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Virtual Programming

B. H. Mayoh

1. Introduction

One of the most important developments in the art of programming
is the realization that programs can be written as if there was a virtual
machine between the user and the computer. With the advent of problem-
oriented languages, the user could imagine that he had available say a
FORTRAN machine and write his program accordingly. At first such a
virtual machine was no more than a convenience for the user, freeing
him from routine book-keeping and giving him a suitable conceptual frame-
work in which to formulate an algorithm. But now we have multiprogram-
ming operating systems that deny the user direct access to the resources
of the computer and force him to use a virtual machine. On the other hand
many modern computers are, in essence, virtual machines because they
are microprogrammable.

Clearly virtual machines must be designed with care, since they pro-
vide the bridge between the conceptual framework of the problem~solver
and the hardware of an actual computer. In this paper we present a design,
that was prompted by recent work on program development (1- 28 ), ope-
rating systems (30-37, and microprogramming (40-48 ), The first half of the
paper consists of an analysis of some conceptual mechanisms that are use-
ful when devising an algorithm. Some of these mechanisms are suggested
by a flow diagram model of programs ( sections 2.1, 2.2, 2. 3) some are
suggested by an activity model of computations (sections 2.4, 2.5, 2.6),
while others are suggested by a model of computation states as collections
of data structures (sections 2.7, 2.8, 2.9). The second half of the paper
gives an outline of the design of a virtual machine ODIN on which the me-
chanisms can be implemented simply and efficiently. The emphasis is on
the features that distinguish ODIN from more traditional machines: its
ring of activity records (section 3.2), and its implementation of data struc-
tures and types (section 3.3, 3.5, 3.6). Because of these features ODIN
can implement delicate combinations of iteration, parallelism, recursion,

subroutines, coroutines and the like, should this be desirable.




Preface to second printing

In the two years since publication of this report much work has
been done in the area of programming languages. Rather than make
the appropriate revisions in this report we prefer to wait until the
language has been implemented and used. We envisage two implemen—~

tations:

- using the Aarhus compiler-compiler modified so
that it can accept Scott-Strachey definition of

the semantics of a programming language

- direct implementation of the ODIN virtual machine

on the Aarhus RIKKE-MATHILDE hardware.




2.0 Stepwise program development

What is the most natural way of composing an algorithm to solve
a problem? A number of recent articles advocate: dividing the original
problem into subproblems, supposing that we have algorithms for sol-
ving the subproblems, describing how these algorithms can be combined
into an algorithm for solving the original problem, and repeating this

process for the subproblems. For this approach to be feasible we must

have powerful ways of describing an algorithm as a combination of other
algorithms. We need a powerful algorithmic language. In the following sec—-
tions we gradually invent such a language SAGA, not intended as a rea-
listic alternative to other -algorithmic languages, but rather as a speci-
fication of the kind of mechanism a virtual machine should be able to

handle efficiently. As SAGA is to be the starting point for the design of

a virtual machine, we can banish its exact definition to an appendix.

2.1 Flowdiagram model

Presumably all programmers know the use of flow-diagrams for de-
scribing an algorithm as a combination of more primitive algorithms. Even
although ODIN can handle any flow diagram, it is unwise to permit their un-
controlled use and SAGA will have no equivalent of Algol!s goto and its
attendant labels { 52 ), However, we shall often use flow-diagrams to il-
lustrate the mechanisms SAGA does have, so we ought to define them precise~
ly. A flow-diagram is a particular kind of directed graph in which all nodes

and all edges have titles. To be a flow diagram such a directed graph must

satisfy:
a) each node has at most two leaving edges;
b) if a node has two leaving edges, one of them bears the title true,

while the other bears the title false;

c) if a node has only one leaving edge, the edge bears the title neutral;

d) there is precisely one node with no leaving edges, it is the only node
bearing the title end;

e) there is precisely one node with no entering edge, it has one leaving
edge and bears the title begin;

f) any node with title blind - has two leaving edges.




Nodes with one leaving edge are called squares, nodes with two

leaving edges are called diamonds.

In order to draw a flow~-diagram we use the conventions:

represents a node with title P and just one
leaving edge;

represents a node with title B and two leaving
edges;

represents either an edge with title true or an edge
with title neutral;

represents an edge with title false;

also represents the node with title begin;
also represents the node with title end;
also represents the node with title success;
also represents a node with title failure;
also represents a node with title resume;

also represents a node with title blind;

@>}]4<lo-ﬂ JQT,

Nodes which have more than one representation are called spyecia! nod‘esk7
and all of them occur in the flow-diagrams in figure 1. These flow-diagrams
specify four algorithms that can be built from algorithms P, Q, A, B, C,

D. The last of them is the socalled dummy algorithm.

Figure 1: Four flow-diagrams

Our language SAGA, like other higher language, permits nesting of al-
gorithms. To explain this we introduce the idea of replacing a node N
by a flow-diagram S. Suppose that N has one leaving edge with desti-
nation T. Let L be the destination of the edge leaving the begin node
of S. Then the result of replacing S by N is given by:



1) Taking L. as the destination of edges that originally led to N ;

2) Taking T as the destination of edges that originally led to
success or end nodes in S

3) Redrawing S so that each failure node loops (is the destination
of its own leaving edge);

4) Removing the begin end success nodes of S.

Now suppose that M has a false edge with destination = and a true
edge with destination T. Then the result of replacing N by S is
given by 1), 2), 4) and:

31 If there were failure nodes in S, remove them and take F as
the destination of edges leading to such failure nodes, otherwise
introduce a dummy node with a false edge leading to F and a
looping true edge.

Consider figure 1. The result of replacing nodes P and A by the se-

cond flow-diagram are shown in figure 2.

Figure 2: The result of replacing a node by a flow-diagram.

2. 2 Operator diagrams

The simplest flow diagrams are those in which there are no dia-
monds and just one path from the begin-node to the end-node. If we
write the titles of the nodes along this path separated by semicolons,
we get the simplest kind of SAGA code, a sequence like:

beginh; P; Q; R; end
In figure 3 we give other simple flow diagrams with: their corresponding

SAGA codes.




If B then P else Q

select B, :P, ,B,:P,...,B, :P,
else Q
40 —
cycle B, 1P, By:Py,...,B, P,
B P
& while B repeat P
&y D B repeat P while B

Figure 3: Operator diagrams.

Now we can explain the nesting of SAGA codes by an example. The
SAGA code

Af B then P else if B2 then P2 else Q2
corresponds to the first of our operator diagrams with - if B2 then P2

else Q2 - in the role of Q. If we replace the Q-node by the flow diagram

for — if B2 then P2 else Q2 -, we get another flow diagram for our SAGA




code. As this diagram also corresponds to the code - select B: P, B2:
P2 else Q2 - we ought to give an example of the use of nesting to pro-
duce something new. We can take the third of the flow diagrams in figure

1; it corresponds to the code: while D repeat begin;resume; Q; end.

For reasons that will become apparent later, we have introduced

a name, operator diagram, for those flow diagrams that do not contain

a failure node. However we replace a square in such a diagram, we
get an operator diagram. If we replace a diamond by an operator dia-
gram, we also get an operator diagram. On the other hand figure 2 shows
that the result of replacing a square is not necessarily an operator dia-

gram.

2. 3 Condition diagrams

In the same way that the SAGA codes of the last section are related

to squares in a flow diagram, the SAGA codes in figure 4 are related to

diamonds.

B, or B, or. .or B

B fails before C

Figure 4: Condition diagrams.
The first two of these codes enable us to use nesting to build all Boo-

lean combinations of diamonds. The third code is convenient but not ne-—

cessary in that it is equivalent to: while B repeat C. Suppose we put

the above flow diagrams in the place of the B node in the operator

diagram for if B then P else Q. The result will be the original flow

diagrams with P instead of the success node and Q instead of the

failure node. It is not surprising that flow diagrams with failure nodes

are called condition diagrams,




2. 4 Activity model

Let us make our static flow diagrams dynamic. If we define an
activity as a flow diagram with one or more buttons on its nodes, then
we can take a finite set of activities as a suitable model for an algo-

rithm under execution. The colour of the buttons on a node is signi-

ficant:

vellow this node is the activation point, it is currently being
executed;

green this node is the true reactivation point-if we return to this
flow diagram from a successful activity it is changed into
a yellow button;

red this node is the false reactivation point — if we return to

this flow diagram from an unsuccessful activity it is changed
into a yellow button.

Activities are created by placing a yellow bution on a new copy of a flow

end,or resume node,

diagram. When a button reaches a success\failur*e’

we return from an activity to its creator.

L.et us consider a typical computation using the flow diagrams in

figure 1. Suppose we begin by placing a yellow button on the begin node
of the first diagram (step 1). The button immediately moves to the P-node

(step 2). Suppose P is an activity that is always successful, so oupr
button moves to the A-node (step 3). Suppose A calls for the creation of
the second flow diagram. We move our button to the begin-node of that
diagram, and we place green and red buttons on the end and P nodes of
the first flow diagram (step 4). The yellow button now moves to the B-
node of the second diagram (step 5). Suppose B is a successful activity
so this button moves to the success node (step 6). Recognizing that the
kind of node it is resting on, the yellow button. moves over io the green
button and the green and red buttons are removed (step 7). As the vellow
button is how on an end node and there are no other buttons, the computa-
tion stops (step 8). '

In our example the second flow diagram ceased to be an activity
when it lost its yellow button in step 7. This is known as subroutine
discipline, but other disciplines are both possible and desirable. There-
fore we introduce the rule:

a vellow button on a resume node is treated as if it were on an end

node, except that a red and a green button are placed on the node .

indicated by the leaving edge.




2.5 Clones, recursion and coroutines

In divising an algorithm, it is often convenient to use clones~
to allow distinct activities with the same underlying flow diagram.

Suppose we allow end, success, failure and resume nodes to bear

an extra title, and introduce the rules:

1) when a Yellow button is moved from a node with extra title
P, it goes to the most recently created activity with P as
its underlying flow diagram;

2) unless the yellow button sat on a resume node, remove all
buttons on activities created since the last P-activity.

Then powerful combinations of recursion and coroutines become possible. (5).

Figure 5 gives a relatively simple example.

flow diagram X

flow diagram Y

flow diagram Z

Figure 5: Simultaneous recursion and coroutines.

As an illustration of the way of expressing our new possibilities in
SAGA we mention that the code corresponding to flow diagram Z is:

begin; while C repeat Z

repeat resume Y while D j; end X

2.6 Paralelism and hon-determinism

Why have we subjected ourselves to the restriction: only one
activity has a yellow button? Qur model can easily describe parallel
activities. Suppose we agree that a vellow button on a node with title:
B1 and Bz and .,. and Bn’ is converted to yellow buttons on new copies

of each of B

10" Bn' We can also agree that our original node is




successful if all the newly created activities are successful, and
unsuccessful if at least one of the newly created activities is unsuccess~
ful. We can convert this into an extension of the rules for moving yel-

low buttons on special nodes:

if a yellow button lands on a failure node, then all other yellow
buttons are destroyed;

if a yellow button lands on an end ,success or resume node, then
it is destroyed provided that it is hot the last vellow button.

Cne may well ask whether we have achieved anything that could not be
achiev ed by the condition diagram in figure 6 - a diagram which can be

described using SAGAls or and not.

Figure 6: Pseudo parallelism.

The answer is : yes in the case when activities 81 “e B never tepr-
minate but B, +1 terminates and is unsuccessful. An |Ilum|natmg way of
expressing the difference is: inh parallelism the sequence of computa-
tion steps becomes a tree, the flow diagram of figure 6 gives a depth-
first search of this tree, our rules give a breadth-first search and both
mechanisms are useful. Perhaps this remark will clarify some of the
confusion about non-determinancy and backtracking. Consider an algo-
rithm like: choose digits x and y such that x + Yy = 15. Assume the
digits are taken in theipr usual order. If the algorithm is written as a
SAGA code using or, it will find the solution x = 6, v =9. If the algo-
rithm is written as a SAGA code using and, it is impossible to predict
which solution it will find.

L_et us digress here to describe a way of handling the SAGA code -
B, and B

1 5 tee
is that we run Bo B

and Bn - in a sequential virtual machine. The basic idea is
... B B . as aringof coroutines, where B

1 n o o

and BOo are two codes that ensure we leave this ring correctly. Figure 7

shows the flow diagrams for B and B . They use the flow diagrams B

that are defined as the result of inserting a resume B -1 node in each

edge of Bi and then replacing failure nodes by nodes wuth the title:
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exit to dummy node in Boo.

-3 émpty exit to upper
B L o ring dummynode inBg,
@ exit to lower 2
£y dummynode inB_ 0

Figure 7: Flow diagrams for parallelism.

2.7 Data structures for the programmer.

So far the titles of non-special nodes in our flow diagrams have
only referred to other flow diagrams. In our final model we allow them
to refer to a set of data structures associated with the flow diagrams.
A data structure has a name and a value. The value of a data structure
can be either an atom, a construct, or the name of another data struc-
ture. In figure 8 some data structures are represented using the con-

vention: small letters for names, capitals for atoms.

I | XYZ m: ] n: | NIL

-
c: ABC"*/\ T

a: JI R//\‘ b: 04%2 XYZ NIL

2.1 3.5 2

Figure 8: Some data structures.

A construct is defined as a finite list of pairs satisfying the requirements:
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a) the first component of each pair is an atom;
b) the second component of each pair is either an atom, a construct,
or the name of a data structure. Thus the value of ¢ in figure 8 is the
the list:

((H, ABC), (T, ((H, XY2Z), (T, NIL))))
and the second component of its second pair is also a construct. Now

the reason for introducing constructs is to manipulate implicit data

structures. In figure 8 we can look upon a [R] as the name of a data
structure whose value is the atom 2. 1. Other examples from our figure
are:

b[2 ]is the name of a data structure with value 5 ;

b[1]is the name of a data structure with value a ;

c[T, H]is the name of a data structure with value XYZ 5

c[T]is the name of a data structure with value ((H, XYZ), (T,NIL)).

Part of the power of SAGA lies in its ability to handle the general data

structures implicit in the construct concept.

2.8 Expressions and places.

The distinction between the name of a data structure and its
value ( 48 ) is reflected in SAGA!s distinction between a place and
an expression. The SAGA code - place:=expression ~ puts the value
of the expression as the value of the data structure named by place. A
simple example is the use of d := a [l] to put 3.5 as the value of 4. A
more complicated example using a reserved code name pure is given in

figure 9. Another important SAGA code - expression = expression -

b := pure (b) in figure 8 gives b :

Figure 9: The removal of hames from a construct.

tests whether two expressions have the same value. Perhaps we ought

also to mention the other SAGA tests - atom (place), name (place), un-
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defined (place) - the last of which tests whether a data structure has
value NIL.

Our next task is to describe how data structures are Ccreated,
for SAGA assumes that no local data structures exist when an acti-
vity is created and destroys them all when the activity is destroyed.
The simplest way of creating a data structure is to ‘use the code:
define dataname = atom.

Examples of this and other SAGA codes for creating data are shown

in figure 10.

define x = 1; complex a ; pointer n ; from 1 upto 3 A; prime b; gives

X : ITNI n:[rﬂ A 1//@\3

— NIL NIL NI

R//\ I
a . ey ey
NIL  NIL b[2]: E“— bl 3] B'E .......

Figure 10: Data creation.

Let us close this section by describing the creation of data structures
for formal parameters. SAGA allows codes to have parameters so that
the programmer need not write many trivial variants of a code. At crea-
tion of a code with parameters the resulting activity is presented with

a finite sequence of either names, atoms or constructs, the actual para.-
meters. The SAGA code - value xyz - creates a data structure with name
xXyz and the value given by the corresponding actual parameter. The SA-
GA code - reference rst — creates a data structure with name rst and then
checks whether the corresponding actual parameter is a name. If it is,
rst becomes an alternative name of the same data structure , an alias ;

if it is not there is an error and computation is terminated. Suppose

Add To List is the hame of the SAGA code:

begin; value u; reference m; m[T] := M; m[H]:= u; end.

Figure 11 shows various situations that arise if this code is activated
by: Add to List (UVW, c).
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Entry apl: %I\;\\\z ; EW;W,

u: UV w C:

A —
After value u apl: = 1 { N}

o O f”’“‘a

After reference m NIL Uvw ¢ u: uvw m:c: E ?

Figure 11: Parameter passing.

One should not be misled by this example into thinking that SAGA
forbids general expressions. Given a call like — Add to list

(pure (b), c[H]) - it converts pure (b) to a value and c[H]to a name
before creating apl and entering Add to list. Furthermore the entry
values of the actual parameters are available throughout the code in

the data structure with name apl.
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2.9 Types
The use of types in SAGA is somewhat unusual; in spite of the fact

that a data structure is created with an associated type, this need not
limit the possible values of the data structure in any way (see section
3.5 for the uses when there is a limitation). Before explaining why
types are associated with data structures, we must describe how they
are created. A type is a finite or infinite ordered list of atoms ( 27 )
different from NIL. As an illustration of the ways of specifying types,
consider:

[REAL, IMAGINARY |

from 3 upto 7 from &£ down to 1 from O step 3 until 21

[ A increment fetch next letter test ho more letters |
[A7 B? C7D7E7 F’ G?‘_!7 l7d7K’L"M7N7O, P7Q7 R? S7 T’ u7V7 W7x7 Y7 Z:|

[2 increment next prime |-

The last of these specifies an infinite type, while the two previous spe-
cifications give the same type. As a convenience to the programmer SAGA
has a code — associate typename Wwith type specification - that allows
him to give names to types. Thus three of the above type specifications

may well be given the names: complex, alphabet, prime.

We have already seen one important use of data types in figure 10:
they enable us to have constructs as initial values of data structures. Ad-
mittedly this only gives simple constructs as initial values, hut the follow-
ing SAGA code shows that arbitrarily complicated constructs can be ge-
nerated:

begin; associate list with [HEAD, TAIL | list c; define | = LMN;

c[HEAD] := XYZ ; c[TAIL ] := ¢; c[HEAD ]:= ABC ;

comment now c¢ is as in figure 8;

(if case | in list then P else Qj
comment equivalent to if | =HEAD or | = TAIL then P else Q;

if some j in_list satisfies undefined (c[j ) then S else T;

comment this is equivalent to if undefined (c[ H EA-D]).Q_['_'_
undefined (c[TAIL ]) then S else T;

ifall j inlist satisfy atom (c[j]) then U else V;

comment this is equivalent to if atom (c[HEAD |) and
atom (c[TAIL ]) then U else V;

end.
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This example also shows the use of types to express switching and
the two kinds of parallelism (section 2. 6).

Perhaps the most important use of types is in iteration . Sup-
pose | is the name of a data structure that is either undefined or has
a value in type T. Then the SAGA code - next j in T - is equivalent

to: select j=NIL : j:= first element of T,

I

Jj = last element of T: begin; j :=NIL; failure; end,

else j = element of T after (j)

except that SAGA automatically ensures that there is a data structure
with name ] and initial value NIL. As an example of the use of the

new code for describing iterations we can take:

while next j in alphabet repeat B.

In fact such iterations occur so frequently that SAGA allows - while
next j in - to be replaced by - for j - giving SAGA codes like:

for j from 2 upto 17 repeat B.

In closing this part of the paper let us emphasize that Algol!s goto
statements with their attendant labels have no equivalent in SAGA (50, 52,
54,59). There are several arguments for taking this seemingly drastic
step, despite the two counter arguments : the need for error
exits from complicated codes, and the need for an emergency exit from
an iteration. The SAGA possibility of writing codes like end P takes
the sting from the first of these counter arguments, while the following
example shows that the second is not so very compelling: the algol code

for j:=1 step 1 until 6 do

if B then begin P; goto L; end;

Q; L
corresponds to either of the SAGA codes

if next j in from 1 upto 6 fails before B then Q else P

if some j in from 1 upto 6 satisfies B then P else Q.
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3.0 The design of a virtual machine

In the rest of this paper we sketch the design of a virtual
machine in which SAGA can be implemented simply and efficiently.
We shall use the same gradual approach we have just used to pre-
sent various aspects of SAGA. We began with a flow diagram
model of an algorithm, moved on to an activity model of a computa-
tion, and finished by describing some simple codes using data struc-
tures. Here, the flow diagram model will suggest a traditional
(von Neumann) machine, the activity model will modify the design
somewhat, and the simple codes will suggest primitive operations
and data referencing mechanisms. The emphasis is on showing that
the machine can handle the most general SAGA situations, and the
fact that there are more efficient ways of treating particular: situations

is ignhored.

3.1 Instructions and labels

Consider the flow diégr*am model again. We would like each
node to correspond to a single instruction in our machine. The most
direct way of doing this is to have instructions with two fields, one
of which tells how many edges the node has., while the other gives
the title on the node. But then we have a problem - how do we speci-
fy the destination of the edges that leave the node? There seems to be
no good reason to abandon the usual sequential solution - if there is

only one leaving edge, it leads to the node corresponding to the imme-

diately following instruction. This motivates a (control address) register

NEXT, which points to the instruction about to be obeyed and is incre-

mented during the execution of unconditional instructions. We can also use

NEXT for the false edge from a diamond, but the true edge must be
treated differently. Let us introduce a (memory address) register LO~-
CATION to point to the instruction corresponding to the node for the
true edge. Noting that we need a new kind of instruction to load LO~
CATION, we can give our first specification for the machine ODIN:

a) it can Store a program, a sequence of instructions each of
which has a mode field and a name field;

b) an instruction in do mode with name P corresponds to a
square node with title P;

c) an instruction in if mode with name B corresponds to a
diamond node with title B;
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d) an instruction in fetch mode with name D causes L.O-
CATION to point to the instruction labelled D.

A glance at figure 12 should make this clear. The figure also illustrates
the fact that the existence of the title dummy ensures that every flow
diagram can be implemented. Furthermore it shows that this part of
ODIN is very similar to a traditional von Neumann machine - if mode
corresponds to transfers, do mode corresponds to the other opera-
tions, while fetch mode corresponds to the standard addressing me-
chanism. This similarity becomes even more striking in the second pro-
gram of figure 12, where we use a hew (accumulator) register RESUL.T,

and we use fetch mode to access simple data structures.

if B then P else Q fetch L
- if B
do Q
M /;\_,_wg ) Q data table fetch M
if dummy
L s} do P
p:mv. M . ,7

fetch |

next j in from 4 down to 1 do load
fetch L

if undefined
decrement () fetch j

do decrement
do store
fetch M

if zero

fetch true edge

@ it dummy

A fetch four
do load

Wi fetch j
do store

j =

/| fetch true edge
data table if dummy
J N j do undefined
four =5, fetch |
L =t do store
M - fetch false edge
true edge  [> - if dummy
false edge .

Figure 12: Possible implementations of two simple SAGA codes.
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3.2 The activity record ring

Now for the activity model of section 2. 4. An activity is re-

presented in ODIN by an activity record. One of the fields in the

activity record points to the name of the program for the under-
lying flow diagram, another points to the data table for this acti-
vity, while the other four fields are used when we leave this activity
without destroying it. How should ODIN treat a do or _if instruc-
tion if it does not recognize the contents of its name field as a pri-
mitive? A possible answer is:

a) store LOCATION, RESUL. T, NEXT in the L, R, N fields
of the current activity record;

b) search a list of the names of known programs for a match on
the name field, and terminate the computation if there is no
match;

c) create a record for the new activity;

d) make NEXT point to the first instruction of the new program.

In figure 13 we show the ODIN situation after step 3 and 4 of the com-

putation in section 2. 4.

NEXT : first RESULT : E[ second
LOCATION: [T —y Program BASE : program
name -
link
L -
R -
N -
data I
v
NEXT : [F—
first second
LOCATION: | | program | RESULT : program
BASE :

A ]
| NIL
r NIL
A NIL.
| ’ I NIL

Figure 13: The creation of a new activity record.
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With the remark that a yellow button corresponds to the pointer

in NEXT, a green button corresponds to a possible pointer in the
creator!s N, and a red button corresponds to a possible pointer in
the creator!s L., we invite the reader to work out an appropriate

way of handling success, failure and end nodes in a flow diagram

(consult appendix 2). Here we discuss resume nodes in order to emphas-
size the fact that activity records are arranged in a ring. ODIN has a

hardware register BASE which points to the bottom activity record.

The link in that record points to the current activity record, and from

there we return to the bottom activity record via links in the other ac-
tivity records. Executing a resume node places the bottom activity
record!s link in BASE. In figure 14 we show a sequence of activity
record rings that might arise in a computation using the programs in

figure 14,

X

Figure 14: A sequence of activity record rings.
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3. 3 Implementation of data structures

If SAGA didn't have constructs, there would be no problem
in implementing data structures. One could just follow the tradi-
tional von Neumann approach: treat data structures as labels and
keep their values in the data table. However, constructs are use-
ful and our virtual machine should be able to handle them neatly.
L.et us first consider pure constructs, constructs that do not use
the name of a data structure. The easiest way of describing the

ODIN representation of pure constructs is to refer to figure 15.

R:/ ! represents the atom XY 2Z

L ]ﬁmwmm_ll N Z;L,l represents the construct R/AL
Nicl [ > 5.5 2.1 3.5

H | 1 ABC

iN“*lT represents the construct H
AB

|

a

L

q
<
N

X

%

N

NILT |1 NIL

Figure 15: Pure constructs in ODIN

The most important point to note is that each construct has precise-

ly one handle, a cell to which no arrow points. We can use this fact to
implement data structures that have pure constructs as values. Such
data structures can be represented by a data head, an entry in the data
table containing the name of the data structure and a pointer to the
handlie of the value. Now consult figure 16. It shows that not only can
we represent data structures with pure constructs as values, we can

represent all data structures.
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Figure 16: Data structures in ODIN

3.4 Primitives

Our next task is to find a way of implementing SAGA!s place
and expression in ODIN. This is easily done. For place we devise
a program that puts a pointer to a handle in LLOCATION, for ex-—
pression we devise a program that puts a handle in RESUL.T. We
also haveno difficulty with the code ~ place := expression - we can
put the instruction, do store, after the programs for place and ex~
pression. However, the implementation of — e><pr~ession1 = expres-—
sion2 - is not so clear, because we seem to have no room for the
false exit in LOCATION. What if we let ODIN have a primitive ope~
ration, Compare that causes NIL to be in RESUL. T if and only if:
RESUL. T and LOCATION contain pointers to handles of identical
values? Then our SAGA code can be implemented using the instruc-—
tions do compare and if undefined.

There is another important situation in which it Is convenient
to let RESUL. T contain a pointer to a handle and not the handle it-
self. If RESUL.T contains a pointer to the actual parameter |ist at
entry to a parameterised program, then the R field of the creating
activity record can play the role of apl in section 2. 8. Now ODIN

can implement reference x (value x) by creating a data head with x

in its name field and a pointer to the value of (to a new copy of the
value of) the corresponding actual parameter. Figure 17 is intended
to make this clearer; it shows the representation of the data structu-

res in the bottom line of figure 11.
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c po—

creator data head

[ m

!_; %_ﬁ\_/m"j’wm.}
RESULT: LNl Ap| 4 NiIL

creator R: NIL | Ap | Y c

Figure 17

3. 5 Non-standard representation

In the next two sections we describe how ODIN can use types
to create data structures. To give an impression of what is needed,
figure 18 shows the ODIN representation of the data structures in
figure 10. We see that
a) a new field has appeared in our data head, the code field;

b) the data structures, which have a defined code field in their
data head, also have a non-standard ODIN representation.

X NI T I ST
In NIl ] . T ]

la In | > R T NIL |
NI | T ]

LAl w | 1
3
NIL
(B8] z [m ] NIL

Figure 18: Newborn ODIN data structures.
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The code field!s and their attendant non-standard data representa-
tions are introduced, so that arrays, parameter-parsing and iteration
can be handled efficiently by ODIN. But we pay a price: the range of
possible values of data structures with non-standard representations
is severely limited. However, the programmer is free to avoid this
range limitation by using say [1, 2, 3] instead of from 1 upto 3.

Let us begin the discussion of code fields by considering the pri-
mitive Up in the data head for A. Whenever ODIN meets the instruction
fetch A, it first puts a pointer to the value of A in LOCATION, and then
obeys the instruction do Up. This checks that RESUL. T contains a va-
lue in from 1 upto 3, and exits with a pointer to the value of A[RESULT ]
in LOCATION if it does. The primitive Up is one possibility for the code

field of a newly created data structure; others are:

Down. for type specifications like from 7 down to -4;
Step for type specifications like from 3 step 2 to 7;
Y for type specifications like [A increment | test T].

The first two of these are primitives, but the third is not. As we
shall describe later, Y is the name of one of the three programs

Y Y! Y!! constructed from the programs for I and T.

3.6 Type creation
For each type specification in a SAGA code, the corresponding

program generates a data structure. The data structures for the
first five type specifications in the first paragraph of section 2.9 are
shown in figure 19. A natural question is: what should ODIN put in
the name field of the data heads? The answer is: if the type specifi-
cation is preceeded by

associate type name with

then the type name, otherwise a reserved type hame.
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1 ’, |
[t [FINITE | I REAL
IMAGINARY,
NIL
; T
£ | up | — 3
7
% Down” ' j} > 4
1
t*| Step”
21
=) ,
i1 Y A

Figure 19: Type representation in ODIN

Now for the code fields of the type data heads. Each time ODIN
meets the instruction - fetch type name - it executes the instruction
do N where N isname in the code field. The consequences of this
instruction depend on whether or not RESUL.T contains NIL. If this
condition is met then our ODIN instruction will cause a data structure

to be born. Figure 20 shows the result of fetching the data heads in

figure 19 with NIL in RESULT.
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RESULT: | NIL | NIL| REAL e ENITE
(I NIL | IMAGINARY N

RESULT: | NIL|Up 3

NiL
NIL
NIL
NIL
NIL

RESULT: | NIL | Down ~ 4

NIL
NIL
NIL
NIL

RESULT: | NIL| Step 0
3
21

NIL

NIL

RESULT: | NIL|YVY NIL | [ A
NIL | : |B

NIL | [Z]

Figure 20: ODIN datastructures at the moment of birth

3.7 lteration

For each occurrence of next some and all in a SAGA code,
the corresponding program generates a data strucutre. Since NIL
is not a pointer we can also generate the data structure for j in
next j in T by using the code field of the data head for T. Figure
21 shows the results of fetching the data heads in figure 19 with

RESUL T pointing to the name j.
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In | Finite” — REAL
IMAGINARY

NIL

j| Finite”” NIL
3
7

ijup” NIL
4
1

LJ | Down*’ NIL
0
3
21

i | step” | % NIL

li| Yy~ l { NIL

Figure 21: Index representation.

Why do we introduce these data heads? Consider the SAGA

code: nexti in from 4 down to 1. Once we have the data head for |,

we can replace the long ODIN program in figure 12 by: fetch j;

fetch false edge; if undefined. Instead of giving similar examples

for each of the eleven primitives in figures 19-21, let us illustrate
them by describing the ODIN programs for Y, Y'! and Y!! associated

with a type specification like [A increment | test T]:




27

program Y! This produces the data structure in the bottom
line of either figure 20 or figure 21, if RESULT = NIL at
entry it uses the programs for | and T,

program Y At entry LOCATION points to the first of a number
of atoms, at exit it points to the atom whose selector matches
RESULT - if there is no match, it exits to the program Selec-
tor Error;

Lrogram ¥YI! At entry LOCATION points to the value v of an in-
dex i, at exit i is updated and RESULT contains the updated

value (NIL if v was the last value).

Obviously Y and Y!'' must also use the programs for | and T.

Because we have defined the data head for an index J in such a way
that j is automatically updated when we execute fetch j we have a
problem: SAGA allows one to evaluate an index without it being updated.
To solve this problem we introduce a data mode. If there is a data head
for j, the instruction data j is equivalent to fetch j except that the code
field is ignored. What if there is no data head for j? Then we can use
data | to create such a data head. If we agree on this, we can close a
gap in our description of ODIN by explaining the implementation of SA-~
GA's define and pointer. Consider the top two data structures in figure
18. These can be created by the program:

data x; NIL; 1; do head data n; NIL; NIL; do store,
where ﬁf_f‘fg is a primitive that makes RESUL.T point to the place in

which a new data head would be created.

3.8 Space management
So far we have described our virtual machine as if it had an

unlimited supply of many different kinds of storage cells. This sec-

tion is devoted to showing that our machine need only have a tradi~
tional store with just one kind of element; a word. Because the reader
probably knows how one compiles languages that allow recursion (53,
56, 58), this section need not be long.

Let us begin by looking at the degree of permanency of the va-

rious uses of storage space. We can distinguish between:
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fixed space the space needed for the process table and the pro-

grams for the different SAGA codes never changes;

stable space the amount of space required by activities that are not

current only changes when a new activity is created or an old one
destroyed (or by references through formal parameters - see later);

unstable space the amount of space required by the current activity for

its record and its data structures expands and contracts fre-
quently;

volatile space the work space, required by ODIN when it is evaluating

a SAGA place or expression, is not needed when the other kinds of

space expand or contract.

In figure 22 we show the storage disposition sometime after the situation

at the bottom of figure 13.

UN-
FIXED STABLE |[STABLE |VOLATILE
Process | Program Program |Space for | Space for Work
table X A activity X | activity A Space
N\ \
] 'T/ woRrK [
LOCATION U NEXT | BASE RESULT El TOPD

Figure 22: Storage disposition.
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Now let us look at different ways an activity uses its space.
At entry we create an activity record (13 words) and start execu-
ting instructions. From time to time these instructions will call
for the generation of a new data head (4 words), a new data block
(1 or more words) and perhaps a list of construct elements ( 3
words each). In our figures hitherto we have shown how construct
elements are linked together to form a construct, but not how data

heads are linked together to form the global data table . We get this

table by starting with the top data head of the current activity and
following links until we reach the bottom data head of the bottom ac—
tivity. What use is such a large data table? So that one can use and
change data structures that belong to another activity. This is both
useful and dangerous ( 22 ). Since SAGA avoids the dangers by the
draconian rule: only atoms can be assigned to non-local data struc-
tures, we can let instructions in fetch-mode search the global data
table. But what of formal parameters called by reference? The example,
Add to list, in section 2.8, suggests that they should be allowed more
freedom. Therefore SAGA avoids the dangers by the less draconian
rule: at exit from a parameterized code, we purify the constructs that
are the values of reference parameters. Fortunately this rule can be

implemented without much diffecul ty.

4,0 The environment

In this final section we discuss briefly the interface between a pro -

gram under execution and its environment. There would seem to be seve-

ral relevant meanings of the word enviro nment here:

1) the reserved code names which are available to all programs;

2) the facilities offered by the operating system, in which the virtual
machine is embedded (if in fact we have implemented the machine
in a multiprogramming system rather than on a microprogrammable
computer);

3) the programmer watching his program execute, while waiting at

his terminal.

The executing program can interact with each of these kinds of environ-

ment.
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We can take input as an example of the first kind of interac-
tion. Suppose, for simplicity, that there is only one input device
and it transmits one character at a time. lLLet in be the name of a
code that puts the atom corresponding to the next meaningful cha-
racter from the device - NIL if there is none, spaces and line feeds
omitted ... = in the cell to which LOCATION points. Consider a
data head with in in its code field. Depending on h¢w it is accessed

(fetch or data mode) , a subsequent do load will give either the next

input atom or the original value.

We can take file references as an example of the second kind of
interaction. Suppose we have a character file F stored on peripheral
equipment. 1f we devise a code get F that fetches the next character of
F, we can use it in the role of in and treat F as if it were an input
file. Analogously for output: a reserved code out for standard output,
and a programmer code put F for output files. We note, in passing,
that F functions as a push down stack if we have both put and get.

More important, put F and get Fneed not be character oriented. Although
the elements of F can be any pure construct, the most common case
is when they have the same specifier structure — so F is a record

file (12 ). With the remark that codes like rewind F are also needed
for a satisfactory file administration, let us move on to the third kind of
interaction.

Inspired by in and out, we may allow the programmer to provide
himself with a. running commentary on his executing program by letting
him put the reserved names monitor i in the code fields of troublesome
data heads. That was a luxury, now for a necessity: the programmer
must be informed when his program meets an error. ODIN recognizes
four kinds of error:

F’RCCESS ERROR when an activity tries to create another activity and

it doesn!t recognize its name;

DATA ERROR when an activity tries to acc 'ss a data structure and it does
doesn't recognize its name;

SELLECTOR  ERROR when an activity tries to access an implicit data
structure, and cannot match a selector;

PARAMETER ERROR when an activity has trouble with the actual-formal

parameter correspondence.
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But this is not enough. The programmer should be provided with
powerful error-recovery machanisms. He should be able to ask
for a more or less detailed description of the current computation
state: the process table, the activity record ring, the codes, the
data tables, the values of data structures ... He should be able
to replace the current computation state by another; in particular,

to define a code for an undefined code name, or a data structure

for an undefined data name. He should be able to restart the com-
putation, after he has changed the current computation state to one
more to his liking. Furthermore the whole of the above conversation
should be conducted in the programmer!s own conceptual framework
(SAGA). This is hardly possible unless the conceptual framework of
the underlying machine (ODIN) is very similar.

Let us devote our final paragraph to the virtues of incomplete
programming. By this we mean the use of deliberately unde-
fined code and data names. Why is this a good thing? There is a sta-
tic answer and a dynamic answer. The static answer is that the con-

centration, needed to compose or understand an algorithm, should

not be dissipated by worries about situations that are unlikely to arise.

The dynamic answer is that many problems are most suitably solved by

algorithms that require real time interaction.




Appendix 1

The definition of the language SAGA

It is cvustomary for the inventors of languages to give a precise

definition of the syntax in Backus-Naur form, an informal descrip-
tion of the semantics, and numerous examples ( 27 ). Since the
first part of the paper is an Iinformal description of the semantics of
SAGA, we need only make a few supplementary remarks in this ap~
pendix.. We also dispense with examples, because we have already
given many and there is a long SAGA program in the next appendix.
Furthermore our definition of the syntax is not complete because

of typographical limitations on this paper. The major omision is
the syntax of names. SAGA has an unlimited supply of data names,
type names, code nhames, and atoms, all of which can be distinguis-
hed from one another and the underlined words in the rest of the
syntax at a glance. In other words no name conflict can confuse the
parsing of a SAGA program. Omitting name syntax has shortened
this appendix and the use of a star for repetition of a metaconcept

shortens it still further.

Inner language

Prompted by ( 24 ) we devide the SAGA into an inner language,
which gives the simplest significant SAGA codes, and an outer langua-~
ge which describes how simple codes can be combined into a compli~

cated program

<ODIN program>::=<instruction>

<instruction> . ::=do(code name>|if<code name>|while<code name> |
fetch<data name> | <datainstruction><atom><atom> |
{activity change>l <activity change> {code name>

<data instruction:=data<data name>|data NIL | abel <data name>

<activity changeX:=destroy| exit| wander|dummy |

success|failure|resume|blind]

These rules allow one to use virtual machine code in a SAGA program,

should this be convenient.

Al
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<type specification>::=<scalar type>|<finite type>| infinite type> |
<from type>

<{scalar type> ::=[ <expression list> |

<finite type> ::=[<expression>incr‘ement<code name>test<{code name>]
infinite type> ::=[ {expression>increment<code name>]

{from type> ::=from< expression>step<expression>to<expression> |

from< expression>up to< expression>|

from<expression>down to<{expression>

The use of types in SAGA was explained in section 2. 9., but the examp-
les only had atoms for <expression> . In lajer syntatic rules we intro-
duce the metaconcepts <type definition>{structure definition><implicit
definition> and <iteration> . All type specifications occur in instances
of one of these. If a type specification occurs in an instance of a type
definition, its expressions are evaluated at the time of the type defini-
tion. Otherwise the expressions of the type specification are evaluated
at entry to the smallest named code or compound code that contains the

type specification

<type definition> ::=associate<type name>with<{type specification>
< structure definition>::=define<data name>=<expression> | < structurekind>

{data hame>

{structure Kind)> ::=<type>l pointer‘l value[ reference
{typed> ::=<type name>| <type specification>
<implicit definition> ::=next<{data name>in<type>|

case<place>in< type>i
some<data name>in<type>satisfies<code) |
all<data name>in<type>satisfy {code>

<place> ::=<data name>] {data name>[<e><pression list>]

To allow for i ncomplete programming SAGA places no static require-
ment like: In a program text, the definition of a data, type or

code name must precede its use. On the other hand the execution of

a SAGA program will be interrupted if such a name is used before

it is defined.
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Type names are defined in type definitions, and used in iteration,
structure definitions, and implicit definitions. Data names are defined
in structure definitions and used in iteration, implicit definitions and
places. A code name is defined if it follows newcode in a program

text, it is used if it occurs in a code call.

{expression |ist>::=<expr‘ession>\ {expression list>, <expression>
< expression> ::=<{place> | Catom>| <code call>

{code call> ;=< code name>\ < code name>(<expression list>)

Because expressions must begin with a code name, a data name,
or an atom, a SAGA compiler has no difficulty with actual parameters

(section 2.8.)

<Csimple coded:i=<ODIN program> |
<structure definition> | <type definition> |
<{place>:i=<expression> | <code call>]|

<{expression>=<expression>| <implicit definition>

OQuter language

Now we give the rules for combining simple codes into a SAGA

program.
<code> ::=< simple code>| <operation>| < condition> | compoundcode>
<operation> ::=if{code>then{code>eise< code>| <iteration>| <repetition> |

select< alternative>* <code>:<code>else<code> |
cycle<alternative>* <code>: <code>else<code> |
Calternative>::=<code>:{code>,
<condition> ::=not<code>|<code>or<code>|{code>and<code> |

<code>fails before<{code>

The SAGA distinction between operators and conditions is unneces—~
sary, because of the conventions in section 2. 1. for replacing nodes

by flow-diagrams.
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r<data name><type>repeat<{code>

for

{iteration> o
while<code>repeat<code>|until<code>repeat<code>|

<repetition> =

repeat<code>while<code>|repeat<code>until <code>

<{compound code>::=begin; < statement>* end

Semantically until is equivalent to while not, and for <data name> is
equivalent to while next <data name> in. We note that the metaconcepts,
{iteration> and {compound code>, were used earlier in our : descrip-

tion of the semantics of types and type specifications.

{statement> ::=<code>;|comment<symbol sequence without; >;
{nhamed code>::=new code<{code hame)>:<code>

<{program> ::=<named code>* program end

The first code name in a SAGA program indicates the first code
to be activated when the program is executed. A SAGA installation

will probably have a number of reserved named codes. When a user

presents a program, the installation automatically inserts these named

codes before the user!s program end.
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Appendix 2

ODIN Manual

In order to define a virtual machine we must specify its storage

structure, its instruction frame, and its primitives. We do this for
ODIN in the first three sections of this appendix, while the final sec~
tion describes how ODIN can be realized on a computer that has just

one kind of storage element.

Storage structure

In this section we describe the ODIN storage elements. For each
kind of storage element we need to specify, their name, their fields,
how they are addressed, and what the permissible addresses are.

As SAGA is a convenient language for exact definition of virtual ma-

chines, we introduce:

new code the virtual machine ODIN:begin;
associate instruction with [MODE, NAME }

associate instruction address with [0 increment next integer ];

instruction address program;

comment ODIN instructions have mode and name fields. They are addres-
sed by positive integers;
associate codehead with [CODE NAME, FIRST INSTRUCTION J;

associate code head address with [0 increment next integer |;

code head address processtable;
associate data head with [DATA NAME, CODE, DATA PLACE [;

associate data head address with [dha 0 increment next dha };

data head address data table;
associate activity record with [CODE, NAME, LINK, L,R,N, DATA]

activity record creator; activity record current;

associate activity record address with [ara 0 increment next. ara;

activity record address activity record ring;

comment ODIN does not know that activity records form a ring via their
LINK fields;

associate data address with [da 0 increment next. dal;

data address memory;
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comment In order to store the values of datastructures, we would
like to have ODIN storage elements that could hold arbitra-
ry large constructs. i{owever storage elements ought to
have a fixed size, so ODIN manipulates constructs in
small pieces. When we describe the primitive compare,
we shall see how ODIN manipulates constructs using
the following type;
associate construct element with [LINK, SELECTOR, DATA-
PLACE J;

run program,; comment

The instruction frome

In this section we describe the uniform way in which ODIN exe-
cutes instructions; end
newcode run program: begin;
define register NEXT = 0; define register BASE = ara 0;
define register RESUL T = NIL; define register LOCATION = NIL;
define dha = NIL.; define da = NIL; define ar = ara 0;
define mode = NIL; define name = NIL.;

repeat begin; mode:=program [register NEXT, MODE },

name:=program [register NEXT, NAME |;
execute instruction; test interrupt;

end while dummy;

comment this repeat code is the SAGA way of defining the usual fetch
and execute cycle. ODIN never needs unreasonable amounts
of time for the code execute instruction. This is important, if
ODIN exists in a multiprogramming system, because it allows
the system to wait until ODIN is executing — test interrupt -

before restarting some other program; end

new code execute instruction:

select mode=do :primitive operation or create name,
mode=if :primitive condition or create name,

mode=while :begin;back up location;
’ comment suggested by < 51 >;
primitive condition or create name; end;
mode=fetch if global name then put in location
else present DATA ERROR,



new code
if

then

new code

comment

new code

comment

new code

comment
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mode=data ! if undefined <{name> Eﬁ._e_r_l generate data head
else if local name then place in location
else generate data head and element,

mode=label : if local name then present DATA ERROR

else generate label,
mode=wander: coroutine exit

else subroutine exit

create name:
some i inh code head address satisfies

processtable [i, CUBE NAME | = name
start new activity else present PROCESS ERROR

back up location: begin;

if SAGA provided simple arithmetic this code couild

be replaced by LOCATION:=NEXT~-2. On the other hand
this code would still work . if instructions were not stored
sequentially;

define k=NIL; define j=NIL;

repeat begin; ki=j; j:=i; next i in instructién address; end
until register NEXT=i; LOCATION:=k; end

global name: begin;

ODIN must search through all defined data names beginning
with the most recently defined;

some i in [dha increment previous dha test undefined |
satisfies data table [i, DATA NAME Fname; mode:=i; end

put in LOCATION: begin;

when this code is activated mode contains the address of
the data head for name. ODIN must change LOCATION
and pay due attention to the code field;
LOCATION:=datatable [mode, DATA PL.ACE |;

if undefined datatable [mode, CODE ] then dummy

else begin;name:=datatable [mode, CODE J|;

primitive condition or code name;end; end




new code

comment

new: code

new code

comment

AS

local name: begin;

ODIN must search through the datanames for this activity.
This code does not use the fact that local datanames are
distinct because of the way we define the execution of

instructions in data or label mode;

some i in [dha increment previous dha test i = creator [DA.,TA]]
satisfies datatable [i, DATANAME |=name; mode:=i; end

place in location :LOCATION:=datatable [mode, DATAPLACE ]

generate data head: begin;

data NIL instructions are used for formal parameters called

new code

comment

new code

comment

new code

by reference and in other situations that require an alias;
generate partial data head (DATANAME, CODE);
datatable [dha, DATAPLACE |:=RESUL.T; end

generate data head and element: begin;

ODIN creates a new data struciure and places the address
of its value in LOCATION;

generate partial data head (CODE, DATANAME);

next da in data address; LOCATION:=da;

memory [da |:=data table [dha, DATANAME },

datatable [dha, DATANAME =name;

datatable [dha, DATAPLACE |:=da; end

generate label: begin;
ODIN uses instructions in label-mode so that it can refer to
instruction addresses it heeds ‘tobeable to do this in order to

stop executing instructions sequentially (see fig. 12);
generate partial datahead (CODE, DATA PLACE);
data table [dha, DATANAME |:=name; end

generate partial datahead: begin; value x; value y;

next dha in datahead address;
data table [dha, x |:=program[NEXT J;

next register NEXT in instruction address;
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data table [dha,y |:=program [NEXT }
next register NEXT in instruction address;

LOCATION:=dha; end

new code coroutine exit: begin;
comment ODIN moves around the activity record ring until it recog-
nises name or returns to its starting point;
define base=register BASE;
repeat move activity record until undefined (name)
or hame=current [ CODENAME ]; end
register NEXT:=current [N]; dha:=current [DATAJ] end

new code subroutine exit: begin;
comment ODIN removes activity records until it recognizes name
or there are no more activity records;
repeat remove activity record until undefined (name)
or name=current [COSENAME |;
if mode=destroy then NEXT:=current [N]else NEXT:=current|[L },
~ dhai=current [DATA], end

new code move activity record i begin; savestatus;
BASE:=activity recordring [BASE, LINK [;

if base=BASE then destroy run program else dummy;

update creator and current; end

new code remove activity record:
if current [LINK FBASE then destroy the virtual machine ODIN
else begin; activity record ring [BASE, LINK }=current [LINK},

update creator and current; end

new code start new activity: begin; save status;
comment ODIN has to create a new activity record and place it in the
activity record ring;
activity record new; new [NAME |:=name;
new [LLINK J:=activity record ring [BASE,LINK }

next ar in activity address; activity recordring [BASE, LINK |=ar;

creator:=current; current:=new,; activity record ring [ar]:=new;
register NEXT:=process table [i, FIRST INSTRUCTION} end




A10

new code save status: begin;
current [N]:=register NEXT; current[L f=register LOCATION;
current [R]:=register RESULT; current [DATA ]:=dha;
activity record ring [activity record ring [BASE, LINK]]:=

current; end

new code update creator and current: begin;
current:=creator; creator:=activity record ring [current[LINK [];

comment

ODIN primitives

To save space we do not define all of the ODIN primitives in this

section - indeed we only define two of the primitive conditions; end

new code primitive condition:
if select name=dummy:dummy,
name=undefined:RESUL T=NIL
other: execute micro code,
else exit
then NEXT:=LLOCATION else dummy

new code primitive operation:

select name=copy creator [l_] into LOCATION: non-primitive operation,
name=load: use LOCATION to fill RESULT,
name=store: copy RESUL T as directed by LOCATION,
name=compare: equality of constructs,
name=start button: prepare ODIN for SAGA program
other po: execute microcode

else exit

new code non primitive operation: begin;

comment ho primitiveoperation in ODIN changes the contents of LOCA~
TION. Now one of the design goals of ODIN was to erode the
destination between primitives and codes, so much that the
user could invent new primitives at will. If he writes a code

that always terminates succesfully and finishes by executing




comment
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do copy creator [L] into LOCATION, then the code is none
other than a new primitive operation;

register LOCATION:=creator [L ];

ODIN has 36 primitive operations for internal register mani-
pulations, using temporary work space and the like. Their names
names are copy X into Y where X and Y are one of: LOCATION,
RESUL-T, creator [L ], creator [R], current[L ], current [R];

end

new code use LOCATION to fill RESUL T:
select LOCATION holds an instruction address:
RESUL T:=program [LOCATION |,
LOCATION holds an dataaddress: RESUL T:=memory [LOCATION ],
LLOCATION holds a codehead address:
RESUL T:=processtable [LOCATION ],
LOCATION holds a datahead address:
RESUL T:=datatable [LLOCATION ],
LOCATION holds a datahead or construct element:
RESUL T:=memory [location(DATAPL.ACE)]
else dummy
new code copy RESUL. T as directed by LOCATION:
select LLOCATION holds an instruction address:

program [LOCATION =RESULT,
LLOCATION holds a data address: try for size,
LOCATION holds a codehead address:

processtable [LOCATION [:=RESUL.T
LOCATION holds a data head address:

datatable [LOCATION J:=RESULT,
LOCATION holds a datahead or construct element:

memory [location(DATA PLACE) |:=RESULT

else dummy




new code

comment

new code

new code

select

comment

else exit

new code
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try for size: begin;

ODIN does not allow constructs to store constructs in data
structures that belong to another activity. If this were per-
mitted, it would be difficult to implement ODIN on a compu-
ter with just one kind of storage element record (such a
realization might ressemble that for move activity in the
next section);

if LOCATION holds a non local data address )

and RESUL T holds a construct element then dummy

else memory [LOCATION |:=RESUL.T; end

equality for construct
if both LOCATION and RESUL T hold data addresses
then begin; LOCATION:=memory[LOCATION }
RESUL T:=memory [RESULT |
if same value then RESUL T:=NIL. else RESUL T:=1; end
else RESUL T:=1

same value:

both LOCATION and RESUL T hold atoms

or both LOCATION and RESUL.T hold addresses: .
RESUL T=LLOCATION,

both LOCATION and RESUL.T hold construct elements:

begin; name:=compare constructs; create name;

Why do we treat compare constructs as a reserved code hame

rather than as a primitive operation? Firstly because this

paper ought to have an example of a complex SAGA code func—~
tioning as a primitive. Secondly, because constructs can be
arbitrarily large, but ODIN should have a bound on the length

of time needed by execute instruction. Thirdly, because save
value needs recursion in order to traverse constructs neatly; end

equality for constructs

compare constructs:

selector test or place field test fails before link to follow
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new code selector test: result(SELLECTOR)=location(SELEC TOR)

new code placefield test: begin;
LOCATION:=memory [location (ZATA PLACE)
RESUL T:=memory [result (DATA PLACE) |

same value; end

new code link to follow:
select result [LINK ]J=NIL and location [LINK]=NIL: exit,
result [LINK]=NIL or location [LINK]=NIL: exit equality for
constructs,
else begin; RESUL T:= memory [result[LINK]}
LOCATION:=memory|[ location[LLINK ] |; comment

We finish this section by describing the primitive operation that
starts ODIN after a program has been loaded. Usually the instruction

with address 0 is do start button; end

nhew code prepare ODIN for SAGA program: begin;
current [NAME f=program [register NEXT ]
current [LINK]:=a~aO; creatori=current;
activity record ring pra 0 =current;
next register NEXT in instruction address;
register NEXT:=program [r‘egister‘ NEXT}; end

program end
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Realization of ODIN on a traditional machine

In this final section we indicate how ODIN can be realized on a
computer with words as its only kind of storage element. For simplicity
we assume that a word is large enough to contain an instruction, an ad-
dress, or an atom. Now we can describe the realization of the various
kinds of ODIN storage element:

instructions fill one word;

code heads fill two words, one for each field;

data heads fill four words, one for each field, and one for the address

address of first word for the preceding data head;
activity records fill thirteen words;

RESUL T and LOCATION fill four words each, so they can

hold the value or address of any storage element
other than an activity record;

other registers fill one word;

constructelements fill three words, one for each field.

The next step is to drop the distinction between program, process
table, data table, activity record ring and memory, and organize the
storage elements as shown in figure 22 of section 3.8. The reason for

the three new registers in figure 22: WORK, DATA and TOP, will

become apparent later.

L.et us begin by describing the realization of create name, global
name, and local name. There is no problem with the first of these because
the process table is in fixed space. The third starts with the storage
element, whose address is in the register DATA, and continues via
the links in the extra words of the data heads until it matches the given
name or finds NIL in the link. The second also does this except that it
repeats the process,after updating the register DATA from an activity
record if it finds NIL in the link. We note that the above links
contain addresses that are relative to the activity record for the current
activity. We also want this to be true for the storage elements that con-
tain the values of data structures. Suppose the volatile space contain
such a value. Suppose the handle of the value is in RESULT. There is
no problem if the value is an atom or a name, but what if it is a construct
This is only permitted in ODIN, if LOCATION contains the address of a
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word in unstable space. If this condition is met ODIN can generate
the additional unstable space it nheeds by moving the volatile space
and updating WORK and TOP appropriately. ODIN can also use this
technique to realize: generate data head and element generate data

head, and generate label.

L.et us continue by describing the realization of move activity
record, remove activity record, and start new activity. First we de~
scribe why an activity record fills 13 words: The L- and R fields
need 4 words, the other fields need one word each, and we need one
word to store the exit value of WORK. Then we describe the new
register CURRENT (CREATOR) which contains the address of first
word of current (creator) activity record. Now we can describe
remove activity record and start new activity. The former ususally
copies CREATOR into CURRENT and updates CREATOR and the
link field of the bottom activity record; the latter puts the address
of a new a;:tivi,ty record ir) CURRENT and prepares ODIN for trans-
fer to a new activify. Finélly we describe move activity Eecor*d. Be~
cause we have relativized most addresses to an activity record, this
can be realized by: move bottom activity record and its space on top
of the space for the current activity, collapse the vacant space, then
change the data, work and link fields of all activity records. If we
were to allow volatile space below other kinds of space, instructions
in wander mode could be realized more efficiently. This does not seem
to be a good idea because it makes the realization of more valuable -

parts of ODIN clumsy and inefficient.

L.et us conClude by describing how code and data heads can be
omitted from an ODIN realization. The advantages are obvious: we
eliminate the need for possibly timeconsuming searchs of the process
and data table. Sometimes the advantages outweigh the disadvantages,

so elimination of data and code heads should be a programmer option.
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Suppose we allow instruction to have not only code names but
also addresses of other instructions in their name fields. Then the
running program need never use a code hame because the contents
of its FIRST INSTRUCTION field is known at load time. Can we use
this technique to eliminate data heads top? Almost. There is no dif-
ficulty if all data heads are defined at the beginning of an activity and
all have empty code fields. In this case the address of a data element
relative to its activity record is known at load time and can be used
in the namefield of an instruction instead of a dataname. We could
provide a DISPL AY vector to handle non-local data addressing and
the result would ressemble the usual addressing mechanisms used
for languages with recursion ( ). Even the presence of
a code field in a data name gives no trouble: the first bit in each
data element word indicates whether or not the following word is a
code name. However the requirement that all data heads are defined at
at the beginning of an activity in a serious limitation. Not only is et
illogical to collect data definitions at the beginning of a code text (as
declarations) instead of where they are used, it is also inefficient to
reserve memory space which will not be used. The reader may protest
that this is a small price to pay for the advantages of dropping the pro-
cess and data tables. But are these advantages so very great in the
usual case of a large program on a small virtual machine. Such storage
administration mechanisms as paging require some sort of data (process)
table to say if the desired data (code) is immediately available or must
be fetched. Furthermore we should not forget the virtues of satisfac-
tory error recovery and incomplete programming: ODIN needs code
and data names in order to converse intelligently with the user at

a terminal,
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