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Introduction.

This publication is the thesis for my mastersdegree, and it is
not presented in a form suitable for publishing as a paper. 1t is preferable
if the reader is somewhat familiar with the theory of deterministic and
stochastic finite~state systems, but not necessary since the thesis is
almost selfcontained.

The main idea of this thesis is the introduction of a new type of
information flow in decomposition models for stochastic finite-state systems
(the next state of a transition from the front to the tail component of a
serial interconnection of two systems). In the loop-free case this pheno-
menon is introduced in section 2, and its implications are discussed in
sections 3-6. In the feed-back case the phenomenon is introduced and
shortly discussed in section 7.

Section 1 gives a short introduction to the field of stochastic
finite~state systems - for those who are familiar with this field section 1
may be skipped. In section 2 well-known results on serial (cascade) and
parallel decompositions of stochastic systems are stated, a new type of
decomposition is introduced (denoted strict decomposition), and results
on this, equivalent to the above mentioned, are stated. Section 3 is formed
as a short comparison of the cascade and the strict decomposition. It
turns out that the difference between the two types of decomposition is
closely related to the '"don't care!'-concept, and in connection with the
discussion of section 3, the use of ''don't care!'-transitions in the cascade
model with respect to synthesis is pointed out in section 4. In section 5

results on a type of decomposition originally due to E. S. Gelenbe are



stated, and the relation between this, the cascade, and the strict type of
decomposition is studied. In section. 6 it is indicated (by an example) that
the concept of state-splitting might be useful in the strict decomposition
model. Finally two feed-back models (maximal and super-maximal) are
studied in section 7 - the results on the first due to A. Paz, and the results

on the second due to the author.




SECTION 1

Stochastic machines of various types

During the years around 1960 several people from all over the
world became interested in the following problem: How to generalize
the rapidly growing theory of deterministic automata to a theory of a
probabilistic model, (perhaps)better suited to the real world, where
many processes can't possibly be described in the strict deterministic
or even the indeterministic models of automata theory known at that
time and today. One might even argue that, theoretically, no process
in the world that we know today could possibly be described in a
deterministic model. Anyway, | am not going into any philosophical
discussion about the motivation for the work of these people - instead
| shall go straight to the point, and define essentially the model that
was commonly accepted as the result of their investigations. To do

that | shall need the following:

Def. 1.1
A vector g = (771, Toseooo , M, ) with real entries is said to be

2)

n
stochasticiff” Viios=q; =<1 and Zmy = 1. A matrix is said to
1=y

be stochastic iff all it's rows are stochastic vectors.

Notation
Throughout this paper | shall always denote sets (and matrices)
in capital letters, and elements from a set (and a matrix) in the corre-

sponding small letters. The ilth element of aset S will sometimes be




referred to as s; - sometimes just as i. Hopefully this will cause no con-
fusion.

If S is any finite set then |S|denotes the number of elements of S.

Definition 1.2

A stochastic finite state system (SFS) is a system (S, X, {M(x) }),
where S and X are finite, non-empty sets (the set of states and the in-

put- alphabet, respectively), and { M(x)} is a set containing | x| sto-

Interpretation

A SFS may be viewed as a device with an input tape - reading sym-
bols from this tape indiscretetime~intervals. At any time-interval the
SFS is in one of its states. At the end of each time-interval the SFS
reads an input symbol and changes state indeterministically, in that the
(i,i)'th entry of M(x), m, ,(x), specifies the probability of changing from

state s, to s; reading the input symbol x. So, the next state of an SFS

i
is dependent only on the present state, the present input symbol, and
the probabilities specified in the set of matrices { M(x)}, which means
that the behaviour of the SFS is completely specified from { M(x)} -

usually called the set of transition matrices, the elements of the ma-

trices called transition probabilities.

Definition 1.3

Let M=(S, X, {M(x)} be a SFS. Let X ¥ denote the set of all finite

sequences over the alphabet X, and let ue X *, 1f u is equal to the empty




string (usually denoted A ) then M(u) is defined as the identity matrix.

Ifu=>x X5...% then M(u) =M(>x )*M(xz)*. ... *M(x).

From simple rules of probability theory and matrix multiplication

1)

it follows that M(u) is a stochastic matrix for every u€ X*, and 2) the
(i, )'th entry in M(u) equals the probability of the SFS to be in state s;
when started in s; and having read the input sequence u (it follows from
the interpretation above that the necessary independency among events
is assumed).

If all the transition probabilities of a SFS equal either O or 1 1t is
easily seen that the SFS reduces to an ordinary deterministic auiomaton
so def. 1.2 abo&zé is really a strict gendralization of a'deterministic
automaton. This imposes among other things that any theorem derivable
for SFS's contains a theorem for deterministic automata as a special
result.

It is less trivial that the SFS-model is also in some sense a
generalization of the classical models of deterministic finite-state
automata with output - f. ex. the well known Moore - and Mealy types
of machines, concepts with which | expect the reader to be familiar.

I shall try to make this clear in the following.

inthe literature different probabilistic generalizations of the Moore-
and Mealy types of deterministic machines have been given (this is
possible since the probabilistic models are more elaborate in structure
than the deterministic ones). | shall just give two examples of such

generalizations - both of them due to Paz [8]




Definition 1.4

A stochastic Mealy machine is a quadruple M=(S, X, Y, {M(y|x)})

where S and X are as in def. 1.2, VY is a finite output alphabet, and

Yl square matrices of order |S|,one

1)

.

{M(y|x)} is a set containing | X

for each input-output pair of symbols, such that 0=my; (y|><)é1 for
S

each x€ X, ye€YvY, 1£i,j£|S| , and z)ng z mij(ylx)= 1, for each x€ X,
i=1

1=i<| s|.

Interpretation

Our device is now equipped with an output tape. my (y| x) is inter-
preted as follows: Given that the machine is in state s; and that it reads
x on the input tape - m; (yl x) is the probability that the machine will
change state to s; and at the same time print the symbol y on the output
tape.

If an input-output sequence is defined as any pair of sequences from
the output and the input alphabet respectively, (v[ u), VEY¥*, ue X¥, for
which lvl = ful , where l- l denotes the length of a sequence, then the
definition of M(yl x) for a Mealy machine can be extended to all input-
output sequences in the following way: If (vi u)=(A,A) then M(vl u)=1
(the identity matrix of order ‘Sl ). If (vl =0y, Yaou.¥ |><;L Xg .« X ) then
M(v]u) =M(y |5 )*Mlyz | x2)*. ... *M(yy | % ). 1t is easily seen that the (i, j)'th
entry in M(vl u) is the probability of the machine ending in state Sy print-
ing the sequence v on the output tape, when started in state s; and fed

with the input sequence u.

Definition 1.5

A stochastic Moore machine is a quintuple M= (S, X, Y, {M(x)}, O),




where S, X, and Y are as in def. 1. 4, {M(x)} is a set of square
stochastic matrices of order ISI , one for each input symbol, and O is

a deterministic function from S to V.

Interpretation

Again (as in def. 1.2) m;;(x) is the probability of a transition from
s; to s; when X is read on the input tape. If this transition takes place,
the Moore machine prints O(s;) on its output tape.

Notice that there is a slight difference ( besides the introduction
of probabilistic transitions, of course) between this interpretation and
the usual interpretation of a deterministic Moore machine: The output
is associated with the next state ( the state which the machine is in after
having made its transition on an input symbol ) and not as usual with
the present state ( the state that the machine is in before the input symbol
is read).

Except for this it is easily seen that both def. 1.4 and def. 1.5
reduce to the corresponding definitions of deterministic machines if

all entries in the transition matrices equal 0 or 1.

Definition 1.6

An initiated stochastic system (with or without output - of any type)
with state set S is a system together with a fixed lSi —dimensional

stochastic row-vector, usually denoted .

T is interpreted as the initial state distribution of the system.
For a SFS M=(S, X, {M(x)}) and any input sequence u€ X*, m.M(u) is a

stochastic row-vector specifying the state distribution of M when




started with state distribution T and fed with the input sequence u.

Notation
For a stochastic Mealy or Moore machine M, pTr\T/1 (vl u) denotes the
probability of the machine to produce the sequence v on its output tape

when started with T as its initial state distribution and fed with the input

sequence u. IfT=(0,0,.., 1,..,0) with a single 1 in its i'th place, i.e.

the machine starts with probability 1 in state s; , 1 shall write pSM for
i

pT'\rA. For a stochastic Mealy machine M= (S, X, Y, {M(y|x)}), pr\TA(vl u) is

expressed as pT’\TA(vl u)=meM(v|u)en, where 1 is a | S|-dimensional
column - vector with all entries equal to 1; for a Moore machine the out-
put sequence is directly dependent on the state sequence of the machine,
and px(vl u) is harder to express formally. After a few definitions | shall
however, be able to state acertain relationship between the pTr\r/"s of the two

types of machines.

Definition 1.7

Two stochastic machines M and M! of either Moore or Mealy type
“but with the same input and output alphabets are said to be equivalent
(state-equivalent) iff for any initial state distributionT (every state s;)
of M there exists an initial state distribution ! (a state s!) of M! and
vice versa, such that pTr\r/| (vl u) = p:r/‘,' (vl u) ( pz‘i (vl u) = p:‘;(v‘ u)) for every
input—output sequence (vl u) of length greater than or equal to 1 (where

the length of an input-output sequence is defined as the length of its

components).
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Remark
The only reason not to consider the empty input-output sequence
in the above definition is the fact that the output of a stochastic Moore
machine is associated with the next state which means that p:\ (\ I?\)=0
for any initiated Moore machine M, while for any initiated Mealy machine
M. - - -
M: p N IX)—’H- M(A ]k)-n =Telen = 1.
It is an almost immediate consequence of the definiiton that

equivalence is implied by state—equivalence.

Theorem 1.8

For any stochastic Moore machine there exists a state-equivalent

stochastic Mealy machine, and vice versa.

Proof et M be any stochastic Moore machine M = (S, X,Y, {M(x)},0).
Define a stochastic Mealy machine M! as follows: M! = (s, X,Y, {Mv'(yl x)}),
where the matrices M!(y|x) = [ml! s (y]x)] is defined by

m; 5 (x) if O(s;)=y
m} i (YI X) =
0 otherwise
M and M! are easily seen to be state-equivalent.

The interesting part of the theorem is "and vice versall, L.et M now
be any stochastic Mealy machine M= (S, X, Y, {M(y| x)}). Define a stochastic
Moore machine M!=(S!, X, VY, {M(x)},0), where S'=V¥YX S, and the matrices
MI(x) = [ml;(x) ] are defined as follows (Y = {Vi,....%} and the elements

of SI'=V¥YX S are ordered lexicographically):
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- n
Miyy [ %) Mlyz|x) ... .My, | %)
My, | %) . ... e Miye | %)
MI(x) =
LM(yllx).... ...M(ymlx?_

and finally the output-function O is given by: O(y:l ,S1)= Yi, ¥ 5;€S.
Now, first of all the MI-matrices are seen to be stochastic square
matrices of order lSilel so that M! is a welldefined stochastic Moore
machine. Secondly, for any starting state s; of M and any input-output
sequence (vl u) of length greater than or equal to 1: pZ‘i (vl u) =p'\SA;(VI u)
if sl=(y;,s;) for any y,€Y. The proof of this equality is very easy and
straightforward (induction on the length of the input-output sequences),
but it is pretty hard to express formally, so | shall leave it to the
reader and refer to [11] for the details. Now, since the equality holds
for any y, it has been shown that M and the constructed M! are state-

equivalent, and this completes the proof.

It is to be noted that the proof of theorem 1.8 is based on the fact
that the output of a stochastic Moore machine is dependent on the next
state of a transition and not on the present state. However, all authors
(or at teast all that | know of) who have defined the concepts of sto-
chastic Moore and Mealy machines have introduced the same phenomenon.
Salomaa [1 1] defines a weaker generalization of a Mealy machine (re-
quiring the transition and the output to be independent events), and a strong-
er generalization of a Moore machine (allowing the output-function to be
probabilistic — but still a probabilistic function of the next state of a

transition); [11] introduces the definition of a Mealy machine used here
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as '"a finite probabilistic machine!', and finally our definition of a Moore
machine as ""a Rabin machine!". Salomaa compares the different types of
machines with respect to their ability of defining events on the input
alphabet, and he proves a result similiar to theorem 1.8: For any finite
stochastic machine there exists an equivalent Rabin machine.

Now, if one compares the definition of a SFS (def. 1. 2) with the
definition of a Moore machine (def. 1. 5) one sees that there is very
little difference. As a matter of fact a Moore machine may simply be
viewed as a SFS equipped with an output box converting the state of the
system to the corresponding O-value. This justifies my previous
postulate: The SFS-model is a generalization of the classical models of
deterministic finite-state automata with output, and | shall therefore in
the forthcomming sections when talking about decomposition of
stochastic machines restrict myself to SFS!'s - with clear conscience.
Sometimes | shall assume the SFS to be equipped with an output device
(1 shall assume it to be a Moore machine), sometimes not. Hopefully it

will be clear from the context which is the case.
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SECTION 2

Bacon - and strict decomposition

During the sixties the decomposition theory of deterministic
sequential machines was studied to a great extent ( see f. ex. the book
of Hartmanis and Stearns [4] with which | shall assume the reader to be
familiar). Now, most of the research in the field of stochastic automata
has followed well-explored lines from the theory of deterministic
automata (as mentioned a deterministic automaton is a special case of a
stochastic one - therefore many of the theorems derived in the theory
of stochastic automata are simply generalizations of well-known theorems
from the corresponding theory of deterministic automata). So you might
think that the above-mentioned decomposition theory was already
generalized to a decomposition theory for stochastic machines. This is,
however, not the case. A relatively small amount of work has been done
to develop this generalized theory. Bacon [1] did some work in 1964,
but it wasn't followed up until recently by f. ex. Paz [8] [9], Gelenbe
[3], Pugachev [10], Santos [12], (Kuich and Walk [7], Heller [5]).
The present work is closely related to [1], [3], [8], and [9], whereas .
the other references seem to go in other directions.

In this section | shall recall the definitions and results from the
paper of Bacon, all of which are of the deter‘ministic—géneralizing type,
and then introduce a new kind of decomposition for which | shall derive
results equivalent to those of Bacon's.

Let me start by recalling some basic definitions of some matrix

operations.
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Definition 2. 1

Let A and B be any two matrices of dimensions mXxn and pX g
respectively. The Kronecker product of A and B, A® B, is defined as

the matrix C of dimension (m-p) x (n-q) where [c;i, ;1 J=[a;; by 1.

In def. 2.1 the entries of the matrix C are double-indexed. This
simply means that the entries are ordered lexicographically. With this
made clear it is seen that the Kronecker product of A and B may be

thought of as the matrix

— -
g, B -B....... a, B
as; B..o.o.ooo. .

| &1 Bevreiiiian &, B

With this interpretation in mind | shall use the double-indexing of
matrices widely throughout this paper.

From the definition it is easily seen that if A and B are square,
stochastic matrices then A®B is a square, stochastic matrix. This

justifies the following definition:

Definition 2. 2

Let My = (S, %, {M (x)}) and My=(S;, X, {Mz(x)}) be any two SFS's
over the same input alphabet. The parallel interconnection of M, and
Mo, MQM,, is defined as the SFS M= (S, xS;, X, {M(x)}), where

M(x) =M, (x)QM; (x).

Definition 2. 1 and 2. 2 can be extended to define the Kronecker
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product (parallel interconnection) of more than two matrices (SFS!'s).
A closer look at def. 2.2 will soon convince you that it is really a
generalization of the well-known concept of parallel interconnection of
deterministic machines, i.e. Ml® M, is a SFS describing what happens

if you let M, and My work simultaneously in parallel (see fig. 1).

Y
=
v

Y
&
4

M @ M

Fig. 1

The parallel interconnection of two SFS!s.

Definiiton 2, 3

n

Let A be a square, stochastic matrix of order n and let {B(i)}; .,

be a set of square, stochastic matrices of order m — one for each row
of A. The cascade product of A and {B(i)}, A@®{B(i)}, is defined as

the square, stochastic matrix C of order n-m, where [c;y, i1 ]=[ai 7 be (i)].

In this case AQ) {B(i)} may be thought of as the matrix:
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Ta, B(1) a, B(1)...... a . B(1)
a,, B(2).......
ay,; B(n)o.ooooa... a,, B(n)

Definition 2. 4

LetM, =(S,,X, {M (X)}) and My= (S5, XX S, {Ma(x,5 )}) be two
SFS!s. The cascade interconnection of the two, M @M, is the SFS
is

M= (S xSy, X,{M(x)}), where M(x) =M, (x) @{M,(x, sl)}SJL es, * M,

called the front- and My the tail-machine of the interconnection.

A graphical representation of a cascade interconnection of two
SFS!s is shown In fig, 2 - exactly the picture of the well~known
cascade interconnection of two deterministic machines. As for def. 2. 2,
def. 2. 4 may also easily be extended to define the cascade interconnection

of more than two SFSis.,

] ) 1
i {
i !
i ]
' {
x : T o | o] |
: My Mg \ Yz
" > »— T —p—
] i
! v :
: i Y1 »—
f i
M @ M
Fig. 2

The cascade interconnection of two SFS!s.
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Definition 2. 5

Let M=(S, X, {M(x)}) be a SFS. A state s, is said to be accessible

from state s; iff there exists an input sequence u& X* such that m; (w#o.

Any state is accessible from itself since m;; (A\)=1 for every i.
Furthermore it is easy to prove the following for any SFS M as in def. 2. 5:

s; is accessible from s;

J
Du€x, |uls|s|:m,(W#£0
From this it follows that you can effectively decide in a finite number of

steps which states are accessible from a given state s;.

Definition 2.6

Let Mbe a SFS, M=(S, X, {M(x)}). If S'c S then the set of states

accessible from S! is defined as {sj l s; is accessible from some s; € Sy,

Definition 2.7

L.et M be a SFS as in def. 2.6, and S'SS. S! is said to be a
persistent {ndin~transient ) subsét of &'iff the set:0f states accessible -

from Si.is a.subset of Si,

A "'persistent subset S! of S!' may be viewed as a "subsystem of
the SFS M! in the following sense: delete all rows and coloumns in the
transition matrices corresponding to states not in St - the result is a
well-defined SFS with state set S! and input alphabet X. The matrices so
constructed are called stochastic submatrices of the transition matrices

of M. When | later on refer to a persistent subsystem of a SFS | shall
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usually mean a subsystem constructed as described above from a per-

sistent subset of the state set of the SFS.

Definition 2.8

Two SFS!s M=(S, X, {M(x)}) and M!=(S!, X, {M'(x)}) over the same
input alphabet are said to be isomorphic iff they are equal up to a

permutation and a renaming of state sets, i.e. there exists an isomorphism

A(x), ¥s;,5,€S.

©: S->S! such that m; ; (x) = méP(i)CP(J)

Definition 2.9

A SFS M is said to be cascade (paraliel) decomposable iff it is
isomorphic to a persistent subsystem of a cascade (parallel) inter—
connection of two SFS's, such that the number of states in each of the

components are less than the number of states in M.

From remarks above it follows that def. 2.9 is a generalization of
concepts from the theory of deterministic machines. The goal of the next
pages is to derive necessary and sufficient conditions for a SFS to be
cascade (parallel) decomposable - (hopefully) natural generalizations of
the well-known conditions from the deterministic case. But first the

following obvious result which | shall need in one of the next -sections.

Proposition 2. 10

The relation "isomorphic to a persistent subsystem of!l is
transitive. So is the relation !'state equivalent to'' between SFS!s with
output. Furthermore, if M is isomorphic to a persistent subsystem of

M!, where M and M! are SFS!s with output, with isomorphism ¢, and
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if: ¥ s€S: O(s) =0 p(s)), where S is the state set of M,and O and O! are
the outputfunctions of M and M! respectively, then M is state equivalent

to a persistent subsystem of Ml,

Notation
For any set S, [P(S) denotes the set of all subsets of S. Elements
of P(S) will be denoted P(S). The isomorphism ® in prop. 2.10 may in

this notation be expressed as ©®: S~ P(3!), where S! is the state set of M!,

In the following | shall assume the reader to be familiar with the
theory of partitions on sets - if he is not, | shall refer to the first
section in the book of Hartmanis and Stearns [4].1 shall use the following
notation in connection with partitions: A partition T on the set
S=1{s ,S3,...,5,} will be specified by a simple listing of the blocks of

m, as indicated in the following specifications of the two trivial partitions

O={s ,s5,..,5.} and1={s ,s5,..,5,} (the zero- and the identity-
partition in the lattice formed by the set of partitions on S, with the
usual operators + and+). Formally, m={m ,Ts,...,T}; The i'th block
of m will sometimes be refered to as 1M; - sometimes simply as i. If s;
and s; belong to the same block of m 1 shall write s; =s; (1) (= being

an equivalence relation).

Definition 2. 11

A partition T on the state set of a SFS M=(S, X, {M(x)}) is said
to hav e the substitution property (S. P.) iff every two states belonging

to the same block of T have the same probability of a transition into any
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block of m, i.e. if s; =s; () then for any block 1, of m and any x€ X:
Zomyy(x) =2 my(x)
kem, ke,

The definition of S. P. —partitions for deterministic machines is
obviously a special case of the above definition , but again since
stochastic machines are more elaborate in structure, still other possi-
bilities of generalizing the S. P.-concept might be useful - one of them

is mentioned in section 4.

Definition 2. 12

A partition 11 on the state set of a SFS with output M=(S,13(, Y, {M(x)}, O)
is sald to be dutput cansistent .iff the following holds:

¥si,5,€S: s =5

(m) = O(s;)=0(s;)

Definition 2. 13

et M=(S,:,><, {M(x)}) be a SFS and 1 a S. P. -partition on S. The
m—-image of M is a SFS with state set S! equal to the blocks of m, input
alphabet X, and transiiton matrices M!(x) defined as follows:

MXEX, M, ,T, €ES!: mT'TkTH (x) =_g m;; (x) for some i€m,
JETy

Obviously the m-image of a SFS is a uniquely defined SFS
simulating the transitions between blocks of 1. If M is a SFS with out-
put and T is a S. P. —-partition with output consistence, then it is easily

seen that M and its TT—-image are state equivalent.
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Definition 2. 14

Two partitions T and T on the state set of a SFS M=(S, X, {M(x)})
are said to be independent iff for each pair of blocks (1, T,) of mand T
respectively for which m 01 T, # @ the following holds:
MXEX, ¥s;€S: T my(x) =5 my(x)*Z my;(x)
JEmMNT, Jemy €T
Now finally after all these definitions | am able to state the

following nice and elegant result of Bacon!s:

Theorem 2. 15

A SFS M=(S, X, {M(x)}) is cascade decomposable iff there exist .

two non-trivial partitions T and T such that

1)

2)

m has S. P.
TeT = QO

3) m and T are independent

Remark
o . 1) 2)
In the deterministic case conditions and are necessary and
sufficient for a cascade decomposition (proved by several authors);

3)

condition in theorem 2. 15 is, however, easily seen always to be
fulfilled in the deterministic case, such that theorem 2. 15 really is a
nice and elegant generalization of a well-known theorem for determin-

istic machines.

‘ proof of theorem 2, 15:
1)

Assume firgt that M is cascade decomposable into A@ B, where
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A=(s,, X {A(X}), B= (SB, XX S ps {B(x,sA)}) with

A7
ISAI; lSBI < |S| . Then M is isomorphic to a persistent subsystem
of A@B (with isomorphism ¢:S -+ P(SAX SB), p(s) = (cpA(s), ch(s))

- which means that M{x) equals a stochastic submatrix of the matrix:
(*) c(x) = [cyeyy (X ] = [ay; (x)+ by, (x, )]
Summing (*) above over | you get:

Zli Ciyy3ix) = lZaij (x)s b, (x,1) = aij-Zl] by (%, 1) = a;; (x)

independently of k. This shows that the partition T on S defined in

the following way has S. P.:
s; = s; (M) iff CPA(Si) =CpA(Sj) ¥s;,5,€S
Summing equation {*) over j you get:

L Cyer 1 (x) = Z ay; (x)s by (x, 1) = by (x, 1) ¢ z a;;(x) = by, (x, i)
J J . 3
Combining the two summations gives you:

(* %) Zl Cixagr (X) = T Cypygn (X)) = a5 (%) by (X, 1) = cyyy 51 (%)
3

Now define the partition T on S:

s; = s;(7) iffch(Si)=CpB(Sj) W¥s;,s;€S.

Then, since ¢ is an isomorphism, m. T = 0 and from (**) above

you get immediately that ™ and T are independent. (Remember that the
Cixy;1 — Summands which are not in the corresponding sums in the M =

matrices are all zero since M(x) is a stochastic submatrix of the C~-
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1) 2)

matrices). Hence you have that conditions y and 3

)

are fulfilled for
the defined partitions m and T, which both are nontrivial since

|sAls I8l <Isl.

Al

Now let m and T be given - non-trivial, satisfying 1), z)and 3).

2)
From m and T make a reindexing of the states (and the entries of the
transition-matrices) of M into double-indices M(x) = [my, ;; (x)] where
i and j ranges over the blocks of m and k,| over the blocks of T.
When this is done define two SFS!'s A = (sA,x, {A(x)}) and
B= (SB, XX Sy, {B(x, sA)}) with state sets equal to the blocks of m and T
respectively - transition matrices of A defined by:
Alx) = [a;;(x)] = [% Mi gy 1(x) ] for any T-block T,
which specifies A uniquely according to 1).
The transition matrices of B are defined by :
B(x, i) = [bg(x,1)] = [% M, 51(x) ] , whenever this is defined (whenever
m N T, # @), otherwise the (k, 1)!'th entry of B(x, i) can be chosen at will
(the entries must, however, be chosen such that all B-matrices are
stochastic, i.e. such that B becomes a well-defined SFS).

It is easily verified that M is isomorphic to a persistent subsystem
of A@B - the subsystem defined by the range of the isomorphism
P:S -~ P(SAX SB) given by : o(s) = (m;, T,) where s€m; N7, (or
equivalently : s is given the index (i,k) in the above mentioned double-

indexing). Since both 71 and T are non-~trivial : ‘SAI , lSBI (|s].

This completes the proof of theorem 2. 15.
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Remark
In the construction of the tail machine B in the proof of theorem
2. 15 the freedom in specifying some entries in the transition matrices
corresponds to the well-known '"don't care!'-concept from the theory
of deterministic machines [4] In this case you will always get completely

unspecified rows, but generally you might give the following definition:

Definition 2. 16

A transition matrix of a SFS is said to have don't -care entries
iff at least two entries in one of its rows are unspecified. (A single
unspecified entry in a row will be determined by the fact that all row-

sums equal 1 in a transition matrix).

Example 1
Let M= (S,X, {M(x)}) be a SFS with S={s ,s85,...,5},

X = {a,b} and transition matrices :

(1/4 0 1/4 o 1/2] 1 0 0 o0 o]
1/4 0 1/4 0 1/2 1/21/2 0 0 ©
M(a) = 1/2 1/41/6 1/12 0 M(b) =f0 1/2 0 1/2 0
0 3/40 1/4 0 1/31/61/31/6 0
| 0 0 2/31/3 0 | 1/3 0 1/3 0 1/3]

Now, one can (by simple checking) verify that the conditions of

theorem 2. 15 hold for the following partitions m and Ton S:

T =1{S Sy,53 54 S}, T= {s s3ss, SpSa}. From the constructive part of

the theorem you get the following cascade decomposition of M:




Front-machine, A:
is simply the m-image of M, i.e. a three state SFS - with one state
for each block of 11, the same input alphabet as M, and the following

transition matrices:

1/4 1/4 1/2 1 0o o
Ala) = 13/4 1/4 0 Ab)= |[1/2 1/2 o0
0 1 0 1/3 1/3 1/3

Tail-machine, B:

is a SFS with state set equal to the blocks of T (a two-state
machine), input alphabet X X SA where SA is the biocks of
m={m ,m,,ma} = {12,34,5}. Following the proof of theorem 2. 15
the transition matrices of B look like the following:

10 1 0
Bla,m ) = B(b,m ) =
T oo 1/2 1/2

B(a,m;) = B(b,m,) =

0o 1 2/3 1/3]

2/3 1/3
B(a,ﬂg) = B(b,ﬂs) =
1/2 1/2

Notice that the second rows of the last two matrices (B(a,m3) and
B(b,T3)) are don't care entries chosen (almost) at will. | shall in
one of the next sections return to a discussion of these don't care

entries.
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For the parallel decomposition a result as nice and elegant as

theorem 2. 15 holds:

Theorem 2. 17

A SFS M= (S, X, {M(x)}) is parallel decomposable iff there exist

two non-trivial partitions ™ and T on S such that

1)

T and T have S. P.

2) meT =0
3) .
m and T are independent
Remark
Again " and 2) are the well-known hecessary and sufficient

conditions from the theory of deterministic machines.

proof of theorem 2. 17:

The proof follows essentially the same lines as the proof of theorem
2.15.
" Suppose that M is parallel decomposable, i.e. isomorphic to a per-
sistent subsystem of AXB, where A and B are two SFS!s with less

states than M, A = ( X, {A(X)}) and B = (SB,X, {B(x)}). Let o :

SA,
S - P(SAX SB) be the isomorphism as before, and define partitions m

and T in the same way as in the proof of theorem 2. 15:

il

s; =s; (m) iff CPA(Si)‘_‘CPA(Sj) e o€
i3

I

s; =s; (1) iff ch(si) =CPB(SJ-)
The matrices of A®B are from definition given by:

C(x) = [cix, 51 (x) ] = [a;; (x) by (%) ]
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As before you read directly from this that

(*) % Cix, 1{x) = ay ,(x)

which shows that ™ has S. P. - only this time you also have

(%) T ey, pnlx) = jZaij(x)- bei(x) = bkl(X)-jZaij(X) = by(x)

whichagives you that T has S.P., and combining (¥*) and (¥*%):
lzcikyjl(x)' chik,jl(X) = a;(x)e b (x) = ciy,j1(x)

which finally gives you that ™ and T are independent.

1) 2)

2) Suppose that conditions '/, , and 3)

hold for partitions 7 and T.

You can construct two SFS!'s A and B as in the proof of theorem 2. 15,
only this time the entries of the transition matrices of B, by (x, i) =
ZMy,;(x),will be independent of i (since T has S.P.), so that the cascade
dJ

products constructed from matrices A(x) and B(x, i) reduce to Kronecker
products if you setpossible don't care entries properly, i.e. you have

obtained a parallel decomposition.

Example 2

l.et M as in example 1 be a 5-state SFS with two input symbols,

a and b, - only this time with the following transition matrices:
-1/4 o 1/4 o0 1/2— b1/z 1/4 1/6 1/12 o.
1/4 o 1/4 o0 1/2 0 3/4 0o 1/4 o

M@ = |1/2 0o 1/2 0 o0 M(b) =11/3 1/6 1/3 1/6 0
1/2 0o 1/2 0 o o 1/2 0 1/2 o0
1/3 0 1/3 o0 1/3_ 1/4 1/8 5/12 5/24 0 |

With the same T- and T-partitions as in example 1 (m={12, 34, 5} and

T={ 135,-27#} ) you easily verify that the conditions of theorem 2. 17 hold,
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and the constructive part of the proof gives you the following two com-
ponents in the paraliel decomposition of M:

Machine A

has state set equal to the blocks of 1T (a three-state machine) and the

following transition matrices:

/4 1/4 1/2 3/4 1/4 0
Ala) = 1/2 1/2 0 Alb) = |1/2 1/2 o0
1/3 1/3 1/3 3/8 5/8 0

Machine B
has state set equal to the blocks of T (a two-state machine) and

transition matrices :

1 0 2/3 1/3
B(a) = B(b) =
1 0 o 1

Bacon has shown how to combine theorem 2. 15 and 2. 17 into a
theorem stating necessary and sufficient conditions for a SFS to be
decomposable into a general loop-free (i. e. a system of parallel and
cascade interconnections where for any two components the following
holds : if the state of M; is in the input alphabet of M; then the state of
M; is not in the input alphabet of M;) decomposition of more than two
SFS!s. This is a straightforward result, and | shall not go into any
discussion of it here. Instead, | shall return to theorem 2. 15 and look
upon it in more details.

What does it say, informally? Condition 1 says that a partition, m,

must exist such that if you lump the states in the same block of 1 the

result is a well-defined SFS (in the literature [6] you often find the
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terminology "1 satisfies the condition of lumpability!" instead of 7 has
S. P. " and the "m—image!! is then called the "lumped system with respect

3)

to m'"), and condition says that any transition of the given SFS con-
sidered as an event can be viewed as two independent transition-events
going on at the same time - the first one corresponding to transitions
between blocks of T - the second corresponding to transitions in blocks
of 7 (between blocks of T, the second one knowing which block of 1 it is
to Msplith).

As mentioned before the cascade model is carried over directly
from the theory of deterministic machines. L.et!'s return to section 1 for
a moment and view a SFS as a physically working Moore machine
(equipped with f. ex. the identity function as its output function). Now,
consider the following question: Is the cascade model the most reasonable
model for a !''serial!l interconnection of two or more SFS!s? In the theory
of deterministic machines things are nice because the cascade model
gives you a decomposition of a Moore machine into two physically working
Moore machines, making their transitions at the same time. This is
possible since the output of a deterministic Moore machine (the front;
machine) is dependent on the present state (since the argument may be
continued, a cascade interconnection of n Moore machines requires only
one time unit to perform the transitions of all its components).

But what about a stochastic Moore machine, for which the output
is dependent on the next state of a transition? In the cascade model you
can't possibly regard a decomposition of a stochastic Moore machine M
into AGB.as a decomposition of M into two Moore machines, the first

of which making its transitions on the input, and the second making its




transitions on the input and output of the first, because what is transmit-
ted from A to B is the present and not the next state of A .

Don't let me be misunderstood: |1 don't say that Bacon!s decomposi-
tion—-model is meaningless - but | am saying that it might be more reason-
able, since several (all ?) papers on stochastic Moore-machines are
working with next-state output, to look upon a decomposition-model in
which the next—-state of the first component—-machine is transmitted to
the second - i.e. a model in which the interconnection of n Moore-ma-
chines would require n time-units to perform all transitions of all com-
ponents. Working with this model a stochastic Moore-machine would
really be decomposed into physically working stochastic Moore-machi-
nes.

As a matter of fact Hartmanis and Stearns introduces the idea of
this next-state decomposition for deterministic machines in [4], but
leaves itimmediately with a comment that for greater loop-free inter-
connections it will lead to some timing problems. Anyway, let!s try
and see what happens in the simple case of just decomposing a single

machine into two.

Definition 2. 18.

Let A be a square stochastic matrix of order n and let {B(j) R
‘be a set of square stochastic matrices of order m - one for each co-
loumn of A . The strict cascade product of A and {B(j)}a , A ®{B(j)}y
is defined as the square stochastic matrix C of order m+n where

Cik’jl = aij' bkl(j) ’ 1£i:j£n ’ 1'<-k7l§m .

30
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Remark

Obviously A O {B(j)} may be thought of as the matrix:

_'31,1 B(1) a,B(2) ...... alnB(nf
az B(1) :

C = . .
ER-10) U 2 B(n)

Definition 2. 19.

Let M| = (S ,X,{M (xX)}) and M, = (S, XX G, {M:(x,s:)}) be
two SFS's. The strict cascade interconnection of M and My, M, O M,
is the SFS M = (S, x S5, X, {M(}) where M(x) =M () O {M; (x,5)) ¢ ¢g-
As definition 2. 4. this definition may be extended to define the

strict cascade interconnection of more than two SFS'!s - and again

M, (M) is called the front (tail) machine.

Definition 2. 20.

A SFS M is said to be strict—-decomposable iff it is isomorphic to
a persistent subsystem of a strict cascade interconnection of two SFS!s
each of which have fewer states than M .

Now, let M =(S, , X{M(x)}) be any SFS and m and T any two par-
titions on S for which 7. T = 0. If all blocks of T (or T respectively)
are of the same size the partition is said to be normal. If either 7 or
T (or both) are not normal then you may extend the system M introdu~
cing one new state for each pair of blocks (m;, T,) for which m;N T, = @

and defining the transition-probabilities of these new states as follows:




The transition-probability from any of the original states of M to any
of the new is zero and the transition-probability from any of the new
states to any state is chosen at will (still in such a way that the exten—
ded system is a welldefined SFS). The new SFS obtained in this way
is called a normal extension of M with respect to m and T, and for

1)

such a normal extension the following holds: ‘M is isomorphic to a

2)

persistent subsystem of it and the partitions m and T defined on the
state-set of it in the straightforward way (the state introduced because
0Ty = @ is put in blocks 1; and T;) are normal. 1 shall use the no-

tation m(T) for both the partition m(T) itself and for the T(T)-partition

on the extended system - defined in this straightforward way.

Definition 2. 21.

Let M= (S, X, {M(x)}) be a SFS and m and T two partitions for
which m has S.P. and m.T = 0 - then m and T are said to be strictly

independent iff there exists a normal extension of M with respect to .

and T such that the following holds for the extended matrices M!(x):

1) W xE X V1Sio,jo£lﬂl V1£k13k2’lrrl:

nmly 1(><)=Zm{k,j L (x) (i.e. T on M! has S. P.)
1 01 0] 1 020
2) MxEX Ml1<igjo=|m|, 1skolo=|T]:
Zm{k” l(x) Zm;{k 73 (X)
1 Q. Q i Q

1
9 20— I miy ,, 1 (x) 40
ZZ | i X - k 25 1
ml o« ;1 (x) = il mlko’Jol(X) il 00
O 00
0 otherwise
"

I am now able to state the following theorem for strict decomposi-

tion equivalent to theorem 2. 15:




33

Theorem 2. 22.

A SFS M = (S, X, {M(x)}) is strictly decomposable iff there exist

two nontrivial pratitions m and T such that

1) m has S. P.
2)meT=0

3) m and T are strictly independent .

00,

1)

Assume that M is sirictly decomposable into A O B,
A = (SA, X, {A(X)}) and B = (SB, XX S, {B(x, SA)}) . The isomorphism,

© , between S and a subset of S, X S_, thus given defines, as in the

A B

proof of theorem 2. 15, the partitions m and T on S

~

It

s; = s, (m) i ff cpA(si) =cpA(sj)

WSy, s, €St ¢

il

LSi s; (T) i pglsi) =opgls;)

As in the above mentioned proof it is easily seen that m has S. P.
and that -7 = 0. All that is left to prove is then that m and T are
strictly independent, but this is easy since the transition matrices of
A @ B (C(x)) defines a natural extension of M with respect to m and T
for which mhas . also S. P, and

ZC; w1 (X T ey b 1 (x)

1 O 0O 0O i O "0 O

L2 Ciy 55 1(X)
il 0’0

(X a; s (X)ebyp 1 (x,j0)) - (2 a;; (X)+be 1 (x,]0))
1_"0% o i 0 00 =

I aij (X)' bk 1(><,jo)
il 0 0




aj (x)- by (x:jo)'za” (%)
0.0 9.0 > 9 =aij(x)‘bk1(x:jo)=cikyjl(x)
Zaij(x) 0’0 oo 00 o0
1 0

whenever this is defined (S ¢y, ,; 1(x) + 0), and obviously
il O "0
C; k »; 1 (X) =0 otherwise since c;  ,; ; (x) is one of the summands in
0O 00 0 0O 0 00
the double sum. So 11 and T are strictly independent.
2)&'Suppose now that the conditions hold for some partitions 7 and T .
From the extension given since 3)i‘s fulfilled, the SFS's A and B are

constructed with state sets equal to the blocks of ™ and T respectively

and with transitions defined by (the extended matrix from M(x) is deno-

ted M!(x)):
for some kg — no matter which
a; (x) = Zml | ’5 3 (%) since 11 has S. P. also on the
0°0 1 o 00
extended system.
Lmly L X
: lo ° iff 2Zmiy ,, 1(x) 0
bk 1 (anO) lel mlkO’jOl(X) il o0
don't care otherwise

With these definitions you get immediately that M! is isomorphic
to A @ B and since from definition M is isomorphic to a persistent
subsystem of M! it has been proved that M is strictly decomposable

by use of proposition 2. 10.

Example 3
Consider the following 5-state SFS with input-alphabet {a,b}

and transition matrices:

34




M(a) =

Choose 1 = {1

Te T=0.

—3/6 1/12 0 1/2 1/4
o 1/4 1/4 1/4 1/4
1/31/6 o0 1/3 1/6
o 1/211/6 1/6 1/6
U/4 1/8 0 1/4 3/8

7/3 0
o 1/3
1/2 0

0o 1/2

u/s 0

34 5} then 1 has S.P. and for 7

Furthermore there exists a normal extension

1/6 1/6 1/5—
1/12 1/4 1/3
1/4 1/4 o0
1/8 3/8 0

1/3

1/3 3/24 |

= {135 24}

of M with re-

spect to ™ and T (with one new introduced state corresponding to blocks

5 of m and 24 of T) such that the conditions of definition 2. 21 holds,

i.e. m and T are stirctly independent. The matrices in this extended

system look like:

Mt (a)

M'(b)

1l

o

1/8 1/6 1/2 5/24

1/8 1/8 3/8 0

(@)
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Now from theorem 2. 22. it follows that M is strictly decomposable
and following the constructive part of the proof you get the following com-

ponents - completely specified from M!:

Front-machine A
has one state for each block of m and is (as seen before) simply the

m—-image of M:

1/4 1/2 1/4 1/3 1/3 1/3
Ala) = {1/2 1/3 1/6 Ab) = {1/2 1/2 o0
3/8 1/4 3/8 1/8 2/3 5/24

Tail-machine B
has one state for each block of T-input alphabet {a,b} x {m,m,,m;} and

transition matrices:

2/31/3—W 1 oT
0 1 0 1
. — . —
"o 1| 1/2 1/2
B(a,ﬂ'g) = B(by TTQ) =
L_1/2 1/2_ 3/4 3/4
1 o0 | 1 0
Bla, ms) = B(b, ms) =
1 0 10
- - <4
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Theorem 2. 23.

For any given SFS M it is decidable if M Is cascade~-decomposab-

le and if It is strict—-decomposable.

Comment

When | say "given SFS!" | mean a complete specification of its
transitionmatrices with all entries f. ex. rational given as finite frac-
tions as in the examples of this paper. For practical purposes the de-
cidability might give stme numerical difficulties, a problem which | shall

not go into here.

proof of theorem 2.23.

For the cascade-decomposition the result is trivial since the conditions
from theorem 2. 15canbedirectly checked for any pair of state-partitions,
and there is, of course, only a finite number of such pairs.

For the strict—-decomposition the result is not as trivial. For any
chosen non-normal partitions m and T there is an infinite number of nor-
mal extensions, all of which one might think it necessary to consider in or-
der to check if m and T are strictly independent. This is, however, not so.
Pick out any of the entries in the extension of M(x) to be chosen at will,
m{ojo,kolo(x) . Suppose there exists a row corresponding to one of the
original states of M, ﬁil N Tko, for which lemil k23! (x) + 0

= ¥ mlg ,Jol(x) + 0) then if m and T are to be strictly independent for
1 10

some extension of M with specified m{ ; ,; 1 (x):
o 0 OO0
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Zm:{krj l(x)'Zm,ik,jl(x)
(*) m'ik’jl(x)=l 0 0°0 i 0 ‘00
0000 5 m{k ’; l(x)

il 0o

2mb oy oy l(x)'m§ka51(><)
1 00’0 1 0% 0

Zm%k)j l(x)
1 1 0°0

since the specification of definition 2. 21. does also hold for m! , ,, | (x).
‘ 1 000

Now since 1 is supposed to have S.P. on M! , & m! , ,, ;(x) is specified
1

from one of the original rows of M (every block of T is non-empty) and
mi 25 1 {x .

since 1m; NT, is one of the original states of M,-———ﬁ_l © 0.9 is also

1 2;' ;.l k ?Jol X)
specified by the given transition-matrices of M. Furthermore, if more

than one i, exist such that Tm; , ,; 1(x) $ 0 it follows from the fact that
1 i 00

the equation of def. 2. 21 holds for any entry in the ex-

tended system that (*) should specify mgoko,jolo(x) uniquely - no matter
which i, is chosen. If not, then m and T are known not to be strictly
independent. But otherwise the argument above gives you a unique spe-
cification of any entry in the extended system - except for the case where

no i, exists such that Zlmil kit (x) £ 0, but then the m!loko’jo

LX) -~ en-
[¢]
try has no influence on the question of strict independency (it!'s spe-
cification is then only dependent on other entry-specifications of the
same Kind - it may simply be set equal to one of the original entries of
M:im; ,; 1 (x) if then any non-specified entry m!, »; 1 (x) for which
01 "0 O O "0 O
MmN T, F @ is set equal to m,, b5 1 (X))
1 1 O 0
The result of the arguments above is that only one uniquely deter-
mined extension of the transition matrices of M has to be considered

to decide the question of strictly independency for any pair of state-

partitions m and T . This proves the theorem.



Remark

For practical purposes.you should always start the decidability-
algorithm for strict indenpendency by checking if (¥*) on page 37 holds
for the entries in the given matrices - usually this process will tell
you immediately that m and T are not strictly independent and only in
a few cases you will have to construct the extension given in the proof
of theorem 2. 23. to complete the decidability—-algorithm.

The next section will be formed as a discussion of the difference
between the cascade-decomposition and the strict-decomposition. But
before | start this discussion | want to state two more theorems with

relation to the subject.

Theorem 2. 24.

The class of cascade~decomposable SFS!s and the class of strict-—

decomposable SFS!s are incomparable.

proof The proof is very easy: By means of the proof of theorem
2. 23. the SFS in example 1 is seen not to be strict-decomposable and
in the same manner the SFS in example 3 is seen not to be cascade-de~
composable. On the other hand any parallel-decomposition of a SFS may
be regarded both as a cascade~ and as a strict-decomposition and from

example 2 it follows that the two classes have a non-empty intersection.

Theorem 2. 25.

Let M= (S, X, {M(x)}) be a deterministic finite state system (with

transition function 8 :Sx X + S defined by: &(s;, x) = s,

iff my; (x) = 1)
and let M and T be two partitions on S for which 1 has S. P. and

T+ =0. Then m and T are strictly independent iff for every pair of

39




40

blocks m; and 1m; of m and any x€ X for which &(m; ,x) cm; ,
1 2 1

6 (rr; ;><) c m; for some block m; the following holds:
)

*) MT, M 0T F @, T N7 B olm, N1, x) = (M N1, X) .
: 1 2 1 2

proof Suppose that the condition is fulfilled. Following the
proof of theorem 2. 23. an extension is easily constructed such that the
conditions of definition 2. 21. holds. Suppose on the other hand that T .
and T are strictly independent, and assume that a T, exists such that
(*) above does not hold. Let 6(Wi1 Ng)=m,N Tlﬁl + 6(ﬂ12ﬂ Te) = 1,0 le.
Then since m and T are strictly independent:

L ml k:jl(x) X m%k?jl (x)
1 1 i 2

My k31 (x) =
1 ! 2 sz{k,jl(X)
i1

but m-Ll K lB(X) and mizk’j l2(><) contributes to the sums over | and i
respectively which means that mil K13 lQ(X) + 0 - a contradiction.

As mentioned before, the condition of independency is always fulfilled
for deterministic transition-matrices. Theorem 2. 25. shows that this
does not hold for the condition of strict independency. This fact is anot-
her indication (besides the one mentioned by Hartmanis and Stearns) of
why the sirict decomposition has never been looked upon to any greater
extent in the theory of deterministic machines. But the fact that the con-
ditions for strict decomposition are more restrictive than the conditions
for cascéde—decomposition of a deterministic finite-state sy stem is a bad
motivation for only considering the cascade-decomposition of stochastic fi-
nite-state systems -~ and as a matter of fact | shall in the next section
argue that the situation in the stochastic case is the opposite: Conditions
for cascade - are more restrictive than conditions for strict-decomposi-

tion.
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SECTION 3

A comparison of cascade- and strict-decomposition

If you compare theorem 2. 15 with theorem 2. 22 you will find them
very much alike. Anyway - if you look closer at the proofs of these
theorems you will find a small but in some sense essential difference
in the two ways of decomposing a SFS. In this section | shal! point
out this difference and relate it to the concept of don't-care transitions.
Don't care transitions appear in the tail machine of the constructed
decompositions whenever one of the partitions T or T is not normal.
Let me first look at the phenomenon for the cascade decomposition. L.et
M= (S, X, {(M(x)}) be a SFS and ™ and T two state-partitions satis-
fying the three conditions of theorem 2.15. From T+ T = 0 you get

lSlslﬂl' ITI = \S where A and B refer to the front— and

NEEN
tailmachine of the decomposition of M with respect to ™ and T . If T
or T contains blocks of different sizes you can even conclude:

iSl < ITTI . ITl = lS The fact that M is isomorphic to a per-

Al * lSBl .
sistent subsystem of A @ B may in the terminology of the last part of
the previous section be expressed as follows: The transition matrices

of A B B, {C(X)}, are normal extensions of {M(x)} with respect to

T and T with lTTI - | 7| - | 8| introduced don't-care states where:

V"£i7j£lﬁl7 Tgkﬁlglq—l :
My g1 (X) if this is defined in M(x)
Civsrgp(x)=14(0 0T, F @ but mNT, =@

don!t care otherwise
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Now, the extended system is naturally (as for strict decomposi-
tion) — decomposable with respect to the natural extensions of m and
T on the state set of A (3) B mentioned before. This means that the
conditions of theorem 2. 15 hold - for the matrices {C(x)} - in particu-

3)

lar condition holds for any of the introduced zero-entries:

Mig g1 s Ty N %Qﬁ’ﬂj nm =@:
0"0’ Y0 0 ) o o 0
O=Cik’31(x)=zcikajl(x)zcik ’ 31 (x) =
oo ‘o 1 o0 Yo 5 00 0

Zmy o sy a () Em g,y ()
1 o0 "0 j 00 0

from which you get that either

Zrﬂik:
1

oo (x) =0 or Zmioko,jlo(x) =0

j 1
JO 3

(or both).

Consider again m and T as partitions on S - the state-set of M,
For any block of m, m; , let TTJ-i be the smallest (or one of the smallest)
block of m for which % Miy,; 1 (x) £ 0 (independent of k since 1 has
) i
S.P.) - from the above equation you now have that Zm,,, ;; (x) = 0 for
]
any | for which ury Nt = @ . From this argument and the correspon-

1

ding for the partition T you get:

Theorem 3. 1.

Let M= (S, X, {M(x)}) be a SFS,cascade-decomposable with

respect to partitions m and T . For each block m; of m let T, be the
i
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smallest (or one of the smallest) block of m for which % Mix sy 1 (X) + 0.
i
Then for any block 1, and any block T, ,m; ;,, (x) ¥ 0 for no more than
ITrji | different I's. For each pair of blocks (m,;, T,) let ’Tlik be the
smallest (or one of the smallest) block for which LMy, gy () + 0, then
J

for any block T, ,m;, + 0 for no more than ITlik‘ different j's .

Now, what does this theorem say, intuitively? It says, that if
you have a variation In the sizes of the blocks of let!s say the parti-
tion T corresponding to the front-machine of a cascade~-decomposition,
then for any transition from block m; to m; the number of T-transitions
that can take place at the same time with nonzero probability is limited
by the number of states in the smallest block of ™ which has a non-zero
probability of transition from 1;. In another way: If you have a varia-
tion in block-sizes then you necessarily must have a certain amount of

zeroes in your transition-matrices if your system is to be cascade-

decomposable with respect to the given partitions.

Enough about the cascade-decomposition - what about the strict
decomposition? In this case it turns out that you have no similar
restriction on the transition-matrices of a decomposable SFS. As a
matter of fact you can easily construct a sirictly decomposable SFS
with as much variation in the block sizes of m and T as you want and

without a single zero In the transition matrices of the SFS.
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This indicates that the strict decomposition can be used for a
greater number of SFS!'s (see theorem 2. 24). The reason for this can
be seen if one compares the two extension-processes - one for the
cascade-case described above and one for the strict-case descri-

bed in the previous section.

ln the cascade-case you try to extend your transition-matrices
in such a way that you obtain a certain proportionality between subrows
down rows, but if these subrows are unequally sized you have to fill
out with zeroes because the whole thing should remain stochastic, and
these two things, the zeroes and the desired proportionality, imposes
the zero-structure on the existing transition-matrices. On the other
hand you are (almost) completely free in specifying the transition-pro-

babilities from the introduced don't-care states.

In the case of strict decomposition you try to extend your matri-
ces to obtain a proportionality of subrows down columns, and since

1)

there is no restriction on the column-sums of a stochastic matrix

z)the subrows under consideration are equally sized independent

and
of the nature of m and T , you can effectively make use of the arbitra-
riness of the transition-probabilities from the don't care states to ob-

tain the desired proportionality and at the same time avoid any imposed
zero-structure on the existing matrices. On the other hand the process

determines the transition-matrices of both the front and the tail machi-

nhe completely (except for some very special cases).



Shortly: In the process of strict decomposition you can use the
don't-care transitions before the decomposition takes place to make
the decomposition possible, and this use will determine the components
of the decomposition (almost) completely. In the process of cascade
decomposition you can't make any use of the don't-care transitions be-
fore the decomposition takes place (i. e.thepossibility of the decompo-
sition is independent of how these transitions are specified) but their
arbitrariness is carried over to the components (actually the tail-ma-
chine) of the decomposition, so that perhaps they may be used to some-
thing, whatever that may be (see the next section), after the decompo-

sition has taken place.

I hope that this discussion has justified the proposition that
strict-decomposition is applicable to a greater number of SFS!s than
cascade-decomposition. Notice, however that in the deterministic ca-
se this is not true (see theorem 2. 25) since the zero-structure mentio~

ned above is then already in the transition-matrices from definition.

45
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SECTION 4

Don!t-care transitions in cascade-decomposition

In the discussion of the last section | mentioned that the don!t-
care transitions that occur in a cascade decomposition. might be used

to something. The goal of this section is to find out what.

In the deterministic theory of machines you often relate the use
of don't—care transitions to a physical realization {(or synthesis - both
terms will be used in this section). A similar thing has never been
done for stochastic machines - although a theory for synthesis of sto-
chastic machines exists (not developed to any great extent — but any-
way! ). | shall not go into any deeper discussion of this synthesis theo-
ry here - neither shall |1 start a deeper discussion of the relationship be-
tween the decomposition theory and the synthesis theory - although the
latter idéa would be a very interesting one to do - but | shall
introduce just one of the existing synthesis methods for SFS!s and
relate it to the don!t care transitions in a tail-component of a cascade-
decomposition of a SFS. The results of this section are not dependent
on the chosen synthesis -method - similar - results would hold for all

the methods that | am familiar with (see [8], [2] f. ex.).

The synthesis method that | have chosen .rests on the following

lemma:
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L.emma 4. 1.

Let A be a given stochastic matrix of dimension mXn . Then you
can effectively construct a set of deterministic (0-1 entries) mxn-ma-
trices, {Di}[i\il , with N £ m(n-1) + 1 and a set of non-zero probabili-

ties {pi}il - one for each D;-matrix = such that

proof 1 claim that the algorithm described.in fig. 3 gives you the
desired construction of the two sets. It is obvious that all the construc-
ted A;'s are stochastic and that Ay, contains at least one more zero-

1)

entry than A; which gives you that the algorithm stops after a finite

2)

number of steps and more specifically “'the algorithm constructs no
more than m(n-1) + 1 pairs (D;,p,;) (since p; equals one for some
j < m(n-1) + 1) . Let N be the humber of constructed pairs (N = the

final value of i and j in the algorithm) - then from the construction of

the matrices A; you have:




deterministic matrix

0 otherwise

construct D, = [d],]| as the following

> 1 if al, is the first maximal element

di, = in the k'th row of A, = [a], ]

I o= H -]
p!: mlin mlax ap,

ves
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p; :=(1-pl) (1-pi) ...

( 1-pl, )p&

A 4

1 . lyes

=T (A;-p} D) STOP {

! no

Ji=j+1 i=i+1
Fig. 3

An algorithm for Lemma 4. 1.
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A=A1 =D1' D1 +(1_p]'_)A2

i

pl' Dl + (1‘p1') (pé Dy, + (1—[0;'3) Ag)

..

It

p! Dy + (1-p})pt Dy + ... (1-p{)(1-pL)... (1=}~ )Py Dy

=p D +psDy + ... +pyDy

in other words the algorithm gives you A on the desired form as a

convex combination of deterministic matrices.

Now, let M= (S, X, {M(x)}) be any given SFS. Construct the

matrix
r -1
M(x, )
M(x; )
M(x, )
where X , Xz, ... , X, is a fixed enumeration of the letters from X,

i.e. AM is a stochastic matrix with |S|+ |X| rows and | S| cotumns
If you apply the algorithm described above to this matrix you will get
AM expressed as a convex combination of no more than

s|? - | x| «|s]| + 1 deterministic ma-

|| [x]-(Is]-1)+1=]X
N

trices AM =) p; D;. Since the rows of a deterministic matrix corres-
i<l

pondto a deterministic transition you can use this result to form a syn-

thesis of M according to fig. 4, in which source is a box that emits
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symbols from a finite alphabet Z = {2z, 2z, ... , zN} containing one
symbol for each of the deterministic matrices that form AM above;
one symbol is emitted at each timeinterval - the i'th ; z, , with proba-
bility p; . State is a box or a delay keeping the present state of the
system,and § is some combinatorial logic realizing the deterministic

transition function § : S X Z X X+ S given by:

5(si, zy, Xy) = s iff there is a one in the matrix D,
in the j'th place of the row cor-
responding to state s; and input

symbol x, .

State 4
s
input ’ output
put x ol s o oymut
4
Source
Fig. 4

The synthesis model
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I am not going to prove that this model really gives a physical rea-
lization of M, i.e. that for each pair of states s; and s; and input
symbol x, the probability that the large box of fig. 4 will output (go to)
state s; given that it is In state s; and receives input-symbol x, equals
the (i, j)'th entry in M(x,). The proof is very simple and | hope to make

it clear by giving an example of the synthesis-process:

Example 4

Let M= (S, X, {M(x)}) be a two-state SFS with two symbols in

its input alphabet X = {a,b} and the following transition matrices:

o) - [ 3/4 1/4) o) = 1/2 1/2
L_1/3 2/2 | 1/4 3/4
Then B _
3/4 1/4
1/3 2/3
Am 1/2 1/2
| 1/4 3/4]

and applying Lemma 4.1 to this matrix gives you

1 0] (1 0] 0 1] [0 1]

R LR R A DR oo

M T2 1o %o 1] ® 1o 1| lo 1
0 1] 1 o] o 1 o 1] -
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Thus the source -alphabet consists of four symbols {z, z,, zs, z4} emit-

ted with probabilities {—;-, -l;, %, T1-2-} respectively. From the matrices

above you can read the following deterministic &-function

which then may be realized by some combinatorial logic forming the

box &6 in fig. 4 in one of the well-known ways.

This synthesis model gives the possibility of the following alter-
native definition of a S. P. —partition: A partition M on the state-set
of a SFS M = (S, X, {M(x)}) is said to have S. P. iff for every % € X
and every block m; there exists a block 1; such that Wke€Tm; :

Z me1(x) = 1. This definition is also a generalization of the S. P. -
fg;jcept of deterministic machines, and it has the following nice impli-
cation: Any S. P, —partition on the state-set of a SFS will have S.P. in
the deterministic sense for the 6-logic in the synthesis of the SFS. In

the rest of the paper however the term S. P. —-partition will always re-

fer to definition 2. 11.
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In the theory of deterministic machines you often measure the
complexity of physical realizations of machines. Typical examples

1) z)the

of such measurements are 'the number of internal states and
number of gates in the combinatorial network realizing the transition
function of the machine (and the output function if such . one exists) or
(Hartmanis and Stearns [4]) the number of diodes - i. e. the number of
lines going into gates ~ in this network. The use of many theorems are
then illustrated by f. ex. assigning the states or setting don't-care

transitions according to some information in the theorems - in order

to minimize the complexity of realizations in some sense.

But how do you measure the complexity of a realization of a SFS?
It would be reasonable to consider three things : 1) the number of _
states, z)the complexity of the deterministic logic realizing the 6-
function and 3)the number of symbols in the source-alphabet. Accep-
ting this 1 shall now mention a few possible ways of using the don't-ca-

re transitions that may arise in the tail-component of a cascade-decom-—

position in order to reduce complexity.

1) Return for a moment to example 1 in section 2. In the decomposi-
tion of this example | introduced one don't-care state-correspon-
ding to blocks 24 of T and 5 of T . Thié implies that | had a
freedom in specifying the transition probabilities from state
3% in the tail machine with respect to inputs. (a,5) and (b, B) .
It turns out that | have used this freedom in a very clever way -

in that 1 have specified the transition probabilities such
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that 1 have obtained: B(a, 5) = B(a, 34) and B(b,5) = B(b, 12) . In
other words: my tail-machine reacts identically to inputs (a,_f;)
and (a, 34) ((b,5) and (b, 12)), which means that | can reduce the
number of inputs to B ‘by 2. This fact has certainly an influen-
ce on the complexity of a synthesis of B - with respect to both

2)and 3)

in the description above of the complexity of a synthesis
of a SFS.

Notice that this use of don't-care transitions corresponds to the
one suggested by Hartmanis and Stearns [4] in their short dis-
cussion of the special use of the don't-care transitions that ap-
pear in the tail-machine of a cascade-decomposition of a determi-

nistic machine. Their book contains a more detailed discussion

of the use of don't-care transitions in general.

2) You may also be able to use the don't-care transitions to reduce
the number of states in the tail-component. If you are interested
in "reading off! from the cascade-decomposition the exact state-
behaviour of the decomposed SFS , then you will have to think of
the tail machine (and the front)equipped with the identity-function
as output -function. The definition of state-equivalence (def. 1.7)

is then seen to induce the following definition for SFS!s:

Definition 4, 2.

Two states of a SFS are said to be equivalent iff the rows cor-

responding to the two states are equal in every transition matrix.
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With this definition EI-Ghoroury and Gupta [2] proved the follo-
wing (for the definition and the use of deterministic state-equivalence,

see [4]):

Theorem 4. 3.

In a SFS state-~equivalence implies and is implied by determinis~
tic state—equivalence in the deterministic machine constructed following

the algorithm of synthesis.

The proof is very simple — 1 am sure that you can easily convin-
ce yourself that the theorem holds, so | shall not prove it
here, but instead use the result as follows: If, by assigning the tran-
sition-probabilities from a don't-care state in the tail-machine
properly, you can obtain state—equivalence between this state and some
other state(s) -~ -~ then you will automatically have deterministic state-
equivalence between the states in the deterministic machine occuring

in the synthesis of the tail-machine.

Example 5

l.et M be a 5-state SFS with 1 input symbol and the transition

matrix:
r3/4 0 o 1/4 o0 i}

3/8 3/8 o 1/8 1/8

M(x) = 3/8 3/8 o 1/8 1/8

o 1/2 1/2 o 0

3/4 0 1/4 0 0
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M is cascade-decomposable with respect to m = {123 4_5} and

T= {14, ﬁ, 3} . The process of decomposition gives you a 2-state

one-input front machine with transition matrix

- |74 1/4]
o 1 oJ

and a three-state, two-input ((x, 123) and (x, %5)) tail machine with

transition matrices

1 0 0 o 1/2 1/2
B(x,123) ={1/2 1/2 0| B(x,45)={3/4 0 1/4

1/2 1/2 0 - - -

where ~ denotes a don't—-care entry. State-equivalence in B can be
obtained in the following way: Set the last row of B(x, 45) equal to the

second row states 25 and 3 of B will then be equivalent.

3) The two possibilities mentioned above suggest the following ge-
neral way of handiing don't-care transitions in the tail-component
of a cascade decomposition:

First, observe that non-normal partitions chosen for the decom-
position - which is the case | am interested in - give rise to eit—
her completely specified or completely unspecified rows in the

transition-matrices of the tail-component. In the synthesis-pro-

cess of this tail component, B, construct the matrix MB with
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rows of dashes inserted for every unspecified row (as in example abo-
ve), and apply a modified version of the algorithm described in fig. 3
to this matrix - the modifications lying in the loop where the D;'s and
the pg's are constructed. The modified loop is shown in fig. 5 where

the notation Al[k] is used for the k'th row of A

— -

3
i

¥

Construct D; = [d,] | as the

fellowing matrix:
-~ ifk is a dash row of A

» 1 ifk is a specified row

d,j| = < and a, | is the first ma-

ximal element in A; [k ].

L0 otherwise

l

pl :=min max a.{
Knet
dash=row

no

Contruct A4, as
: dash-row if A, [k] is a dash-row
A [k] =1 1 (A, [k] - p! D, [k]) otherwise

1-p!
.

4 IR

Fig. 5

The modified foop of fig. 3
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Following this modified algorithm you will have MB written as a
convex combination of deterministic matrices all of them having dash-
rows for any dash-row of MB - the number of them not greater than
are the num-

(lSBl X IXBI —dB)(ISBl~_,1)+1 where |S_| and |X

sl Bl

ber of states and inpui-symbols of B respectively and dB is the number

of dash rows of MB .

This algorithm and its natural continuation (the construction of

1)

the state-, source- and §-box), has the following advantages: 'it

certainly minimizes the cardinality of the source- alphabet for the syn-
thesis of the tail-machine and z)it ends up with a deterministic machine
in the formed synthesis with one don't-care transition (in the deter-

ministic sense) for each dash-row of M all of which can be treated

B ?
according to the well-developed theory on the utilization of don't-care

transitions of deterministic machines.

As mentioned before | didn!'t bring up the subject of synthesis with
the goal of making a nice and clear theory of the relation between de-
composition and synthesis of SFS!s - | did it with two purposes: 1)to
convince myself and anyone who might read this paper of the possibili-
ties of the until now completely neglected subject and,primarily, 2)to
end the discussion of the difference between cascade- and strict—-de-
composition with the conclusion on page 44 - having proved that the
don't—-care transitions can be used to something in the cascade-decom-
position - not to make the decomposition possible (as in the strict-de~

composition) but for ex. to minimize the complexity of a possible phy~

sical realization of the decomposed SFS!
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SECTION 5

Gelenbe-decomposition

To continue the discussion of the previous section | shall now
give a result originally due to E. S. Gelenbe [3}, stating something
about what happens if a type of decomposition is considered where
both the present state and the next state are carried over as informa-

tion from the front-machine to the tail-machine.

Definition 5. 1.

Let A be a stochastic square matrix of order n and let
{B(i,)}1, m;u be a set of n° square stochastic matrices of order m -
one for each entry in A . The Gelenbe-product of A and {B(i,j)},A@
{B(i, j)} is defined as the square stochastic matrix C = [c,,, ;1] of

order mxn where [c;y, ;] = [a;;« b (i,))].

The definition of a Gelenbe-decomposition of two SFS!s follows
the old melody of definition 2. 4 —~exceptthat the tail component has in-
put-alphabet X X S XS, - the first S corresponding to the present
state of the front component, the second to the next state —. that the
word "cascade!" is replaced with ""Gelenbe!l, and finally ”“ with ”@” .
The definition of a Gelenbe-decomposable SFS can be read off defini-

tion 2.9, in the same straightforward way.
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I am not going to comment these definitions - 1 will go directly to
the main result of Gelenbe; it is interesting in its form because it is
identical to the classical theorem stating necessary and sufficient con-

ditions for cascade-decomposition of deterministic machines:

Theorem 5. 2.

A SFS, M= (S, X, {M(x)}) is Gelenbe~-decomposable iff there

exists a non-trivial partition, ™, on S with S. P.

prooJ follows the lines of theorem 2.15 and 2.22.
])Assume that M. is Gelenbe-decomposable into A@B - then M(x) is
isomorphic to a stochastic submatrix of A(x) @{B(x, Sy, Sj)} -
: ] $;, 8; € SA
[Cipr 31 (x)] =[a;;(x)ebe,(x, i, j)] with the isomorphism

0:S P(SA X SB) y o (s) = (SA, SB) . If the entries of M(x) are re-

indexed into double~indices according to the isomorphism above, then:

Zlimik,jl(x) = % Cigyy1(x) = le a; 4(x) = by (x, 1, j) = a; 5(x)

independently of k which means that ™ defined as follows has S. P.:

def

Ms,5 €S 5 =5,(M) o (s ) =0p,ls).
A A

2)

Suppose that a non-trivial m with S. P. exists. Construct a partition
T such that 7.7 =0 and 1 <| 1| <|S| (this can always be done in a
straightforward way). Now the entries of M{x) are reindexed into doub-
le-indices according to m and T (in the same way as usual). The -

image of M - which is to be the front-component of the decomposition -
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contains one state for each block of m and the probability of transition

from block 1 to block j on input x equals me’n(x)' Call this machi-
1

he A = (SA, X, {A(x)}) . Construct the tail-machine B as SFS with

one state for each block of m, input X X SA X SA and transition—-proba-

bilities:
My 551(x)
- i, 0T 40, 7,07 D and Tmyy, ;1 (x) £ 0
Lmy g 7jl(x) !
bkl(xy i,j) = ﬁ !
0 ifF 0T, £, T NT, =0, zl:mik,j (X)) $0
Ldon!t care otherwise

where !"don'!t care!" as usual refers to anything that keeps B stochastic
(it will always be possible to assign the don't care entries such that
this requirement is met). Obviously, M is isomorphic to a persistent

subsystem of A@B - with isomorphismegp : S - P(SA X S _) such that

B
the @p-image of the h'th state of S equals (i,k) iff s, =m N7,

Example 6

L.et M be a 5-state, 2—-input (a and b) SFS with transition ma-

trices:
C1/4 0 3/4 0 0] (/6 1/6 1/31/3 0 |

o 1/41/4 1/4 1/4 1/3 0 0 0 2/3

M(a) = o 1/2 0 o0 1/2] M(b) = o o 1 0 o0
1/41/41/3 0 1/6 o o0 1/2 0 1/2
_‘1/3 1/6 1/4 1/4 0 | 0 o0 1/31/31/3_




62

The partition m = {12 345} is seen to have S. P. and from the construc-

tive part of the proof of theorem 5. 2. you get:

The front-machine:
is a 2-state (s, ,s5) , 2-input (a,b) SFS with transition matrices:
1/4 3/4 1/3 2/3

Ala) = A(b) =
1/2 1/2 0 1

The tail-machine:
can be constructed f. ex. from the following choice of T:
T = {13, 24, 5} - which gives you a 3-state, 8-input

({a,b} x {s,,s5} X {s,,5,}) SFS with transition matrices:

1 0 o0 1 o0 o0 |
Bla ,5,s)= o 1 o|Bla,s ,s3)=|1/31/3 1/3
0 1 0 0 0 1
- - = - T T
- = o
o 1 0] 0o o0 1
Bl(a ,s5,5,)= [1/21/2 0|Bl(a ,s;,s))={2/3 0 1/3
2/3 1/3 0 L1/2 1/2 0
1/2 1/2 0 1/2 1/2 0 |
B(b,s, ,s ) = 1 0 o0 |B(b,s;,s;) =| 0 0 1
o o 1 o o 1
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- -
1 0 0 1 0 0

Bb ,s2,5)= |0 1 0 |Blb,s;s)=11/2 0 1/2
o o 1 1/3 1/3 1/3

where all underlined entries are don't—care entries chosen at will.

In his paper [3] Gelenbe also tries to prove

Proposition 5. 3.

Let M= (S, X, {M(x)}) be a SFS, Gelenbe-decomposable with
respect to partitions m and T into A@B . Then m and T are inde-

pendent iff

(*) MsSi,85,8 €S, WxeX:iBlx,i,j) =B(x,1,]) .

A

Unfortunately, Gelenbe almost overlooks the case in which m and
T contain blocks of different sizes - both in the proof of theorem 5. 2.
and in the proof of this proposition. The proof of theorem 5. 2. is quite
easy to repair - but the proposition needs a few remarks. F.ex., it is
not at all obvious what the equal-sign between the two stochastic matri-
ces in (*) is supposed to mean (remember that both matrices are probab-
ly only partly specified.). If the equal-sign is supposed to mean an ordi-
nary edqual-sign between any two complete specifications of the two ma-
trices, then the proposition is false. This fact is quite trivial - 1 am,

however, going to show it in the following example:
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Example 7:

Let M be a 5-state, 1-input (a) SFS with transition matrix:

0 1/2 0 1/2 0
/4 1/4 1/4 1/4 0
Ma=1{ 0 o0 1/21/2 0

0 0 3/41/4 0

0o 0 1 0 0]

e

m= {12, 345} has S.P. and for T = {13, 24, 5} yougei the following

Gelenbe decomposition of M:

Front-machine A:

has two states, one input symbol.

1/2 1/2"-

0] 1

Ala) =

Tail-machine B:

has 3 states, 4 inputsymbols.

0 1 o o 1 o
Bla,s ,s )= |1/2 1/2 0 |Bla,s,,s;) = |1/2 1/2 0
1 0 0 o o0 1
- - - -
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e P —

i 0 0 1/2 1/2 o0
Bla,sz,s)= |0 1 0| Bla,sy,s;)=13/41/4 0

o o 1 1 0 o

L. . — .

This example shows that the proposition is false with the interpre-
tation of the equal-sign suggested above, in that m and T are indepen-
dent but B(a,s,,s;) ¥ Bla,s,,s,) and Bla, s,, s ) + Bla, Sa ss) . The
first inequality shows that the propostion does not allow two don't-
care entries to be compared, the second that it does not even allow a
don't—care entry to be compared with an entry specified from the ori-
ginal system. This leads to the following interpretation of the equal-

sign in (*):

Definition 5. 4.

Two matrices with don't-care entries A and B are said to be
equal, A =B, iff the (i, j)!th entry of A equals the (i, j)!'th entry of B
for every (i, ]) for which neither onhe nor the other entry is a don't-

care entry.

=

Theorem 5. 5.

With the interpretation given in definition 5, 4. of the equal sign

in (*), proposition 5. 3. holds true.

A proof of theorem 5. 5. is obtained from Gelenbel!s proof in a
straightforward way. | am not going to do it here - instead, | shall

prove the following:
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Theorem 5. 6.

Let M be a SFS, M = (S, X, {M(x)}), Gelenbe-decomposable in-
to A@B with respect to partitions m and 7. Then m and T are strict-

ly independent iff

VSil, Si,?,, SJ E S VXE X: B(X, Sil P Sj) = B(X, Sie’sj)

A

where the equal-sign is defined in definition 5. 4.

proof

1)Fi|'~st assume that ™ and T are strictly independent. Then there exists
a normal extension with respect to m and T satisfying the requirements
from definition 2.21 Now let b, 1(x, i, jo) be any care (not a don't
care) entry in B(s, i, jo) . Then either Wilﬂ To + @, My N Ty = @ and
%milkoa‘ol (x) ¥ 0, in which case bkolo(x’ i»Jo) equals 0 and for any
other i bkolo(x’ i,io) is either a zero entry or a don't-care entry, or

in the other case m; N T + @, ﬂjoﬂ‘rko* @ and L:milko,jal(x) $£0:

mif: K o’jolo(x) mj‘1'ko’jolo(fx) zi:mi'ko’jolo ()

Zmikul(x):zmi'k’j 1(x) 2 Lmly 13 1 (x)
1 10 ‘o 1 10°0 1 oo

bkolo(x7 i1,j0) =

where the primes refer to the extended system. In the last case
bkolo(x’ i ,j0) is written as an expression independent of i, , which
means that for any s i € SA for which bkolo(x’ ir,Jo) is a care entry
bkolo(x, i ,Jo0) = bkolo(x, i5,Jo) = and the first part of the theorem has

been proved.
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Z)And now to the if-part of the theorem. From the given decomposition

of the SFS M, it is possible to construct another one with the same
- and T-partitions, but with a modified tail-component in which the
equality of the transition-matrices holds with the usual interpretation
of equality between matrices (strict equality between any two entries).
This is an easy matter. First notice that donlt—-care entries in the tail-
component appear in full rows. If the k!'th row of B(x,i,]) is a don't-
care row, then it is replaced by the k'th row of B(x, il ,i) for any i,
in which the k'th row is a care-row (if the k!th row is a care-~row for
more than one i, they will all be equal from assumption). If no such iy
exists then the k'th row of all matrices {B(x, i, j}} s, € SA is replaced
with one fixed stochastic |T|-dimensional vector. For this modlified
tail-component B! = (SB" X X SAX SA’ {B!(x, X SA)}) the following

holds:
M xE X Ms; ,S; ,5;€ SA:B'(x, s; ,s;) = Bl(x,s;,s;)
1 2 1 2

with the strict interpretation of the equal sign. The Gelenbe-intercon-
nection of A and B!, C, defines a normal extension of M with respect
to m and T on which the extended m-partition has S. P. and for which
Cixoa; 1{x) - Ty b1 (x)
00 "0 i 0 00

MXEX M, ,. ST < <lrl- L ‘
! o' l l 1 *o’lo \ I Z.:lecikowol(x):
1

(Zai j (x)- by (X, 00,J0)) (2 i (x) - by (x, i:jo)) Qi (x)-(bk 1 (X’ iOajo)'Zai i (x)) .
1 o) i o 00 _ __0o'o 00 i .0

[s)e]

Zzaij (x)* bk ]_(X, i7j0) - Zaij (x)
il o} e} i O




68

aj ; (x)+ by 1 (X,00,J0) = ¢y ’3:1 (x)
00 00'00

00

if ZZcy ,;1(x) + 0 and ¢, ,;, (x) = 0 otherwise. So, the normal ex-
il 00 00 00
tension satisfies the requirements of definition 2.21 and m and T

are thus strictly independent.

From theorem 5. 5. and 5.6. it follows that Gelenbe-decomposition
subsumes both cascade- and strict—-decomposition. One might have
illustrated the difference between these two decompositions from their
relationships to Gelenbe-decomposition given in the two theorems -
obviously one would have reached the same conclusion as the one on

page 44,
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SECTION 6

State-splitting

Paz [8] has shown in some examples that it might be useful to
introduce a theory of state-splitting in connection with the cascade-
decomposition of SFS's, and recently Santos [12] did some rather ge-
neral work on the idea. | shall not go into the work of Santos in any
detail -1 shall just show in one single example that the state-splitting

idea can also be used in relation with the strict~decomposition.

1 1/24 13/24 5/12
l1/12 7/12 1/3

l1/6 17/30 4/15

M is neither cascade- nor strict-decomposable (since none of
the three non-trivial partitions on the state set of M has S.P., M is
not even Gelenbe—decomposable). To make the system decomposable,
however, Paz suggests to split one of the states (s;) into two states
in the following way: Duplicate the i'th row of M(a) and then divide
the i!'th column into two .columns whose sum equals the original co-
lumn. You have then obtained a 4~state system, which is state-equi-
valent to the original 3-state system, if the outputs from the two states
introduced by the splitting are identified. (Notice that the output func~
tion O of a Moore-machine may simply be viewed as a partition ®w on
the state set of the machine given by: s; = s; (w) iff O(s;) = O(s;). In
this terminology the two states introduced by the splitting are put into

the same block of the output-partition w ). It is to be noted that any of
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the existing reduction-algorithms for stochastic systems will reduce
the 4-state system to the original 3-state system immediately, but the
idea is, of cour*sé, to perform the state-splitting in such a way that
the 4-state system is decomposable, I.e. if f. ex. the second state of
the above system is chosen to be split then to determine the aij's in

the matrix

— vt

1/24 a, a5 5/12
1/12 ap a5 1/3
1/12 ap as 1/3

1/6  ap au 4/15]

. 1
in such a way that )the sum of the a-columns equals the column ob-

tained by duplicating the second row in M(a) , z)there exists a hon—tri-
vial S. P. -partition 7 on the state-set of M! (say {12 34}) and 3)ther‘e

exists another non-trivial partition T (say {13 24}) such that T«T = 0

and 1M and T are independent.

It is easily seen that with the chosen splitting-state and the sug~
gested partitions m and T there is no solution for the a;;'s satisfying
the requirements above. But if the term ""independent!! is replaced with

"strictly independent!! then the following matrix will be a solution:

-1/24 3/24 5/12 5/12—
1/12 1/12 1/2 1/3
/12 1/4 1/3 1/3
__1/6 1/6 2/5 4/15 |

M”(a) =
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Since this system from construction fulfills the requirement of
the strict-decomposition with respect to m and T, the result of the
above considerations is that M is state~equivalent to (in general a
persistent subsystem of) the strict interconnection of the following two

SFS!s:

Front-machine:

is a two-state (s, ,s;) , one input (a) SFS with transition-matrix:

1/6 5/6
1/3 2/3

Ala) =

Tail-machine:
is a two-state, two-input ({a} x {s, ,s5}) SFS with transition-matri-
ces:

1/4 3/4 1/2 1/2

Bla,s ) = Bla, sp) =

1/2 1/2 3/5 2/5
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SECTION 7

MAXIMAL AND SUPERMAXIMAL.. INTERCONNECTIONS

Until today the nicest result obtained in the decomposition theory
of deterministic machines is the classical Krohn-Rhodes theorem, sta-
ting that every deterministic system has a loop-iree decomposistion in
which each component is either a simple group accumulator or a 2-sta-
te reset-machine. 1 shall not explain this theorem further. | assume
the reader to be familiar with it — if he is not, 1 am convinced that he
understands the flavour of the theorem, anyway, from the explanation
above: Every deterministic machine can be loop-free decomposed into
some very simple components. Unfortunately both the theorem itself
and the proof of it are very algebraic oriented - working not with ma-
chines as introduced in this paper but with their semi-groups, and
this algebraic characterisation ofmachines does not carry over to sto-
chastic machines directly. As a matter of fact it is still an open ques-
tion whether a result similar to the Krohn-Rhodes theorem holds for

stochastic machines.

If, however, you don't restrict yourself to loop-free decomposi-
tions, the situation is quite 'different. Paz [9] has been working on

the problem for the following kind of decomposition:
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Definition 7. 1.

Let A=(S,, XX Sg» { A(x, sB)}) and B = (S_, Xx SA,{B(x, sA)})

A’ B’
be two SFS!s. The maximal-interconnection of A and B is defined as

the system C = (S, xS, X, {C(x)}) where

A B’

C(x) = [Cilujl(x)] = [a;;(x, k) by, (x, i].

It is easily checked that the maximal interconnection of two SFS!s
is a well-defined SFS and that the definition may be extended to a de-
finition of maximal interconnection of more than two SFS's, M, ,M,, ..
cesey My — the itth of which having state set S; and input alphabet
XKXS, XSy Xew..n XSiq X Sipq Xe v oo . XSy . The definition of a maximal.
decomposable SFS can be read off definition 2. 9. in the straightfor -

ward way.

The interpretation of a maximal interconnection is as follows:
While in the cascade interconnection of n SFS!'sM; , My, ..., My,
a transition in M; is dependent only on the present state of all M;!s
for which j<i, in a maximal interconnection a transition of M; is
dependent on the present state of all the M;'s, 1<j£n. As for the
cascade-interconnection, a maximal interconnection of n SFS's re~
quires only one timeinterval to make all transitions of all components
on an input-symbol, and from the interpretation it is easily seen that
the cascade-decomposition is a specia@l case of maximal interconnec-

tion.
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A graphical illustration of a maximal interconnection of 2 SFS!s

is shown in fig. 6
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A graphical illustration of a maximal interconnection of

two SFS!'s M, and M,.

For this kind of decomposition Paz [9] has shown the following:

Theorem 7. 2.

Let M= (S, X, {M(x)})bean n-state SFS. Then there exists a

2-state SFS A, an(n-1)-state SFS B and a partition ®w on S, X SB

A
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such that M is state—-equivalent to the maximal interconnection of A

and B with output-partition w .

proof Let S={s ,s,, ... ,s5,} . s, is now split according to
the previous section into n-1 states, t ,t3, ... ,t,, , resulting in a
2(n-1)-state system M! . The idea in the proof is to construct ths tran-

sition probabilities in M! in such a way that M will be state—equivalent

to M! with output—partition @ = {S;,Sz, ««v ,Spq, b stay «eeyytuq J ,

and M! isomorphic to the maximal interconnection of a SFS A with

state-set equal to the blocks of M= {s ,S5, «v. ,Spq st sty «v- 5tyq )
and B with state-set T = {S t, ,S5ts, .v. ,S.4 t, } . If this is possib-

le the theorem is proved from proposition 2. 10,

Let M(x) = [m;;(x)] and M!(x) = [ml,(x)] . Since M!' is obtained

from M by splitting the state s, , the following must hold:

mij(x) for 1 <i, j<n=1
1) mi; (x) =
My ; (x) for héiéZ(n-}), 1. <j<n=1
and
my, (x)  for 1 <i<n-1
2) Zm&j (X) = . _
n<j<2(n-1) My (x)  for n<i<2(n-1)

1)

On the other hand and z)ensures that M is state-equivalent to

M! with output-partition w (M is simply the w-image of M! where ® has
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S. P. and is outputconsistent - see the remark after definition 2.13 ).
From the equation in definition 7. 1. it is seen that a sufficient (and
necessary) condition for M! to be maximal decomposable with respect

tom and T is

(nilm{j (x))+ (ml; (%) + mlena)(x) for 1< j<n-1
j=1
)

(JE mi; (X))« (ml; (%) + miopy (X)) for n< j< 2(n-1)

3) mi,(x) =

(That this condition is sufficient for M! to be maximal decomposable
follows from arguments similap to the ones of the proof of theorem 2. 15.

- this will, however, be shown later in the proof.)

From the above it follows that it is sufficient to prove the possibility of

assigning the matrices M!(x) in such a way that requirements 1), 2)

)

and 3 are met.

3) 2)

specifies any entry of M!(x) with 1<j<n-1. Combining ¥, “’and

1)
gives you the following for any entry with 1<i<n, n<j<2(n-1)

z(n"l)
(*) mi, (= (2 mly(x) - (mly (<) + mlpy (x) =

I Min ()= (Ml (<) + my(pm)(x))
m}

-j(x) (1 = my, (X)) = my, (x) - mi(j‘n*l)(x)

If my, (x) + 1 this equation specifies m},(x) - if m;,(x) = 1 then

mllj (x) can be set arbitrarily as long as it is a legal probability value
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Finally ml;(x) is assigned for n<i, j<2(n-1):ml,(x) = mj; (x),
where m};(x) is specified above. (It follows that the last n-1 rows of

M!(x) are equal).

1)

With this assighment of M!(x) ‘obviously holds and for 1<i<n

n—-l)
2(2 ml; (x)
j=n i n

= My, (X)

_ g(nz—l)min (x)- M=) (x) My, (%) (1 _min(x» _
= Temu O =7 Temg ()

2)

if my, (x) + 1 and the.sum Is equal to 1 otherwise, which shows that

holds. Reversing the argument (*) above gives you immediately that the

)

second line of 3 holds -~ that the first line also holds follows from:

n—l 2(11“1)
( Z:l mi; () (m; (%) + migrgy(x) ={1 - Z mi; O (mi; () + mgmy (X)) =

2(11_‘1)
mi;(x) + mifgn-5(x) - (j‘_{:nmgj (x))+(m]; (x) + mlgemy (X)) =

mis (%) + mlgry () = migry(x) = ml;(x) .
Now from these assignments systems A and B are easily construc-—

ted - the state-sets of A and B being the sets of blocks of T and T

respectively. The transition-matrices of A are determined by

a;;(x, k)= T ml (x) forp=mN T,
qéﬂj
and
bi; (%, k) = Z ml,(x) for p =m0 T4
qeT;

From these definitions the transition-matrices of the maximal in-

terconnection of A and B are seen to equal the transition-matrices of
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M! and this completes the proof of theorem 7. 2.

Now, given an arbitrary n-state SFS. Apply theorem 7. 2. to it,
next to the (n-1)-state system, and so on until you obtion a maximal
interconnection of all 2-state-machines. This process can at most go
on n-2 steps, so you have the following as an immediate corollary to

theorem 7. 2. :

Theorem 7. 3.

Let M be any n-state SFS with input alphabet X. Then there
exist n-1 2-state SFS's, M, My, ... ,M,, the i'th of which with
stateset S;and input alphabet XX S X....XS; 4 X Syyg X. .. XSy and
a partition w on S X...X S, such that M is state-equivalent to the

maximal interconnection of the M;!s with w as output-partition.

Example 8

Let M be a 4-state, one-input (a) SFS with transition-matrix

Ti/a 1/4 o 1/2]
1/3 1/6 1/6 1/3

0 0 0 1

0 1/2 1/4 1/4 ]

Applying the algorithm of theorem 7. 2. to this system gives you

the following M!-system - obtained by splitting the fourth state of M
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into three states

-

"1/4 /4 0o 1/41/4 O
1/3 1/6 1/6 1/6 1/12 1/12
o 0o o o0 1 0

0 1/2 /4 0 1/6 1/12

o 1/21/4 o 1/6 1/12

o0 1/21/4 0o 1/6 1/12 ]

where the underlined entries are don't care entries. M is state-equi-
valent to this system with output partition w= {_1.., 2, 3, 456}, and M!
is isomorphic (and thus state equivalent) to the maximal interconnec—
tion of the following 2-state (corresponding to 1 = {123, 456}) SFS
A and 3-state (T = {14, 25, 36}) SFS B (also constructed from the

algorithm of theorem 7. 2. ):

Machine A:

1/2 1/2 2/3 1/3 0 1
Ala, 1) = A(a, 2) = Ala, 3) =

3/4 1/4 3/4 1/4 3/4 1/4

(the 1, 2 and 3 refer to the states of B - —ITL, 25 and 36 respectively)

Machine B:
1/2 1/2 0 0o 2/3 1/3
Bla,1)=1|1/2 1/4 1/4 B(a,2)= | 0 2/3 1/3
o 1 0 o 2/31/3

(here the 1 and 2 refer to the states of A - 123 and 456 respectively)
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Now, if the same process is used on machine B above, the re-
sult will be a maximal interconnection of 3 two-state SFS!s to which

M is state equivalent.

Now, to continue the line of this paper it would be interesting to
see what happens for an interconnection type, in which each compo-
nent does not only know about the present state of all the others (as in
a maximal interconnection), but in which a "flow in the runs of the com~
ponents' is introduced, such that when the i'th component is to make
its transition on an input it knows also about how the j'th component
reacted on this input for every j<i, i.e. it knows the present and the
next state of all j'th components for j< i and the present state of all

j'th components for j=1i .

Definition 7. 4.

Let A= (SA, X a0 {A(xA)}) and B = (SB, Xg» {B(xB)}) be two

SFSis with X, = XXSB and X _=XXS , XS ,. where X is an external

A B ATTA
input alphabet. The super-maximal interconnection of A and B is defined

as the SFS C=(S xS_, X, {C(x)} ) where

TATTB?
C(x) = [Cik7j]_(x):| = [aij (x, k) by, (x, i:j):l

As for definition 7. 1. this definition is extendable to define su-—
per-maximal interconnection of more than two SFS!s. Since the con-
cepts might be a little confusing | shall state this definition even if

definition 7. 4. then might seem superfluous.
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Definition 7. 5.

i
Let M, My, ... ,M, be a set of SFS'!s, M; = (S;, X;,{M(x;)})
where X; = XX S| X...X Sjq XS Xeo e XS X G} Xu. XS+ . The super-
maximal. interconnection of the M;'!'s is defined as the SFS
M= (S X...XxS,, X,{M(x)}) where
M(X)= [mss e oo g ggtgl e e gl (X)]:-
1= n 12 n
[m%s‘(x7522537"':sn)'m§ s} (X,Sl,Sg,...,Sn,Sl')‘ s
11 22

.o s‘(5751,"'7Sn"_1:Slli"'isxz”l):[

nn

Interpretation

The first occurence of S; in X (j < i) is supposed to represent
the present state of Mj -~ the second occurence the next state. The su-
per—-maximal interconnection of n SFS'!s is thus seen to require n ti-

me—intervals to make all it's transitions.

When Gelenbe introduced the carry of the next-state in the cas~-
cade~-decomposition scheme he found that what was gained was a smal-
ler set of conditions for the decomposition to be possible. What happens
in this case? Do you gain anything by introducing this next-state flow
for the maximal-interconnection scheme, and if you do, what do you

gain?

It turns out that you can obtain a reduction in the number of 2-
state machines necessary to realize a given machine. This is made

clear in the following theorem:
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Theorem 7. 6.

Let M be any n-state SFS with input—-alphabet X . Then there
existsasetof N 2-state SFS's {Mi}ﬁl , My = (S, X;, {Mix;)}) where
Ky =AXXG X e s e XS X Sy XS X G, X...XS;4 such that

1) 2)

N < Iogz(n—1) + 1 and M is isomorphic to a persistent subsystem of

the super-maximal interconnection of the M, 's .

Notice that from proposition 2. 10. theorems 7. 3. and 7. 6. are
directly comparable. Theorem 7.6. is a consequence of the following

theorem 7. 7.

Notation

Let n be any positive integer. Then [n] denotes the least inte-

ger greater than or equal to n/2, i.e.

n/2 if n is even

[n]=

(n+1)/2 if n isodd.

Theorem 7.7.

Let M bean n-state SFS with input—alphabet X . Then there exist

A Xa {A(’x )f ) with X p\= XxSg and an [n]-state

SFS B= (SB,X , {B(x )} ) with Xg=XXS XS 5, such that M is isomorphic

to a persistent subsystem of the super-maximal interconnection of A and B.

a 2-state SFS A = (S
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First | shall give a proof of theorem 7.7. - probably the reader
will be familiar with the arguments necessary to see that theorem 7. 6.
is implied directly - anyway | shall shortly sketch the arguments after

wards.

proof of theorem 7.7. If n is odd, add one single state to M - ob-

taining .an nt!~ state system M! where
MXEX M1=isn: migy(x) =0

and where the iransition. probabilities from state n+1 are randomly
set. If n is even then set system M! =M . In either case it follows that
M is isomorphic to a persistent subsystem of M! and that [n'] = [n] =
n'/2 , where n! is the number of states in M! . Let M! = (S, X, {M!(x)})

with St = {s ,s,,...,sy) .Define two partitions

m=1{sS3...Sms Spyer ++-- Sp} = {m ,mMz} and
T= {5 Smus+-->5mon) ={M, «-- , Ty and set the state set of A to
the blocks of 11 - the state-set of B to the blocks of 7. Define the

transition probabilities of A and B as follows:

a;; (%, k) = Zml(x) for p=1m;0N Ty
qEﬂj
My (x) _ -
m forp=mN T, r=m,0T
by, (x, 1, ) =<4 Fs it T mi(x) 0
e

don'!t care otherwise
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With this assignment | have for each element in the super-maximal

interconnection of A and B:

Cigsjl (x) = aj; (x, k) - by (X, 1, =

1o(x
émgq(x) . n;_jrrril)(x): ml, (x) for p=mNT, r=mNT
qeTT,

J

if by (x,1,]) is not a don't-care entry and cy, ;, (x) = 0 otherwise. This
implies directly that M! is isomorphic to the super-maximal intercon-
hection of A and B with isomorhism @ :S! 41X 1, ¢(s) = (m;, T,) where

=0T

Proposition 2. 10dves vou from the above that M is isomorphic to
a persistent subsystem of the super-maximal interconnection of A and

B - and this compvletes the proof.

proof of (theorem 7.7. = theorem 7.6.) Obviously the idea is to

apply theorem 7.7. to the given SFS, then to the [n]—state tail-machi-
ne and so on. The only thing to prove is that this process will result in
no more than log, (n=1) + 1 ccmponents. L.et's turn the question for the
process and ask for any i the minimal number of states of an original
SFS that will result in at least | 2-state components. Denote this num~
ber g(i) . 1t is now seen from the description of one step of the process
in the proof of theorem 7.7. that g(i) can be expressed in the following

recurrence—-equation:

g(i+1) = 2+ g(i) - 1
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with initial condition g(1) = 2. This equation has the solution
g(i) = 271 + 1, which means that if for any n,N is the number of 2~
state components produced by the super-maximal decomposition algo~

rithm then

N<log, (n-1) + 1

Example ©

L et me take the 4-state SFS of example 8 and decompose it in one
step into a super-maximal interconnection of 2 2-state SFS!s . 4 is an
even integer so the construction of the two components A and B starts

directly from the transition-matrix of M :

(/4 1/4 0 1/2]]
1/3 1/6 1/6 1/3

0 0 0 1

| 0 1/2 1/41/4

The partitions m and T equal {12, 34} and {13, 24}, respectively.

Front machine A
has two states (12 and 34), two input-symbols ({a} x {13, 24} =
{a} x {1; 2}) and transition-matrices:

1/2 1/2 1/2 1/2

Ala, 1) = Ala, 2) =
o 1 1/2 1/2




Tail machine B
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has two states (13 and 2%), 4 input-symbols ({a} x (12, 34} x {12, 34} =

{a} x {1,2} x{1,2}) and transition-matrices:

B(a,1,1) =

B(a, 2,1) =

1/2 1/2]

| 2/3 1/3

B(a,1,2) =

B(a, 2, 2) =

o0 1|
L1/3 2/3
o 1]

| 1/2 1/2_
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