A Short Description of
A Translator Writing System
(BOBS - System)

Bent Bruun Kristensen
Ole Lehrmann Madsen
Bent Bak Jensen
Sgren Henrik Eriksen

DAIMI PB - 11
February 1973

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

]
-

— [|

A SHORT DESCRIPTION OF A TRANSLATOR

WRITING SYSTEM

(BOBS - SYSTEM)

BY

BENT BRUUN KRISTENSEN
OLE LEHRMANN MADSEN
BENT BAK JENSEN
SOREN HENRIK ERIKSEN

DEPARTMENT OF COMPUTER SCIENCE
INSTITUTE OF MATEMATICS

UNIVERSITY OF AARHUS
DENMARK

INTRODUCTION

This paper is a short description of a translator writing system called
the BOBS-SYSTEM, It is an implementation of some of the ideas in the
Ph. D. thesis of De Remer [1] The class of grammars in consideration
is the LR(K)-grammars, first described by Knuth in [3], whose imple-
mentationrequiresvery large tables;’ However De Remer claims that by
using his techniques one achieves parsers, which are competitive in
both space and time with precedence par‘ser's.' Horning and LLalonde dis-
cuss this topic closer in [5]. De Remer defines a hierarchy of LR(K)-
grammars in ascending order of complexity by LR(0), SLR(K), LALR(K),
L{M)R(K) and LR(K). What we have done is to i mplement a parserge-
nerator in the programming language Pascal [6] for the SLR(1)-gram-

mars.’

NOTATION

The reader has to be familiar with finite state machines (FSM's), deter-
ministic push down automata {(DPDA's), and context free grammars, An

inadequate state is a state in the FSM where applying a production is in-
consistent with applying other productions or reading symbols at the sa-

me time,

GLOBAL DESIGN OF THE SYSTEM

First of all the system is divided into two parts:

1) the parser-generator

2) the parser

In further detail you can divide the parser-generator in the following

parts:

1) input of source grammar
2) grammarchecks

3) generation of the LLR{0)-machine

4) Extension to SLR(1) through global look-ahead
5) Optimization according to De Remer
6) Conversion to DPDA (deterministic push-down automata)

7) Further optimizations

INPUT OF SOURCE GRAMMAR

The source grammar has to be written in a slightly modified BNF (Backus

Normal Form).

GRAMMARCHECKS

This part can be used as an independent part of the system, If you are
designing a grammar for a language it has turned out, that the implemen-
ted grammarchecks are very helpful .‘ But of course the grammarchecks
are an important part of the system as a whole, because you cannot pro-

duce the LLR(0)-machine for an ambiguous grammar.

The following i s a description of the grammarchecks that the system
performs:
1) LLeft and right recursion,
The systems checks, whether any nonterminal is both
left and right recursive, If so, the grammar is ambigious.‘
2) Termination.
The system checks, that all nonterminals can produce a
string of only terminals.
3) Erasure.

The system checks,whether any nonterminal can produce
the empty string, If so the grammar is modified so it cannot,

(The modified grammar produces the same language).

4) ldentical productions,

The grammar is modified by removing the needless pro-

ductions,

5) Unused productions,

The system checks, that every nonterminal except the
goalsymbiol appears in both left andright side of a

pr‘oduction.v

6) Removing simple productions,

A simple production is a production, of which left and
right side consists of only a single nonterminal, and
the left side nonterminal does not appear on the left
side of any other production, The grammar is modifi-

ed by eliminating all the simple productions,

7) Connection.

The system checks, that all nonterminals can be derived

from the goalsymbol.v

GENERATION OF THE LR(0) AND EXTENSION TO SLR(1).

The LR(0)-machine is derived by using the technique developed by De
Remer in [1] and [2]. If the LR(0) is generated without any inadequate
states, then the source grammar is LR(0), On the contrary, if inadequa-
te states exist, you have to repair the machine by making look-ahead,

In our case we have only implemented the global one look-ahead (SL_R(1)),

and if this is not sufficient one has to change the source grammar,

OPTIMIZATION (5,6 and 7).

If the source grammar happened to be LR(0) or SLR(1), youwill get a

rather big machine in both space and time,

Two major optimi zations suggested by De Remer are therefore perfor-
med at this point, Furthermore a more tricky optimization due to L.a-

londe [4] is done to the machine,

OUTPUT FROM THE PARSER-GENERATOR

1) A list of the source grammar, exactly as you have
written it. Any error according to the syntax of

input is marked.
2) The results of the earlier mentioned grammarchecks,

3) The grammar written ina nice BNF with possible modi-

fications.
4) Description of states which are not SLR(1).

5) An error message table for use when parsing a string

in error,

6) The parsetables (the optimized LR(0) or SLR(1) machine)

in the form of a selfcontained Pascal-program,

If there are errors in input you will only get 1,LLogical errors in the
grammar will give you 1, 2 and 3. If there are no logical errors and
the grammar is not SLR(1) you will also get 4, In the case that the gram-

mar is SLLR(1) you will get 1, 2, 3, 5 and 6,

In addition there exist several other output facilities, mentioned in [9]

but they are only of little interest for this paper.'

THE PARSER

As mentioned the parser is a pascal-program, which without changes will
check the syntax of an input-string written in the language defined by the

source-grammar, If you want to add semantic actions this is possxble,v

The parser is roughly divided into three parts:

1) Lexical analysis
2) Syntax analysis

3) Error-recovery

LEXICAL ANALYSIS

Because of the important role of an effective lexical analysis for the parser
several are designed.y Two are to be mentioned her*e.‘ The first is a fairly
general but simple one which only transforms the sourceinput into a string
of internal values. The second is of greater importance in our point of
wiew, since it collects identifiers, constants and strings (defined in a
Pascal-like manner), which makes the tables smaller and the parsing fas-

ter,

SYNTAX ANALYSIS

The syntax analyser uses the machine produced by the generator, to parse
the input-string. When the syntax analyser makes a reduction a procedure
code is called with the number of the production (reduction) as a parameter,
The user may then decide, what kind of semantic action, he wants to per-
for‘m.' This is done by writing the body of the procedure 'CODE!, which

is the only place one has to change the program but of course you may also

add new procedures and declarations,

ERROR-RECOVERY

Discovering an error under parsing, an error-recovery algorithm is cal-
led, which in a Pascal-like mannermakes the error-symbol (with arrows
under error-symbols and matching numbers in the margin), and try to re-

cover theerror and continue parsing.

CONCLUSIONS

The system has not yet been compared with other systems of the same kind,

so you cannot tell whether the system is very good or not,

The largest grammar been treated by the system so far, is the grammar of
the language Pascal [6]. The SLR(1) machine for this grammar with more
than 250 productions occupies about 7000 60 bit words and the speed of the
parser is about the same as the speed of the Pascal-compiler available on

the CDC 6400, But our parser does not produce code,

Until now only a few others than the group, who have developed the system
have been using it, (first available for other users in december 72), But

the experience we already have had by the different types of grammars

tells that one without too much work, can modify grammars to become SLR(1)
and can change parts of the parser to solve the special needs that one

might have,
The work was started as a datalogi 2 project by Mr, Peter Kornerup,

whose good ideas and great interest have been of great help to the accomplish-

ment of the project,

FURTHER PROJECTS

As the work has been moving along new projects have ar*isen.' One of

the more interesting ones is the problem of defining reasonable methods. for
making semantics, Several papers in this area have been studied but

only a few things seem to be useful in practice. A work by Gorrie [7]

appears to be one of the better'.v

REFERENCES

[1] De Remer, F,L.
"Practical Translation for LR(K) Languages'.
PH.‘D,'Thesis, Massachusetts Institute of Technology,
Cambridge, Mass. August 1969,

[2] De Remer, F,L.
"Simple LR{K) Grammars!',
CACM p. 453-459, (14,7,1971)

[3] Knuth,D. E.’
"On the Translation of LLanguages from Left to Right!,
INF. and CONT. p. 607-639. (oct. 1965),

[4] Lalonde
"An efficient LALR-Parser~Generator',
Tech. Report CSRG-2, University of Toronto,
Toronto, Ontario, 1971,

[5] Horning, J. J.
L_alonde, W, R.
"Empirical Comparison of LR(K) and precedence Parsers',
Tech. Report CSRG-1. University of Toronto,

Toronto, Ontario, 1970,

()]

[6] Wirth, N,
"The Programming LLanguage Pascal!

ACTA informatica 1,35-63(1971).

[7] Gorrie, J.D.
"A Processor Generator System!!,
Tech, Report CSRG-3.

University of Toronto, Toronto Ontario, 1971,

(8]

[9]

BOBS

Bent Baek Jensen

Ole LLehrmann Madsen

Bent Bruun Kristensen

Sgren Henrik Eriksen

"Obligatorisk datalogi 2 opgave,
SLR(1)-Parsergenerator og Parsenr!!,
DAIMI, Aarhus Universitet,

"BOBS-SYSTEM Bruger Vejledning!!,
Bent Bak Jensen

Ole LLehrmann Madsen

Bent Bruun Kristensen

Séren Henrik Eriksen

DAIMI PBnr, 10, December 1972

Aarhus Universitet

