node
for each cell. In the former case the labels refer to map models and we do
not see which cell an island belongs to; in the latter case the labels are
states and we do not see the interconnection between regions. (See ap-
pendix). Nevertheless it seems likely that the existing theory of tree

automata and grammars can profitably be applied to island models [ 9 ] .



Island tree:

Cell tree:

Fig. 15

Tree representations of island models

27
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Vil., SPHERICAL MODEL.S

At last we can present a model for a 3-dimensional organism. First i-
magine a demon inside one of the cells of a two dimensional organism. It
would see the outside world as a circle, which the neighbouring cells
divide into segments. It could model this world using circular words.
Now imagine a demon inside one of the cellsof athree dimensional orga-
nism. It would see the outside world as a sphere, which the neighbou~
ring cells divide into regions (contact areas, clouds). It could model
this world using spherical words, if only we had a suitable defini-
tion of spherical words. But this has been given us by the last two

sections, spherical words can be defined in terms of circular words.

How can we describe the way a spherical word divides into several
spherical words? For simplicity we consider only division into two
parts in what follows. Revive . the two dimensional demon for a moment.
It split a circular word into two ordinary words by picking two letters,
then converted these back to circular words (see figure 10). In the di-
screte world of the model this corresponds to - splitting a circle into
two lines by picking two points, then converting each line into a circ-
le by adjoining a new line. The analogous process in three dimensions
is - splitting a sphere into two hemispheres by picking . a circle, then
converting each hemisphere into a sphere by adjoining a new hemisphe-
re. We have to make this precise in the discrete world of spherical

words.

L et us define a flat word as a collection of circular words that repre~
sent a map. Figure 8 and 13 give examples of flat words but they are

somewhat special because they have only one unbounded region. In any
case the arrangement of the unbounded regions in a map can be descri-
bedby one counterclockwise circular word, the skin of the correspon-
ding flat word. Consider two flat words. They can be joined by rolling
the skins over one another (ie. modifying the external context of the

unktounded regions. )




Northern hemisphere | Southern hemisphere | Map representation

N-pole view S-pole view S-pole view

4\(1

Fig. 16

The formation of a spherical word from two flat words

29




30

Three examples of the process of joining two flat words are given in figure
16. The last column gives a map representation of the result of the joi-
ning process under the convention: the northern hemisphere encloses the
southern hemisphere, so the orientations of the northern hemisphere cir-
cular words are reversed (remember that eastward passage of the equa-
tor is clockwise from the south pole, anticlockwise from the northpole.
With other conventions we get other map representations of the results.
The important point is that in each example the results of joining the two

flat words is the same spherical word, even although this spherical word

has a multitude of map representations.

But how does a spherical word split into two flat words? What if we pick

a simple closed curve in one of the map representations of the spherical
word and let the inside and outside of the curve give us the two flat words?
This will solve our problem if we can give a precise description without

mentioning map representations,

Map representation Northern hemisphere | Southern hemisphere

P,

&

Fig. 17
The splitting of a spherical word 1




We can define a thread in a spherical word so that it corresponds to a

simple closed curve on a sphere. A thread is a sequence of letters:

such that I] = Ih and for i=1, 2, ..... , h we have

1. li occurs in the circular word that is the context of

b

2. if Ii = IJ. then the circular word that is the context of li
and the occurrences of Ii—] and |i+1 do not se~
parate the occurrences of IJ.__1 and Ij-H .

31

Figure 18 should make this clearer, although it can not illustrate condi-

tion 2 because there is no circular word with more than three letters.



Thread for the split in figure 17:

A letter sequence that is not a thread:

1, 2, 3, 4, 1

Spherical word in figure 17

Cell name Context

4

OO

O

O

1

1O

Fig. 18

Threads and spherical word splitting
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The time has now come when we can define the splitting of a cell ¢

in a three dimensional organism. The process is:

pick a thread in the spherical word that is the con-

text of c;

Use this thread to split the spherical word into two

flat words;

. Join one of these flat words with the flat

word c! and take the resulting spherical word as

the context of the daughter cell c't

Join the other flat word with the flat word c!' and
take the resulting spherical word as the context

of the daughter cell c!

Replace ¢ by c! or c" in the context of the letters

occurring in the two flat words but not in the thread;

Replace ¢ by c! c!m or c! c! in the context of the

letters occurring in the threads.

Criginal S~pole representation of the context of the dividing cell

33




Context of daughter cells

Context of other cells

PO,

Fig. 19

The result of a 3-dimensional split
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It is natural to ask for a three dimensional analogue of islands. The

answer is immediate:

a cell in a three dimensional organism can have more

than one spherical word as its context.

We can allow rules by which a cell can become pregnant in that the rule
adds a one letter spherical word to the context of the cell. The reader
who has followed us this far will have no difficulty in filling in the de-

tails.

et us conclude this section by pointing out that our concept of a thread
may prove useful for two dimensional organisms. When such organisms
have the environment as their only unbounded region, they may be con-
sidered as collections of spherical words. In this case our concept of
a thread can be used to describe the modification of cell division in the
case when the line of division passes through an island - the problem

we left open in the last section.
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V1. THE GENERAL MODEL

A life stage in an organism is represented by a finite set of cell names,
a map T from these cell names into a set of types, and a map y from these
cell names into a set of contexis. The development of an organism is
modelled by a grammar which consists of a set of initial life stages and
a set of local transformation rules. A transformation rule consists of
a condition and a latent organism. The condition only refers to the re-
sult of applying the map T to the context of a cell and the cell itself. A
new life stage resulis if we can assign rules to the cells of a life stage
in such a way that all conditions of the rule are met. The rules gives

a latent organism for each cell and the embedding rule for the model
tells how these latent organisms are combined into the new life stage.
The embedding rule may well refer to the map y of the life stage of the

organism that is developing into a new life stage.

As the problem of generalizing the LLindenmayer model prompted this
paper, let us close it with an indication that we have found the correct
generalization. In topology a 2-sphere is a circle and a 1-sphere con-
sists of two points. Here the context of a 1-dimensional cell is a two
letter word, the context of a 2-dimensional cell is a circular word, and
the context of a 3—-dimensional cell is a spherical word. If the real world
had a higher dimension, the appropriate Lindenmayer model would be at
hand.




IX. APPENDIX

Fig. 20

A tree representation of an island model

37
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