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Abstract

When solving parabolic equations in two space dimensions implicit

methods are preferred to the explicit method because of their better sta-

bility properties. Straightforward implementation of implicit methods re-

quire time-consuming solution of large systems of linear equations, and

ADI methods are preferred instead. We expect the ADI methods to in-

herit the stability properties of the implicit methods they are derived from,

and we demonstrate that this is partly true. The Douglas-Rachford and

Peaceman-Rachford methods are absolutely stable in the sense that their

growth factors are ≤ 1 in absolute value. Near jump discontinuities, how-

ever, there are differences w.r.t. how the ADI methods react to the situa-

tion: do they produce oscillations and how effectively do they damp them.

We demonstrate the behaviour on two simple examples.

Keywords: ADI, stability, growth factors, oscillations.
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1 Introduction

In this paper we study various finite difference methods for solving parabolic
equations in two space dimensions:

ut = P1u+ P2u (1)

where P1 and P2 are differential operators involving partial derivatives of orders
0, 1, and 2 in x and y, respectively. As a simple example we shall use P1u = b1uxx

and P2u = b2uyy such that the equation is

ut = b1uxx + b2uyy (2)

The explicit method (EX) for solving (1) is

∆tv
n = P n

1hv
n + P n

2hv
n

where P1h and P2h are finite difference operators approximating P1 and P2, re-
spectively, and v is the finite difference approximation to the true solution u. In
the case of (2) we have

vn+1
lm − vnlm

k
= b1

vnl+1,m − 2vnl,m + vnl−1,m

h2
1

+ b2
vnl,m+1 − 2vnl,m + vnl,m−1

h2
2
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where h1, h2, and k are the step sizes in the x-, y-, and t-direction, respectively,
and l, m, and n are the corresponding step numbers. Here and in the following
we shall use the notation of [8] (see pp. 6ff and pp. 103ff).
To study the stability we use the von Neumann approach ([1], [8], p. 23) and
compute the growth factor

gEX(ϕ) = 1− 4b1µ1 sin
2 ϕ1

2
− 4b2µ2 sin

2 ϕ2

2

where µ1 = k/h2
1 and µ2 = k/h2

2, and −π ≤ ϕ1, ϕ2 ≤ π. For stability we must
have |g(ϕ)| ≤ 1 for all ϕ which puts severe restrictions on the time step size, in
our case e.g.

biµi ≤
1

4
or k ≤

h2
i

4bi
, i = 1, 2.

We notice in passing that the critical cases occur for ϕi close to ±π. We call these
solution components for high-frequency components because they correspond to
solutions which oscillate between plus and minus at consecutive grid points (cf.
[8], p. 21 and p. 57). Such components are dominant near a jump discontinuity,
but are also introduced (with small amplitude) in continuous problems because
of rounding errors. In these cases the condition |g(ϕ)| ≤ 1 is (necessary and)
sufficient to keep such components small. Near a jump discontinuity we would
prefer the growth factor to be smaller in absolute value in order to damp out the
annoying oscillations.
In the following we shall use the short-hand notation

xi = biµi sin
2 ϕi

2
, i = 1, 2,

and note that 0 ≤ xi ≤ biµi, the maximum value to be attained for high frequency
components.
To avoid the step size restrictions we might prefer the implicit method (IM) [5]:

∆tv
n = P n+1

1h vn+1 + P n+1
2h vn+1

whose growth factor

gIM(ϕ) =
1

1 + 4x1 + 4x2

(3)

satisfies 0 ≤ g(ϕ) ≤ 1 implying absolute stability. To advance the solution one
time step we must now solve a system of linear equations which is rather time-
consuming. Instead we would prefer to use the Traditional Douglas-Rachford
(TDR) ADI-method [3]:

(I − kP n+1
1h )ṽ = (I + kP n

2h)v
n

(I − kP n+1
2h )vn+1 = ṽ − kP n

2hv
n
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which involves solving two tridiagonal systems of equations per time step. In
the derivation of TDR ([8], p. 112) it appears that it is unnecessarily com-
plicated. Another possibility which we shall call the Simple Douglas-Rachford
(SDR) method has the same error order in time (= 1) and is written

(I − kP n+1
1h )ṽ = vn

(I − kP n+1
2h )vn+1 = ṽ.

The growth factor for TDR is ([8], p. 113)

gTDR(ϕ) =
1 + 16x1x2

1 + 4x1 + 4x2 + 16x1x2
(4)

and for SDR

gSDR(ϕ) =
1

1 + 4x1 + 4x2 + 16x1x2
(5)

The above-mentioned methods are only first order accurate in time. A second
order method is the two-dimensional Crank-Nicolson (CN) method [2]:

∆tv
n =

1

2
(P n+1

1h vn+1 + P n+1
2h vn+1) +

1

2
(P n

1hv
n + P n

2hv
n)

The growth factor is

gCN(ϕ) =
1− 2x1 − 2x2

1 + 2x1 + 2x2
(6)

and satisfies −1 ≤ g(ϕ) ≤ 1 again implying absolute stability.
To save computer time we again might prefer an ADI method, in this case
Peaceman-Rachford (PR) [6]

(I −
1

2
kP n+1

1h )ṽ = (I +
1

2
kP n

2h)v
n,

(I −
1

2
kP n+1

2h )vn+1 = (I +
1

2
kP n

1h)ṽ

with growth factor ([8], p. 110)

gPR(ϕ) =
(1− 2x1)(1− 2x2)

(1 + 2x1)(1 + 2x2)
. (7)

2 Stability and damping

In continuous problems high frequency components are introduced by rounding
errors. They therefore have small amplitudes, and the requirement |g(ϕ)| ≤ 1 is
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perfectly satisfactory for keeping the amplitudes small. This is the case for all
the above mentioned methods (with the exception of EX).
In problems involving a jump discontinuity the high frequency components have
large amplitudes (cf. [8], p. 21). These components are effectively damped in
the true solution (cf. [8], p. 23), and we would wish the same to be true for the
numerical solution. Therefore we should like g(ϕ) to be small for ϕ close to π.
Looking at the growth factor for IM (3) we note that gIM(ϕ) is small when x1 and
or x2 is large, signalling that high frequency components are effectively damped.
The same is true for SDR, but not for TDR where gTDR(ϕ) approaches 1 when
both x1 and x2 are large.
The growth factor for CN approaches −1 when x1 and/or x2 is large. This means
that high frequency components (which oscillate in x or y) will also oscillate in t,
the well-known CN-oscillations. These oscillations are annoying but nevertheless
give fair warning that the time step size is too large [4] and that certain measures
should be taken to restore the physical significance of the numerical solution [7].
Looking at the growth factor for PR (7) we note that when x1 or x2 is large we
have a similar situation with gPR(ϕ) approaching −1, but when both x1 and x2

are large then gPR(ϕ) ≈ 1 such that (as with TDR) high frequency components
are slowly damped but with no ‘wiggles’ in time to reveal that fact.

3 Two test examples

To investigate in practice the properties of the above methods we study two
examples based on equation (2) with b1 = b2 = 1 on the unit square with a jump
discontinuity in the initial condition:

Example 1: u(0, x, y) =











1 x < y
0 x = y
−1 x > y

The boundary conditions for t > 0 are derived from the true solution:

u(t, x, y) =
4

π

∞
∑

j=0

1

2j + 1
e−

1

2
π2(2j+1)2t sin((2j + 1)

π

2
(x− y + 2)).

Example 2: u(0, x, y) =











1 x < 0.5
0 x = 0.5
−1 x > 0.5

with the true solution

u(t, x, y) =
4

π

∞
∑

j=0

1

2j + 1
e−4π2(2j+1)2t sin((2j + 1)2πx).
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The step sizes in the x-, y-, and t-direction are h1 = h2 = k = 0.025 such that
µ1 = µ2 = 40. In example 1 we have high-frequency solution components in
both the x- and the y-direction at t = 0 and we therefore expect values of both
x1 and x2 close to 40. In example 2 we only have a jump discontinuity when
travelling in the x-direction and therefore only expect x1 to be close to 40, while
x2 is small since any high frequency components in the y-direction will have very
small amplitudes.

4 Results

Rather than presenting the complete two-dimensional solutions at each time step
we have selected (typical) examples and show the solutions at specific lines close
to the location of the jump. The results are shown in the following 6 figures.
Each figure contains 6 curves, labeled true, IM, TDR, SDR, CN, and PR.
Fig. 1–3 correspond to example 1 and Fig. 4–6 to example 2.
Fig. 1 and 4 show the x-dependence of u(t, x, y) at the first time step, t = 0.025,
for y = 0.5 and 0 ≤ x ≤ 1,
Fig. 2 and 5 show u(t, x, y) at the second time step, t = 0.05, for the same values
of y and x, and
Fig. 3 and 6 show the t-dependence of u(t, x, y) one x-step away from the jump
at x = 0.525, y = 0.5, and 0 ≤ t ≤ 1.
The findings confirm the predictions which can be made from the expressions for
the growth factors.
In Example 1 where x1 ≈ x2 ≈ 40 both IM and SDR perform well (with SDR

slightly better) whereas TDR shows a high frequency component (Fig. 1 and 2)
which is very weakly damped (g ≈ 25601

25921
≈ 0.988) (cf. Fig. 3). CN also shows a

high frequency component which is damped with a negative g (≈ −159
161

≈ −0.988)
giving rise to the well-known wiggles in time (cf. Fig. 3) whereas PR has a positive
g (≈ (−79

81
)2 ≈ 0.951) and has monotone behaviour in t. SDR is the winner with

IM a close runner-up.
In Example 2 where x1 ≈ 40 and x2 is small IM,TDR, and SDR perform equally
well showing good damping of the high frequency components (g ≈ 1

161
≈ 0.006).

CN and PR both exhibit weakly damped oscillations due to negative growth
factors. For CN g ≈ −79

81
≈ −0.975 and for PR slightly better, since the smallest

value for ϕ2 is not 0 but π
40

(cf. [8], p. 56) such that x2 ≈ 40 sin2 π
80

≈ 0.06 and
gPR ≈ 79

81
· 0.88
1.12

≈ 0.75. After 10 steps the amplitude of the wiggles is reduced to
77% with CN and to 6% with PR (cf. Fig. 6).
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