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Introduction

In 1962 Moore [ 5] showed that the existence of mutually
erasable configurations in a two dimensional automata im-
plies the existence of Garden of Eden configurations. In
1963 Myhill [ 6] showed that the existence of mutually in-
distinguishable configurations is necessary for the existence
of Garden of Eden configurations. Amoroso & Cooper [1]
have shown that Myhill's theorem does not apply to finite
configurations but claim, without proof, that both Moore's
and Myhill's theorems apply to infinite configurations. Ar-
bib has redefined the concept of Garden of Eden in [2] and
has shown that the existence of mutually indistinguishable
configurationé is both necessary and sufficient for the exist-
ence of Garden of Eden configurations. This theorem is not

true.

The confusion in the field may be due to different definitions
and concepts and prompts the systemaiic examination of the
relation between different characteristics of the global

transition function given in this paper.
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Definitions and Notations

A cellular automaton A is a system (in, g, &, ¢ o)

o’

where:

is the underlying space

a=(a, ag, ... a,) is a cell.

g: 1" = (I")" is the neighbourhood function defined by
glo) = (a+d, , a+ds, ..., atd,) where &; (i=1, 2, ..., m)€ I"
is fixed.

|0

is a finite set of states. :

9 € Q is a special state called the guiescent state.

' : Q" »Q is the local transition function.

0 is subject to the restriction: O (qom) =d

This restriction assures us that no infinite configuration is
successor for a finite configuration .

A configuration in A is a mapping c: 1" Q.

I_eté be the set of all configurations in A.
A finite configuration in A is a configuration c, where the support
is finite where suppl(c) = {a € 1" I cla) # qo}.

L.et ﬁ £ be the set of all finite configurations in A.

The neighbourhood state function h : g X 1" »Q" is defined by:
weel, Yot hic,a) = (c(a+d,), clatds), ..., c(a+ds)).

The global transition function T': 6 = & is defined by:
Wc€l, Macl® :T(c)a) =0 (h(c,a)).

Let if_= T Iéf be the restriction of 7 to 51: (Tf:gf - 5

7’

¢ is a subconfiguration of c ( &< c) iff cl

supp(&) ~ ©|supp(d)




The elements of G = gf\ Ts (ﬁf) = 'gf\ T (éf) are called
Garden of Eden configurations.

This is not equivalent-to the original definition of Moore.

cc éf is strong Garden of Eden iff:

pscl?

1) S finite

2) supp(c) €S
3)v6€é:c* € G where

c*(0) = cla) o €S
a) ads

Let G, be the set of all strong Garden of Eden configurations.

G, = QS iff there are ho Garden of Eden configurations of the type

defined by Moore.

Arbib defines a configuration ¢ as Garden of Eden when it satisfies:
M Q€ éf,:c< C=>3€ G,

The set G, , which is the set of configurations satisfying Arbib's defi~
nition, is included in G.

The global transition function on finite and infinite configurations

The close connection between properties of configurations and

those of the global transition function is shown by the following facts.

(1) 7 P surjective © there arero Garden of Eden configurations

(G =9)

(2) 7.

© there are no mutually indistinguishable configurations (see [6]).

injective © there areno mutually erasable configurations (see [5])

A strong GOE configuration is equivalent to a GOE~restriction with

respect to ﬁf in the notation of Amoroso, Cooper and Patt.




In the papers of Moore and Myhill, the proofs depended on-the
following inequality which was proved for the case n=2 and p=2.
To generali ze their proofs to more dimensions and arbitrary

finite neighbourhoods, we now give a general proof of the inequality:

L_emma :

MA>1, Mr>1,4¥n=1,M¥p=1, D k>0t

(A =1 )kn < A(.kr —p)__“
Proof:

If kr>p, 1 < i=n then

which means that:

n
~(kr)*™* - p (Tﬁz—]-) Tne iil (=1 E)kery ™" - p!

Let K=r""'sp*ne ([nr}2]>

If kr>p we then have

KK = o(kr) T e (n/21}<z (-1 (D (kef Pt =(ke—p)” - (kr)”

rn

Choose k > max(p/r, K /IOgA(-——f'?,\———))
A -1

Then we have
n

;-1 K
logA( Arn < -
n o K
A -1 <A k
n n n n—1 n
(AI‘ _1 )k < A(kI‘) —Kk < A(kr—p) D

Theorem 1:

G =0 o Ts injective

S




The proof is equivalent ot the proofs found in [5] and [6].
Theorem 2:
éf < 7 g)=> T Injective
Proof: Moorel!s argument from 1962.
Theorem 3:
T injective = G, =0Q
Proof: Myhill's argument from 1963.
Theorem 4:
L A\T6)= @ o 1. injective
Theorem 5:
T injective = Ts surjective
The proofs of theorems 4 and 5 can be found in [ 7].

Since Te surjective = ng 7 é) and T injective = Ts injective,

closuring gives the following diagram:

g P <7 é ) &~ T injective
= \ /f// .
« ~ -
\h”\‘\} ﬁ\’:ﬁ \
G =9 \
AT T,
i ,f*”y/ e }
T, surjective ———3 T_ injective
f £l
" v\ 4,{/*‘:7 /
S e




We now give 2 examples which demonstrate that several of the re-~

maining implications are not true.

Examgle 1:

{r, (i) = (i,i+1), {0, 1}, 0, {000, 01~ 1, 101, 1120}}

Let L(c) = min {i lc(i) = 1} and R(c)= max {i|c(i) = 1}
i i

XA (where A C1) is the characteristic function defined by
1if 1 €A
XAl =1tois i ¢ A

T _isnotinjectivebecause X _ is the successor ofboth X’i - and

itself. On the other hand T-f isinjective because the following pro-~
cedure uniquely determines the finite predecessor of c € '6]: it
it exists,
1) &) = 0 for i>R(c)
2) for i:= R(c) downto L(¢):
c(i) = if &(i+1) = 1 then 1-c(i) else c(i)
3) ¢(i) =0 for i < L(c) + 1

If we in step 2 replace L {c) with -— ® and drop 3, we have a

procedure for determination of an infinite predecessor. E. g.

_é__f cT (é ). However T is not surjective because

X{} = Tf(C) = L{c)= j+1 AR(c) = j which is absurd. Furthermore

G, = ¢ because a, bt f (7X{2ili€[a’b]})= XQEZa—L ij.

Example 2:

{1, g(i) = (i,i+1), {o,13, o, {00~0,01~1, 10~1, 111} }
. Er(€) because X ;3 =7 c) = cli) = 1= % ;3(i=1) = 1 which
is absurd.

G. = @ because asb:iT, (Xta .b]).=x[a—‘i,b]'

Finally T, is not injective because 7 ¢ (X4 33) =7 (Xgy 2 3} =

X{o,1,2,3}"



We have the following diagram:

éfC TR e — T injective

AN ‘o P
G =9
e Ty
M/}Q r\\&b&
Te surjective & —jm— Te injective

From this it appears among other things that the definition of Gar-
den of Eden appearing in this paper (and in many others) is too
weak for the Garden of Eden theorem to have a converse, and Ar-

bib's definition is too strong for the theorem to be true.

Open Problem:

Is it true or not that Te surjective = T injective ?
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