@article{Husfeldt_Rauhe_Skyum_1996, title={Lower Bounds for Dynamic Transitive Closure, Planar Point Location, and Parentheses Matching}, volume={3}, url={https://tidsskrift.dk/brics/article/view/19972}, DOI={10.7146/brics.v3i9.19972}, abstractNote={We give a number of new lower bounds in the cell probe model<br />with logarithmic cell size, which entails the same bounds on the random access computer with logarithmic word size and unit cost operations. We study the signed prefix sum problem: given a string of length n of zeroes and signed ones, compute the sum of its ith prefix during updates. We show a<br />lower bound of  Omega(log n/log log n) time per operations, even if the prefix sums are bounded by log n/log log n during all updates. We also show that if the update time is bounded by the product of the worst-case update time and the<br />answer to the query, then the update time must be Omega(sqrt(log n/ log log n)).<br /> These results allow us to prove lower bounds for a variety of seemingly unrelated<br />dynamic problems. We give a lower bound for the dynamic planar point location in monotone subdivisions of <br />Omega(log n/ log log n) per operation. We give<br />a lower bound for the dynamic transitive closure problem on upward planar graphs with one source and one sink of <br />Omega(log n/(log logn)^2) per operation. We give a lower bound of  Omega(sqrt(log n/log log n)) for the dynamic membership problem of any Dyck language with two or more letters. This implies the same<br />lower bound for the dynamic word problem for the free group with k generators. We also give lower bounds for the dynamic prefix majority and prefix equality problems.}, number={9}, journal={BRICS Report Series}, author={Husfeldt, Thore and Rauhe, Theis and Skyum, Søren}, year={1996}, month={Jan.} }