
BRICS
Basic Research in Computer Science

Towards Compatible and
Interderivable Semantic Specifications for
the Scheme Programming Language
Part I:

Denotational Semantics, Natural Semantics, and

Abstract Machines

Olivier Danvy

BRICS Report Series RS-08-7

ISSN 0909-0878 July 2008

B
R

IC
S

R
S

-08-7
O

.D
anvy:

D
enotationalS

em
antics,N

aturalS
em

antics,and
A

bstractM
achines

forS
chem

e

Copyright c© 2008, Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/08/7/

Towards Compatible and Interderivable Semantic Specifications
for the Scheme Programming Language, Part I:

Denotational Semantics, Natural Semantics, and Abstract Machines

Olivier Danvy

Department of Computer Science
University of Aarhus∗
danvy@brics.dk

Abstract
We derive two big-step abstract machines, a natural seman-
tics, and the valuation function of a denotational semantics
based on the small-step abstract machine for Core Scheme
presented by Clinger at PLDI’98. Starting from a functional
implementation of this small-step abstract machine, (1) we
fuse its transition function with its driver loop, obtaining the
functional implementation of a big-step abstract machine;
(2) we adjust this big-step abstract machine so that it is in
defunctionalized form, obtaining the functional implemen-
tation of a second big-step abstract machine; (3) we refunc-
tionalize this adjusted abstract machine, obtaining the func-
tional implementation of a natural semantics in continuation
style; and (4) we closure-unconvert this natural semantics,
obtaining a compositional continuation-passing evaluation
function which we identify as the functional implementa-
tion of a denotational semantics in continuation style. We
then compare this valuation function with that of Clinger’s
original denotational semantics of Scheme.

1. Introduction
Motivation: Somewhat facetiously, in an earlier work [7],
Biernacka and the author concluded:

Call/cc was introduced in Scheme [11] as a Church
encoding of Reynolds’s escape operator [48]. A typed
version of it is available in Standard ML of New Jer-
sey [29] and Griffin has identified its logical con-

∗ IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
http://www.brics.dk/~danvy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

2008 Workshop on Scheme and Functional Programming

tent [28]. It is endowed with a variety of specifi-
cations: a CPS transformation [18], a CPS inter-
preter [30, 48], a denotational semantics [33], a com-
putational monad [55], a big-step operational seman-
tics [29], the CEK machine [26], calculi in the form
of reduction semantics [25], and a number of imple-
mentation techniques [12, 15, 31]—not to mention its
call-by-name variant in the archival version of Kriv-
ine’s machine [34].

Question: How do we know that all the artifacts1

in this semantic jungle define the same call/cc?

In some sense, the same can be said of the Scheme pro-
gramming language today: it is independently specified with
a denotational semantics [46], a structural operational se-
mantics [45] and a reduction semantics [37], and its tail-
recursion property is accounted for with a small-step abstract
machine [14]. Which one specifies Scheme? The newest
one? Or does one supersede a previous one of the same
kind, just as the revisedn+1 report supersedes the revisednre-
port [13,33,46,50,52,53]? Or perhaps each semantics spec-
ifies one particular facet, however large that facet may be, of
Scheme, irrespective of others? In that case, is the reference
semantics the most complete one at any point of time?

Background: It is the author’s thesis2 that functional
representations of small-step operational semantics (i.e.,
structured operational semantics), reduction semantics (i.e.,
small-step operational semantics with an explicit representa-
tion of the reduction context), small-step abstract machines,
big-step abstract machines, big-step operational semantics
(i.e., natural semantics), and denotational semantics are
inter-derivable using elementary program transformations
such as CPS transformation [18,44,47,51], defunctionaliza-
tion [21,47], fixed-point fusion [19,43], and refocusing [22].

1 “Artifact” means “man-made construct.”
2 A real one, actually [17], together with several others [1,5,9,32,38,39,41,
42], as a matter of fact.

This work: As a proof of concept, we derive the functional
representation of the denotational semantics correspond-
ing to Clinger’s abstract machine as presented at PLDI’98
to specify the meaning of proper tail recursion [14]. We
then compare it with Clinger’s denotational semantics in the
R3RS [46]. Each of these semantics is significant: the de-
notational one was profoundly influential in that it revealed
formal semantics in action to a whole generation of com-
puter scientists, and the operational one was instrumental
to substantiate the precise meaning of what it means for an
implementation to be properly tail-recursive. They are also
unique because of their use of permutation/unpermutation
functions to account for the undetermined sequencing order
of sub-expressions in an application.

Our starting point is that, as pioneered by Reynolds in
“Definitional Interpreters” [47] and pursued by the author
and his students [2–4,6,16], closure-converting and defunc-
tionalizing a continuation-passing evaluation function yields
a big-step abstract machine. Here, we restate Clinger’s ma-
chine to operate with big steps, we adjust it so that it is
in defunctionalized form, and we refunctionalize and then
closure-unconvert the functional implementation of this ad-
justed machine, obtaining an evaluation function which is
compositional and in continuation-passing style.

Prerequisites: Naturally, we assume the reader to be aware
of Clinger’s denotational semantics of Scheme in the R3RS
[46] and of his abstract machine for Core Scheme as pre-
sented at PLDI’98 [14]. In addition, we also expect a basic
knowledge of Standard ML [40], a pure subset of which we
use as a functional meta-language,3 and a passing familiarity
with defunctionalization [21,47] and its left inverse, refunc-
tionalization [19] as well as with closure conversion [35] and
its left inverse, closure unconversion. As for the technique
of fusing the transition function of a small-step abstract ma-
chine with its driver loop, it is described in a recent note by
Millikin and the author [20].

Overview: We first review the domain of discourse (Sec-
tion 2): stores, environments, and the permutation/unpermu-
tation functions that are idiosyncratic to Clinger’s semantic
specifications of Scheme. We then specify the syntax (Sec-
tion 3) and the semantics (Section 4) of Core Scheme, and
a garbage-collection rule (Section 5). Thus equipped, we
present Clinger’s small-step abstract machine (Section 6)
and then its big-step counterpart (Section 7). We put this
big-step counterpart in defunctionalized form (Section 8),
we present its refunctionalized counterpart (Section 9), and
we closure-unconvert it (Section 10). We then compare the
resulting compositional evaluation function in continuation-
passing style to the valuation function of Clinger’s deno-
tational semantics (Section 11) and then conclude (Sec-
tion 12).

3 In that we keep in mind that the full name of the Scheme workshop is
“Schemeand Functional Programming.” (The emphasis is ours.)

Pictorially:
Clinger’s small-step abstract machine

(Figures 1 and 2 in Section 6)

lightweight fusion
��

big-step abstract machine
(Figures 3 and 4 in Section 7)

adjustment
��

big-step abstract machine in defunctionalized form
(Figures 5 and 6 in Section 8)

refunctionalization
��

natural semantics in continuation style
(Figures 7 and 8 in Section 9)

defunctionalization

OO

closure unconversion
��

denotational semantics
(Figure 9 in Section 10)

closure conversion

OO

2. Domain of discourse
In the interest of brevity and abstractness, we only present
ML signatures for the store (Section 2.1) and the environ-
ment (Section 2.2). We also explicitly treat Clinger’s permu-
tations and unpermutations (Section 2.3).

2.1 Store

A store is a mapping from locations to storable values. We
specify it as a polymorphic abstract data type with the usual
algebraic operators to allocate fresh locations and initialize
them with given storable values, dereference a given location
in a given store, and update a given store at a given location
with a given storable value.

signature STO = sig
type ’a sto
type loc

val empty : ’a sto

val new : ’a sto ∗ ’a −> loc ∗ ’a sto
val news : ’a sto ∗ ’a list −> loc list ∗ ’a sto

val fetch : loc ∗ ’a sto −> ’ a option
val update : loc ∗ ’a ∗ ’a sto −> ’ a sto

end

structure Sto : STO = struct
(∗ deliberately omitted ∗)

end

At the price of modularity, we could define the allocation
operators to also be given an environment and a context so
that the fresh location(s) they return can be more precisely
characterized as not occurring in the environment and in the
context. This less modular definition would let us implement
Clinger’s small-step abstract machine even more faithfully.

2.2 Environment

An environment is a mapping from identifiers to denotable
values. We specify it as a polymorphic abstract data type
with the usual algebraic operators to extend a given envi-
ronment with new bindings and to look up identifiers in a
given environment. We also need a predicate testing whether
a given environment is empty.

signature ENV = sig
type ’a env

val empty : ’a env
val emptyp : ’a env −> bool
val extend : ide ∗ ’a ∗ ’a env

−> ’ a env
val extends : ide list ∗ ’a list ∗ ’a env

−> ’ a env
val lookup : ide ∗ ’a env −> ’ a option

end

structure Env : ENV = struct
(∗ deliberately omitted ∗)

end

In the present study, the denotable values are locations in a
store.

2.3 Permutations and unpermutations

Both in his denotational semantics and his small-step ab-
stract machine, Clinger non-deterministically uses a pair of
permutation functions: one over the sub-terms in an appli-
cation, and the inverse one over the resulting values (see
Note #1 in Section 6.1). We implement this non-determinism
by threading a stream of pairs of permutations through
Clinger’s semantic specifications. We materialize this stream
with the following polymorphic abstract data type.

signature PERMUTATION =sig
type ’a permutation = ’a ∗ ’a list

−> ’ a ∗ ’a list
type (’v, ’t) permutations

val new : (’v, ’t) permutations
−> (’ v permutation ∗ ’t permutation)

∗ (’v, ’t) permutations
val init : (’v, ’t) permutations

end

structure Permutation : PERMUTATION = struct
(∗ deliberately omitted ∗)

end

3. Syntax
The following module implements the internal syntax of
Core Scheme [14, Figure 1].

structure Syn = struct
datatype quotation = QBOOL of bool

| QNUMBof int
| QSYMBof ide
| QPAIR of Sto.loc ∗ Sto.loc

(∗ | QVECT of ... ∗)
(∗ | ... ∗)

datatype term = QUOTATION of quotation
| VAR of ide
| LAM of ide list ∗ term
| APP of term ∗ term list
| CND of term ∗ term ∗ term
| SET of ide ∗ term

end

4. Semantics
The following module implements the expressible values
and evaluation contexts [14, Figure 4]. Like Clinger, we fo-
cus on Core Scheme and do not consider primitive proce-
dures and first-class continuations here. (These are unprob-
lematic to add [4,7].)

structure Sem = struct
(∗datatype primop = ... ∗)

datatype value = QUOTED of Syn.quotation
| UNSPECIFIED
| UNDEFINED

(∗ | PRIMOP of primop ∗)
(∗ | ESCAPE of Sto.loc ∗ cont ∗)

| CLOSUREof Sto.loc ∗
(ide list ∗ Syn.term) ∗

Sto.loc Env.env
and cont = HALT

| SELECT of Syn.term ∗
Syn.term ∗
Sto.loc Env.env ∗
cont

| ASSIGN of ide ∗
Sto.loc Env.env ∗
cont

| PUSH of Syn.term list ∗
value list ∗

value Permutation.permutation ∗
Sto.loc Env.env ∗
cont

| CALL of value list ∗ cont
end

Note: Compared to the original [14, Figure 4], we fixed
one typo in the declaration of the evaluation-context con-
structor for calls, which holds a list of semantic values,
not a list of syntactic terms.

5. Garbage collection
The following module is used to implement the garbage-
collection rule [14, Figure 5].

signature GC = sig
val gc : Sem.value ∗

Sto.loc Env.env ∗
Sem.cont ∗
Sem.value Sto.sto
−> Sem.value Sto.sto

end

structure Gc : GC = struct
(∗ deliberately omitted ∗)

end

structure M small step = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype halting state = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

datatype state = FINAL of halting state | INTER of configuration
withtype configuration = term or value ∗ Sto.loc Env.env ∗ Sem.cont ∗ Sem.value Sto.sto

∗ (Sem.value, Syn.term) Permutation.permutations

fun move ...
= ...

fun drive (FINAL answer)
= answer

| drive (INTER configuration)
= drive (move configuration)

fun evaluate t
= drive (INTER (TERM t, r init, Sem.HALT, Sto.empty, Permutation.init))

end

Figure 1. Clinger’s small-step abstract machine without the GC rule, part 1/2: configurations, driver loop and initialization

6. Clinger’s small-step abstract machine
We first present the machine without the GC rule (Sec-
tion 6.1) and then with a GC rule (Section 6.2).

6.1 Without the GC rule

The abstract machine is displayed in Figures 1 and 2. It oper-
ates on a quintuple: a term or a value, an environment map-
ping variables to store locations, a context, a store mapping
locations to values, and a stream of permutations. When the
first component is a term, this term is dispatched upon. When
the first component is a value, the third component (i.e., the
context) is dispatched upon.

Note #1: A new pair of permutations is explicitly allocated
every time an application is evaluated. The second one
operates over terms and is used immediately over the
sub-terms of the application. The first one operates over
values and it will be subsequently used over the results of
evaluating each of these sub-terms.

Clinger’s formulation uses an infinite set of rules gen-
erated by a rule schema that is parameterized by a per-
mutation and its inverse. We model his non-deterministic
choice of permutation with an oracle that picks in the cur-
rent stream of permutations.

Note #2: Compared to the original [14, Figure 5] and to
Clinger’s denotational semantics, this semantics embod-
ies the official specification of Scheme about assign-
ments:

When evaluating an assignment, the expression is
evaluated, and the resulting value is stored in the
location to which the variable is bound. This vari-

able must be bound either in some region enclos-
ing the assignment or at the top level.

Accordingly, in Figure 2, the expression is evaluated, and
then the variable is checked to be bound.

For the rest, Figures 1 and 2 display a scrupulously faith-
ful implementation of Clinger’s small-step abstract machine.

6.2 With a GC rule

The following implementation deterministically applies the
GC rule every time a value is returned to the evaluation
context, i.e., at every reduction step. Compared to Figure 1,
only the driver loop is changed.

structure M small step with gc rule = struct
...
fun drive (FINAL answer)

= answer
| drive (INTER (TERM t, r, c, s, p))

= drive (move (TERM t, r, c, s, p))
| drive (INTER (VALUE v, r, c, s, p))

= let val s’ = Gc.gc (v, r, c, s)
in drive (move (VALUE v, r, c, s’, p))

end
...

end

In contrast, Clinger’s formulation of the GC rule is non-
deterministic.

structure M small step = struct
...
fun move (TERM (Syn.QUOTATION q), r, c, s, p)

= INTER (VALUE (Sem.QUOTED q), r, c, s, p)
| move (TERM (Syn.VAR i), r, c, s, p)

= (case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME v)

=> (case v
of Sem.UNDEFINED

=> FINAL (STUCK "attempt to reference undefined variable")
|

=> INTER (VALUE v, r, c, s, p))
| NONE

=> FINAL (STUCK "attempt to read an invalid location"))
| NONE

=> FINAL (STUCK "attempt to reference an undeclared variable"))
| move (TERM (Syn.LAM (is, t)), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in INTER (VALUE (Sem.CLOSURE (l, (is, t), r)), r, c, s’, p) end

| move (TERM (Syn.CND (t0, t1, t2)), r, c, s, p)
= INTER (TERM t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| move (TERM (Syn.SET (i, t)), r, c, s, p)
= INTER (TERM t, r, Sem.ASSIGN (i, r, c), s, p)

| move (TERM (Syn.APP (t0, ts)), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in INTER (TERM t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

| move (VALUE v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then FINAL (RESULT (v, s))
else INTER (VALUE v, Env.empty, Sem.HALT, s, p)

| move (VALUE (Sem.QUOTED (Syn.QBOOL false)), r’, Sem.SELECT (t1, t2, r, c), s, p)
= INTER (TERM t2, r, c, s, p)

| move (VALUE , r’, Sem.SELECT (t1, t2, r, c), s, p)
= INTER (TERM t1, r, c, s, p)

| move (VALUE v, r’, Sem.ASSIGN (i, r, c), s, p)
= (case Env.lookup (i, r)

of (SOME l)
=> (case Sto.fetch (l, s)

of (SOME v)
=> (case v

of Sem.UNDEFINED
=> FINAL (STUCK "attempt to assign undefined variable")

|
=> INTER (VALUE Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> FINAL (STUCK "attempt to write an invalid location"))

| NONE
=> FINAL (STUCK "attempt to assign an undeclared variable"))

| move (VALUE v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in INTER (VALUE v0, r, Sem.CALL (vs, c), s, p) end
| move (VALUE v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= INTER (TERM t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| move (VALUE (Sem.CLOSURE (l, (is, t), r)), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in INTER (TERM t, Env.extends (is, ls, r), c, s’, p) end

| move (VALUE v, r’, Sem.CALL (vs, c), s, p)
= FINAL (STUCK "attempt to apply a non −procedure")

...
end

Figure 2. Clinger’s small-step abstract machine without the GC rule, part 2/2: transition function

structure M big step = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype answer = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

fun iterate ...
= ...

fun evaluate t
= iterate (TERM t, r init, Sem.HALT, Sto.empty, Permutation.init)

end

Figure 3. Big-step counterpart of Figure 1, part 1/2: configurations and initialization

7. Big-step version of Clinger’s abstract
machine

We first present the big-step version of the machine without
any GC rule (Section 7.1) and then with a GC rule (Sec-
tion 7.2).

7.1 Without the GC rule

In Figure 1, the ‘drive’ function iteratively calls the ‘move’
function until a final answer is obtained, if any. As pointed
out by Millikin and the author [20], such small-step abstract
machines are candidates for lightweight fusion by fixed-
point promotion [43]: the composition of ‘drive’ and ‘move’
can be fused into an ‘iterate’ function where the outer re-
cursive call to ‘drive’ has been distributed to all the return
points in the definition of ‘move.’ The result is the big-step
abstract machine displayed in Figures 3 and 4. Since Ohori
and Sasano’s fixed-point promotion is fully correct, this big-
step abstract machine is also correct, by construction.

7.2 With a GC rule

The following implementation deterministically applies the
GC rule every time a function is about to be applied. Com-
pared to Figure 4, only one clause is changed.

structure M big step with gc rule = struct
(∗ ... ∗)

| iterate (VALUE v0’,
r’,
Sem.PUSH (nil, vs’, pi, r, c),
s,
p)

= let val (v0, vs) = pi (v0’, vs’)
val s’ = Gc.gc (v0,

r,
Sem.CALL (vs, c),
s)

in iterate (VALUE v0,
r,
Sem.CALL (vs, c),
s’,
p) end

(∗ ... ∗)
end

structure M big step = struct
...
fun iterate (TERM (Syn.QUOTATION q), r, c, s, p)

= iterate (VALUE (Sem.QUOTED q), r, c, s, p)
| iterate (TERM (Syn.VAR i), r, c, s, p)

= (case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME v)

=> (case v
of Sem.UNDEFINED

=> STUCK "attempt to reference undefined variable"
|

=> iterate (VALUE v, r, c, s, p))
| NONE

=> STUCK "attempt to read an invalid location")
| NONE

=> STUCK "attempt to reference an undeclared variable")
| iterate (TERM (Syn.LAM (is, t)), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in iterate (VALUE (Sem.CLOSURE (l, (is, t), r)), r, c, s’, p) end

| iterate (TERM (Syn.CND (t0, t1, t2)), r, c, s, p)
= iterate (TERM t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| iterate (TERM (Syn.SET (i, t)), r, c, s, p)
= iterate (TERM t, r, Sem.ASSIGN (i, r, c), s, p)

| iterate (TERM (Syn.APP (t0, ts)), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in iterate (TERM t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

| iterate (VALUE v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then RESULT (v, s)
else iterate (VALUE v, Env.empty, Sem.HALT, s, p)

| iterate (VALUE (Sem.QUOTED (Syn.QBOOL false)), r’, Sem.SELECT (t1, t2, r, c), s, p)
= iterate (TERM t2, r, c, s, p)

| iterate (VALUE , r’, Sem.SELECT (t1, t2, r, c), s, p)
= iterate (TERM t1, r, c, s, p)

| iterate (VALUE v, r’, Sem.ASSIGN (i, r, c), s, p)
= (case Env.lookup (i, r)

of (SOME l)
=> (case Sto.fetch (l, s)

of (SOME v)
=> (case v

of Sem.UNDEFINED
=> STUCK "attempt to assign undefined variable"

|
=> iterate (VALUE Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> STUCK "attempt to write an invalid location")

| NONE
=> STUCK "attempt to assign an undeclared variable")

| iterate (VALUE v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in iterate (VALUE v0, r, Sem.CALL (vs, c), s, p) end
| iterate (VALUE v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= iterate (TERM t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| iterate (VALUE (Sem.CLOSURE (l, (is, t), r)), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in iterate (TERM t, Env.extends (is, ls, r), c, s’, p) end

| iterate (VALUE v, r’, Sem.CALL (vs, c), s, p)
= STUCK "attempt to apply a non −procedure"

...
end

Figure 4. Big-step counterpart of Figure 2, part 2/2: transition function

structure M big step defunct = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

datatype answer = RESULT of Sem.value ∗ Sem.value Sto.sto | STUCK of string

fun eval ...
= ...

and continue ...
= ...

fun evaluate t
= eval (TERM t, r init, Sem .HALT, Sto.empty, Permutation.init)

end

Figure 5. Version of Figure 3 in defunctionalized form, part 1/2: configurations and initialization

8. Big-step version of Clinger’s abstract
machine in defunctionalized form

8.1 Without the GC rule

Like the SECD machine [16, 35], the big-step version of
Clinger’s abstract machine is not in defunctionalized form.
Fortunately, it can easily made to be so [19], by using the
type isomorphism between the transition function

iterate : term or value ∗ ... −> answer

and two mutually recursive transition functions

eval : term ∗ ... −> answer
continue : value ∗ ... −> answer.

The reformulated version is displayed in Figures 5 and 6,
and can readily be recognized as an ‘eval/apply’ abstract
machine [36]:4 the ‘eval’ transition function dispatches on
terms and the ‘apply’ transition function (or more accu-
rately, the ‘continue’ transition function) dispatches on (the
top constructor of) the context. This abstract machine is in
defunctionalized form in that the evaluation context and the
second transition function are the defunctionalized counter-
part of a function. As shown in the next section, this function
is a continuation since the refunctionalized abstract machine
is in CPS.5

4 A more accurate term than ‘eval/apply’, though, would be ‘eval/continue.’
5 Hence the point about terminology in Footnote 4.

8.2 With a GC rule

As in Section 7.2, it is simple to deterministically apply the
GC rule, e.g., every time a function is about to be applied.

structure M big step defunct = struct
...
fun eval (Syn.QUOTATION q, r, c, s, p)

= continue (Sem.QUOTED q, r, c, s, p)
| eval (Syn.VAR i, r, c, s, p)

= (case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME v)

=> (case v
of Sem.UNDEFINED

=> STUCK "attempt to reference undefined variable"
|

=> continue (v, r, c, s, p))
| NONE

=> STUCK "attempt to read an invalid location")
| NONE

=> STUCK "attempt to reference an undeclared variable")
| eval (Syn.LAM (is, t), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in continue (Sem.CLOSURE (l, (is, t), r), r, c, s’, p) end

| eval (Syn.CND (t0, t1, t2), r, c, s, p)
= eval (t0, r, Sem.SELECT (t1, t2, r, c), s, p)

| eval (Syn.SET (i, t), r, c, s, p)
= eval (t, r, Sem.ASSIGN (i, r, c), s, p)

| eval (Syn.APP (t0, ts), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in eval (t0’, r, Sem.PUSH (ts’, nil, pi, r, c), s, p’) end

and continue (v, r’, Sem.HALT, s, p)
= if Env.emptyp r’

then RESULT (v, s)
else continue (v, Env.empty, Sem.HALT, s, p)

| continue (Sem.QUOTED (Syn.QBOOL false), r’, Sem.SELECT (t1, t2, r, c), s, p)
= eval (t2, r, c, s, p)

| continue (, r’, Sem.SELECT (t1, t2, r, c), s, p)
= eval (t1, r, c, s, p)

| continue (v, r’, Sem.ASSIGN (i, r, c), s, p)
= (case Env.lookup (i, r)

of (SOME l)
=> (case Sto.fetch (l, s)

of (SOME v)
=> (case v

of Sem.UNDEFINED
=> STUCK "attempt to assign undefined variable"

|
=> continue (Sem.UNSPECIFIED, r, c, Sto.update (l, v, s), p))

| NONE
=> STUCK "attempt to write an invalid location")

| NONE
=> STUCK "attempt to assign an undeclared variable")

| continue (v0’, r’, Sem.PUSH (nil, vs’, pi, r, c), s, p)
= let val (v0, vs) = pi (v0’, vs’)

in continue (v0, r, Sem.CALL (vs, c), s, p) end
| continue (v0’, r’, Sem.PUSH (t1’ :: ts’, vs’, pi, r, c), s, p)

= eval (t1’, r, Sem.PUSH (ts’, v0’ :: vs’, pi, r, c), s, p)
| continue (Sem.CLOSURE (l, (is, t), r), r’, Sem.CALL (vs, c), s, p)

= let val (ls, s’) = Sto.news (s, vs)
in eval (t, Env.extends (is, ls, r), c, s’, p) end

| continue (v, r’, Sem.CALL (vs, c), s, p)
= STUCK "attempt to apply a non −procedure"

...
end

Figure 6. Version of Figure 4 in defunctionalized form, part 2/2: transition functions

structure Sem = struct
datatype value = QUOTED of Syn.quotation

| UNSPECIFIED
| UNDEFINED
| CLOSUREof Sto.loc ∗ (ide list ∗ Syn.term) ∗ Sto.loc Env.env

and answer = RESULT of value ∗ value Sto.sto
| STUCK of string

withtype cont = value ∗ Sto.loc Env.env ∗ value Sto.sto ∗ value Permutation.permutation −> answer
end

structure M big step refunct = struct
val r init = Env .empty

datatype term or value = TERM of Syn.term | VALUE of Sem.value

fun eval ...
= ...

fun evaluate t
= eval (t, r init, fn (v, , s, p) = > Sem.RESULT (v, s), Sto.empty, Permutation.init)

end

Figure 7. Refunctionalized version of Figure 5, part 1/2: configurations and initialization

9. Big-step version of Clinger’s abstract
machine, refunctionalized

9.1 Without the GC rule

The refunctionalized version is displayed in Figures 7 and 8:
defunctionalizing it yields back Figures 5 and 6. It is the
evaluation function in continuation-passing style of a natural
semantics [23, 29]. As exploited in Section 10, it is also in
the range of closure conversion.

9.2 With a GC rule

Refunctionalization has made us cross a line: continuations
are now higher-order, which prevents us to implement the
GC rule as directly as in Section 7.2.

structure M big step refunct = struct
...
fun eval (Syn.QUOTATION q, r, c, s, p)

= c (Sem.QUOTED q, r, s, p)
| eval (Syn.VAR i, r, c, s, p)

= (case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME v)

=> (case v
of Sem.UNDEFINED

=> Sem.STUCK "attempt to reference undefined variable"
|

=> c (v, r, s, p))
| NONE

=> Sem.STUCK "attempt to read an invalid location")
| NONE

=> Sem.STUCK "attempt to reference an undeclared variable")
| eval (Syn.LAM (is, t), r, c, s, p)

= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)
in c (Sem.CLOSURE (l, (is, t), r), r, s’, p) end

| eval (Syn.CND (t0, t1, t2), r, c, s, p)
= eval (t0, r, fn (Sem.QUOTED (Syn.QBOOL false), r’, s, p)

=> eval (t2, r, c, s, p)
| (, r’, s, p)

=> eval (t1, r, c, s, p),
s, p)

| eval (Syn.SET (i, t), r, c, s, p)
= eval (t, r, fn (v, r’, s, p)

=> (case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME v)

=> (case v
of Sem.UNDEFINED

=> Sem.STUCK "attempt to assign undefined variable"
|

=> c (Sem.UNSPECIFIED, r, Sto.update (l, v, s), p))
| NONE

=> Sem.STUCK "attempt to write an invalid location")
| NONE

=> Sem.STUCK "attempt to assign an undeclared variable"),
s, p)

| eval (Syn.APP (t0, ts), r, c, s, p)
= let val ((pi, rev pi inv), p’) = Permutation.new p

val (t0’, ts’) = rev pi inv (t0, ts)
in eval (t0’, r, fn (v0’, r’, s, p) = > evlis (ts’, v0’, nil, pi, r, c, s, p), s, p’) end

and evlis (nil, v0’, vs’, pi, r, c, s, p)
= let val (v0, vs) = pi (v0’, vs’)

in case v0
of (Sem.CLOSURE (l, (is, t), r))

=> let val (ls, s’) = Sto.news (s, vs)
in eval (t, Env.extends (is, ls, r), c, s’, p)
end

|
=> Sem.STUCK "attempt to apply a non −procedure" end

| evlis (t1’ :: ts’, v0’, vs’, pi, r, c, s, p)
= eval (t1’, r, fn (v1’, r’, s, p) = > evlis (ts’, v1’, v0’ :: vs’, pi, r’, c, s, p), s, p)

...
end

Figure 8. Refunctionalized version of Figure 6, part 2/2: evaluation functions

structure Sem = struct
datatype value = ...

| CLOSUREof Sto.loc ∗ (value list ∗ cont ∗ value Sto.sto ∗ (∗ << ∗)
(value, Syn.term) Permutation.permutations −> answer) (∗ << ∗)

and answer = RESULT of value ∗ value Sto.sto
| STUCK of string

withtype cont = value ∗ Sto.loc Env.env ∗ value Sto.sto ∗ (value, Syn.term) Permutation.permutations
−> answer

end

structure M big step refunct higher order = struct
(∗ ... ∗)

| eval (Syn.LAM (is, t), r, c, s, p)
= let val (l, s’) = Sto.new (s, Sem.UNSPECIFIED)

in c (Sem.CLOSURE (l, fn (vs, c, s, p) (∗ << ∗)
=> let val (ls, s’) = Sto.news (s, vs) (∗ << ∗)

in eval (t, Env.extends (is, ls, r), c, s’, p) (∗ << ∗)
end), (∗ << ∗)

r, s’, p) end
(∗ ... ∗)
and evlis (nil, v0’, vs’, pi, r, c, s, p)

= let val (v0, vs) = pi (v0’, vs’)
in case v0

of (Sem.CLOSURE (l, f))
=> f (vs, c, s, p) (∗ << ∗)

|
=> Sem.STUCK "attempt to apply a non −procedure" end

(∗ ... ∗)
end

Figure 9. Closure-unconverted version of Figures 7 and 8 (the modified parts are marked on the right)

10. Big-step version of Clinger’s abstract
machine, refunctionalized and
closure-unconverted

10.1 Without the GC rule

Figure 9 displays the higher-order counterpart of Figures 7
and 8: closure-converting it yields back these two figures.
It is a compositional evaluation function in continuation-
passing style.

10.2 With a GC rule

Closure unconversion has made us cross another line: the
higher-order functions in the domain of values further pre-
vent us to implement the GC rule as directly as in Sec-
tion 7.2.

11. Analysis
11.1 From abstract machine to denotational semantics

The evaluation function of Figure 9 differs from the one in
Clinger’s denotational semantics in two ways:

• the continuation domains are not the same: the opera-
tional continuations are passed an environment whereas
the denotational ones are not;

• the operational treatment of evlis tail-recursion differs
from the denotational one: in the operational one, the
sub-terms of an application are not only permuted but
the result of this permutation is reversed, so that the
resulting values can be iteratively accumulated in the
‘evlis’ function.

11.2 From denotational semantics to abstract machine

Conversely, defunctionalizing Clinger’s denotational seman-
tics yields a big-step abstract machine that also differs from
the one presented at PLDI’98: it is a traditional eval/continue
abstract machine where the ‘continue’ transition function is
not passed any environment. In particular, the permuted sub-
terms are not reversed prior to be evaluated and the corre-
sponding list of values is not accumulated as in Figure 2.

11.3 Related work

Earlier on, Biernacki and the author carried out the same ex-
periment for Propositional Prolog with cut [10]. Comparing
de Bruin and de Vink’s operational and denotational seman-
tics [24], we found mismatches that are similar to the ones
reported in this section.

For the rest, the literature is rich with connections and
derivations between semantic artifacts. To the best of our
knowledge, none are as simple and as effective as the ones
pioneered by Reynolds and used here.

12. Conclusion and perspectives
We have presented new semantic specifications for Core
Scheme as specified by Clinger in his PLDI’98 article. These
semantic specifications are compatible and inter-derived. It
is our analysis that structurally, they differ from similar se-
mantics that have independently been published.

There are two next logical steps to this preliminary work,
an analytical one and a constructive one:

• Redo this experiment on a larger scale with the other se-
mantic specifications of Scheme. We will then be in po-
sition to compare all the small-step semantics, all the ab-
stract machines, and all the big-step semantics of Scheme
with respect to each other, and verify whether Scheme is
uniformly and uniquely specified.

• Specify Scheme in part or in toto with inter-derivable
specifications so that the compatibility of these specifi-
cations is a corollary of the correctness of the deriva-
tions. This corollary would let us flesh out, for example,
Gasbichler, Knauel, and Sperber’s conjecture of equiva-
lence for their operational and denotational semantics of
Scheme with multiple threads [27, Section 6.4].

The author does not have any opinion about the particu-
lar goodness of one or another semantic specification of
Scheme. He however feels strongly that Scheme’s semantic
artifacts should be compatible with each other. PhD students
are thus invited to apply for six-months visits to the BRICS
PhD School at the University of Aarhus to help carrying out
the experiments above together with the author. Any other
input or collaboration is also cordially welcome.

Acknowledgments: The author is grateful to the anony-
mous reviewers for their comments, and to Will Clinger for
extra explanations about his use of an infinite set of rules
generated by a rule schema that is parameterized by a per-
mutation and its inverse. Special thanks to Kevin Millikin
and Ian Zerny for timely comments and to Małgorzata Bier-
nacka for joining forces in a ‘Part II’ companion article about
reduction semantics and abstract machines [8].

This work is partly supported by the Danish Natural Sci-
ence Research Council, Grant no. 21-03-0545.

References
[1] Mads Sig Ager. Partial Evaluation of String Matchers &

Constructions of Abstract Machines. PhD thesis, BRICS PhD
School, University of Aarhus, Aarhus, Denmark, January
2006.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and
Jan Midtgaard. A functional correspondence between
evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International
Conference on Principles and Practice of Declarative
Programming (PPDP’03), pages 8–19, Uppsala, Sweden,
August 2003. ACM Press.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between call-by-need evaluators
and lazy abstract machines.Information Processing Letters,
90(5):223–232, 2004. Extended version available as the
research report BRICS RS-04-3.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between monadic evaluators
and abstract machines for languages with computational
effects. Theoretical Computer Science, 342(1):149–172,
2005. Extended version available as the research report
BRICS RS-04-28.

[5] Małgorzata Biernacka.A Derivational Approach to the
Operational Semantics of Functional Languages. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark,
January 2006.

[6] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An operational foundation for delimited continuations in
the CPS hierarchy.Logical Methods in Computer Science,
1(2:5):1–39, November 2005. A preliminary version was
presented at the Fourth ACM SIGPLAN Workshop on
Continuations (CW’04).

[7] Małgorzata Biernacka and Olivier Danvy. A syntactic cor-
respondence between context-sensitive calculi and abstract
machines.Theoretical Computer Science, 375(1-3):76–108,
2007. Extended version available as the research report
BRICS RS-06-18.

[8] Małgorzata Biernacka and Olivier Danvy. Towards compati-
ble and interderivable semantic specifications for the Scheme
programming language, Part II: Reduction semantics and ab-
stract machines. In Will Clinger, editor,Proceedings of the
2008 ACM SIGPLAN Workshop on Scheme and Functional
Programming, Victoria, British Columbia, September 2008.
Available in the present proceedings.

[9] Dariusz Biernacki.The Theory and Practice of Programming
Languages with Delimited Continuations. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark,
December 2005.

[10] Dariusz Biernacki and Olivier Danvy. From interpreter to
logic engine by defunctionalization. In Maurice Bruynooghe,
editor,Logic Based Program Synthesis and Transformation,
13th International Symposium, LOPSTR 2003, number 3018
in Lecture Notes in Computer Science, pages 143–159,
Uppsala, Sweden, August 2003. Springer-Verlag.

[11] William Clinger, Daniel P. Friedman, and Mitchell Wand. A
scheme for a higher-level semantic algebra. In John Reynolds
and Maurice Nivat, editors,Algebraic Methods in Semantics,
pages 237–250. Cambridge University Press, 1985.

[12] William Clinger, Anne H. Hartheimer, and Eric M. Ost.
Implementation strategies for first-class continuations.
Higher-Order and Symbolic Computation, 12(1):7–45, 1999.
A preliminary version was presented at the 1988 ACM
Conference on Lisp and Functional Programming.

[13] William Clinger and Jonathan Rees, editors. Revised4 report
on the algorithmic language Scheme.LISP Pointers, IV(3):1–
55, July-September 1991.

[14] William D. Clinger. Proper tail recursion and space
efficiency. In Keith D. Cooper, editor,Proceedings of the
ACM SIGPLAN’98 Conference on Programming Languages
Design and Implementation, pages 174–185, Montr´eal,
Canada, June 1998. ACM Press.

[15] Olivier Danvy. Formalizing implementation strategies for
first-class continuations. In Gert Smolka, editor,Proceedings
of the Ninth European Symposium on Programming, number
1782 in Lecture Notes in Computer Science, pages 88–103,
Berlin, Germany, March 2000. Springer-Verlag.

[16] Olivier Danvy. A rational deconstruction of Landin’s SECD
machine. In Clemens Grelck, Frank Huch, Greg J. Michael-
son, and Phil Trinder, editors,Implementation and Applica-
tion of Functional Languages, 16th International Workshop,
IFL’04, number 3474 in Lecture Notes in Computer Science,
pages 52–71, L¨ubeck, Germany, September 2004. Springer-
Verlag. Recipient of the 2004 Peter Landin prize. Extended
version available as the research report BRICS RS-03-33.

[17] Olivier Danvy. An Analytical Approach to Program as Data
Objects. DSc thesis, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, October 2006.

[18] Olivier Danvy and Andrzej Filinski. Representing control, a
study of the CPS transformation.Mathematical Structures in
Computer Science, 2(4):361–391, 1992.

[19] Olivier Danvy and Kevin Millikin. Refunctionalization
at work. Research Report BRICS RS-08-4, DAIMI,
Department of Computer Science, University of Aarhus,
Aarhus, Denmark, August 2007. To appear in Science of
Computer Programming, extended version.

[20] Olivier Danvy and Kevin Millikin. On the equivalence
between small-step and big-step abstract machines: a simple
application of lightweight fusion.Information Processing
Letters, 106(3):100–109, 2008.

[21] Olivier Danvy and Lasse R. Nielsen. Defunctionalization
at work. In Harald Søndergaard, editor,Proceedings of the
Third International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP’01),
pages 162–174, Firenze, Italy, September 2001. ACM Press.
Extended version available as the research report BRICS
RS-01-23.

[22] Olivier Danvy and Lasse R. Nielsen. Refocusing in
reduction semantics. Research Report BRICS RS-04-26,
DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, November 2004. A preliminary
version appeared in the informal proceedings of the Second
International Workshop on Rule-Based Programming (RULE
2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

[23] Olivier Danvy and Zhe Yang. An operational investigation
of the CPS hierarchy. In S. Doaitse Swierstra, editor,Pro-
ceedings of the Eighth European Symposium on Program-
ming, number 1576 in Lecture Notes in Computer Science,
pages 224–242, Amsterdam, The Netherlands, March 1999.
Springer-Verlag.

[24] Arie de Bruin and Erik P. de Vink. Continuation semantics
for Prolog with cut. In Josep D´ıaz and Fernando Orejas,
editors,TAPSOFT’89: Proceedings of the International Joint
Conference on Theory and Practice of Software Development,
number 351 in Lecture Notes in Computer Science, pages
178–192, Barcelona, Spain, March 1989. Springer-Verlag.

[25] Matthias Felleisen and Matthew Flatt. Programming lan-
guages and lambda calculi. Unpublished lecture notes avail-
able at<http://www.ccs.neu.edu/home/matthias/
3810-w02/readings.html> and last accessed in April
2008, 1989-2001.

[26] Matthias Felleisen and Daniel P. Friedman. Control operators,
the SECD machine, and the�-calculus. In Martin Wirsing,
editor, Formal Description of Programming Concepts III,
pages 193–217. Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1986.

[27] Martin Gasbichler, Eric Knauel, and Michael Sperber. How
to add threads to a sequential language without getting
tangled up. In Matthew Flatt, editor,Proceedings of the
Fourth ACM SIGPLAN Workshop on Scheme and Functional
Programming, Technical report UUCS-03-023, School of
Computing, University of Utah, pages 30–47, Boston,
Massachusetts, November 2003.

[28] Timothy G. Griffin. A formulae-as-types notion of control.
In Paul Hudak, editor,Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages,
pages 47–58, San Francisco, California, January 1990. ACM
Press.

[29] Robert Harper, Bruce F. Duba, and David MacQueen. Typing
first-class continuations in ML.Journal of Functional
Programming, 3(4):465–484, October 1993. A preliminary
version was presented at the Eighteenth Annual ACM
Symposium on Principles of Programming Languages (POPL
1991).

[30] Christopher T. Haynes, Daniel P. Friedman, and Mitchell
Wand. Continuations and coroutines. In Guy L. Steele Jr.,
editor,Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming, pages 293–298, Austin,
Texas, August 1984. ACM Press.

[31] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Repre-
senting control in the presence of first-class continuations. In
Bernard Lang, editor,Proceedings of the ACM SIGPLAN’90
Conference on Programming Languages Design and Imple-
mentation, SIGPLAN Notices, Vol. 25, No 6, pages 66–77,
White Plains, New York, June 1990. ACM Press.

[32] Jacob Johannsen. An investigation of Abadi and Cardelli’s
untyped calculus of objects. Master’s thesis, DAIMI,
Department of Computer Science, University of Aarhus,
Aarhus, Denmark, June 2008. BRICS research report RS-08-
6.

[33] Richard Kelsey, William Clinger, and Jonathan Rees, editors.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–105,
1998.

[34] Jean-Louis Krivine. A call-by-name lambda-calculus ma-
chine.Higher-Order and Symbolic Computation, 20(3):199–
207, 2007.

[35] Peter J. Landin. The mechanical evaluation of expressions.
The Computer Journal, 6(4):308–320, 1964.

[36] Simon Marlow and Simon L. Peyton Jones. Making
a fast curry: push/enter vs. eval/apply for higher-order
languages. In Kathleen Fisher, editor,Proceedings of
the 2004 ACM SIGPLAN International Conference on
Functional Programming (ICFP’04), SIGPLAN Notices,
Vol. 39, No. 9, pages 4–15, Snowbird, Utah, September
2004. ACM Press.

[37] Jacob Matthews and Robert Bruce Findler. An operational se-
mantics for R5RS Scheme. In J. Michael Ashley and Michael
Sperber, editors,Proceedings of the Sixth ACM SIGPLAN
Workshop on Scheme and Functional Programming, Tech-
nical report TR619, Computer Science Department, Indiana
University, pages 41–54, Tallinn, Estonia, September 2005.

[38] Jan Midtgaard.Transformation, Analysis, and Interpretation
of Higher-Order Procedural Programs. PhD thesis, BRICS
PhD School, University of Aarhus, Aarhus, Denmark, June
2007.

[39] Kevin Millikin. A Structured Approach to the Transforma-
tion, Normalization and Execution of Computer Programs.
PhD thesis, BRICS PhD School, University of Aarhus,
Aarhus, Denmark, May 2007.

[40] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen.The Definition of Standard ML (Revised). The
MIT Press, 1997.

[41] Johan Munk. A study of syntactic and semantic artifacts and
its application to lambda definability, strong normalization,
and weak normalization in the presence of state. Master’s
thesis, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, May 2007. BRICS research
report RS-08-3.

[42] Lasse R. Nielsen. A study of defunctionalization and
continuation-passing style. PhD thesis, BRICS PhD School,
University of Aarhus, Aarhus, Denmark, July 2001. BRICS
DS-01-7.

[43] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed
point promotion. In Matthias Felleisen, editor,Proceedings of
the Thirty-Fourth Annual ACM Symposium on Principles of
Programming Languages, SIGPLAN Notices, Vol. 42, No. 1,
pages 143–154, New York, NY, USA, January 2007. ACM
Press.

[44] Gordon D. Plotkin. Call-by-name, call-by-value and the
�-calculus.Theoretical Computer Science, 1:125–159, 1975.

[45] John D. Ramsdell. An operational semantics for Scheme.
LISP Pointers, V(2):6–10, April-June 1992.

[46] Jonathan Rees and William Clinger, editors. Revised3 report
on the algorithmic language Scheme.SIGPLAN Notices,
21(12):37–79, December 1986.

[47] John C. Reynolds. Definitional interpreters for higher-
order programming languages. InProceedings of 25th ACM
National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation
11(4):363–397, 1998, with a foreword [49].

[48] John C. Reynolds. Definitional interpreters for higher-
order programming languages.Higher-Order and Symbolic
Computation, 11(4):363–397, 1998. Reprinted from the
proceedings of the 25th ACM National Conference (1972),
with a foreword [49].

[49] John C. Reynolds. Definitional interpreters revisited.Higher-
Order and Symbolic Computation, 11(4):355–361, 1998.

[50] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and
Anton van Straaten, editors. Revised6 report on the
algorithmic language Scheme. Available online at<http:

//www.r6rs.org/>, September 2007.

[51] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s
thesis, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, May
1978. Technical report AI-TR-474.

[52] Guy L. Steele Jr. and Gerald J. Sussman. The revised
report on Scheme, a dialect of Lisp. AI Memo 452,
Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, January 1978.

[53] Gerald J. Sussman and Guy L. Steele Jr. Scheme: An
interpreter for extended lambda calculus. AI Memo 349,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, December 1975.
Reprinted in Higher-Order and Symbolic Computation
11(4):405–439, 1998, with a foreword [54].

[54] Gerald J. Sussman and Guy L. Steele Jr. The first report on
Scheme revisited.Higher-Order and Symbolic Computation,
11(4):399–404, 1998.

[55] Philip Wadler. The essence of functional programming
(invited talk). In Andrew W. Appel, editor,Proceedings
of the Nineteenth Annual ACM Symposium on Principles of
Programming Languages, pages 1–14, Albuquerque, New
Mexico, January 1992. ACM Press.

Recent BRICS Report Series Publications

RS-08-7 Olivier Danvy. Towards Compatible and Interderivable Seman-
tic Specifications for the Scheme Programming Language, Part
I: Denotational Semantics, Natural Semantics, and Abstract Ma-
chines. July 2008. 12 pp.

RS-08-6 Jacob Johannsen.An Investigation of Abadi and Cardelli’s Un-
typed Calculus of Objects. June 2008. xii+87 pp.

RS-08-5 Olivier Danvy and Jacob Johannsen.Inter-Deriving Seman-
tic Artifacts for Object-Oriented Programming. June 2008.
ii+13 pp. Extended version of a paper to appear in WoLLIC
2008.

RS-08-4 Olivier Danvy and Kevin Millikin. Refunctionalization at Work.
June 2008. ii+25 pp. To appear inScience of Computer Pro-
gramming. A preliminary version is available as the research
report BRICS RS-07-7.

RS-08-3 Johan Munk. A Study of Syntactic and Semantic Artifacts and
its Application to Lambda Definability, Strong Normalization,
and Weak Normalization in the Presence of State. April 2008.
xi+144 pp.

RS-08-2 Gudmund Skovbjerg Frandsen and Piotr Sankowski.Dynamic
Normal Forms and Dynamic Characteristic Polynomial. April
2008. 21 pp. To appear in ICALP ’08.

RS-08-1 Anders Møller. Static Analysis for Event-Based XML Process-
ing. jan 2008. 23 pp. Appears in PLAN-X ’08.

RS-07-18 Jan Midtgaard.Control-Flow Analysis of Functional Programs.
December 2007. iii+38 pp.

RS-07-17 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Cancellation Theorem for 7BCCSP. December 2007. 30 pp.

RS-07-16 Olivier Danvy and Kevin Millikin. On the Equivalence between
Small-Step and Big-Step Abstract Machines: A Simple Appli-
cation of Lightweight Fusion. November 2007. ii+11 pp. To
appear in Information Processing Letters(extended version).
Supersedes BRICS RS-07-8.

RS-07-15 Jooyong Lee.A Case for Dynamic Reverse-code Generation.
August 2007. ii+10 pp.

RS-07-14 Olivier Danvy and Michael Spivey.On Barron and Strachey’s
Cartesian Product Function. July 2007. ii+14 pp.

