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Abstract

In our main result, we establish a formal connection between Lind-
strém quantifiers with respect to regular languages and the double
semidirect product of finite monoid-generator pairs. We use this cor-
respondence to characterize the expressive power of Lindstrém quan-
tifiers associated with a class of regular languages.

1 Introduction

By the classic result of Biichi [6], Elgot [12] and Trakhtenbrot {39], the
regular languages are exactly those definable by the sentences of a certain
monadic second order logic over words. Moreover, Mc Naughton and Pa-
pert [22] proved that the first-order sentences of this logic define an impor-
tant subclass of the regular languages, namely the star-free languages. By
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Schiitzenberger’s theorem {29], the star-free languages are exactly those that
can be recognized by the aperiodics, i.e., by those finite monoids containing
no nontrivial groups.

Because of the limited expressive power of first-order logic on words, and
in the search for characterizations of other important subclasses of regular
languages in terms of formal logic, Straubing, Therien and Thomas [33, 34]
introduced generalized, or modular quantifiers 3™, where m > 2 and
r=0,...,m—1, with the following meaning: A word u satisfies a sentence
™)z o iff the number of assignments of positions in u to the variable =
satisfying ¢ is congruent to » modulo m. They proved that a Janguage is
definable in the logic involving, in addition to first-order quantifiers, the
above modular quantifiers iff its syntactic monoid is finite and solvable, ie.,
it contains only solvable groups. This class of regular languages first arose
in [30, 35). And if no first-order quantifiers are allowed, then a language is
definable iff its syntactic monoid is a finite solvable group. In fact, Straubing,
Therien and Thomas also studied the more general setting when the moduli
of the generalized quantifiers in the logic are restricted to a finite set of
(prime) numbers. See also Straubing, Therien [32] for a more recent account,
and Baziramwabo, McKenzie, Therien {4] for a corresponding extension of
linear temporal logic with modular counting.

In order to express regular languages having non-solvable syntactic monoids,
Barrington, Immerman and Straubing [3} associated a family of quantifiers
with each fnite group containing a quantifier corresponding to each group
element. When the group is cyclic of order m, the associated quantifiers are
essentially the modular quantifiers 3™ 7). They showed that a language is
definable in first-order logic enriched with group quantifiers corresponding
to the members of a subclass G of the finite groups iff the language is regular
(so that its syntactic monoid is finite}, and every simple group that divides
the syntactic monoid of the language divides a group in G. (See, e.g., [11]
for a definition of when a group divides a group or a moneid.) Moreover,
if only group quantifiers are allowed, then a language is definable iff in ad-
dition to the above conditions its syntactic monoid is a group. When G is
empty, by Schiitzenberger’s theorem one obtains the Mc Naughton-Papert
characterization of first-order definable languages. The theorem of Barring-
ton, Immerman and Straubing easily extends to quantifiers associated with
finite monoids.

The quantifiers associated with finite monoids and groups, and thus the

modular quantifiers, are sl special cases of (simple] Lindstrém quantifiers
associated with (regular) languages, defined in [7]. (For more general treat

ments of Lindstrém quantifiers the reader is referred to Lindstrém [19] and
Ebbinghaus and Flum (10}, Chapter 12. See also the generalized quantifiers
of Immerman [16] and the LNCS volume Vaéninen {40].) By the results of
Barrington, Immerman, Straubing (3}, extended to monoids, it follows that
when the Lindstrém quantifiers concern regular languages, then only regular
languages can be defined. Moreover, when G is a class of finite groups (or
monoids), and Lg is the class of regular languages that can be recognized
by the members of the class G, then a language L is definable in first-order
logic with Lindstrém quantifiers with respect to the languages in Lg iff L is
regular and every simple group divisor of the syntactic monoid of L divides
a group (or monoid) in G.

Our initial motivation for studying regular Lindstrém quantifiers was the
question of characterizing those classes £ of regular languages which are ex-
pressively complete in the sense that every regular language is definable by
a sentence possibly invalving, in addition to ordinary quantifiers, Lindstrém
quantifiers with respect to the languages in £. By the classic theorem of
Biichi, Elgot, and Trakhtenbrot, first-order logic, enriched with Lindstrém
quantifiers with respect to the languages in an expressively complete class
£, has the same expressive power as monadic second-order logic. Moreover,
by the above-mentioned results of Barrington, Immerman and Straubing, a
necessary condition of the expressive completeness of a class £ is that £ be
group-complete, i.e., every finite (non-abelian simple} group be a divisor of
the syntactic monoid of a language in £. We will show that this condition,
together with a condition involving the existence of certain cycles in the syn-
tactic monoids of the languages in £, which is equivalent to the expressibility
of all of the one-letter languages (a™)*, n > 2, is necessary and sufficient as
long as £ is closed with respect to taking quotients, which is a natural as-
sumption on £. (A technical justification of this assumption is given later in
the sequel.) On the other hand, we show that neither condition is sufficient
by itself. But when £ is closed with respect to taking quotients and padding,
then £ is expressively complete iff it is group-complete and at least one of
the one-letter languages (a™)*, n > 2 is definable. Moreover, when L is
closed with respect to taking quotients and arbitrary inverse homomorphic
images, then £ is expressively complete iff £ is group-complete.

Formal logic in connection with words and languages has several general




techniques such as model theoretic games and deep algebraic techniques de-
veloped in the theory of finite semigroups and automata. A general account
of these methods is given in Straubing [31}. In particular, the semidirect
product and the wreath product, and their symmetric versions, the dounble
semidirect product! and the block product, defined by Rhodes and Tilson
{28] (or the triple product of Eilenberg [11]), and the Krohn-Rhodes theo-
rem [17] have been the fundamental tools for several of the aforementioned
results. The same holds for our investigation. In our main technical result,
Theorem 7.4, we make a bridge between Lindstrém quantifiers and the dou-
ble semidirect product, or the block product. Particular instances of this
correspondence appear in above cited works, see e.g. the proofs of lemmas
VI.1.2, VI.1.4, VIL.2.2. and VI1.2.3 in Straubing [31]. In fact, we will make
use of & version of the double semidirect product and the block product that
concerns finite monoids with a distinguished set of generators.

For the connection between circuit complexity and generalized quantifiers,
we refer to Barrington, Immerman, Straubing [3], Barrington, Compton,
Straubing, Therien [2], and the last two chapters of Straubing [31]. For
second-order Lindstrom quantifiers and their relation to leaf language de-
finability, see Burtschick, Vollmer {7], Peichl, Vollmer [23], Galota, Vollmer
[15]. For results regarding the connection between the semidirect product
and the expressive power of temporal logics, see Cohen, Perrin, Pin [8], The-
rien, Wilke {36] and Baziramwabo, McKenzie, Therien [4]. The last para-
graph of the paper McKenzie, Schwentick, Therien, Vollmer [20] contains an
indication of the possibility of handling nested monoidal quantifiers in the
logical framework by series connections of 2-way automata. The texts Pin
[25], Straubing [31] and Thomas [37, 38] are excellent surveys of the subject.

The paper is organized as follows. In Section 2, we associate a Lindstrém
quantifier with any (regular) language and establish some simple proper-
ties of Lindsrém quantifiers. In Section 3, we relate Lindsrém quantifiers
to literal varieties of regular languages. Sections 4 and 5 are devoted to
monoid-generator pairs, and to the operations of double semidirect prod-
uct and block product on monoid-generator pairs. In Section 6, we define
varieties of monoid-generator pairs and extend the double semidirect prod-
uct and the block product to varieties. In Section 7, we establish a formal
connection between Lindsrém quantifiers and the double semidirect prod-
uct (block product, respectively) on varieties. In Section 8, we review the

!The double semidirect product is called the bilateral semidirect product in [31].

Krohn-Rhodes theorem and establish some of its consequences. In Section 9,
we apply the results of Section 7 and 8 to provide characterizations of the
expressive power of Lindstrdm quantifiers.

We have tried to make the paper accessible not only for the experts but also
for a larger audience.

2 Lindstrém quantifiers, defined

Suppose that £ is a class of regular langnages. e associate with £ a
language of formal logic Lin(L). For each alphabet (i.e., finite nonempty
set) L, the formulas of Lin(L) (over ¥} are defined as follows. We assume
that a fixed countable set of variables is given, and that each alphabet comes
with a linear order defined on the letters of the alphabet.

s For each a € £ and each variable x, Py(x} is an (atomic) formula.
Moreover, when x,y are variables, z < y is an (atomic) formula.

e For all formulas ¢ and v, both ¢ V¢ and — are formulas. Moreover,
false is a formula.

e Suppose that £ C A* isin L, where A = {b},...,bn}, m = 1 is some
alphabet. Then for all variables = and formulas ¢y,, bi € A, i < m,

QWH.AGG:.:.GU:‘THV :.v

is a formula.

We say that the variable x is bound in (1). The set of free variables in a
formula is defined in the standard way. We identify any two formulas that
differ only in the bound variables. Thus, we may assume that the bound
variables of a formula are pairwise different, and different from any free
variable. A formula with no free variables is called a sentence.

Suppose that u is a word in £* of length n, say u = u ... u,, where the u;
are letters. Moreover, suppose that g is a formula of Lin(L) over & whose
free variables are contained in the finite set V. Given a function A : V — [n],
where [n] = {1,...,n}, we say that (u, A} satisfies , in notation (u, A} = ¢,
if




e i is of the form Fy(z) and uy(y) = a; or ¢ is of the form z < y and
AMz) < Aly), or

e © is of the form ¢y V 2 and {u, A) | @1 or {¢,A) = o; or ¢ is of the
form - and it is not the case that (1, A) =, or

s o is of the form (1), where A is ordered by by, ...,by, and the char-
acteristic word [T} @ = %7 ... ¥y determined by (u, A) and the formula
belongs to K, where for each 7 € [n|, & is the least b;, j < m such
that we have (u,x) = wp,; for the function & : V U {x} — [n] with
k(y) = Aly), for all y € V, and &{z) = i.2 When no such &; exists, we
define w7 = byy,-

For all pairs (u, A), relation (u, A) |= false does not hold.

Some notational conventions. In the sequel, in addition to the boolean
connectives ¥V and —, we will also use the connective A and other boolean
connectives. These are treated as abbreviations. We use true to denote

false. Moreover, we write z <yfor -y <z),z=yfor (z<y)nly <z},
etc. In quantified formulas (1}, we may assume that the subformulas ¢y, are
pairwise disjoint, i.e., no pair (u, A} satisfies two or more ;,. Also, we may
define vy, 85 ~{V;cm 5, ) and write (1) as Qrx.{5s)o.ca. Note that the
ordering on A now becomes irrelevant. Below, when writing Qi . (s, Jo.ca,
we will always assume that the iy, satisfy the above conditions. When ¢ is
a sentence, we will write u |=  whenever {u, A} |=  for all, or for some
A:V —[n).

ExaMspLE 2.1

o Suppose that K C {by,5)}" is the language K3 = b3bi(l + b2)*. Then (u,2) =
Qux.{iw) il there is an extension k : VU {z} — [n] of A : V — [n] such that
{u,8) = . Thus, the Lindtrsom quantifier corresponding to K3 is the ordinary
existential quantifier. When K C {b1,5]" is the language Kv = bj, the corre-
sponding Lindstrém quantifier is the ordinary universal quantifier.

e Suppose that Af is a set of integers > 1. Let Ly comnsist of all languages Gy, ©
{b1,02}", m€ M, r=0,...,m — 1, where C}, is the set of all words u in {b1,b2}"
such that the number of b;s in u is congruent to r modulo m. Then Qgy, is the
“modular quantifier” 3™ of Straubing, Therien and Thomas [34] and Straubing
[31}, and Lin(Lar) is the class of all languages definable by modular quantification

NWhen the ¢, contain no free variables other than z, then the function u «— W is called
a first-order translation in [18] and [20].

with respect to moduli in M. (Note that it is sufficient to allow modular quantifiers
with respect to prime moduli as in [31, 34].)

o Let Ly, where m > 1 is an integer, denote the language (b7")", considered as a
subset of {#1}". Then for every alphabet I, Q. z.{} is a sentence over X, and for
every word u € £°, u {= Q. x.(} iff the length of u is congruent to 0 mod m.

¢ One can express temporal modalities by Lindstrom quantifiers. Recall from Pnueli
|26], Cohen, Perrin, Pin [B] that the formulas of propositional linear temporal logic
over an alphabet £ are generated from atomic propositions p., a € I, by the
boolean connectives V and -, and the next and until modalities denoted X and U.
For more details and the definition of semantics we refer to [26, 8]. Let Kx denote
the two-letter language (b1 + b2}bi(by + B2)°, and let Ky denote the three-letter
language b3by (by + b2 + bz)". Using these notations, we can translate each formula
 of propositional temporal logic over £ into a formula {2} involving ordinary
quantifiers and Lindstrdm quantifiers with respect to the languages Kx and Ku.
Ve define:

1. 7{po) = Az.{{(Vy.x < y) A Pa(z})), foralla € E.
2. r{p V) = 7{p) V1Y) and t(~p) = —7lg).
3. 7(Xg) = Quxz-(v{}[> z]) and T(pU¥) = Qu,z.{r(v)[2 2], 7{p)[Z z]).

(Here, 7(5)[2 z] denotes a relativization of the formula (). See Straubing [31].)
Then, for each word u € " and temporal logic formula ¢, it holds that u = ¢ iff

u = 7(y).

Given a sentence p of Lin(L) over the alphabet X, we let L, C Z* denote
the language defined by i:

L, = {uel :ufyp}

With some abuse of notation, we write also Lin{L) to denote the class
of all languages definable by sentences of this logic. Moreover, we define
FO(L) = Lin{(£ U {K3}) = Lin(£ U {Kv}). Thus, FO(®) is just the class
of first-order definable languages of [22, 31].

ExXaMPLE 2.2

e Let L consist of all finite languages. Then Lin{L)} is the class of all finite or co-finite
languages.

e Let £ consist of the languages C;, defined in Example 2.1. Then, as shown in
Straubing, Therien, Thomas [34], Lin{£) (FO(L), respectively} is the class of all
regular languages whose syntactic monoid is a solvable group (monoid, respec-
tively). See also Section 9.




e More generally, when A denotes a set of integers > 1, Lin{Ls] consists of those
regular languages whose syntactic monoids are solvable groups of order i such that
any prime divisor of n divides an integer in M. Moreover, FO({£1s) consists of
those regular languages L such that every subgroup of the syntactic monoid of L
has this property. See Straubing, Therien, Thomas [34].

For technical reasons, we also associate a language with formulas v over &
containing free variables. We follow the definitions in |31]. Let V' denote a
finite set of variables containing all of the free variables of . A V-structure
over L isa word u = u) ... u, in (Ex P{V))*, where P{V] denotes the power
set of V, such that each variable in V appears exactly once in the right hand
component of a letter u; = (a;, Xj). Thus, the sets X; are pairwise disjoint
and their union is V. Note that the empty word is a V-structure iff V = 0.
Given the V-structure u, the left hand components a; determine a word
v = qy...a, in £*, and the right hand components determine a function
AV — [n], defined by Alx) = i iff z € X;. We say that u satisfies ¢,
denoted u = ¢, if (v, A) = . The language L, defined by ¢ consists of all
V-structures » over ¥ with u |= ¢.

PrROPOSITION 2.3 For each class L of regular languages, it holds that £ C
Lin(L).

Proof. Given K € A” in L, where A = {by,...,b}, the language defined
by the sentence Qpx.{P, (T)}p,cn is K. O

We say that a class £ of regular languages is closed with respect to the boolean
operations if for each alphabet I, the regular languages over £ which are in
£ contain # and * and form a boolean algebra. Moreover, we say that £
is closed with respect to inverse literal (homo)morphisms if for all alphabets
T, A and letter preserving homomorphisms h : £* — A* (i.e., such that
h(X) C A), and for all languages L C A*, if L is in £, then

AYL) = {ueZ :h(u)elL})

is also in L.

PROPOSITION 2.4 For each class L of regular languages it holds that Lin{L) =
Lin(L'), where L' is the least class of (regular} languages containing £ which
is closed with respect to the boolean operations and inverse literal morphisms.
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Proof. Since £ C £', it is clear that Lin(£) C Lin{L’). The reverse inclusion
follows from the following claims.

Claim 1 Suppose that K, K, Ko C A® are (regular) languages and for each
b€ A, g, is a formula of Lin(£) over T with free variables in VU {x}. Then
for each V-structure u over %,

u = Qrui T {piea & ulE Qr T.lppbea or u = Q. (Volbea
u b= Qa--kT.(wsleea & vl ~(QrT.(Pploen).

Clatm 2 Suppose that h : A* — A’ is a literal morphism and that ¢, b€ A
are pairwise disjoint Lin{£) formulas over T with free variables in V U {z}
such that each (V U {z})-structure over I satisfies Ve 5. Let K’ € A™
and K = h™!1(K'). Then there exist Lin(L) formulas oy, b’ € A’ over &
with free variables in V U {2} such that Qgz.(vsliea and Qxr.(pyivea’

define the same set of V-structures over . In fact, we can set

eo = V o
hib)=b

B

for all ¥’ € A’. (When b’ is not in the image of h, we have ¢y = false.] O

REMARK 2.5 When L is a regular language, one can use any finite automa-
ton accepting L to express the Lindstrém quantifier @ in monadic second
order logic [31] and use the theorem of Biichi {6], Elgot [12] and Trakhtenbrot
[39] to establish that if each ¢, defines a regular language {of (V U {z}}-
structures), then (1) defines a regular language {of V-structures). Thus, for
any class £ of regular languages, Lin(L) contains only regular languages.
This result may also be seen as an instance of a general fact about Lind-
strém quantifiers, cf. Exercise 12.1.1 in [10]. This fact also follows from
Theorem 7.4. See also Barrington, Immerman, Straubing [3], Lautemann,
McKenzie, Schwentick [18], and Theorem 7.4.

3 Literal varieties of regular languages

Suppose that £ is a class of regular languages. We call £ a literal variety if
it is closed with respect to the boolean operations, left and right quotients
and inverse literal homomorphisms. Thus, if L, L}, Ls € Z* are in a literal

9




variety £ and a € X, then L, U Ly, Z* — L and a 'L, La™" are also in L,
where

a”!L = {ueX :auel}
La™' = {ueX":ueel}

Moreover, if h is a literal morphism £* — A* and L € A* is in £, then
h~Y{L) is also in L. Note that every literal variety contains, for each finite
alphabet I, the language ¥* and the empty language.

Literal varieties are a generalization of the x-varieties of Eilenberg [11] and
Pin [24] that are closed with respect to arbitrary inverse homomorphisms.

PROPOSITION 3.1 For each class £ of regular languages, Lin(L) is closed
with respect to the boolean operations and inverse literal morphisms. More-
over, when L is a class of regular languages closed with respect to quotients,
then Lin(L£) is a literal variety.

Proof. We have remarked in Section 2 that Lin(L) contains only regular
languages. The closure of Lin{L) under the boolean operations is straight-
forward. To prove that Lin(£) is closed with respect to inverse literal ho-
momorphisms, suppose that L € A* is in Lin{£) and h is a literal homo-
morphism £* — A*, Let v denote a sentence of Lin(L) over A defining
L. Then h~Y{L} is defined by the sentence over I obtained by replacing
each atomic formula Py(x)} in ¢, where 2 is a variable and b € A, by the
disjunction of all formulas P,(x) with h{a) = & When b is not in the image
of h, we replace Py(x) by the formula false.

To complete the proof, assume now that £ is closed with respect to taking
quotients, and suppose that  is a formula of Lin(L£) over the finite alphabet
T possibly containing free variables from the finite set V. Let L denote
the set of all V-structures (over ) defined by . We argue by induction
on the structure of p to prove that for each letter a € X, the set of V-
structures a~!L,, is definable by some formula of Lin{L} with free variables
in V. Moreover, we show that for each letter a € £ and variable x € V,
the set of (V — {a})-structures (a, {z})~'L, is definable by some formula
with free variables in V — {z}. (The definability of right quotients can be
established in the same way.) The basis case is obvious, including the case
when  is false, as are the cases when  is of the form ; V 2 or =¢f. One
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uses the fact that the operation of taking left quotients commutes with the
boolean operations. Suppose finally that ¢ is of the form Qz.(Y,}s,ea,
where K C A* = {b),...,bm}" is a language in £ and each 1, is a formula
of Lin(L} over £ with free variables in V U {x}, where z ¢ V. For each b;,
let Ly; denote the set of all (VU {x})-structures defined by iy, . It follows by
the induction hypothesis that for each b; there is a formula gy, that defines
the set of V-structures (a, *H:th. i.e., the set of all V-structures u such
that (e, {z})u |= ts,. Moreover, for each by there exists 2 formula ¥}, over
¥ with free variables in V' U {z} defining the set of (V U {x})-structures in
a~lL,,, i.e., the set of all (V U {z}}-structures u such that au |= tj,. For
each b;, let

ap, = .UE>@E|_>\H..“._EM_L_$mD.
Given a V-structure u, we have u = ap, iff (e,{z})u | ts; and T €
&1.&‘ . where T is the characteristic word determined by u and the formula

Q-1 kTt Yorea. It follows that u |= ap, iff the characteristic word de-
termined by au and the formula y starts with b; and belongs to K. Thus,

letting
a = \[ oy,
bieA
it holds that u |= a iff au = ¢ iff u € e~ 1L, showing that o~ 'L, is in
Lin{L). The fact that (a,{y}) 'L, is in Lin(L), for each variable y € V
and letter a € X, can be established by a similar argument. =]

ProprosiTiON 3.2 Suppose that L 13 a class of reqular languages closed with
respect to left and right quotients. Then Lin(L) = Lin(L'), where £ is the
literal variety generated by L.

Proof. We have proved that Lin(£) = Lin{£"), where £ is the smallest
class containing £ that is closed with respect to the boolean operations and

inverse literal homomorphisms. When £ is closed with respect to quotients,
so is L£”, so that £ = L', the literal variety generated by L. o

4 Monoid-generator pairs

A monoid-generator pair (M, A), or mg-pair, for short, consists of a monoid
M and a set A of generators of M. When M is finite, we call (A, A) a finite

11




mg-pair. A morphism (M, A) — (N, B) of mg-pairs is a monoid homomor-
phism h : M — N such that k(4) C B. It is clear that mg-pairs and their
morphisms form a category with respect to function composition. When
1 = {1} denotes a trivial monoid, we have that (1,9) is initial and (1,{1}) is
a terminal object of this category. We call & morphism h : (M, A) — (N, B)
surjective if h(A) = B, so that also h{M) = N, and injective if it is an
injective function. Moreover, we call (N, B) a quotient of (Af, A) if there
is surjective morphism (Af, 4) — (N, B), and a sub-mg pair of (Af, A) if
N C M and the inclusion N — A{ is a morphism {thus, B = AN N).
Finally, we say that (M, A) covers (N, B), or that (N, B) divides (M, A), if
(N, B) is a quotient of a sub-mg of (A, A). We let < denote this relation.
It is clear that when {N,B) < (M, A}, the monoid N is a quotient of a
submonoid of M, i.e., N < M as defined in [11]. Also, < is a reflexive and
transitive both on mg-pairs and on monoids.

REMARK 4.1 Suppose that there are a subsemigroup S of Af and a subset
C of A that generates S such that there is & surjective semigroup homomor-
phism § — Af that maps C onto B. Then we have (N, B) < (M, A). (Note
that § may not contain the identity element of M.} The converse statement
is valid whenever the identity element of N is a nonempty product over B.

REMARK 4.2 Suppose that M and N are monoids. We recall from Eilenberg
[11] that a covering N — M is a relation  : N — M, viewed as a function
N — P{M), such that

pin)#@, forallne N,

e for all ny,ng € N, if n; # no then piny) Ning) =0,

1€ (1), and
w{n )e(na) C w(ni)p(n2), for all ny,n2 € N.

It is known that N < M iff there is a covering N -+ M.

We may define a covering (N, B) — (A, A}, where (M, A) and (N, B) are
mg-pairs, as a covering @ : N — Af such that for each & € B there exists
some a € A with a € {b). (The first condition above in the definition
of covering then becomes redundant.} We will return to coverings in the
Appendix.

EXAMPLE 4.3 s For every monoid A, the pair [Af, A} is an mg-pair. Moreover, for
manoids Af, N, we have that V < M iff (N, N) < (A, M).

s When T is a (finite} alphabet, {£", X} is an mg-pair. Given any mg-pair (A, A}
and function h : & — A, there is a unique morphism (I*, X} — (M, 4] extending
h. {We denote this morphism by A as well.} Thus, (£*,£) is a free mg-pair.

¢ Each automaton (@, T, -) with transition function - : @ x ¥ = @ gives rise to an mg-
pair (Mg, T). Its monoid component Afg is the monoid of all state transformations
©Q — ¢ induced by the words in I°, and the set of generators £ consists of those
transformations induced by the letters in .

o Each mg-pair (Af, A} may be regarded as an automaton freely generated by the
identity element of Af whose action is given by right multiplication (m, @) — ma,
m € M, a € A. Inact, the category of mg-pairs is equivalent to the category of one-
generated input reduced free automata (i.e., in which different input letters induce
different state transformations), whose morphisms preserve the {ree generator and
the transitions (with a change in the alphabet).

& When (Af, A) is an mg-pair, B C A and @ C M is closed with respect to right
multiplication with the elements of B, then Q and B determine an mg-pair [V, B.
Here, ¥V is the quotient of the submonoid A’ of A/ generated by the elements in
B with respect to the congruence ~g defined by & ~g yiff gz = gy for all g £ Q.
Moreover, B consists of the congruence classes of the elements of B.

Below we will identify & monoid A{ with the mg-pair (Af, M ).

Each mg-pair may be used as a recognizer. Let (A, A) denote a not neces-
sarily finite mg-pair and let & : (£*, ) — (A, A) be a morphism, so that &
is a monoid homomorphism L* — A with 2{X) C A. Given a set F € M,
the language recognized, or accepled by (A, A) with h and F is the set

{ue Z*:hiu) € F}.
It is clear that a language is regular iff it can be recognized by a finite
mg-pair.

Any language can be recognized by an mg-pair. Given a language L C £*, let
M, denote the syntactic monoid of L, and let 5y, : £* — Afy, denote the syn-
tactic homomorphism of L, cf. Eilenberg [11}, Pin [24]. Then (Mr,7.(Z))
is an mg-pair, called the syntactic mg-pair of L. Moreover, 5 is a morphism
(Z*,2) — (Mg,n(E)), called the syntactic morphism of L.

The following fact is an adaptation of well-known results from Eilenberg [11]
and Pin [24].

PROPOSITION 4.4 s The language recognized by (Mp,np (X)) with the
syntactic morphism ng, and the set g (L) is L.
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» Suppose that (M, A) accepts L with h: (2%, Z) — (M, A) and FF C M.
Suppose that h is surjective. Then there is a (unigue} morphism k' :
(M, A) — (ML, nL(X)) such that

g = (Z4,5) - (1, 4) 5 (ML, (D).

o A language L C T* can be recognized by an mg-pair (M, A) iff we have
(Mg, (L)) < (M, A).

Suppose that K is a class of finite mg-pairs. We define Lin(K) = Lin{{xk ),
where Ly is the class of all {regular) languages recognizable by the members
of K. Moreover, we define FO(K)} = FO{Lx).

PROPOSITION 4.5 For each class K of finite mg-pairs, Lin(K} is a literal
variety.

Proof. By Proposition 2.4, we know that Lin{K) is closed with respect to
the boolean operations and inverse literal morphisms. Since L is closed
with respect to quotients, so is Lin(K) = Lin(£x }, by Proposition 3.1.

il

Let U; denote a two-element monoid which is not a group. Note that U,
is isomorphic to the syntactic monoid of the language K3, defined in Ex-
ample 2.1. Moreover, every language L © A® recognizable in Uj is either
the empty language, or the language A*, or the inverse image of K3 or Ky
with respect to a literal morphism A* — {b;,b2}*. Using this fact and
Proposition 2.4, we immediately have:

PROPOSITION 4.6 For each class K of mg-pairs, FO{K} = Lin(Ku {I/}}).

Below we will use this fact without mention.

5 Double semidirect product and block product

The double semidirect product and the block product of monoids were in-
troduced in [28]. In this section, we extend these notions to mg-pairs.
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Suppose that (5, A) and (T, B} are mg-pairs. We write the monoid operation
of § additively without assuming that the operation is commutative. We
denote by 0 the identity element of §. A (monoidal) left action of T on
(5, A) is a function

TxS — §
(t,3) — s

subject to the following conditions for all 3,8’ € S and ¢,t' € T

(t')s = t{t's)
ts+s) = ts+ts
l1s = s
tn = 0

Moreover, it is required that
tac A, forallteT,ac A

A right action § x T — 8, (s,t) — st is defined symmetrically. Actions
Tx8-—+Sand S xT — 8 are compalible if

(ta)t' = t(st'),
for all t,# € T and s € S. Due to the above laws, we will write just tst’ for
(ts)t’ = t(st'), t's for t(t's) = (#t')s, etc.

Given a compatible pair of left and right actions of 7" on (5, A), we define
the double semidirect product (S, A)x(T, B} ns follows. First, we define

(5,8)(s",t) = (st' + s, 11'),

for all 5,8’ € S and t,¢' € T. 1t is known, cf. [28, 31] that § x T, equipped
with this operation, is a monoid with identity element (0,1}, called the
double semidirect product of S and T determined by the actions. Let R
denote the submonoid of this monoid generated by the set A x B. We define
the double semidirect product (S, Apx(T, B) to be the mg-pair (R, A x B).

Two special cases are of particular interest. The notion of semidireet product
(11] (S, A)=(T, B) involves only a left action of T on (5, A) and corresponds
to the double semidirect product (S, A)x+{T, B) determined by the same left
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action and the trivial right action: st = s, for all s € § and £ € T. When
both actions are trivial, we obtain the direct product (S, A) x (T, B). This
is the mg-pair (R, A x B), where R is the submonoid of the usual direct
product § x T generated by A x B. The direct product is the categorical
product in the category of mg-pairs.

REMARK 5.1 The double semidirect product of monoids is closely related to
the triple product of Eilenberg [11], vol. B. Any double semidirect product
S++T' of monoids § and T embeds in a triple product [T, 5,T] determined
by the same actions. Moreover, as shown in Rhodes, Tilson (28], any triple
product [T}, S, T2] of monoids S, Ty, T» equipped with a monoidal right action
Sx Ty — 8, (5,41) — st, and a monoidal left action T2 x § — 5, (t2,8) =+
{25, is isomorphic to the double semidirect product S++(T} x T3) with actions
(t),t2)s = tas and s(ty,tp) = sty, forallse Sand t; € T}, i = 1,2

Suppose that (S, A) and (T, B) are mg-pairs. Then (S, A)7*T, the (T x T')-
fold direct product of (8, A) with itself is an mg-pair (R, AT*T), Here, R
is the submonoid of ST*T generated by the set AT*7. The block product
(8, A)O(T, B) is the double semidirect product

(R, AT*T1sx(T, B)
determined by the following compatible left and right actions:
N, t2) = flut,t2)
(fO)(t1, 22} = Sl tta),

for all f € R and £,¢,82 € T. The reader should have no difficulty in
verifying that ¢f, ft € Rforall f € Rand t € T. Moreover, when f € ATXT,
we have tf, ft € AT*T, for all t € T. The wreath product (S, A) o (T, B)
is defined in @ similar way. It is the semidirect product (R, AT x B) =
(5, A)T % (T, B) determined by the left action

{tHth) = fltit), weT,
forall fe Randt € T.

PROPOSITION 5.2 For any mg-pairs (M, A) and (N, B), every double semidi-
rect product (M, A x B) = {5, A)«*(T, B) is isomorphic to a sub mg-pair of
the block product (N, AT*T x B) = (S, A)O(T, B).
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Proof. We follow the proof of Proposition 7.1 from Rhodes, Tilson [28].
For each s € S let f, : T x T — S denote the function (t1,t2) — tysts,
t1 € Ty, ta € To. Note that when s € A, then f, maps T x T into A. It is
shown in Rhodes {27} that the assignment

(s,8) — (fost), (5,)€SXT

defines an injective morphism S«+T — SOT. Moreover, if (s,¢) € A x B,
then (f,,t) € AT*T x B. To complete the proof we still need to show that
if (s,t) € M, then (f,,t) € N. However, if (s,t) is an n-fold product over
A x B, for some n > 0, then (f,,t) is an n-fold product over AT*T x B.

]

6 Varieties of mg-pairs

In the rest of the paper, other than free mg-pairs (2*,Z}, we will only
consider finite mg-pairs, i.e., pairs {Af, A) such that A{ is a finite monoid.
Each finite monoid Af may be identified with the mg-pair (A, Af).

A (pseudo)variety of mg-pairs is a nonempty class V of (finite) mg-pairs
closed with respect to the direct product and division, i.e., such that

o (5, A),(T,B)eV = (5A)x(T,B)eV,and

e (S, A)<{(T,B), (T,B)eV = (5A)eV.
A closed class of mg-pairs is a nonempty class of mg-pairs that is closed
with respect to the double semidirect product and division. Since the direct
product is a special case of the double semidirect product, any closed class
is a variety. Therefore we will also call closed classes as closed varieties. It

is clear that each class of mg-pairs is contained in a least variety and in a
least closed variety.

Given varieties V and W, we define

® V++xW to be the variety generated by all double semidirect products
(M, A)x(T, B), where (M, A) e V and (T, B) € W,

s VOW to be the variety generated by all block products (Af, A)O(T, B),
where (M, A) € V and {(T',B) ¢ W.
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PROPOSITION 6.1 For all varieties V and W, it holds that Vs+«W = VOW.
Moreover, an mg-pair is in Va«W iff it is covered by a double semidirect
product (S, Ay=(T, B}, or, equivalently, by a block product (S, A)O(T, B},
where (S,A) € V and (T,B) € W.

Proof. Since a block product (S, A)I(T, B) is a double semidirect product
(S, A)B*Bux(T, B), and since varieties are closed with respect to the direct
product, it follows that VOW C Va+W. The reverse inclusion follows from
Proposition 3.2.

The proof of the second claim uses the fact that any direct product of double
semidirect products is isomorphic to a double semidirect product of direct
products, and similarly for the block product. The argument is quite stan-
dard. All facts formulated in Proposition 6.1 are well-known for monoid
varieties. See Rhodes [27]. n)

COROLLARY 6.2 A nonemply class of myg-pairs is a closed variety iff i is
closed with respect to division and the Mock product.

ProPOSITION 6.3 For all varieties V1, Va, V3, it holds that

ﬁ<ni<&¢<..,w|<uiﬁ<u¢<:.
This fact is known to hold for varieties of monoids, cf. Rhodes [27], p. 460.
As communicated to the authors by John Rhodes, the proof uses the Kernel
Theorem (Theorem 7.4) of Rhodes, Tilson [28]. In the Appendix, we extend
the kernel construction to mg-pairs.

COROLLARY 6.4 For every variety V, the least closed veriety containing V
can be constructed as the class |50 VI, where V) is the class of all
trivial fi.e., singleton) mg-pairs and VOt = Vi VIn = VOV, for all
n=>0.

For later use we note:

PROPOSITION 6.5 For any mg-pairs (5, A) andd (T, B), any language recog-
nizable by (S, A) x (T, B) is a boolean combination of languages recognizable
by (S, A) and (T, B).
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A version of Eilenberg’s Variety Theorem [11, 24] holds. The proof is stan-
dard.

THEOREM 6.6 The function that maps a variety V of mg-pairs to the class
of (regular) languages whose syntactic mg-pair is in 'V is an order isomor-
phism from the lattice of varielies of mg-pairs onto the lattice of literal va-
rieties of regular languages. The inverse of this function takes a lilerul
language variety £ to the variely of mg-pairs containing all mg-pairs that
only accept languages in L.

Tt follows by Proposition 4.4 that the function V — £ maps a variety V
to the class of all languages that can be recognized by the members of
V. Maoreover, the inverse assignment takes a literal variety to the variety
generated by the syntactic mg-pairs of the languages in L.

The following fact is well-known.

LEMMA 6.7 Let L © A* be a regular language. Then every language in
A* recognizable by the syniactic morphism i is a boolean combination of
quotients of L.

LEMMA 6.8 Let L C A* be e regular language and let B denote an alphabet.
Then every language in B* recognizable by the syntactic mg-peir of L 15 the
inverse image under a literal morphism B* — A* of a language in A* which
is a boolean combination of quotients of L.

Proof. Let h: (B*, B} — (Mg, n.(A)) be a morphism and let i C B* with
h=1(h(K)) = K. Since 5, is surjective and (B*, B) is free, there exists a
literal morphism ¢ : B* — A* such that

h = (B*,B) -5 (A%, A) 7 (M, m(A)).

Thus, K = ¢~ 1(K'), where K' = n;'(h(K)). By Lemma 6.7, K' is a
boolean combination of quotients of L. m:

For a class £ of regular languages, we let K denote the class of all syntactic
mg-pairs of the languages in L.
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PROPOSITION 6.9 e Suppose that L is a class of regular languages and
K is the class of all syntactic mg-pairs of the members of L. Then
Lin{£) € Lin(K¢). Moreover, if L is closed with respect to (left and
right) guotients, then Lin(£) = Lin{K;).

o For a nonempty class K of mg-peirs let V denote the variely of mg-
pairs generated by K. Then Lin(K) = Lin{V).

o Suppose that L is a class of reqular languages and 'V is the variely of
all mg-pairs generated by the syniactic mg-pairs of the languages in L.
We have that Lin(L£) =C Lin(V). Moreover, when L is closed with
respect to (left and right) quotients, then Lin(L) = Lin(V).

Proof. The inclusion Lin{£) C Lin(K;} is obvious. Assume now that L is
closed with respect to taking quotients. Then, by Lemma 6.8, every language
recognizable by some mg-pair in K is the inverse image with respect to a
literal morphism of a boolean combination of quotients of a language in L.
It follows from Proposition 2.4 that Lin{K.} C Lin(£).

As for the second claim, the inclusion Lin(K} C Lin{V) is obvious. For
the reverse inclusion, note that any language that can be recognized by an
mg-pair in V is a boolean combination of languages recognizable by the
mg-pairs in K, (use Proposition 6.5), and then apply Proposition 2.4.

The last claim is immediate from the frst two. C

7 Lindstrom quantifiers and the block product

In this section, we assume that K is a class of mg-pairs. We let V denote
the variety of mg-pairs generated by K. The quantification depth qd(y) of a
formula of Lin{K) is defined to be the length of the longest chain of nested
quantifiers in the formula. For each n > 0, we let Lin,(K) denote the the
class of languages definable by formulas  of this logic with gd{@) < n. By
the same argument as above, we have that Lin, (K) = Lin, (V). Our main
result in this section will show that language is in Lin,{K) iff it can be
recognized by an mg-pair in V{7,

PROPOSITION 7.1 Suppose thet all languages recognizable by (T, B) belong
to Lin,(K), for some n > 0, and suppose that (S,A) € K. Then any lan-
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guage recognizable in any double semidirect product (R, Ax B} = (5, A)»+{T, B)
belongs to Lin, ., (K).

Proof. Let ¥ be an alphabet and let
h : =R

denote a monoid homomorphism with A{X} C A x B, so that h is a morphism
(X*,%) — (R, A x B). It suffices to show that L = h~(rg) is in Lin, 4.1 (K),
for each rg = (sp,tn) € H.

For each ¢ € &, let 5, € A denote the left-hand component of k(o). We
have

h(w) = Y. w(h(w))sgm(hw"), n(h(w)} |,

w=w'ow"

for all w € E*, where m denotes the projection B — T, #((s,t)) = ¢, for
all (5,¢) € R. Note that each w(h{w'))s,w{h(w")) belongs to A. Since the
composite of h and 7 is & homomorphism £* — T with #(h(XZ)) C B, it
follows from our assumptions that for each ¢t € T there is a sentence oy of
Lin(K) with gd{a;} < n such that for all words w € *, w(h(w)) = ¢ ifi
w &= ay. For each a € A let @, (x) be the formula in the free variable z,

V  Pi(z) Aorl< 2] Aaw]> 2],

teagt'ma

where ap{< z| and au[> z|] denote relativizations of oy and oy, respec-
tively, defined in the usual way, cf. {31]. Then let ¢ be the sentence

Qrz.{pa(T)}aca,

where K € A* denotes the regular language recognized by (5, A) with the
element sp and the morphism (A*, A} — (S5, A} which is the identity function
on A. It is clear from the construction that 1 defines the set of all words
w € L* such that the lefi-hand component of A{w) is sp. Thus, a; A
defines L. Moreover, gd{o, Ay} <n+1. O

Suppose that I is a finite alphabet and V is a finite set of variables. Given
a morphism h : {{T x P(V))*,Z x P(V)) — (M, A) and a set F C M, where
(M, A) is an mg-pair, the language of V-structures (over ¥) recognized by
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(M, A) with h and F consists of all V-structures u € (£ x P{V)}* such that
h{u) € F. In other words, it is the intersection of the language recognized
by (Af, A) with h and F' with the language of all V-structures over £.

Suppose now that KX C A* = {b,...,b;}*, and consider a formula

P = Qxz.(vw)sea

where each ¢y, = @, (Z,11,...,4) Is a formula of Lin(K) over the alpha-
bet L whose free variables are among x,y,...,¥;. Let (M, A) denote the
syntactic mg-pair of i, or any mg-pair by which K can be recognized, and
for each b; € A, let Ny, Bi) denote an mg-pair recognizing the language of
(V U {x})-structures L; = L., C (¥ x P(V U {z})}* defined by y;, where
V= ﬁ@f....@ww.

PROPOSITION 7.2 The language L of V -structures over T defined by i can
be recognized by the block product

Ab_M.\:D:zr mmu_ X .. X A.?w__? .mx“_.._
Proof. Let (N, B) denote the product (N}, B) x ... x (N, By}, so that

B = B, x ... x By and N is the submonoid generated by B in the direct
product Ny x ... x Np. For each i € |k], let ; denote a morphism

(ExPVu{zh),ExP(VU{z}) — (N,Bi),

recognizing L;, and let 5jx denote the syntactic morphism of K, so that
it (A% A) = (M, A).

We define

g:((ExP(V))",Zx P(V)) — (M,A)0(N,B)
by

8{(a, X)) = :ﬂ?.k.? mi(e,X)),...,m((a, X))}),
(a,X) € £ x P(V), where for all nj,n} € Nq,...,ng,n;. € Ni such that
(n1,...,m) (nf,....nL) EN,

mu?.kv:::. - .*ﬂ__nv_ Ta“_ ves uq&n: = u:mﬁw.v Ao
& nini((e, X U {z}))n; € 5i(Ls)
and nan;((a, X U {z}))n} € n;(L;), 7 <.
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Note that we indeed have that

.mu?ix.v < L\.k—._.,_qu...q

and

0({(a, X)) € AN x B, x...x B;.

Let w = (a3, X1)...(an,; Xn) € (A x P(V))* be a V-structure and write Fj
for Fig, x;), for all i € [n]. Then we have

{Fiym((a1, X1)),- -y me((ar, X1))) ...
= e _H.mﬂﬁu HEAHD:. \ﬂﬁvy ras .dwﬁﬁnﬁukau_“_“_
Hm.._u.auﬁev_... Lq_—nﬁg.wv.

H{w)

where

Fl,...,1),(1,...,1)) =

T R (@1, X0)- (@ict, Xt mellan, ) (asc2, Kica),
T (@t Kesr) (@ Xl (@510, Kerr) - (am X))

fe.

=1

Now, for each i € [n], G; is i (b;) for the least 7 such that
7il(a1, X1) ... (e, Xiu {z})...(an, Xn)) € mn;i(L;),
i.e., the least j with
(an, X1) ... (e, Xiv {z})... (an, Xn) € Lj.

(Note that there is always such a j.) Thus, F((1,...,1),(1,...,1)) =
ni (@) for the word W = wy ... wy, where for each i, w; = b; for the least
(and by agreement unique) j with {a1, X1)... (a;, iU {z})... (eq, Xn) [
e,- Thus, the language L defined by 1 is exactly the language recog-
nized by # with those elements {F} n,,...,n;) of the block product satisfying
F((1,...,1),(1...,1)) € nx(K). o
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REMARK 7.3 Let 7 denote the projection
(M, A)O[(N1,B1} % ... x (N, Be)] — (N1, By) x...x (Ng, Be),
and for each i € [k], let 7; denote the projection
(N, By) x...x (N, Br) — (N, Bi).
The morphisin & constructed above has the property that the compeosite

(Zx P(V)) & (A, A)0[(Ny, By) % ... x (N, By
h A.?——.m_v X ... X Hz.fmwv
hv Azu.* mnu

is the morphism (X x P(V))* — (N}, B;) obtained by restricting the function
ni : (T x P(VUu{z}))* = N; to (£ x P(V))". In particular, for each
i € [k], the restriction of the above composite morphism to £* agrees with
the restriction of n; to £*. {We regard X as a subset of £ x P{V) which in
turn is a subset of ¥ x P{V U {zx}).) Thus, if each (N, B!} = (m(Z*), (X))
belongs to W, for some variety W, then (#(X*},8(X)) belongs to VOW,
since (6(XZ*)},0{X)) embeds in (M, A)O[(N{, By) x ... x {N}, B{)]-

Recall that V denotes the least variety of mg-pairs containing V (or K)
closed with respect to the double semidirect product, or the block product.
By Corollary 6.4, we have V = Unso Vin) where V@ is the class of trivial
mg-pairs and VO — Vv — yovin),

We are now ready to prove the main result of this section.

THEOREM 7.4 For every alphabet ¥ and language L C £*, and for every
n > 0, we have L € Lin,(K) iff the syntactic mg-pair of L belongs to VM),
Thus, L € Lin{K} iff the syntactic mg-pair of L belongs to K =V, the least
closed variety containing K, or V.

Proof. Suppose first that the syntactic mg-pair (M, Ar) of L belongs to
V) for some n > 0. When n =0, (Mg, AL) is trivial and thus L is either
the empty set or £*. In either case, L can be defined by a sentence of quan-
tification depth 0, namely by false or true, proving that L € Lin,(K). We
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proceed by induction on n. When n > 0, we have that L can be recognized
by a double semidirect product

(S, A)x(T,, B),

where (S, A) € V and (T, B) € V{("=1), By the induction hypothesis, every
language recognizable by (T, B) is in Lin, - (K). Thus, by Proposition 7.1,
we have that L belongs to Lin,(K).

Suppose now that ¢ is a formula of Lin{K) over the alphabet £ with free
variables included in the finite set V. Let gd(p) = n. We argue by induction
on the structure of ¢ to show that L. can be recognized by a morphism
6 : (T x P(V))* — (M, A) such that (8(X*), 8(Z)) belongs to V"), When ¢
is an atomic formula then any two words in £* are equivalent with respect to
the syntactic congruence of L,,. Thus, (n.(E"), n2,(Z))} is trivial and is thus
in V(9. Suppose that ¢ is ¢y V 2, and suppose that L, can be recognized
by the morphism #; : (£ x P(V))® — (M, Ai) such that (8:{X), 8:(Z))
belongs to V™), i = 1,2. Then L., can be recognized by the target pairing

8= (61,02): (Ex P(V))* — (&, A1) x (M2, Ag)
(0, X) — (0:i{(g, X)), 62((a, X)))-

Since
(O(E"),8(2)) < (61(E*),6:(2)) x (62(X"), 62(E)),

and since varieties are closed with respect to direct product and division, it
follows that (#(£*), (X)) € V™. When ¢ is of the form —, the result fol-
lows by using that L, and Ly, can be recognized by the same mg-pairs. Sup-
pose finally that ¢ = Qra.(y, ,-- -, s ), where B C A*, A = {by,..., b},
is a language recognized by some mg-pair (M, A} in K, and where each ¢y,
is a formula of Lin(K) of quantifier depth at most n = 1. By the induction
hypothesis, each L, can be recognized by a morphism

G;: (Ax P(Vu{z}))" — (NyBi)

such that {6;{*),8;(Z)) € V"1, But then, by Remark 7.3, L, can be
recognized by a morphism

6:(Ex P{V)) — (M, A)0O[(N,B1} x...x (N, By
such that (§(X%),8(E) is in V), g
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COROLLARY 7.5 A language belongs to FO(K) off its syntactic mg-pair is
in K;, where Ky = KU {Uh}.

COROLLARY 7.6 Suppose that £ is a class of regular languages closed with
respect to taking quotients. Let V denole the smallest closed variety of
mg-patrs containing the syntectic mg-peirs of the languages in L. Then
Lin(£) = Lin(V).

Proof, We know that Lin(£} = Lin(K /) (Proposition 6.9}. Since Kc=V,
by Theorem 7.4 we have Lin(L) = Lin{V). o

COROLLARY 7.7 For any closed variety V, it holds that Lin{V) is the literal
variely corresponding to V by the Variety Theorem [Theorem 6.6). Thus,
when Vy and Va are literal varieties, V1 C V3 iff Lin{V) C Lin(Vs).

Proof. Let V denote the literal variety corresponding to V by the Variety
Theorem. Then for all languages V, we have L £ V iff the syntactic mg-pair

of L is in V iff L € Lin{V}, since V = V. D

COROLLARY 7.8 For any class K of mg-pairs, it holds that Lin[Lin(K)) =
Lin(K)}.

Proof. It is clear that Lin{K) C Lin(Lin{K)), see Proposition 2.3. As
for the reverse inclusion, let L € Lin{Lin(K)). Then L £ Lin(K’), where
K’ is the class of all syntactic mg-pairs of the languages in Lin{K). But
by Theorem 7.4, any such mg-pair belongs to the least closed variety V
containing K. Thus, L € Lin(V). But, again by Theorem 7.4, the syntactic
mg-pair of L belongs to the least closed variety containing V, which is
V. We conclude that the syntactic mg-pair of L is in V. Thus, again by
Theorem 7.4, L € Lin{K). o

CoROLLARY 7.9 The operation £ — Lin(L) is a closure operation on those
classes of regular languages closed with respect lo quolients.

Proof. We have already seen that £ C Lin(£). It is clear that Lin{£) C
Lin(L') whenever £ C £'. If £ is closed with respect to quotients, then, by

26

Proposition 6.9, Lin(£L} = Lin{K). Thus, by Corollary 7.8, Lin(Lin(L)) =
Lin{Lin(K;)) = Lin(K;) = Lin(£{). ]

In the same way, the operation £ +— FO{L), defined on classes of regular
languages £ closed with respect to quotients, is also a closure operation.

Call a class £ of regular languages Lindstrém closed if £ is clesed with
respect to quotients and Lin(L) = £ (or equivalently, Lin(L) C L).

The above results can be summarized in a single statement.

CoOROLLARY 7.10 The assignment V — V = Lin(V) defines an order iso-
morphism between closed varieties of mg-pairs and Lindsrém closed classes
V of regular languages. Moreover, this map is just the restriction of the bi-
jection provided by the Variely Theorem to closed varieties of mg-pairs that
maps a variety V lo the class of those regular languages whose syntactic
monoid is in V.

Note that the inverse assignment maps a Lindstrom closed class £ to the
closed variety generated by K.

COROLLARY 7.11 The essignment V — FO(V) defines an order isomor-
phism belween closed varieties of mg-pairs containing Uy and Lindsrém
closed classes of regular languages contaning FO. Moreover, this map is
just the restriction of the bijection provided by the Variety Theorem to closed
varieties of mg-pairs conteining U;.

The least closed variety containing {the mg-pair corresponding to} U; is the
variety of aperiodic mg-pairs. See below.

8 The Krohn-Rhodes theorem

In this section we first review a version of the findamental theorem of Krohn
and Rhodes [17, 1] which involves the double semidirect product {block prod-
uct). The original formulation of the theorem involved the wreath product,
and its automata theoretic equivalent, the cascade product. QOur presen-
tation follows Straubing [31], Appendix A. Then we review some results
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from Ddmési, Esik [9] and Esik [13] and apply them in conjunction with the
Krohn-Rhodes Theorem to obtain descriptions of the class of mg-pairs that
can be generated from a given class of mg-pairs by the double semidirect
product and division. The results of this section will be applied in Section 9
in the characterization of the expressive power of Lindstrém quantifiers with
respect to regular languages.

All monoids considered in this section are assumed to be finite. As before,
we will identify a monoid Af with the mg-pair (M, M). For a class K of
monoids (mg-pairs), we let K denote the least class of monoids (mg-pairs)
containing K which is closed with respect to the double semidirect product
(block product} and division. It is a simple matter to show that when K is
a class of monoids and K, is the corresponding class of mg-pairs (Af, Af),
M € K, then an mg-pair (5, A} belongs to K iff S belongs to K. Moreover,
K, is the class of all mg-pairs (M, A) such that A/ € K. When K denotes a
class of mg-pairs, then we let K denote the class of all monoid components
of the mg-pairs in K. When K is a class of monoids and M is 2 monoid,
M < K means that there is a monoid S € K with M < S. Recall that U/
denotes a two-element monoid which is not a group. Moreover, recall that
a (finite) group G is called simple if it is nontrivial and has no nontrivial
normal subgroup. It is a simple matter to show that a (finite) monoid A
is group iff U7 < A does not hold. In fact, if M is not a group, then it
contains an idempotent e other than the identity element 1. Then {1,e} is
a submonoid of M which is isomorphic to U).

THEOREM 8.1 Krohn-Rhodes Theorem

o Part 1. The following two conditions are equivalent for a nontrivial
{finite) monoid M.

1. M is a simple group or isomorphic to U;.
2. For every class K of monoids, if M € K then M < K.

e Part 2. Suppose that M is a monoid and K is a class of monoids
containing at least one monoid which covers Uy. Then M € K iff for
every simple group G, if G < M then G < K. Moreover, when K s
a class of groups, so that Uy £ K, then M € K {ff M is a group ard
Jor every simple group G, f G < M then G < K.
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REMARK 8.2 If one defines K as the closure of K with respect to the semidi-
rect product (or wreath product) and division, then the result remains true
provided that in Part 1 both I/} and the three element monoid U; with
two right zero elements are allowed, and if U, is replaced by Up in Part 2.
In fact, the original formulations of the Krohn-Rhodes Theorem {Krohn,
Rhodes [17], Arbib [1]) used the wreath product and/or the corresponding
automata theoretic notion of cascade composition.

Recall that a monoid A{f is called aperiodic Eilenberg [11], Pin [24], if it con-
tains no nontrivial group, or equivalently, if no nontrivial group {or simple
group) divides Af. Moreover, recall that Af solvable, cf. Pin [24], Straub-
ing [31}, if every group included in Af is solvable. (Such a group does not
necessarily contain the identity element of M.} We denote the class of all
aperiodics and the class of all groups by A and G, respectively. Moreover,
we denote by GSol the class of solvable groups and by MSol the class
of solvable monoids, i.e., those monoids that contain only solvable groups.
Moreover, when P is a set of prime numbers, we denote by GSolp the sub-
class of GSol determined by those solvable groups whose order is a product
of primes in P. The variety MSolp is defined likewise. Note that when P
is empty, MSolp = A, and when P is the set of all prime numbers, then
GSolp = GSol and MSolp = MSol. More generally, when S denotes a
class of simple groups closed with respect to division, we let Gg denote the
class of groups all of whose simple group divisors lie in 8. The class Mg is
the class of all those monoids which only contain groups in Gs. When 8 is
empty, Mg is the class of all aperiodic monoids. Moreover, when S is the
class of cyclic simple groups, then Gg = GSol and Mg = MSol. And when
S contains all simple groups, Gg is the class G of all groups, and Mg =M
is the class of all monoids. By the Krohn-Rhodes theorem, the above classes
are all closed varieties {of monoids), i.e., they are closed with respect to the
double semidirect product {block product) and division.

CoOROLLARY 8.3 Let K denote a class of monoids and let S denote a class
of simple groups closed with respect to division.

e« Gs C K if G < K holds for all G € S. Moreover, K = Gg iff

K C Gs and G < K holds for all G € 8 iff U £ K and for all simple
groups G it holds that G < K iff G € S.
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s Mg C K U <Kand @ < K, for all G € S. Moreover, K =Mg
KCMgand Uy < K and G < K, for all G € S if U; < K and
Jor all simple groups G it holds that G <K if G € 8.

In particular, we obtain:

e K = M iff the monoid U; as well as each (non-abelian) mmwzv_m group
is covered by some monoid in K.

* GC K iff G < K holds for all simple groups G. Moreover, K = G
if K C G and G < K holds for all simple groups G iff U; £ K and
G < K holds for all simple groups G.

» ACKIiffU; < K. Moreover, K= A if K C A and U; < K iff no
(simple)} group divides K and U; < K.

e GSolp C K iff G < K holds for all cyclic groups Zp of prime order
p € P. Moreover, K = GSolp iff K C GSolp and G < K holds for
all cyclic groups Z, with p € P iff U/} £ K an for each simple group G
we have G < K iff G is cyclic with order in P.

We now turn our attention to mg-pairs. Below we identify any class K of
monoids with the class of all mg-pairs (M, A) such that A/ € K. Thus,
for example, M also denotes the class of all mg-pairs, MSel the class all
mg-pairs whose monoid component is solvable, etc.

Suppose that M is a monoid, (8, A) is an mg-pair, and n > 1. Following
Démési, Esik [9], we say that M divides (S, A) in length n > 1, denoted
M|(™}(S, A), if S contains a subsemigroup T that maps homomorphically
onto M under a homomorphism k : 7' — Af such that each set A~1{m),
m € M contains an n-fold product of elements in A (i.e., an element in A™).
We define M|(S, A) iff there is some n with A{|™)(S, A). The following fact
is clear.

PRrROPOSITION 8.4 Let T denote the submonoid generated by A™ in §. Then
M|™)(S, A) iff M < (T, A™).

PROPOSITION 8.5 If M|™)(S, A) then there is a multiple m of n and a sub-

semigroup T of § contained in A™ such that M is a homomorphic image of
T.
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This is shown in Esik [13], cf. Lemma 3.3. Since M is a monoid, T can be
chosen to be a monoid as well. However, T may not contain the identity
element of 5. Also, when M is a group, T can be assumed to be a group as
well.

PROPOSITION 8.6 Suppose that (S, A) ts en mg-pair and M is a non-abelian
simple group or the monoid Uy. If M < S then M|(S, A}.

This is a very particular case of Proposition 3.5 in Esik [13). See also Maurer,
Rhodes [21]. The case M = U, is obvious.

PROPOSITION 8.7 Suppose that M is Uy or a simple group, moreover, sup-
pose that M|(S, A)x(T, B), where (S, A) and (T, B) are mg-pairs. Then
either M|(S, A) or M|(T, B).

Proof. When M is U;, or a non-abelian simple group, this follows from
the first part of the Krohn-Rhodes theorem and Proposition 8.6. Thus, to
complete the proof, it suffices to establish the claim for (cyelic) groups of
prime order. So suppose that G is a cyclic group with prime order p such that
G|(S, Apx(T, B} = (M, A x B). By Proposition 8.5, & is a homomorphic
image of a group in M all of whose members are n-fold products of the
elements in A x B, for some n > 1. By the first Sylow theorem, this group
in turn contains a cyclic subgroup H of order p. Let {f, e) denote the identity
element of H and let {s,t) denote any element of H different from {f,e).
If ¢ + e then clearly ¢ generates a cyclic subgroup of erder p in T {whose
identity element is e}, all of whose elements are n-fold products over B. We
conclude that G|{™(T, B). So suppose now that ¢ = e. Then the right-hand
component of each element of H is e. It follows as in Straubing |31], p. 64,
or Eilenberg {11], v. B, p. 143, that the function (s,e) v+ ese, (s,e) € H
is an injective homomorphism H — S. Since each {s,e) € H is an n-fold
product over 4 x B, it follows that each element ese, (s,e) € H is an n-fold
product aver A. Thus, we have G|™)(S, A). ]

Suppose that A is a monoid and K is a class of mg-pairs, and suppose that
n > 1. Below we will write M|("K (M|K, respectively) to denote that there
exists an mg-pair (S, A) € K such that M|("}(S, A) (M|(S, A), respectively).

COROLLARY 8.8 Let M be Uy or a simple group, and let K denote a class
of mg-puirs. If MK then M|K.
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A counter of length n is an mg-pair consisting of a cyclic group Z, of order
n and a singleton generating set. We let (Z;, {a}) denote a counter of order
n. A nontrivial counter is a counter of length > 1. Given a monoid M and
an element a € M, the period of a is the least positive integer p such that
there exists some m with a™ = a™*? | i.e,, the period of the cyclic semigroup
generated by a.

LEMMA 8.9 Suppose that a nontrivial counter divides a double semidirect
product (S, A x B) = (M, Ayxx(N,B). Then there is a nontrivial counter
which divides (M, A) or (N, B).

Proof. By assumption, there is some (a,b) € A x B C § with period n > 1.
If the period of b is > 1, then we are done. So suppose that the period of b
is 1, i.e., b¥ = b*¥1 for some k. Consider the sequence

(a,b), APSM. e

which is, by assumption, ultimately periodic with period n. But for all
£>0,

AP_ suw+n = ﬁn&u.f.nlw + &n&wr..-nlw o &uw.?alnn._ &mr.._-av

£ times

= (ab* + bab® 4+ ... + bEabk + ... + bFabf +65ab T 4+ bR,

showing that n must be the same as the period of ¥*ab* € A in M. It follows
that a counter of length n divides (Af, A). 0

COROLLARY 8.10 Given a class K of mg-pairs, K contains a nontrivial
counter iff a nontrivial counter divides an mg-pair in K.

REMARK 8.11 The proof of Lemma 8.9 can easily be modified to show that a
counter of length n > 1 divides a double semidirect product (M, A)xx (N, B)
iff there exist integers p,q such that n divides pg, moreover, a counter of
length p divides (N, B), and a counter of length g divides (M’, AP), where
M" is the submonoid of Af generated by AP.

; &
It is shown in Démdsi, Esik [9] that if M|"(S, A), then M divides a wreath
product

(5,4) e (R, B) ¢ (Zn,{a}), (2)
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),

where R is aperiodic. (Actually this fact is shown in [9] for finite automata
and the cascade product, moreover, only a special type of aperiodic au-
tomata, namely definile automata are needed in the construction. The
wreath product is associative, this is why no parentheses appear in (2).)
Thus, by the Krohn-Rhodes Theorem and Proposition 6.3, we have:

PROPOSITION 8.12 Suppose that M|*(S,A). Then M € K, where K con-
ststs of Uy, a counter of length n, and the mg-pair (S, A).

COROLLARY 8.13 Suppose that K is a class of mg-pairs such that U, €
and such that for each simple group G with G < K there erists somen > 1
with G'"K and (Z,,{a}) € K. Then an mg-pair (M, A) belongs to K iff

for every simple group G, if G < M then G < K.

Proof. One direction is immediate from the Krohn—Rhodes Theorem. The
other direction follows from the Krohn-Rhodes Theorem and Proposition 8.12.
Indeed, assume that every simple group divisor of A divides the underlying
monoid of an mg-pair in K. Let Gy,...,Gy denote, up to isomorphism, all
of the simple group divisors of M. By assumption, for each i there exists
n; with Gi|")K and (Zn,,{a}) € K. Since also U; € K, it follows from
Propasition 8.12 that G; € K. Since this holds for all 7 € _:_ thus, by the
Krohn-Rhodes Theorem, (M, 4) € K. n

COROLLARY 8.14 Suppose that K is a class of mg-pairs such that K con-
tains Uy as well as all the counters. Moreover, suppose thaet for all simple
groups G, if G < K then G|K. Then an mg-pair (M, A) belongs to K off
for every simple group G, if G < M then G K.

Call a class K of mg-pairs group-complete if every group divides some monoid
in K. Since every group embeds in a (non-abelian} simple group, by Propo-
sition 8.6 we have that K is group-complete iff every (non-abelian} simple
group divides in equal lengths some mg-pair in K.

COROLLARY 8.15 Let K be a class of mg-pairs. Then K is the class of all
mg-pairs iff the following hold:

1. K contains Uy and all counters.
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2. K is group-complete.

REMARK 8.16 It is clear that K contains all counters iff it contains all
counters of prime power length.

EXAMPLE 8.17 For each n > 1, let Sy, denote the symmetric group of all permutations of
the set [n]. When n > 3, S, is generated by the cyclic permutation p = (12...n) and the
transposition © = {(12). Hence, (Sn, {p, 7}) is an mg-pair. Let K consist of (U, U71) and
all the mg-pairs (S., {#,7}), n > 3. Then bath conditions of Corollary 8.15 are satisfied,
so that K is the class of all mg-pairs.

Note that (Sn, {p, 7}) is just the mg-pair of the automaton whose states are the integers in
the set [n] which has two input letters that induce the permutations p and =, respectively.

EXAMPLE 8.18 We modify the previous example to show that I/; € K and group-complete-
ness of K do not imply that K contains any counter. So let K consist of [/; and, for each
n = 3, the mg-pair of the following automaton Q. with 2n + 1 states. The state set of
Qr consists of the integers 1,2,...,2n and the state 2', and there are four input letters,
a.b,c,d. For each state ¢ and letter 2, qx = q, except for the following cases.

(2i=1)a = 24, i€]n]
(20b = 2i+1, i€[n—1]
2n)p = 1
le = 2
2d = 3
3 = 2
2d = L

Thus, on the set of odd integers, the word ab induces the cyclic permutation (13...(2n —
1)) and cd induces the transposition (13). Thus, K is group-complete and contains /.
However, no non-trivial counter divides any mg-pair in K, since for each Q,, any letter
T € {a,b, c,d} induces the same function as =°, and similarly for ;. (See Corollary 8.10).

This example ¢can be modified to show that there is a class K of mg-pairs which is group-
complete, contains Uy as well as each counter whose length is not a multiple of a given
prime number p, but such that no counter of length p belongs to K.

COROLLARY 8.19 Let K be a class of mg-pairs. Then K 2 MSol iff the
Jollowing hold:

1. K contains Uy and all counters.

2. For each (cyclic) group G of prime order it holds that G|K.
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Moreover, K = MSol iff the above conditions hold and K C MSol.
More generally, we have:

CoROLLARY 8.20 Let K be a class of mg-pairs and let 8 be a class of simple
groups contetining mrm cyclic groups of prime order and closed with respect
to division. Then K 2 Mg iff the following hold:

1. K contains U, and all counters.

2, For each G € 8 it holds that G|K.

Y

Moreover, K = Mg iff the above conditions hold and K C Mg,

8.1 Monoid-generator pairs with identity

Given an integer n > 1, the mg-pair (Z,,{a,1}) consists of a cyclic group
Zy of order n and the set {a,1}, where a is a generator of Z,, and 1 is the
identity element of Z,,.

PROPOSITION 8.21 For each n, it holds that Z, divides a direct power of
(Zn,{a,1}).

Proof. Map each (n — 1)-tuple (a*1,...,a*-1) in the direct power
(Za{a, 1) = (Z77) (e, 1}")

to the element
a*1g?*2 | g Hkn

in Zy. ]

PROPOSITION 8.22 Suppose that K is a class of mg-pairs and P is a set of
prime numbers. Then K O GSolp iff for each prime number p € P it holds
that (Zp, {e,1}) € K. Moreover, K = GSolp iff the above condition holds
and K C GSolp.




Proof. This follows from Proposition 8.21 and Corollary 8.3. ]

The mg-pairs (Z,, {a,1}) have the property that the identity element ap-
pears in the generator set. We call such mg-pairs as mg-pairs with identity,
or mgi-pairs, for short.

LeMmMaA 8.23 Suppose that S is a monoid and (M, A) is an mgi-pair. If
S < M then there exists some ng such that S|™(M, A) holds for alln > ng.
In particular, S|(M, A).

Proof. Since A is a set of generators for M, each element of Af can be
written as a product of elements of A. Let ng be the maximum number of
factors in such a representation for each element of M. Since the identity
element is in A, it follows that each m € Af is the product of n generators,
for every n > ng. Thus, M|™ (A, A). It follows that S|(")(M, A) for all
monoids S with § < A, o

LEMMA 8.24 Let K be a class of mgi-pairs. Then Uy € K if K contains a
monoid which is not o group.

Proof_1f Uy € K, then, by the Krohn-Rhodes Theorem, it holds that
U; < K. But this is possible only if X contains a monoid which is not a
group.

Let (M, A) be an mg-pair in K which is not a group. Since (M, 4) is an
mgi-pair, A contains the identity element 1. Moreover, since M is not a
group and A generates M, there exists some a € A such that o # 1, for
all £ > 1. Thus, U is & homomorphic image of the submonoid M’ of Af
generated by a. It follows that (U}, U}) is a morphic itmage of (M, {a, 1}).
This proves that Uy < K, so that U; € K. m]

LEMMA 8.25 Let K denote a class of mgi-pairs. The following conditions
are equivalent.

1. There is @ nontrivial counter (Z,, {a}) with (Z,, {a}) < K.
2. K conteins a nontriviel counter.

3. K conlains an infinite number of non-isomorphic counters.
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Proof. We already know that the first and second conditions are equivalent
(Corollary 8.10). The third condition clearly implies the second. To com-
plete the proof we show that the first condition implies the third. Given
that (Z,, {a}) < K, where n > 1, also (Z,, {e,1}) < K. Thus, by Proposi-
tion 8.22, (Zm, {a}) € K for all powers m such that every prime divisor of
m divides n. =]

PROPOSITION 8.26 Suppose that K is a class of mgi-pairs such that K con-
tains a monoid which is nol a group and there is a nontrivial counter that
divides an mg-pair in K. Then K contains and mg-pair (M, A) iff every
simple group divisor of M divides o monoid in K.

Proof. By the Krohn-Rhodes Theorem, K contains at most those mg-pairs
(M, A) such that every simple group divisor of A divides a monoid K. In
the rest of the proof, we show that every such mg-pair is in indeed in K.

By Lemma 8.24 we have U; € K. Consider now an arbitrary monoid M such
that M < K. By Lemma 8.23 there exists some ng such that Af|{")(S, A)
for all n > ng. Also, by Lemma 8.25, there exist an infinite number of
counters in K of pairwise different length. We conclude that for some n,
both M|("}(S, A) and (Z,,{a}) € K hold. Thus, by Proposition 8.12 and
Proposition 6.3 we have that (M, M) € K. In particular, it follows that
whenever G is a simple group with G < K, then (G,G) € K. Since also
U € K, it follows from the Krohn-Rhodes Theorem that K contains every
mg-pair (M, A) such that every simple group divisor of A{ divides a monoid
in K. [

COROLLARY 8.27 Suppose that K is a class of mgi-pairs. Then K is the
class of all mg-pairs iff the following hold:

1. K contains a monoid which is not a group.
2. There is a noniriviel counter which divides an mg-pair in K.
8. K is group-complete.
COROLLARY 8.28 Suppose that S is e nonempty class of simple groups

closed with respect to division. Let K be a class of mgi-pairs. Then K2 Mg
iff the following hold:
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1. K contains a moneid which is not a group.
2. There ts a nonirivial counter which divides an mg-pair in K.

3. G <K holds for each G € S,

Moreover, K = Mg 1ff the above conditions hold and K C Mg.

COROLLARY 8.29 For a class K of mgi-pairs, K 2 A iff K contatns an

mgi-pairs whose underlying monoid is not a group. Moreover, K = A if this
condition holds and K C A

9 Completeness

Call a class K of mg-pairs Lindstrom-complete if Lin(K) is the class of
all regular languages, and erpressively complete if FO(K} is the class of
all regular languages. In this section we combine results from Section 7 and
Section 8 to obtain characterizations of Lindstrom-complete and expressively
complete classes. By Proposition 6.9, this also gives a characterization of
those classes £ of regular languages, closed with respect to quotients, for
which Lin{L} (FO(L), respectively) is the class of all regular languages.
We call such classes of regular languages Lindstrém complete (expressively
complete, respectively) as well. We will also include relative completeness
results.

In the following propositions, K denotes a class of mg-pairs.

PROPOSITION 9.1 K is Lindstrém-complete iff K is group-complete and K
contains Uy and all counters. Moreover, K is expressively complete iff K is
group-complele and K contains all counters.

Proof. By Corollary 7.10, E:ﬁnw is the class of all regular languages iff
the corresponding closed variety, K is the class of all mg-pairs. By Corol-

lary 8.15, K is the class of all mg-pairs iff K is group-complete and K
contains Uy and all counters, proving the first claim.

The second claim follows in the same way by applying Corollary 7.11 and
Corollary 8.15. o
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ExXAMPLE 9.2 The class K presented in Example 8.17 is Lindstrém complete. Thus there
exists a Lindstrom complete class of mg-pairs with two generators. On the other hand,
no class of mg-pairs with a single generator is group-complete, hence no such class is
Lindstrém complete, or expressively complete.

CoROLLARY 9.3 There exists no finite Lindstrom complete class of myg-
pairs. Each Lindstrom complete class conteins an infinite number of mg-
pairs with 2 or more generulors.

This corollary is related to results proved in [5]. The following fact is a
variant of a result proved in [3].

PROPOSITION 9.4 Suppose that S is a class of simple groups closed with
respect to division,

1. Lin(K} contains all regular languages whose syntactic monoid is in
Ms iff K contains (the mg-pairs corresponding to) Uy and the simple
groups in 8. Moreover, Lin(K) is the class of oll regular languages
whose syntactic monoid is in Mg iff each simple group divisor of the
monoid component of any mg-pair in K is in S and K contains {the
mg-pairs) corresponding to Uy and the simple groups in S.

2, FO(K) contains all regular languages whose syntactic monoid is in
Ms iff K contains (the mg-pairs corresponding to) the simple groups
in 8. Moreover, FO(K) is the class of all regular languages whose
syntactic monoid is in Mg iff each simple group divisor of the monoid
component of any mg-pair in K is in § and K contains (the mg-pairs
corresponding to) the simple groups in S.

Proof. By Corollary 7.10, Lin{K) is the literal variety corresponding to
K, the least closed variety containing K. Thus, the first claim follows by
Corollary 8.3. For the second claim, apply Corollary 7.11 and Corollary 8.3.

a

PROPOSITION 9.5 Suppose that K contains Uy, the counters and has the
following property: For every simple group G, if G < K then G|K. Then
a language L is in Lin(K) iff every simple group divisor of the syniactic
monotd of L divides K.
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Proof. By Corollary 8.14, K = Mg, where S is the class of all simple groups
G with G < K. Thus, the result fellows from Theorem 7.4. =

PROPOSITION 9.6 Suppese that S is a class of simple groups closed with
respect to division containing all cyclic groups of prime order.

1. Lin(K) conlains all regular languages whose syntactic monoid is in
Ms iff K contains Uy and the counters, and for each simple group G
in 8 it holds that G|K. Moreover, Lin(K) is the class of all regular
languages whose synitactic monoid is in Mg iff the above condition
holds and K C Mg.

2, FO(K) contains all regular languages whose syntactic monoid is in
Ms iff K contains the couniers and for each simple group G in S it
holds that GIK. Moreover, FO{K) is the class of all regular languages
whose syntactic monoid 13 in Mg ff the previous condition holds and
K C Ms.

Proof. The first claim follows from Theorem 7.4 and Corollary 8.20. The
second claim follows from the first applied to the class K U {{/1}, and by
noting that a counter belongs to the least closed variety containing K {U;}
iff it belongs to the least closed variety containing K. D

ProPOSITION 9.7 Suppose that § is e class of simple groups closed with
respect to division. Lin(K) confains all regular languages whose syntactic
monoid is in Gs iff K contains (the mg-pairs corresponding to} the simple
groups in 8. Moreover, Lin(K) is the class of all regular languages whose
syntactic monoid is in Gg H..q,HN contains (the mg-pairs corresponding lo)
the simple groups in 8 and K C Ggs.

Proof. By Corollary 7.10 and Corollary 8.3. O

By taking S to be the class of all cyclic groups of prime order, from Propo-
sition 9.6 we obtain:

ProrosiTiON 9.8 1. Lin(K) contains all regular languages whose syn-
tactic monotd is in MSol iff K contains Uy and the counters, and
Jor every prime number p it holds that Z,|K. Moreover, Lin(K) is
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the class of all regular languages whose syntactic monoid is in MSol
iff K C MSol, K contains Uy and the counters, and for every prime
number p it holds that ZyJK.

2. FO(K) contains all reqular languages whose syntactic monoid is in
MSol iff K contains the counters, and Jor every prime number p it
holds that Z,|K. Moreover, FO{K) is the class of all regular languages
whose syntactic monoid is solvable iff K C MSol, K contains the
counters, and for every prime number p it holds that Z,|K.

PrOPOSITION 9.9 Let P denole a set of prime numbers. Lin(K) contains
all regular languoges whose syniactic monoid is in GSolp iff for every prime
number p € P it holds that (Z,, {a,1}) € K). Moreover, Lin(K) is the class
of all regular languages whose syntactic monoid is in GSolp iff K C GSolp
and for every prime number p € P it holds that (Z,, {a,1}) € HNV

Proof. This follows from Proposition 9.7 and Proposition 8.22. O
We also have:
PROPOSITION 9.10 Suppose that P is e set of prime numbers.

1. Lin{K) is the class of all regular langueges whose syntactic monoid is

in MSolp iff K C MSolp, moreover, Uy € K and (Zp,{a,1}) € K,
forallpe P,

2. FO(K) is the class of all regular languages whose syntactic monoid is
in GSolp iff K C GSolp, moreover, {Z;,{a,1}) € K, for alip e P.

In particular, when P is empty, we have:
ProrosiTioN 9.11 Lin(K) = FO iff U, € K.

We now translate some of the abave results to classes of regular languages
closed with respect to quotients. Let £ denote such a class.

COROLLARY 9.12 £ is Lindsirdm-complete iff every (non-abelian simple)
group divides the syntactic monoid of some languege in L, moreover, Lin{L)
contains K3 and all of the one-letter languages (a™)*, m > 2.
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COROLLARY 9.13 L i3 erpressively complete iff every (non-abelian simple)
group divides the syntactic monoid of some language in £, moresver, Lin(L)
contains all of the one-letter languages (a™)*, m > 2.

CoRroLLARY 9.14 Suppese that P is a set of prime numbers.

1. Lin({L) contains all regular languages whose syntactic monoid is in
MBolp iff Lin{L) contains K3 and all languages

Qw = {u€ {a,b}": |uls =0 mod p},

where p 1s any prime in P. Moreover, Lin(L) is the class of all regular
languages whose syntactic monoid is in MSolp iff the above conditions
hold and the syntectic moneid of each language in £ belongs io MSolp.

2. FO(L) contains all regular languages whose syntactic monoid is in
MSolp iff FO(L) contains the languages CJ, where p is any prime
in P. Moreover, FO(L) is the class of all regular languages whose
syntactic monoid is in MSolp iff the above condition holds and the
syntactic monoid of each language in L belongs to MSolp.

COROLLARY 9.15 Suppose that P is a set of prime numbers. Then Lin(L)
contains all reqular languages whose syntactic monoid is in GSolp if Lin{£)
contains the lenguages Q.m_. where p is any prime in P. Moreover, Lin(£)
ts the class of all regular langueges whose syntactic monoid is in GSolp iff
the above condition holds and the syntactic monoid of each language in £
belongs to GSolp.

COROLLARY 9.16 Lin(L) = FO iff K3 € Lin(£).
COROLLARY 9.17

1. Lin(L) contains all regular languages whose syntactic monoid is in
MSol iff

{a) every cyclic group of prime order divides in equal length the syn-
tactic mg-pair of a language in L,

(b) Lin(L) contains K3 and all of the one-letter languages {(a™)*,
m> 2,
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Moreover, Lin{L) is the class of all regular languages whose syntactic
monoid is in MSol iff the above conditions hold and the synilactic
mg-pair of each language in L belongs to MSol.

2. FO(L) contains all requiar languages whose syntactic monoid is in
MSol 1if

{a) every cyclic group of prime order divides in equal length the syn-
tactic monoid of a language in L,

(b) Lin(L), or FO(L) contains all of the one-letter languages (a™)*,
mz2 2.

Moreover, FO(L) is the class of all regular languages whose syntactic
moneid is in MSol iff the above conditions hold and the syntactic
monoid of each language in L belongs to MSol.

9.1 Completeness and padding

Our characterizations become simpler when K is a class of mgi-pairs that
we assume in the rest of this section. We only present three results and skip
the proofs that use Corollaries 8.27, 8.28 and 8.29.

So let K denote a class of mg-pairs.

PROPOSITION 9.18

1. K is Lindstrém complete iff K is group-complete, contains an mgi-pair
whose underlying monoid is not a group, moreover, there exists some
n > 1 with (Z;,{a}) < K.

2. K is expressively complete iff K is group-complete and there exists
some n > 1 with {Z,,{a}) < K.

PRroposiTION 9.19 Suppose that S is a nonemply class of simple groups
closed with respect to division.

1. Lin(K) eontains the regular languages whose syntactic monoids are in
Mg iff for each G € 8 it holds thet G < K, moreover, K contains an

mgi-pair whose underlying monoid is not a group and there erists some
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n > 1 with (Z,, {a}) < K. Further, Lin{X)} is the class of all regular
languages whose syntactic moneid is in Mg iff the above conditions

hold and K C Mg.

2. FO(K) conteins the regular languages whose syntactic monoids are in
Ms iff for each G € S it holds that G < K and there ezisis some
n > 1 with {2y, {a}) < K. Further, Lin(K) is the class of all regular
languages whose syniactic monoid is in Mg iff the cbove conditions
hold and K C Ms.

PropPosITION 9.20 Lin(K) 2 FO iff K contains an mgi-pair whose monoid
component is not a group.

Say that a class £ of regular languages admits padding if for each L € L,
L C B* there exists some by € B such that for all words u € B* we have
u € L iff h{u) € L, where h : B* — B* is the homomorphism such that
hibp) is the empty word and h(b) = b, for all b £ by.

In the next three corollaries, we assume that £ is closed with respect to
quotients and admits padding.

COROLLARY 9.21

1. L is Lindstrém-complete iff every (non-abelian simple) group divides
the syntactic monoid of some language in L, moreover, £ conlains a
language whose syntactic monoid is not a group, and there is some
n > t such that the one-letter language (a™)* is the inverse image of
a language in £ under a literal homomorphism.

2. [ is expressively complete iff every {non-abelian simple) group divides
the syntactic monoid of some language in L, moreover, there is some
n > 1 such that the one-letter language (a™)* is the inverse image of
a language in £ under o literal homomorphism.

COROLLARY 9.22 Suppose that S is a nonemply class of simple groups
closed with respect to division.

1. Lin(£) contains the regular languages whose syntactic monoids are in
Ms iff for each G € S it holds that G < K¢, moreover, K¢ contains an

44

mgi-pair whose underiying monoid is not a group and there exists some
n > 1 such that {a®)* is the inverse image of a language in £ under
a literal homomorphism. Further, Lin(L) is the class of all regular
languages whose syntactic monoid is in Mg iff the above conditions
hold and Ky C Ms.

2. FO(L) contains the regular languages whose syntactic monoids are in
Mg iff for each G € 8 it holds that G < K and there ezists some
n > 1 such that (a™)* is the inverse image of a language in £ under
a literal homomorphism. Further, Lin(L) is the class of all regular
languages whose syntactic monoid is in Mg iff the above conditions
hold and Kp C Ms.

CoROLLARY 9.23 Lin(£) 2 FO iff £ contains a language whose syntactic
monoid is not a group.

10 Further work

A future version of this paper will contain more applications, including.
e.g., some results presented in [14], and some generalizations of that re-
sults. Extensions of the main result to other structures will be considered
in subsequent papers.
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Appendix

In this appendix, we prove Proposition 6.3. The argument is an adaptation
of the proof of the corresponding fact for monoid varieties, communicated
to the authors by John Rhodes. In this section, by a monoid or category we
will always mean a finite monoid, or category, respectively.

First, we recall from Rhodes, Tilson [28] the notion of the kernel K, of a
monoid morphism ¢ : M — N. It is a category constructed as a quotient
of category W, defined as follows. The objects of W,, are all ordered pairs
n = (nz,ng) of elements ny,ng in the image (M) of M. {We will follow
the convention of [28] that if a boldface letter x denotes a pair of elements
of a monoid, then x; and zg are the left and right hand components of
this pair.) An errow n — n' of W, takes the form (ny, (m,n),n%z), where
m € M, n € N with n = p(m) are such that ngn = n} and nnj; = np.
(Thus, we could as well just write (ng,m,nl;), but we want to keep the
notation consistent with that of [28]. The reason for the more complex
notation of [28] is due to the fact that the kernel construction also applies to
relational morphisms ¢ of monoids, whereas in this paper we only consider
the particular case when g is a function.} Note that ng and nf and thus n
and n’ can be recovered from the notation (ng,(m,n),n%). Below we will
sometimes just write (m,n) for (ng, (m,n),ny) when there is no danger of
confusion. The composite of consecutive arrows (ng, (m,n},ng) : n — n’
and {n}, (m',n'),n}) : n' — n" is defined as (nr, (mm’,nn'),n}). Note that
the identity arrows of W, take the form (ngz,(m,1),ng) where p{m) = 1.
Each arrow (ng, (m,n),n%) induces a function

_”3h»ﬁ3u:v_3s.m_ : Gia?&hv x leﬁq&mv - M
(mg,mg) — mpmmpg.

The relation that identifies any two parallel arrows inducing the same fune-
tion is shown to be a {category) congruence in [28]. The kernel K, is then
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defined as the quotient of W, with respect to this congruence. Following
[28], we will denote a morphism of K, as [, (m,n), nk], or just [m,n.

Suppose now that (M, A) and (N, B) are mg-pairs and  is a morphism
(A, A) — (N,B), so that ¢ is also a monoid homomorphism M — N.
Then we define the kernel of ¢ to be the pair (K, A;), where K, is the
category constructed above, and where A, is a distinguished collection of
morphisms of K;: it consists of those morphisms [a,b] of K, with a € 4.
Since b = ({a), and since ¢ is a morphism of mg-pairs, it then follows that
b € B. Since A is & generating set of Af and ¢ preserves the generators, it
follows that (K, A} is a category-generator pair, or cg-pair: each arrow of
K is either an identity arrow or the composite of some arrows in A,.

Suppose that K is a category, IV is a monoid, and y is a relation from the
arrows of i to N, viewed as a function from the arrows of K to the set
of all subsets of N. We say that p is a covering K — N if the following
conditions hold:

o p(mm') C p{m)p(m'), for all composable arrows m, m’.
e For all identity arrows e it holds that 1 € w(e).
e For all arrows m it holds that ¢(m) # 8.

e For all m,m’, if m # m’ then p{m) N w(m’) = 0.

When K and N are equipped with generators, i.e., when (K, A) is a cg-pair
and (N, B} is an mg-pair, then a covering ¢ : (K, A) — (N, B) also satisfies
that for each @ € A there is some b € B with b € ¢(a). Since A is a set of
generators, the third condition above becomes redundant. Note that each
covering p : (K, A) — (N, B) contains a covering ¢ such that whenever
n € ¢'(m), it holds that either m is an identity arrow and n = 1, or there
exist aj,...,ax € A, by,...,bp € B, k 2 1 with b € @{ay),...,b € pla)
such that m is the composite a; ... a and n is by ... &y, The above definition
also applies to one object categories K which may conveniently be identified
with their hom-sets. In that case the concept reduces to the notion of
covering defined earlier in Section 4: if (A, A} and (V, B) are mg-pairs and
@ is a covering (M, A} — (N, B), then (M, A) is & morphic image of a sub
mg-pair of (N, B). Note that each injective morphism (A, 4) — (N, B)
is a covering (M, A} — (N, B), moreover, the relational inverse of each
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surjective morphism (M, A) — (N, B} is a covering (N, B) — (M, A), i.e,
in the opposite direction.

The notion of covering can be generalized to a pair of categories, and in fact
to cg-pairs. Given categories K and K, a covering ¢ : K — K' assigns an
object to each object of K, a set ¢{m) of morphisms of K’ to each morphism
m of K, compatible with the object map, such that the obvious analogies
of the above conditions hold. A covering @ : (K, A) — (K', B) between
cg-pairs (K, A) and (K’, B) also satisfies that for each arrow a € A there is
an arrow b € B with b € p{a). The composite of two coverings is defined in
the expected way.

LEMMA 11.1 The composite of coverings 1t : K — K' and ' : K' — K" is
a covering K — K”. Similarly, if ¥ : (K, A) — (K',A") and ¢ : (K', A") —
(K", A"} are coverings, then the composite of ¥ with v' is a covering K —
K",

The notion of covering is related to the double semidirect product by the
Kernel Theorem of Rhodes, Tilson [28], also known as the Covering Lemma.
We need a version of this result.

THEOREM 11.2 Let ¢ : (M, A} — (N, B) be a morphism of mg-pairs, and
let (V,C) be an mg-pair satisfying (K., A,) < (V,C). Then (M,A) <
(V,C)O(N, B).

Proof. We follow the argument given in the proof of the Kernel Theorem
(Theorem 7.4) in Rhodes, Tilson [28]. Let # : (K, A,) — (V,C) be a
covering. For each pair m € M, n € N with n &€ p(m), define

F(m,n) = {feVV¥: f(n1,n) € ¥{[m, (m,n), na]), n1,n2 € (M)}
Then let the relation 8 : M — VON be defined by
8(m) = {{fin):n€p(m), fe F(mn)}

It is shown in [28] that & is a covering M — VION. For each m € A let
&'(m) = 8(m)NW, where 1 denotes the monoid component of (V, C)CH{ N, B),
ie., (V,C)O(N,B) = (W,CN¥*¥ x B). If we can show that for each a €
A there is some & € B and f € CV*V with (f,b) € 6(a), then, using
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the fact that IV is a submonoid of VON, it follows that & is a covering
(M, A) — (V,C)O(N, B). But for a given e let b = p(a). Since ¥ is a
covering (f{,, Az) — (V,C}), for each ny,ns € @{M) there is some c € C
with ¢ € ¥([ny, (a,b),n2]). So let f map each pair (n),n2) € @(M)? to such
a ¢, and let the f(ny,n2) be an arbitrary element of C if n; or nz is not in
w(M). o

Suppose now that (M, A} (T, C) and (N, B)x(T, C) are double semidirect
products so that T acts on M and on N on the left and on the right.
Following Rhodes Tilson [28], we say that these actions are compatible with
a morphism ¢ : (M, A) — (N,B)ifforall me M, ne Nandt e T,
if ¢o(m) = n then w(tm} = tn and p(mt) = nt. In this case we define a
morphism

@ix(T,C) : (M, A)s+{(T,C) — (N, B)s(T,C)
(m, £} ++ (p(m),t).

The reader should have no difficulty to check that (T, C) is indeed a
morphism. In the same way, we define

ikl 1 AladT — N=xT
(m,8) —  (p(m),t),

where AM»xT and N++T" are the double semidirect products of Af and N
with T determined by the actions.

ProprosITION 11.3 Under the previous assumptions, if the actions of T on
M and on N are compatible with , then

(Kew(Toh Apm(rioy) < (Kp,y Ap).

Proof. In the proof of Rhodes and Tilson [28], Theorem 6.2, it is shown that
Kowr < K. This is achieved by mapping each object (n,t} of K_,.r to
the object (nrtr,trng) of K, and by relating each arrow

[(m, £}, (n, )] : (n,t) — (', t) (3)
in MA.G!.H. to

_,nhaan__x.ﬁhz 'l (nptr, ting) — Aﬁ_.hn___f nwzr“_. (4}
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Note that when m € A (and thus by p(m) = n alson € B), then tymity € A
and tynty € B. Let 1 denote this covering. By Lemma 11.4 and its proof,
there is a covering

P Kpwiro) — Kour

that is the identity on objects and relates a morphism [(a, €}, (b, ¢}] in K (1,0
wherea € A, b € B and e € C with the corresponding morphism [{a, €}, (b, ¢}
in K ..7. The composite of the two coverings p and ¢ is the required cov-
ering. o

LEMMA 11.4 Suppose that v is e homomorphism M — N, M' s a sub-
monoid of M, and N' is a submonoid of N such that the restriction of  to
M is @ homomorphism M’ — N'. Then K < K.

This is proved in Rhodes and Tilson [28], Corcllary 5.4. It is clear that every
object of K. is an object of K,. It is shown in {28] that the relation that is
the identity function on objects and relates each morphism [[m, )| in K
with the morphism [(m,n)] in K, is a covering.

We let 1 denote a trivial monoid 1 = {1}. Thus, {1, {1}) is a trivial mg-pair.

PROPOSITION 11.5 Let (M, A} denote an mg-pair and let  denote the
unigue (collapsing) morphism (M, A} — {1,{1}). Then

(Ko Azl < (M, A).

Proof. The relation that relates each arrow (1, (m, 1), 1| with m is a covering.

COROLLARY 11.6 Suppose that (M, Alsxx(N, B) is a double semidirect prod-
uct. Let % denote the projection (M, A)xx(N,B) — (N,B), (m,n) = n.
Then (Kz, Az) < (M, A).

Proof. The projection w is (essentially} wwx(N,C), where ¢ denotes the
collapsing morphism (M, A} — (1,{1}). (Note that ¢ is compatible with
any actions.] Thus, the result follows from Propositions 11.5 and Proposi-
tion 11.3. 0




Given a double semidirect product ((Af, A)xx{N, B))#*{T, C}, where (M, A}ax{N, B} =

(V, A x B}, we say that the actions of T' (on V) are pointwise if there exist
left and right actions of T on M and N such that

t(m,n) = (tm,in)
(m,a)t = (mt,nt),

for all (myn} € V and ¢t € T. It follows that the left and right ac-

tions of T on N are compatible and determine a double semidirect product
(N, BY=(T,C).

LEMMA 11.7 Suppese that ((M, A)x(N, B))«=(T,C) is a double semidi-
rect product such that the actions of T are pointwise and thus delermine
o double semidirect product (N,B)««({T,C). Then the actions of T on
(AL, Ayox(N, B) and on (N, B) are compatible with the projection morphism
7 (M, Ay (N, B) — (N, B).

Proof. Immediate from the definitions. u
PROPOSITION 11.8 Suppose that Vi, Vo and V3 are varieties of mg-pairs.
Then an mg-pair is in (VyxxVolex V3 iff it divides a semidirect product
(M, Apex(N, BYper(T, C)
stuch that (M, A) € Vy, (N,B) € Vo, (T,C) € V3 and the actions of T are
poiniwise.
Proof. One direction is trivial. Suppose now that (5, D) is in (V1 V3)xV;.
Then, by Proposition 6.1, (8, D) divides a block product
((M, A)(N, B))X(T, C)
which is a double semidirect product
(M, APV N N, B)T*Tar(T, C)

with suitable actions. This double semidirect product is in turn isomorphic
to a double semidirect product

:bh huzx?‘xﬂxﬂfmﬁzq mu.._.xu,v**ﬁm._. Qv
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where the actions of T are given by

t(f,9) (7.9
(fra2t = (f".9"),

where
Flna,na,ty,ta) = flm,na, it £2)
g't,ta) = glht,ta2),

and similarly for £ and g”. Since f’ does not depend on g and g’ does not
depend on f, the left action is pointwise. Likewise the right action. Now let

(M, A")
(N, By = (N,BTT.

Cﬁ_ \__v.ax?.xq.x%

We have that (S, D) divides a double semidirect product
(A, A" N', B)pe(T', C)

such that the actions of T are pointwise. Since varieties are closed with
respect to the direct product, we also have (Af’, A') € V', and (N’, B') € V3.
=]

We now complete the proof of Proposition 6.3. We want to prove that for
all varieties of mg-pairs V;, Vz and V3,

A<w¢<mV¢<m m <H¢A<w¢<uw.
By Proposition 6.1, we only need to show that each mg-pair
(M, Apr(N, B)+x(T, C)

such that (M, A) € Vy, (N, B) € Vs and (T,C) € V3 is in Vok(VorxV3).
Moreover, by Proposition 11.8, we may assume that the actions of T are
pointwise. But then, by Lemma 11.7, the projection 7 : (M, Apx(N, B} —
(N, B) is compatible with the actions of T, and moreover, by Corollary 11.6,
it holds that

ﬁhﬁﬂinﬂﬁ.w. \n....»:ﬁ:.ﬁ.: < ﬁ.?ﬁ..m:
Thus, by Theorem 11.2 applied to the morphism
axx(T, C) : (M, Apex(N, B)»+(T,C) — (N, B)y=(T,C),
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