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Abstract

In 1957 V. K. Saulyev proposed two so-called asymmetric methods for
solving parabolic equations. We study these methods w.r.t. their stability
and consistency, how to include first order derivative terms, how to apply
boundary conditions with a derivative, and how to extend the methods
to two space dimensions. We also prove that the various meodifications
proposed by Saulyev, Barakat and Clark, and Larkin also (as was to be
expected) require k = o(h} in order to be consistent. As a curiosity we
show that the two original Saulyev methods in fact solve two different
differential equations.

MSC 65M06, 656M12

1 Two Saulyev Methods

The first Saulyev method, called LR, for the equation
u = bug (1)

can be written

vptl —uh e — v — opt ot -
k h?

where h and k are the step sizes in the z- and ¢-direction, respectively, m and

n are the corresponding step numbers, and v is an approximation to the true

solution «. Here and in the following we shall use the notation of [7] (see pp. 7ff).

Equation (2) can be rewritten as

(L4 bp)oltt = buult) + (1 — bu)vl + bl (3)
where = k/h?. The LR-formula is implicit in nature but can be solved in an
explicit fashion from left to right using the (Dirichlet) boundary condition on the
left boundary to get started.
The second Saulyev method, called RL, for the same equation can be written

UT’:I+1 — vlr'ln - bvr’;l—l - U;In — U11:1+1 + U:!:-ll (4)
k B h?
or
(L+bp)ott = buolth + (1 = bl + bua? (5)

This formula can also be solved in an explicit fashion, now from right to left using
the (Dirichlet) boundary condition on the right boundary for the first step.
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2 Stability

Ta study the stability of the LR-method we use the von Neumann epproach ({2},
[8], p. 23) and compute the growth factor

ar(p)—1 = bp(e¥ — 1 gra(l —e7¥)) (6)

ar

- 14 bu(e'? — 1) o 1-bu(1 —cosg) + ibusing ™
BLR = Titu(l—e®) ~ 1+ bu(l —cosyp)+ibpEmy

The condition |gzg| < 1 is equivalent to

(1-bp(1 — cosp))? + Pp?sin’p < (14 bu(l - cosp))? + by’ sin’p
or

~2bu(1 —cosyp) < 2bp(1 —cosg)

which is always satisfied for b > 0, and the Saulyev LR-method is therefore
unconditionally stable.
A similer calculation reveals the same to be true for the RL-method.
3 Consistency

In order to check for consistency we apply the diffierence operator for the LR-
method (cf. [8], p. 30) on a smooth function ¢:

Py = 1!’.':.“’;— Y _ Yo —¥n - 2'#.':."" + ¥

= t+ -;-L‘tf’u + %L'z'ﬁm +oee
b 1 1
- -§(¢,+?h¢=+-g-h’¢m+---)
+ K(‘b: - Ehlbn + E';z‘wm +
+ o = ks + 5K 4 -+ @®)
= 'p!-bﬂ’a'bb%fbu'l' %k(‘lﬁn = bfreey +b":¢=ﬂ+%k¢m)+"'

We recognize the differential operator for (1) in the first two terms, and the
remaining terms (which constitute what we call the local truncation error) must
tend to 0 as h and k tend to O for the LR-method to be consistent. We must
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therefore require that & tends to O faster than A. For the method to be first order
(in k) we must require k to be O(h?). This is a requirement much like the stability
condition for the explicit method (cf. [8], p. 25), although we are no longer bound
by the proportionality constant 0.5. On the other hand the LR-method is then
only of order 1 in A,

A similar calculation for the RL-method gives

BBV = Y bbes = bt + Skl — Bt = i+ 3hbue) ++ (9)

and similar comments on consistency and order apply for the RL~method. We
note that the annoying §-term appears with opposite sign in the two expressions.
Saulyev himself did not advise to use these methods by themselves ([7], p. 29)
but instead suggested to use LR and RI alternately, e.g. LR in the odd steps
and RL in the even steps ([6], [7), p-48), in order that the §-terms might partially
compensate each other. Another suggestion ([1], [5]) with the same intention is
to compute with both LR. and RL in each step and take the average. This,
however, means doubling the computational work.

We shall refer to these methods by the names ALT and AV, respectively.

It is obvious that either approach is unconditionally stable.

It ia less obvious what the consistency requirements are.

4 The Local Error

Instead of the local truncation error we shift attention to the local errori.e. the
difference between the true solution and the numerical solution cbtained with
true starting values and divided by & to compensate for the fact that when we
use half the time step size we must take twice as many time steps. This division
by % also makes a direct comparison with the local truncation error possible.
We rewrite (3) to

vt = ot +dol +afy, (10)
with
. bw o =ty
c o and d T (11)

In order to study the local error we now assume that the values at time level n
are values of the true solution, u',',u%, 0 < m £ M, and also for the boundary
values, yf*! = uf*! and vf}' = u}f’. The true solution at time level n + 1

satisfies
= u;+ku.+%k’uu+%k"um+--- (12)
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For the LR-method the nnmerical solution at m=11s
(¥}*)r = du} +cuf +cugt!
1

= du o] + B+ e+ 2B e+ 0+

0 = + K+ e — s + 5 P
1
5
]+ o+ Wy — b + 5K

— i Wt~ 3 + S+ )

+ -%hzkugg - %hkzﬂzu + é]ﬁum +ee0) (13)
= u] + ku, — chkuz + %c(k’“u + W tiey — Wt + %’»"um) L

where we have used that d + 2c == 1 and bph®u. = kbu,. = ku,.
The m-th term of the computed solution can be expressed as

(5 )in = W thu (bt b+ 5 W (14)
+ %(c+3c’+5c’+---+(2m- 1)c™ ke
- -';-I-c"'hk’u,u + %c"'k‘um +oos
which we shall prove by induction. Above we have shown (14) for m = 1. Now
assume (14) to hold for m - 1. Then
(vt )er = dup, +cup,, +cft)
= duy, +clug + hy, +%h’u=+%h’u=+ ved)
o — it Wt = e+ bt = bt + 2 Wy
- (c+ P+ 4+ ™) (hbuy = hPhu)
+ %c"‘" (Fug — hktew)
+ %(c+3c’+5c° eor b (2m = 3N tems
1
6
= o+ by —(c+c’+---+c'“)hl..1:ﬂ+%c"‘k’uu

— ’nT_l.d“_lhk’u:u + cm-!ksum oo .)

+ %(c+3c’+5ca+"'+ (2m = 1)e™h?huzgy
- gd"hk’m.+%c'"k’um+--- =
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Using that
I—-c™
l1-¢

ettt te™ = ¢ = bu(l - ")

and bphk = b we get the local error

usH — (i) e
k

= (1- c"‘)(-;-lmu + b%“ﬂ + %k’um) (15)

~ (e840 4 oon b (2 = 1) 0es + b -
Note that 0 < ¢ < 1 and therefore 0 < ™ < 1, and
0 <c+dP+534--+2m—-1)¢" < 143+5+---+(2m-1) = m?

so that the coefficient of 1. is bounded by 3(mh)>.
Another bound gives

(e+32+5+ -+ (2m-1)d™h? < (2m=1)(c+2+ - +c™h?
= (@m-1)c Sk = (2m—1)(1 -k
We note that the coefficlents of the various terms of the local error depend on
the step number, m, but apart from this there is a close similarity with the local

truncation error, In particular we note the leading terms with fu. and kuy. So
the local error gives reliable information on the truncation error and therefore on

the conditions for consistency.
For the RL-method we rewrite (5) to
gt dif o+ ooy + el (16)

The m-th term of the computed solution can be expressed as
(05w = U+ Kt ek &b oe b Mk 4 52 (17)
+ %(c+3¢:’ + 568 4«00+ (2M = 2m — )M ™R ku,,,

4 Eo T Mgty 4 2y 4o

a result which is shown in a similar way as above beginning with m = M ~1 and
then working your way down by induction tom = 1.
‘We thus find the local error for the RL-method:

ntl +]
L {""'" Jar _ (1 -c"'""')(%kuu = b§u=¢+%k’u¢u) (18)
_ %(c+3¢2+5¢'~'+...+(2M—2m—l)c‘""")h’ugg
- M;mc‘""'hku,u-l----
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Agein we note a close similarity with the local truncation etror, in particular that
the £-term now has a negative coefficient.
We can now easily find the local error for the AVemethod:

ugt ~ (v )av ¢bcMom] Mmoo
= o (1= okt s brua - (19)

We note that taking the average eliminates the f-term of the Jocal error only
for m = M/2, i.e. only at the center point of the interval. In general there is a
£-contribution to the local error for AV, so the condition for consistency remsins
the same as for LR. and RL.

For the ALT-method we begin with formula (14) and then take one step with
the RL-method. As above we can prove by induction that

(‘U:w)am' = u;+2kug+2c"'(c+c’+--~+c”"")hhlg (20)
+ (2M + (1 = e)e™(1 + 2 + - - - + AM-™)) Py,

Therefore the local error is

u:lﬂ - (::t;-'x) ALT - (2(1 _ c“"“) _om

1= c:(M-m-H)
l4c
- 26™(1 - M "")b’-’:u,.

Yeuy  (21)

and once again we note & £-term indicating that the alternating use of LR and
RL only partially compensates for the asymmetry of the basic formulae.

5 A Word of Caution

The consistency requirement ﬁ- ~+ 0 is concerned with the situation where the
step sizes tend to 0 and we wish the numerical solution to converge towards the
true solution. But in practice we compute with fixed, finite step sizes and wonder
what the error might be.

Equation (2) can be rewritten as (cf. {7], pp. 30f)

vl =t _ pUmtt — 2V +Un + b”:':;"tl; =25+
k . 2h1 " 2h?
kv — gty — vy, B,

' " ohk : (22)
We recognize the first two terms on the right-hand side as the (second order)
Crank-Nicolson approximation to u-((n + })k,mh) and the last term as an
approximation to u., at the same point. So the LR~method is actually computing
an approximate solution to

U= s — b (23)
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a result which is actually apparent from formula (8).
Similarly it can be shown that the RL-method produces an approximate solution

to
k

v = bug bgﬂzt (24)
When £ — 0 both these equations tend to the desired 1, = by, so everything
works fine in the limit, but for finite step sizes there Is a difference.
6 A First Order Term
A natural extenslon in the spirit of Saulyev of the LR~method to
w = by —ou. (25)
is

”::"l = Up = b”:l-l-l - IE = ugll'-l + ”:Lll - au:l:tl — "’n.!tll (26)
k h? 2h
ar

(L+ouJogH = (bt gaARE, + (1~ Bl + (o — JaNey (2)

witha\af.
For the growth factor we now have

gur(0) =1 = bu(e' —1 - guall — ™)) - JaNe" — guae™)  (28)

or
1+ bu(e' — 1) - lare®*
JER = TH¥bu(l—cW)— faret
_ l—b,u(l-tp)—?u\coalp+i(bp—}m\)sin¢
" 1+bp{1 ~ cosy) — aAcosy + i(by + da)sing

A short calculation shows that |gg | < 1 is equivalent to a) > —2.

Similarly the RL~method is absolutely stable when aA < 2. It thus looks like
LR is stable for positive @ and RL for negative a. But consistency requires that
A — 0 when k < 0 s0 both methods will be absolutely stable for small step sizes
even for convection-dominated problems,

The asymmetric approximation to the convection term gives rise to yet another
E-term in Py, One can avoid this by using an explicit appraximation:

(29)

"EH - uﬂﬂ - b”u!!.!:!:! - ”’é -":;H +”:lntll - a”l':‘lil ~ Y-y (30)
k h? 2h

7



(1+buJ = bRt + oMy + (1 — U + (b = 30Ny (81)
For the growth factor we now have
Be)-1 = by~ 1= gll - M)~ guX(e¥ —e) ()

or
L 1=t - cos8(p) + (bt — ar)sinp (33)
g 1+bu(l —coaep) +ibpsing

lg] < 1 Is equivalent to
(1 - bp(l — cosp))® + (b — ad)sin’e < (1 +bp(l — cosy))? + BPu’sin’p

or
aAa) — 2bp)sin®p < 4dbp(l ~ cosy)
or
eMa) — 2bys) cos? g < 2.
For this to be true for all » we must have
aAaA — 2bu) < 2bp.
or
eMah—-2b) < %

If ah < 2b then this inequality is satisfied. If ah > 2b then we have an upper
limit on A, but A iz supposed to be small already for reasons of consistency.
Ths reader ia referred to [3] for a thorough discussion of advection-diffusion prob-
lems.

7 Derivative boundary conditions

We have assumed a Diricklet boundary condition on the left boundary in order
to get the LR-method started on the next time level. If the boundery condition
involves a derivative the first z-step becomes slightly more complicated. Assume
the boundary condition to be (cf. [8], pp. 36f.)

au(t, X;) - fus(t, X1) = 7 (34)
where a, £, and y are known and non-negative (cf. [8), p. 4).



7.1 First order approximation
The first order approximation to u: in (34) gives

oAt gntl
=

or

(ha+ Byg* — pop™! = hy (35)

which together with the first LR-equation
—buugtt + (L + bt = (1~ bl + b (36)
provide two equations in the two unknowns y3+! and v*! which we can solve to

get the process started.
In the special case u, = 0 we have v§*! = v}*! and (36) reduces to

oftl = (1 - bu)o] + byvd.

7.2 Asymmetric second order approximation

A better approximation to u_ is

- +=1 +4vll+l — 3 H+l

i o ) (37
which inserted in (34) gives

. —gBH 4 gt L gt
m’u'l'l - ﬁ_—lq 2;; ﬂs = 7
or
(2ha +3B)vp*! — 46u7H + Bt = 2hy (38)

which together with the two first LR~equations produce 3 equations in the three
unlmowns v+, oP*! and oJ*L.

7.3 Symmetric second order approximation

If the differential equation can be extended to hold at the left boundary (and a lit-
tle bit beyord) then we can introduce a fictitious point 4" and use a symmetric
appraximation to u;. The boundary condition then reads

1 _”:-{-l

m,g-l-l_ﬁ..!T_ = ¥
9



or
Bt +2hangt — puit! = 2hy. (39)

Two LR~equations centered at 0 and 1 provide the remaining two equations.
In the special case 1, = 0 (39) reduces to v"}* = »*! and the LR-equation at
0 becomes

(1+bphg* —bup™! = (1 bp)ug + bl

7.4 'The RL-formula

The RL-formula can calculate all values down to vf**, and v§*! can be calculated
from the first order or the asymmetric second order boundary approximation. For

symmetric second order we use LR down to m = 0 and calculate v™}! from (39).

In order to get started at time 0 we calculate v?, from (38) (with n = -1).

8 Two space dimensions
The Saulyev methods can be extended in a straightforward manner to
U = b]'ug + biuw (40)

The first formula is

- "?_,_:l;l + u?-'i!m
hi

W1 = Vm — Yo + Vs

"lnél - ”f'.m - bl "r-l-l,m - ”I',m

. ()

+ b

where &) and h; are the step sizes in the z- and y-direction, respectively, and !
and m are the corresponding step numbers.

Equation (41) can be rewritten as
(14 by + bapa)ot = byl + bapatftl + (1 = bupey — bopa)ofl,
+ b1V g + D2tigU g (42)

where u; = k/h? and py = k/h3. This formula looks implicit but can be solved in
an explicit fashion using the (Dirichlet) boundary conditions at ¢ = 0 and z = (.
If we solve from left to right on each row (y = constant) and take the rows from
y = 0 and up we get what we shall call the LRDU-method (left-right, down-up).
Anelogously we can consider the RLUD-method.

If we bave derivative boundary conditions for 2 = 0 then the considerations of
section 7 apply. If we have derivative boundary conditions at y = 0 then it might
be a good idea to reverse the order of = and y.
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