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Abstract 
 
Micro-complex ventilation involves integrating precision local ventilations in animal zones. In 
order to gain knowledge about air motion and temperature distribution in animal occupied 
zones, the project will investigate an integrated micro ventilation concept in livestock housing. 
Data will be gathered by using both Computational Fluid Dynamics (CFD) simulations and scale 
experiments in wind tunnel. After the establishment of the system, optimisations are also needed.  
Then, to validate the optimal system, varied techniques including local cross ventilation, tunnel 
ventilation, low pressure ventilation and heat exchange will be investigated. The proposed 
system combines the advantages of natural, mechanical and displacement ventilation, making it 
a technology with great efficiency and potential.  
So far, parts of the experiment about the heated body have already been conducted in the wind 
tunnel. A CFD simulation about heat convection from chicken have already been finished and 
written into a manuscript. This report contains introduction of the project of Complex Ventilation 
and Micro-Environmental Control in Livestock Housing. This report contains activities, courses, and 
manuscript was presented. There is also a plan for further work. 



Complex Ventilation and Micro-Environmental Control in Livestock 

Housing 

Hao Li 

Summary 

Micro-complex ventilation involves integrating precision local ventilations in animal zones. In order to 

gain knowledge about air motion and temperature distribution in animal occupied zones, the project 

will investigate an integrated micro ventilation concept in livestock housing. Data will be gathered by 

using both Computational Fluid Dynamics (CFD) simulations and scale experiments in wind tunnel. 

After the establishment of the system, optimisations are also needed.  Then, to validate the optimal 

system, varied techniques including local cross ventilation, tunnel ventilation, low pressure ventilation 

and heat exchange will be investigated. The proposed system combines the advantages of natural, 

mechanical and displacement ventilation, making it a technology with great efficiency and potential. 

So far, parts of the experiment about the heated body have already been conducted in the wind tunnel. 

A CFD simulation about heat convection from chicken have already been finished and written into a 

manuscript. This report contains introduction of the project of Complex Ventilation and Micro-

Environmental Control in Livestock Housing. The work progress including activities, courses, and 

manuscript was presented. There is also a plan for further work. 

 

1. Introduction to the field of research  

Research on animal behaviour and welfare have showed that both thermal and airflow parameters have 

strong influence on the procedures of livestock breeding. A poor thermal environment results in a 

negative spiral of development for animals, personnel, environment, economy and food quality 

prompted by reduced hygiene, increased risk of diseases, increased ammonia evaporation, reduced air 

quality and increased daily labour requirement for pen cleaning. While on the other hand ventilation 
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and airflow at animal zone could have large effects on ammonia and greenhouse gas emission from 

livestock buildings. 

The purpose of the ventilation system is to maintain a desired indoor thermal condition while 

controlling levels of humidity and removing gaseous contaminants introduced by the animal and their 

waste (Saha et al., 2010). Houses can be acclimated through either forced or natural ventilation. Natural 

ventilation is one of the techniques for lower energy consumption compared with the energy 

consumption of forced ventilation (Ecim-Djuric, 2009). However, at certain circumstances, only 

depending on natural ventilation is not enough to meet the requirement of air motion in animal 

buildings. Then the mechanical ventilation is needed. There are many different kinds of ventilation 

system in a mechanical ventilated animal building, e.g. tunnel ventilation, low pressure ventilation, and 

cross ventilation. These ventilation systems could be installed either singly or integratedly in animal 

buildings. All these lead to a complex both air velocity and temperature distributions in animal occupy 

zone, and the control of the indoor environment become correspondingly complex. That is the basic 

complex ventilation idea. It derives from a study on a pig building conducted by Farm Building 

Division of Danish Building Research Institute in 1990s (Strøm and Zhang 1989; Zhang et al. 1992).  

Until now many researches have been done on complex ventilation system. However, there are still 

many conceptions are unclear.  

2. Hypothesis/Aim of the project 

Different control strategies could result to different indoor environments and have varied cooling 

potentials during the hot period. The integral impact from environment will affect animal comfort on 

varied degrees. To provide a friendly environment to the animals, it is necessary to find a reliable 

parameter to represent animals’ comfort first and then try to reach the set environment through 

different strategies. The research then could be separate into two parts, one is to explore the thermal 

index for animal, and the other is to study indoor climate parameters results from different ventilation 

systems. 

The aims of the project are 1) to introduce a new concept for monitoring the thermal and airflow 

conditions in the animal zone, 2) and then to set up a dynamic predictive model to provide a precision 
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environment control strategy at individual animal or defined zone level and consequently to improve 

animal welfare and to reduce environmental impact, 3) to generate knowledge on cooling effectiveness 

of different kinds of cooling and ventilation systems. 

3. Description of methods  

The project will apply both numerical modelling method and full scale experiments to investigate the 

effectiveness of the system for an optimal thermal environment and air quality for both animal and 

workers with high effectiveness and low energy consumption. 

Models of heated bodies which are so-called artificial pig and poultry will be made and test in wind 

tunnel in Air Physics Lab, Aarhus University, Denmark. This wind tunnel has a large range of 

turbulence boundary layers and dimensions height ×width ×length=6.00m×1.38m×1.55m. This low-

speed-type wind tunnel can produce a maximum flow with a wind speed of 3.8m/s. 

Computational Fluid Dynamics (CFD) can effectively model airflow in both spatial and temporal fields, 

and it was proved the potential to model livestock buildings and can provide concrete flow information. 

Therefore, in this project, CFD is used to analyse the air motion and thermal condition in AOZ and heat 

boundary of animals. 

4. Progress of the project   

Two heated body with different sizes have been built. Heat convective coefficients of the cylinders on 

different air velocities and orientations have been generated through experiment. That data could be 

used as basic data to develop the effective temperature of animals. 

CFD simulation on a model chicken was also conducted to test the feasibility of using CFD method to 

study heat transfer convective coefficient from animals. Great potential have been showing in the 

research. The results have been arranged in a manuscript. 

Both the simulation and experiment will focus on more complex geometry in future research.  

5. Dissemination 
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5.1. Publications 

Li, H., Zhang, G., 2015. A numerical approach to study forced convection from animal: simulation 

with a real geometry. Manuscript for publication in a scientific journal. 

Zong, C., Li, H., Zhang, G., 2014. Ammonia and greenhouse gas emissions from fattening pig house 

with two types of partial pit ventilation systems. Agriculture, Ecosystems & Environment, Revised 

version submitted in Oct. 2014. 

Zong, C., Li, H., Zhang, G., 2014. Airflow characteristics in a pig house with partial pit ventilation 

system: an experimental chamber study. Prepared submitting to a peer review journal. 

Zong, C., Zhang, G., Li, H., Rong, L. 2014. Investigation on ventilation effectiveness in a full-scale 

model pig house with partial pit ventilation system. Proceedings International Conference of 

Agricultural Engineering, Zurich, 06-10.07.2014. 

Yan, Z., Wang, C., Li, B., Zhang, G., Shi, Z., Li, H., Wang, H. Yuan, Y. Influence of water 

temperature and spraying interval on cooling effect of sprinkler system in dairy barns. Applied 

Engineering in Agriculture, Vol. 30(4): 611-617. 

 

5.2. Activities 

Experiment, report and discussion with VSP (pig research center) on design of ventilation systems for 

point extraction, from 01/10/2013 to 05/03/2014, in Denmark 

Seminar on application of CFD in agriculture, 09/04/2014, in Korea 

Workshop on the CFD simulation for ventilation system, 19/05/2014, in Korea 

Seminar on hot climate control in Pig & poultry house, 16/10/2014, in Denmark 

Seminar on heat balance model in animals, 27/10/2014, in Denmark 

Seminar on hot climate control and technology in Pig & poultry housing, 14/01/2015, in Denmark 
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5.3. Courses 

 Completed Courses: 20.5 ECTS; Ongoing: 4 ECTS; Planned: 7 ECTS; In total: 31.5 ECTS. 

5.4. Study abroad: 

I spent 3 months in the lab of Prof. In-bok Lee in Aero-Environmental & Energy Engineering, College 

of Agriculture and Life Sciences, Seoul National University. There I developed my CFD simulation 

skills and communicated research status with peers. 

6. Plan for remaining study period  

6.1. Conference 

Course title Institution ECTS Status 

Fundamentals of Ventilation, Indoor Air 

Quality, Air Motion and Emissions (MD 1) 
Aarhus University  5 Completed  

Science Teaching -Module 1:Introduction to 

Science Teaching 
Aarhus University 3 Completed 

Academic English for non-Danish Speaking 

PhD Students 
Aarhus University 3 Completed 

Fundamental of computational fluid dynamics 

(CFD) 
Aalborg University 3.5 Completed 

Computing with data using R Aalborg University 4 Completed 

Introduction to R Aarhus University 1 Completed 

Basic Statistical analysis in Life and 

Environmental Sciences 
Aarhus University 4 Ongoing 

Fundamentals of Ventilation, Indoor Air 

Quality, Air Motion and Emissions (MD 2) 
Aarhus University 5 

Planned, 

June 2015 

The World of Research Aarhus University 2 
Planned, 

May 2015 
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I plan to join two international conferences. The first one is the ASABE annual conference 2015 in 

New Orleans, Louisiana, US. And the second one is CIGR conference 2016 in Aarhus, Denmark. I will 

make oral presentations there. 

6.2. Working plan on research 

For the next half period for my PhD study, I plan to do the research in two different levels – the 

housing level and animal level. On the housing level the core of research is to study the effectiveness of 

different ventilation and cooling system. On the animal level, the goal is to develop the index that could 

represent real feeling of animal in different thermal conditions. 

Working title in housing level: 

1. Modelling indoor environment and cooling potential with different cooling strategies in closed 

animal housing (expect to be started from March 2015 and finished in June 2015)  

2. Economic analysis on the cooling strategies in different climate zones (air conditioner, natural 

ventilation and mechanical ventilation) (expect to be started from April 2015 and finished in 

August 2015) 

Working title in animal level: 

1. Scale effect on convective heat loss – a study based on heated bodies (expect to be finished in 

March 2015) 

2. Comparison of convective coefficient between pig model with real and simplified shapes (expect 

to be finished in March 2016)  

3. A numerical approach to study forced convection from animal: simulation with a fur layer 

(expect to be finished in June 2016)  

It is planned that each working title will produce one publication.  
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Appendix A:  Manuscript “A numerical approach to study forced convection from animal: simulation with a real 

geometry” 
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A numerical approach to study forced convection from animal: simulation 1 

with a real geometry 2 

Hao Li, Guoqiang Zhang 3 

Department of Engineering, Aarhus University, Blichers Allé 20, P. O. Box 50, 8830 Tjele, Denmark 4 

 5 

Abstract 6 

Convective heat transfer is an important parameter to judge animal thermal comfort. Computational 7 

Fluid Dynamics (CFD) method was employed to study convective coefficient from animal. In order to 8 

achieve accurate result, several RANS (Reynolds averaged Navier-Stokes) turbulence models were 9 

tested on a sphere model for the feasibility to study forced convection using CFD method. RSM model 10 

showed the best agreement with theoretical calculation and therefore was adopted for further 11 

calculation. The results of simulation showed the CFD method had a strong potential in studying 12 

convective coefficient of animal. Based on the simulation result, convective coefficient of chicken was 13 

predicted over a broader range of air velocity compared with former research. A relationship between 14 

model with a chicken geometry and sphere was also discussed in the paper. 15 

 16 

1. Introduction 17 

Thermal comfort is an important factor for farm animal. Poor thermal condition may lead to stress of 18 

animals and even to death of animals, and poor production. The thermal comfort of animal is highly 19 

dependent on heat transfer from animal to the environment. The heat transfer from animal is including 20 

evaporation, conduction, convection and radiation. Among all these four kinds of heat transfer avenues 21 

convection is one of the most important, since it is highly relevant to the control of the ventilation air 22 

speed in animal occupied zone.  23 

Many researches have been conducted using varied artificial animal models to study the thermal 24 

condition of animals. Most study in those works, Spheres and cylinders were employed for physical 25 

modelling (Bakken, 1976; Bakken and Gates, 1975; Campbell and Norman, 1998; Monteith and 26 

Unsworth, 2013; Norton et al., 2010; Porter and Gates, 1969) . The oversimplification of the geometry 27 

will undoubtedly lead to discrepancy on the results. Wathes and Clark (1981) tested heat transfer from 28 

a copper model in a chicken model and Mitchell (1985) tested the convective coefficient of a real 29 

chicken using a wind-tunnel calorimeter. However, both of the experiment had some limitations. They 30 

were not conducted in a very high wind speed. The air pattern around animals could not get due to the 31 

limitation of the equipment.   32 
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CFD has become a useful and powerful tool to predict airflow characteristics and mass and energy 33 

transfer across wide research areas: airflow distribution in greenhouses (Bartzanas et al., 2002); 34 

ammonia emission from pig houses(Rong et al., 2010); dynamic flux chamber methodology (Saha et al., 35 

2011); pit exhaust system of a cow building; remove ratio of gases (Wu et al, 2012); Air flow pattern 36 

inside a small cow room (Gebremedhin and Wu, 2005); the indoor environment of a pig building (Seo 37 

et al, 2011). 38 

To determine convective coefficient of a bluff body in a ventilated air space, it is depending on the 39 

modelling results in both the air velocity field and the temperature field. The accuracies of both aspects 40 

have influence on the final result. And the two aspects could have interaction for the simulation of the 41 

convective coefficient. Zhang, Zhai et al. (2007) tested different turbulence models in enclosed space, 42 

the predictions on temperature, velocity and turbulence are in different accuracy levels. From this point, 43 

turbulence models need to evaluated for the prediction of convective coefficient. 44 

Therefore, the objective of this study is 1) to assess the feasibility of using CFD (computational Fluid 45 

Dynamic) to study forced convection from animals, 2) to use CFD model to make prediction of 46 

convective coefficients on higher air velocity, 3) to explore the relationship between sphere and the 47 

model in a chicken shape. 48 

2. Materials and Methods 49 

2.1. Geometry and calculation domain 50 

Firstly, a model chicken was made based on real geometry of chicken by Sketchup (Google Inc., USA). 51 

However, too detailed model could result to increasing of difficulty in mesh establishment and burden 52 

in calculation afterwards. Therefore, the model was rebuild and appropriately simplified in Rhino 53 

(Robert McNeel & Assoc Inc., USA); the comb and legs were removed, and beak and wings were 54 

moderately smoothed (Fig. 1). The model was rescaled to a size with a surface area of 0.0769m
2
 which 55 

is the calculated surface area of chicken in a former experiment (Mitchell, 1985) . 56 

 57 
Fig. 1 The process of generating the model chicken 
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The simulated wind tunnel was following the dimensions in Mitchell’s experiment as well, the length 58 

was 1m, and the cross section was 0.31m*0.31m. Model chicken was placed in the middle with a 59 

height of 0.06m from floor. That height was corresponding length of leg in that growing period. Four 60 

chicken orientations respect to the wind were set in the simulation, 0
o 
(Fig. 2 a), 45

o 
(Fig. 2 b), 90

o 
(Fig. 61 

2 c) and 180
o 
(Fig. 2 d), respectively.  62 

 63 

In order to study scale effect on the results, the calculation domain was scaled into two other sizes by 64 

factors of 0.6 and 1.3. The corresponding areas of chicken surface were 0.0276 m
2
 and 0.1300 m

2
, 65 

respectively. In all the three scales, the body weight was calculated from the surface area from the 66 

relationship below (Walsberg, 1978): 67 

0.667 / 0.081M S  68 

The corresponding body weights were 0.2kg, 0.9kg, and 2.0kg, respectively, which respected the whole 69 

growth process of a chicken. 70 

Fig. 2 Schematic of the calculation domains with four chicken orientations to the wind: (a) 0°, trunk 

axis parallel to the wind direction with head facing the wind; (b) 45°, trunk axis 45° angle to the wind 

direction; (c) 90°, Trunk axis perpendicular to wind direction; (d) 180°, trunk axis parallel to the wind 

direction with posterior end facing the wind. 

( a ) 

( d ) 

( b ) 

( c ) 
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In order to test the accuracy of CFD method in studying forced convection, a simple geometry of 71 

sphere was examined in a same virtual wind tunnel. The sphere had a diameter of 15.6cm and the area 72 

was 0.0769 m
2
, as same as the virtual chicken in this study. The sphere was arranged in the middle of 73 

virtual tunnel. 74 

2.2. Basic concept of CFD and software 75 

The fundamental bases of almost all CFD problems are to solve governing equations like the Navier-76 

Stokes and continuity equations. All these governing equations mentioned above can be written in a 77 

general form as: 78 

( )
( ) ( )div div grad S

t


  


   


u  79 

Written in expansion, 80 

( ) ( ) ( ) ( )
( ) ( ) ( )

div u div v div w
S

t x y y x x y y z z

               
         

         
 81 

where,  represents variables,  the effective diffusion coefficient, and S the source term of an equation. 82 

The terms are transient term, convective term, diffusive term, and source term, respectively in equation. 83 

In this research, commercial software Fluent 15.0 (Ansys Inc., USA) was used to solve the equations 84 

on the basis of finite volume method. Standard k-ε, RNG k-ε, low Re k-ε, transition SST and RSM 85 

turbulence models were tested in this work. Velocity and turbulence terms for convection were all 86 

approximated using second order upwind scheme. Diffusion terms were discretised using central 87 

difference scheme. SIMPLE method was employed for the pressure-velocity correction. 88 

2.3. Mesh  89 

To solve the boundary layer around the virtual chicken, continuously layers of prism cells were created 90 

both on the surface of the virtual chicken and wall with an initial height of 0.1mm to keep the y
+
<1. 91 

Tetra-meshes were then arranged from the outside of the boundary layer to the other side walls in the 92 

analytical space. After the grid independence test, a total number of computational cells of 1.5 million 93 

were used for the mesh of sphere and virtual chicken. 94 
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 95 

 96 

 2.4. Boundary conditions 97 

The inlet was set as velocity inlet with air speeds ranged from 0.3m/s to 3m/s, turbulence intensities of 98 

the inlet air was 5%. Outlet was set as pressure outlet. The no-slip condition was adopted as the wall 99 

surface boundary condition for the velocity and hence the flow pattern and detailed temperature 100 

gradient inside the viscous sublayer could be precisely analysed. The skin surface temperatures of the 101 

virtual chicken were fixed at a constant value, 24.7
o
C, which was the average temperature derived from 102 

literature.  For the sphere, the surface temperature was set as a constant value of 42
o
C. The 103 

environment temperature in the simulation was set as 20
o
C, both for the wall and air inside.  104 

2.5. Calculation of convective coefficient 105 

Convective heat transfer from skin or feather results from an airstream perturbing the insulating 106 

boundary layer of air clinging to the surface of the body. The convective heat loss can be written in 107 

equation below: 108 

( a) 

( b ) 

Fig. 3 Schematic of the mesh in the calculation: (a) the mesh of the sphere; (b) the mesh of the virtual chicken. 
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( )   c c sH A h T T  109 

Where, A is the surface area (m
2
), 

ch is the convective heat transfer coefficient (W/m
2
 K

-1
), 

sT is the 110 

averaged surface temperature of the chicken (K), 
T is the ambient temperature (K). 111 

Correspondingly, 
ch can be calculated based on the equation above, given total convective heat loss, 112 

surface area, and temperature difference between environment and surface of animal: 113 

( )


 

c
c

s

H
h

A T T
 114 

The convective coefficient of the sphere and virtual chicken in the simulation in this research was 115 

calculated based on the equation above. 116 

The convective coefficient ch is related to the thickness of the boundary layer, which could be 117 

expressed in a dimensionless form using is Nusselt number, Nu. It can be calculated based on this 118 

equation: 119 

c

k
h Nu

d
 120 

Where k is the conductivity of the fluid (W/m K
-1

), d is the characteristic dimension (m), Nu is Nusselt 121 

number. 122 

For a sphere, Holman (2008) recommended to use the relations developed by Achenbach (1978) 123 

applicable for air with Pr = 0.71: 124 

 
1/2

4 1.6Nu 2 0.25 Re 3 10 Re    for 
5100 Re 3 10    125 

The theoretical calculation of the sphere was based on the method above. 126 

In addition, all the velocities in the simulation of the sphere were corrected due to blocking effect using 127 

the method suggested by some researchers(Kowalski and Mitchell, 1976). For the simulation of 128 

chicken, the velocities were taken from average velocity of the middle section in the virtual tunnel.  129 

3. Results  130 

3.1. Effectiveness of different turbulence models 131 

Table.1 shows the convective coefficient calculated using different RANS turbulence models and those 132 

obtained from theoretical calculation. The agreement between convective coefficient predicted by CFD 133 

and measurement values varied with different turbulence models. For Standard k- ε and RNG k- ε 134 
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models, both of them overestimated convective coefficients in all the air velocity ranges compared with 135 

theoretical calculation. The discrepancies between simulation and calculation were small with a relative 136 

error around 1%, and then increased with air velocity. At 1.05m/s, the relative errors were 3.4% and 6.6% 137 

for Standard k- ε and RNG k- ε models, respectively. Low Re k- ε model had much higher values in all 138 

the air speed scales with relative errors ranging from 8.5% to 48.3%.  However, SST k-ω 139 

underestimated the convective value in all the air speeds from 0.3 m/s to 1.05m/s, and the discrepancies 140 

decreased with air speeds from -22.7% to -1.4%. Transition SST underestimated the values at low air 141 

speed of 0.3m/s and 0.45m/s, and overestimated those at relative higher air speed. The convective 142 

coefficient calculated by RSM model had lower results at low air speeds, and the relative errors were 143 

relatively small in all the air speed range in this study. In this study, In order to get more precise results 144 

in following simulation, RSM model was employed in all the following simulation. 145 

 146 

Table.1 Comparison of measured convective coefficients with that calculated from different turbulence models 

Turbulence 

models 

and measurement 

Convective coefficient (w/m2-k) and relative error compared with theoretical calculation (%) 

Varied air speeds of inlet (m/s) 

0.3 0.45 0.6 0.75 0.9 1.05 

Standard k- ε 5.90 1.1% 7.39 2.6% 8.67 3.2% 9.81 3.5% 10.86 3.5% 11.83 3.4% 

RNG k- ε 5.90 1.2% 7.46 3.6% 8.82 4.9% 10.03 5.7% 11.15 6.3% 12.19 6.6% 

low re k- ε 6.33 8.5% 8.71 20.9% 10.92 30.0% 13.01 37.2% 15.02 43.2% 16.96 48.3% 

SST k-ω 4.51 -22.7% 6.07 -15.8% 7.49 -10.9% 8.81 -7.1% 10.07 -4.0% 11.27 -1.4% 

Transition SST 5.59 -4.3% 7.14 -0.9% 8.50 1.2% 9.73 2.6% 10.87 3.6% 11.93 4.3% 

RSM 5.58 -4.3% 7.04 -2.2% 8.31 -1.1% 9.44 -0.5% 10.48 -0.1% 11.45 0.1% 

Theoretical 

(Achenbach, 

1978) 

5.84 7.21 8.40 9.49 10.49 11.44 

 147 

3.2. Effects of Animal orientation 148 

No significant difference (P>0.05) was found between the two conditions in which chicken trunk axis 149 

was parallel to the wind direction with head or posterior end against wind. The convective coefficients 150 

(hc), increased with air velocity (v) and can be described by the relationship: 151 

 0.5747 12.14 R²  1 ch v  and 0.572611.958  (R² 0.9996) ch v .The cases with trunk axis inclining to 152 

wind direction at 45 degree and 90 degree showed obvious higher prediction values than that of the 153 

other two orientations. The simulated convective coefficients ranged from 6.00 w/m
2
 k

-1
 to 13.58 w/m

2
 154 

k
-1

. The relationship between convective coefficient and air velocity are 0.55713.216  (R² 1) ch v and155 

0.555512.85  (R² 0.9999) ch v , respectively. 156 
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The cases with trunk axis parallel to the wind with head towards wind were similar to the experiment 157 

done by Wathes and Clark (1981).  The CFD simulation results showed that the convective coefficients 158 

were underestimated at lower air speeds but overestimated at higher air speeds. The relative errors 159 

ranged from -8.8% to 5.2%. ANOVA analysis showed that the difference between these two group data 160 

was not significant (P>0.05).The cases that with lateral orientation to the air flow were in the same 161 

conditions with the experiment done by Mitchell (1985).  The mean deviation between simulation and 162 

experiment was -8.42% with the largest discrepancies occurring at the very lowest and very highest air 163 

velocities. ANOVA analysis showed a significant difference between these two group data (P<0.05). 164 

 165 

 166 

3.3. Effects of the model scale 167 

Fig.5 shows the convective coefficient of chicken models with different scales calculated over the 168 

range of air speeds in simulation. It is obviously that the models with smaller scale have higher 169 

convective coefficient compared larger scale models in the same air velocities. The model with 0.9kg 170 

corresponding weight was the same model as the model with lateral orientation to the wind direction. 171 

The relationship between convective coefficient and air velocity of the other two models can be 172 

described as 0.544616.138  (R² 0.9999) ch v  and hc=11.464v
0.5621  

(R² = 0.9998) for models in 0.2kg 173 

and 2kg, respectively. 174 
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 176 

 177 

3.4. Velocity field and airflow pattern around animals 178 

Symmetry plane in calculation domain was employed to demonstrate the velocity field and airflow 179 

patterns. Examples for velocity field are showed in Fig for 0° and 90° orientation to the airflow with 180 

inlet air speeds of 0.3m/s and 1.05m/s.  181 

In the cases of chicken head facing the wind, as showed in Fig.6 (a) and Fig. 6 (b), higher air velocities 182 

appeared at the top and the bottom of the chicken body. There were low air velocity zones just behind 183 

the neck and trunk of the chicken. In the cases that chicken were laterally orientating to the airflow, as 184 

showed in Fig. 7(a) and Fig. 7(b), higher air velocities were observed also at the top and bottom 185 

position of the virtual chicken. Obvious low air velocity zones were found downwind side of the body. 186 

They had a much larger affected area compared with the cases with chicken head orientating to the 187 

wind. The velocity contours were almost same in condition with 0.3m/s inlet air speed and 1.05m/s 188 

inlet air speed. The air velocities were proportionate to the inlet air velocities. 189 

Airflow patterns were demonstrated in Fig. 8. Small vortexes were found downwind side of the neck 190 

and body in cases that chicken head orientating to the wind with inlet air velocity of 0.3m/s (Fig. 8 a) 191 

and 1.05m/s (Fig. 8 b) . No significant difference of air pattern was found in these two cases. Large 192 

vortex zones were found behind the body along wind direction in the cases that trunk axis 193 

perpendicular to wind direction in the two velocities working conditions (Fig. 8 c and d).  The vortex 194 

zones were the place where were the low air velocity zones. 195 
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 197 

Fig.6 Velocity field around chicken with 0° to the wind direction while the inlet 

velocity of: ( a ) 0.3m/s; ( b ) 1.05m/s. 

( b ) 

( a ) 
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 198 

Fig.7 Velocity field around chicken with 90° to the wind direction while the inlet 

velocity of: ( a ) 0.3m/s; ( b ) 1.05m/s. 

( a ) 

( b ) 
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 199 

3.5. Heat flux on the surface 200 

Fig.9 shows that the heat flux from the surface of body in the cases with inlet air velocities of 0.3m/s 201 

(Fig. 9 a) and 1.05m/s (Fig. 9 b) while chicken was facing the wind. Highest heat flux were found on 202 

( a ) 

( b ) 

( c ) 

( d ) 

Fig.8 Airflow pattern around chicken with: (a) 0° to the wind direction while the inlet velocity 

of 0.3m/s; (b) 0° to the wind direction while the inlet velocity of 1.05m/s; (c) 90° to the wind 

direction while the inlet velocity of 0.3m/s; (b) 90° to the wind direction while the inlet velocity 

of 1.05m/s; 

( a ) 
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the beak, the values were approxmately 111w/m
2
 and 203w/m

2
, respectively, for the two velocity 203 

0.3m/s and 1.05m/s. The heat flux were relatively higher on the windward side, and lower on the rest of 204 

body. The average heat flux from the body surface were 30.4 w/m
2
 and 62.5w/m

2 
in these two velocity 205 

cases. 206 

Fig. 10 shows that the heat flux from the chicken surface in the two velocity conditions with trunk axis 207 

perpendicular to the wind. Higher heat flux were found on 2 locations, beak and tail on the leeward side, 208 

on both the velocity working conditions. Hihgest value reached to around 105w/m
2
 and 195w/m

2
 for 209 

0.3m/s (Fig. 10 a) and 1.05m/s (Fig. 10 b) inlet velocity.  The downwind sides of the surfaces were 210 

found to have significant lower heat flux on both of the velocity cases.The mean heat flux from the 211 

whole surface of body were 36.6w/ m
2 

(Fig. 10 c) and 73.5w/ m
2 

(Fig. 10 d) in the two cases. 212 

       213 

Fig.9 Heat flux from the surface of body when the chicken was 0° to the wind direction in the cases with inlet 

air velocity: (a) 0.3m/s and (b) 1.05m/s. 

(a) (b) 
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 214 

3.6. Prediction of convective coefficient on higher air velocity 215 

Convective coefficients at higher air velocities were predicted in cases with three orientations to the 216 

wind, i.e., chicken trunk axis 0°, 45° and 90° to the wind direction. New regression curves were made 217 

based on the simulated data in all the air velocities range from 0.3m/s to 3m/s. The relationships 218 

between convective coefficients and air velocities were hc= 2.417v
0.6216 

(R² = 0.9983),  hc = 13.478 v
 219 

0.6015 
(R² = 0.9985) and hc = 13.087v

0.6141
 (R² = 0.9975), respectively, for the trunk axis of 0°, 45° and 220 

90° to the wind direction. In addition, a regression that depicting the general condition of chicken 221 

between convective coefficient and air velocity was calculated based on the mean convective 222 

coefficient of the three orientations. The curve could be described as hc= 12.994v
0.6121 

(R² = 1).  223 

4. Discussion 224 

4.1. Selection of RANS turbulence models 225 

Fig.10 Heat flux from surface with trunk axis perpendicular to the wind in inlet air velocity of: (a) 0.3m/s on 

windward side; (b) 1.05m/s on windward side; (c) 0.3m/s on leeward side; (d) 1.05m/s on leeward side. 

(a) (b) 

(c) (d) 

21



In the preliminary study on the convective heat transfer from the sphere, Standard k- ε, Transition SST 226 

and RSM models had relatively low relative errors within 5% in the simulation in comparison with 227 

theoretical calculation. Compared with Standard k- ε model and Transition SST model, RSM model 228 

generated more accuracy results in a broad range. It was reported that RSM model made a accurcy 229 

results for velocity field(Wu et al., 2012). Since the convective coefficient is highly dependent on the 230 

velocity and boundary layer, the precise simulation of velocity is appreciable in simulating the 231 

convective coefficients. However, RSM model could take approximate five times more time in 232 

calculation than Standard k- ε (Zhang et al., 2007). In this study, Transition SST needed 1.5 times 233 

computing time longer than Standard k- ε. Taking computing time into consideration, Standard k- ε 234 

model is one of the most time saving turbulence model with relative high accuracy in calculating 235 

convective heat transfer. From this point, it is sufficient enough to carry out most of the calculation 236 

when the precision requirement is not that high.  237 

4.2. Convective coefficient simulated by CFD 238 

The results from CFD meet the measurement results from the smooth copper chicken model very well. 239 

It proved the feasibility of CFD to study the heat transfer from the heated body. However, there were 240 

deviations compared with the results from the measurement of real chicken. The discrepancy can be 241 

due to the uncertainty of the experiment method. The method was to measure the temperature 242 

difference between the upwind direction and downwind direction of the body with and without heat 243 

source, and then to recalculate the heat transfer based on the known power of heat source. In the 244 

preliminary experiment to study the convective heat loss from a copper sphere, a mean deviation 8% 245 

was found compared with theoretical calculation. When it came to a test for a real chicken, the 246 

uncertainty still existed.  247 

Another reason of discrepancy between the simulation and the measurement of real chicken could be 248 

the chicken movement during the experiment. The chickens were allowed to stand or sit and extend 249 

neck and wings during the experiment. All that movement will lead to a higher blocking effect 250 

generating a higher velocity around the chicken and cause a higher heat loss. Higher air velocity will 251 

cause higher movement level of chicken. That could be the reason why measurement of real chicken 252 

got a higher convective coefficient compared with the static model in simulation. Besides, the blocking 253 

effect may also contribute the uncertainty in the experiment. The chicken was lateral orientated to the 254 

wind. The blocking effect was much stronger in that condition. Using characteristic diameter to 255 

calculate correct velocity could lead to underestimation of the actual air speed and overestimation of 256 

the convective coefficient. 257 

The simplification of the geometry could be another reason that resulted to the deviation. A virtual 258 

chicken with smooth surface was employed in the simulation. The beak, legs and feather layer were all 259 

omitted. The simplification could have a strong effect on the simulation (Wu et al., 2012). Pelt or 260 

feather layer was reported for enhancing the convective heat transfer compared with the smooth body 261 
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(Mcarthur and Monteith, 1980). And the effect will increase with the air speed (Wathes and Clark, 262 

1981) . The simulation results showed a good agreement with the experiment which used the smooth 263 

copper model also proved that the feather layer could be a very reasonable explanation for the 264 

discrepancy. In addition, there were unavoidable in CFD simulation. The uncertainty in the simulated 265 

air velocity and temperature will lead to a higher discrepancy when calculating the convective 266 

coefficients.  267 

In order to validate the explanation, further research should be conducted in a condition with limitation 268 

of animal movement and without blocking effect. Since the CFD method showed strong promising in 269 

giving the detailed information. The CFD simulation considering the feather layer in a broad area is 270 

needed.  271 

4.3. Simplification of model to a sphere 272 

Many researchers have suggested or used sphere or cylinder as a model to study the thermal condition 273 

of animals (Gates, 1963; Mitchell, 1976; Norton et al., 2010; Porter and Gates, 1969). Based on the 274 

data with surface area of 0.0769m
2
, which was calculated based on a chicken with 0.9kg weight, the 275 

convective coefficients of sphere and chicken model was found to have a relationship for 276 

hc_chicken=1.2221×hc_sphere – 0.6267 ( R
2
=1 ) ( Fig. 11). The relationship was applicable to the chicken 277 

with the weight of 0.2kg and 2kg also. The relative errors between calculated data and theoretical data 278 

were all below 3%. ANOVA analysis showed very high agreement in both of the groups. From this 279 

point, the relationship could be used to calculate the convective coefficient of a chicken based on a 280 

sphere with a same surface area.  281 

 282 

 283 

5. Conclusion 284 
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RSM (Reynolds Stress Models) was found to be the most accurate of the used RANS turbulence 285 

models in studying forced convection from geometry in wind tunnel, whilst it will take higher CPU 286 

usage. Considering accuracy and computing time, Standard k- ε is sufficient enough. 287 

CFD method showed great potential in predicting the convective coefficient of animal. A prediction 288 

model for chicken with 0.9kg in a velocity range from 0.3m/s to 3m/s was generated as hc= 289 

12.994v
0.6121 

(R² = 1). And the convective coefficient for the chicken could be calculated based on a 290 

sphere having a same surface area, the relationship is hc_chicken=1.2221×hc_sphere – 0.6267 ( R
2
=1 ).  291 

The simulation agreed the experimental data of smooth copper chicken model very well. However, 292 

when comparing the data of a real chicken, the discrepancy still existed. Future research could be done 293 

in both lab measurement and optimization of CFD simulation model. Block effect should be avoided in 294 

order to study the real situation in the field. From perspective of lab measurement, more precise 295 

experiment with higher air velocities is still needed. For CFD, simulation of a more complex geometry 296 

with feather layer could be conducted and simulated in a broader range of air velocities. 297 

Acknowledgement 298 

The author thanks China Scholarship Council (CSC) to support the study in Denmark. 299 

Reference 300 

Achenbach, E. “Heat Transfer from Spheres up to Re = 6 × 106,” P roc. Sixth Int. Heat Trans. Conf., vol. 5, 301 

Washington, D.C.: Hemisphere Pub. Co., pp. 341–46, 1978. 302 

Bakken, G.S., 1976. A heat transfer analysis of animals: unifying concepts and the application of metabolism 303 

chamber data to field ecology. Journal of theoretical biology 60, 337-384. 304 

Bakken, G.S., Gates, D.M., 1975. Heat-transfer analysis of animals: some implications for field ecology, 305 

physiology, and evolution, Perspectives of biophysical ecology. Springer, pp. 255-290. 306 

Bartzanas, T., Boulard, T., Kittas, C., 2002. Numerical simulation of the airflow and temperature distribution in 307 

a tunnel greenhouse equipped with insect-proof screen in the openings. Comput Electron Agr 34, 207-221. 308 

Campbell, G.S., Norman, J.M., 1998. An introduction to environmental biophysics. Springer Science & Business 309 

Media. 310 

Gates, D.M., 1963. Energy Exchange in the Biosphere. Soil Science 96, 76. 311 

Gebremedhin, K., Wu, B., 2005. Simulation of flow field of a ventilated and occupied animal space with 312 

different inlet and outlet conditions. J Therm Biol 30, 343-353. 313 

Kowalski, G., Mitchell, J., 1976. Heat transfer from spheres in the naturally turbulent, outdoor environment. 314 

Journal of Heat Transfer 98, 649-653. 315 

24



Mcarthur, A.J., Monteith, J.L., 1980. Air Movement and Heat-Loss from Sheep .1. Boundary-Layer Insulation of 316 

a Model Sheep, with and without Fleece. Proc R Soc Ser B-Bio 209, 187-208. 317 

Mitchell, J.W., 1976. Heat-Transfer from Spheres and Other Animal Forms. Biophysical journal 16, 561-569. 318 

Mitchell, M.A., 1985. Measurement of Forced Convective Heat-Transfer in Birds - a Wind-Tunnel Calorimeter. 319 

J Therm Biol 10, 87-95. 320 

Monteith, J., Unsworth, M., 2013. Principles of Environmental Physics: Plants, Animals, and the Atmosphere. 321 

Academic Press. 322 

Norton, T., Grant, J., Fallon, R., Sun, D.W., 2010. Improving the representation of thermal boundary conditions 323 

of livestock during CFD modelling of the indoor environment. Comput Electron Agr 73, 17-36. 324 

Porter, W.P., Gates, D.M., 1969. Thermodynamic Equilibria of Animals with Environment. Ecol Monogr 39, 325 

227-&. 326 

Rong, L., Nielsen, P.V., Zhang, G., 2010. Experimental and numerical study on effects of airflow and aqueous 327 

ammonium solution temperature on ammonia mass transfer coefficient. J Air Waste Manag Assoc 60, 419-428. 328 

Saha, C.K., Wu, W.T., Zhang, G.Q., Bjerg, B., 2011. Assessing effect of wind tunnel sizes on air velocity and 329 

concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (CFD). 330 

Comput Electron Agr 78, 49-60. 331 

Walsberg, G.E., 1978. The relationship of the external surface area of birds to skin surface area and body mass. 332 

The Journal of Experimental Biology 76, 185-189. 333 

Wathes, C.M., Clark, J.A., 1981. Sensible Heat-Transfer from the Fowl - Thermal-Resistance of the Pelt. Brit 334 

Poultry Sci 22, 175-183. 335 

Wu, W.T., Zhang, G.Q., Bjerg, B., Nielsen, P.V., 2012. An assessment of a partial pit ventilation system to 336 

reduce emission under slatted floor - Part 2: Feasibility of CFD prediction using RANS turbulence models. 337 

Comput Electron Agr 83, 134-142. 338 

Zhang, Z., Zhai, Z.Q., Zhang, W., Chen, Q.Y., 2007. Evaluation of various turbulence models in predicting 339 

airflow and turbulence in enclosed environments by CFD: Part 2-comparison with experimental data from 340 

literature. Hvac&R Res 13, 871-886. 341 

 342 

25



 

Department of Engineering  
Aarhus University 
Inge Lehmanns Gade 10 
8000 Aarhus C 
Denmark 

Tel.: +45 8715 0000 
 
 

 

               
  

Hao Li, Mid-term report: Complex Ventilation and Micro-
Environmental Control in Livestock Housing, 2015 
 
 




