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Inter-Deriving Semantic Artifacts
for Object-Oriented Programming

Olivier Danvy and Jacob Johannsen
Department of Computer Science

University of Aarhus∗

June 12, 2007

Abstract

We present a new abstract machine for Abadi and Cardelli’s untyped calculus of ob-
jects. What is special about this semantic artifact (i.e., man-made construct) is that is
mechanically corresponds to both the reduction semantics (i.e., small-step operational
semantics) and the natural semantics (i.e., big-step operational semantics) specified
in Abadi and Cardelli’s monograph. This abstract machine therefore embodies the
soundness of Abadi and Cardelli’s reduction semantics and natural semantics rela-
tive to each other.

To move closer to actual implementations, which use environments rather than
actual substitutions, we then represent object methods as closures and in the same
inter-derivational spirit, we present three new semantic artifacts: a reduction seman-
tics for a version of Abadi and Cardelli’s untyped calculus of objects with explicit
substitutions, an environment-based abstract machine, and a natural semantics (i.e.,
an interpreter) with environments. These three new semantic artifacts mechanically
correspond to each other, and furthermore, they are coherent with the previous ones
since as we show, the two abstract machines are bisimilar. Overall, though, the signif-
icance of these artifacts lies in them not having been designed from scratch and then
proved correct: instead, they were mechanically inter-derived.

∗IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {danvy,cnn}@daimi.au.dk
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1 Introduction

Our goal here is to apply Danvy et al.’s ‘syntactic correspondence’ and ‘functional correspon-
dence’ [3, 8, 12, 21, 37–39], which were developed for the λ-calculus with effects, to Abadi and
Cardelli’s untyped calculus of objects [1, Chapter 6].

1.1 Background and first contribution

The syntactic correspondence between reduction semantics and abstract machines: This cor-
respondence mechanically links a reduction semantics (i.e., a small-step operational semantics
with an explicit representation of reduction contexts [27, 28]) to an abstract machine. In such
a reduction semantics, evaluation is implemented by iterated reduction, and the corresponding
reduction sequence can be depicted as follows:

◦
decompose

!!CC
CC

CC
CC

C
reduction step

// ◦
decompose

!!CC
CC

CC
CC

C
reduction step

// ◦
decompose

!!C
CC

CC
CC

CC

◦
contract

// ◦

plug
=={{{{{{{{{ ◦

contract
// ◦

plug
=={{{{{{{{{ ◦

contract
//

At each step, a non-value term is decomposed into a reduction context and a potential redex. If
the potential redex is an actual one (i.e., if it is not stuck), it is contracted. The contractum is then
plugged into the context, yielding the next term in the reduction sequence.

At each step, the function plug therefore constructs an intermediate term. In the course of
evaluation, this term is then immediately decomposed by the subsequent call to decompose. The
composition of plug and decompose can thus be replaced by a more efficient function, refocus, that
directly goes from redex site to redex site in the reduction sequence:

◦
decompose

!!CC
CC

CC
CC

C ◦
decompose

!!CC
CC

CC
CC

C ◦
decompose

!!C
CC

CC
CC

CC

//____ ◦
contract

// ◦

plug
=={{{{{{{{{

refocus
//________ ◦

contract
// ◦

plug
=={{{{{{{{{

refocus
//________ ◦

contract
//

As shown by Danvy and Nielsen [25], refocus can take the form of a state-transition function.
Therefore, together with contract, the result is an abstract machine. And what is remarkable here
is that the abstract machines obtained by refocusing are not unnatural ones.

In fact, this syntactic correspondence between reduction semantics and abstract machines has
made it possible to obtain a variety of abstract machines for the λ-calculus, be it pure or with
effects. Some of these machines were independently known and some others are new [10, 11].
Symmetrically, it also has made it possible to exhibit the calculi and the reduction strategies (in
the form of reduction semantics) corresponding to pre-existing abstract machines.

The functional correspondence between natural semantics and abstract machines: This cor-
respondence mechanically links a natural semantics (i.e., a big-step operational semantics, as
implemented by an interpreter [32, 40]) to an abstract machine. It is based on the framework
initiated by Reynolds in his seminal article “Definitional Interpreters for Higher-Order Program-
ming Languages” [41]. In a nutshell, successively transforming an interpreter using closure con-
version, transformation into continuation-passing style (CPS), and defunctionalization yields an
abstract machine [4]. And what is remarkable here is that the abstract machines obtained by CPS
transformation and defunctionalization are not unnnatural ones.

In fact, this functional correspondence between natural semantics and abstract machines has
made it possible to obtain a variety of abstract machines for the λ-calculus, be it pure or with
effects. Some of these machines were independently known and some others are new [5, 6, 9].
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Symmetrically, it also has made it possible to exhibit the interpreter (in the form of a natural
semantics) corresponding to pre-existing abstract machines.

Our starting point here: Together, the syntactic and the functional correspondences make it
possible to connect three semantic artifacts (i.e., man-made constructs) soundly: reduction se-
mantics, abstract machines, and natural semantics. Better: the correspondence make it possible
to inter-derive these semantics (or more precisely, their representation as functional programs),
mechanically. This inter-derivation contrasts with defining several semantics, which requires
work, and proving their soundness relative to each other, which requires more work. As Rod
Burstall soberly put it once, “theory should be call by need.” Our goal here is to apply these two
correspondences to Abadi and Cardelli’s untyped calculus of objects.

Abadi and Cardelli’s untyped calculus of objects: Abadi and Cardelli’s monograph “A Theory
of Objects” is a landmark. Nowadays it provides standard course material about object-oriented
languages and programming. Of interest to us here is its Chapter 6 where an untyped calculus
of objects, the ς-calculus, is developed in the same spirit as its predecessor, the λ-calculus [7, 14],
which was initially developed as an untyped calculus of functions. The ς-calculus is specified
with a reduction semantics, for a given reduction order, and with a natural semantics, for a given
evaluation order. A soundness theorem (Proposition 6.2-3, page 64) links the two semantics.
Operational reduction is also shown to be complete with respect to many-step reduction with
a completeness theorem (Theorem 6.2-4, page 65). Soundness matters because it shows that
the interpreter implementing the natural semantics is faithful to the reduction semantics and
vice versa. Completeness matters because it shows that the reductions may be meaningfully re-
ordered, thus enabling practical optimizations such as constant propagation and more generally
partial evaluation [15, 31].

First contribution: Using the syntactic correspondence, we exhibit an abstract machine that
embodies the reduction semantics of the ς-calculus and its reduction strategy. Using the func-
tional correspondence, we exhibit an abstract machine that embodies the natural semantics of
the ς-calculus and its evaluation strategy. The two abstract machines are identical. This abstract
machine, which is new, therefore mediates between the reduction semantics and the natural se-
mantics, and practically confirms the soundness theorem:

reduction
semantics
for the

ς-calculus

syntactic
correspondence

//
abstract
machine
for the

ς-calculus

natural
semantics
for the

ς-calculus

functional
correspondence

oo

1.2 Further background and contributions

Substitutions vs. environments: Practical implementations of the λ-calculus do not use actual
substitutions. Instead, they use ‘environments,’ which are mappings representing delayed substi-
tutions, and represent functions with ‘closures,’ which are pairs of terms and environments [34].
In such practical implementations, an identifier is not a thing to be substituted by a term, but
a thing to be looked up in the current environment. At the turn of the 1990’s [17], Curien pro-
posed a ‘calculus of closures,’ the λρ-calculus, to account for this implementation strategy of
the λ-calculus, and explicit substitutions were born [2, 18, 43]. Both the syntactic and the func-
tional correspondences have been applied to calculi of explicit substitutions, environment-based
abstract machines, and natural semantics using environments [4, 10].
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Abadi and Cardelli’s untyped calculus of objects with methods as closures: We present a
version of the ς-calculus with explicit substitutions, the ςρ-calculus. Instead of performing sub-
stitution when invoking a method, we represent methods as closures. We state three semantic
artifacts for the ςρ-calculus: a natural semantics, an abstract machine, and a reduction semantics.

Contributions: Using the syntactic correspondence, we exhibit an environment-based abstract
machine that embodies the reduction semantics of the ςρ-calculus and its reduction strategy. Us-
ing the functional correspondence, we exhibit an environment-based abstract machine that em-
bodies the natural semantics of the ςρ-calculus and its evaluation strategy. Again, the two abstract
machines are identical, which establishes the soundness of the reduction semantics and of the
natural semantics for the ςρ-calculus relative to each other. We then show that this environment-
based abstract machine and the abstract machine with actual substitutions from Section 1.1 are
bisimilar, which establishes the coherence of the ςρ-calculus with respect to the ς-calculus:

reduction
semantics
for the

ς-calculus

syntactic
correspondence

//
abstract
machine
for the

ς-calculus

bisimilarity

���
�
�
�
�
�
�

natural
semantics
for the

ς-calculus

functional
correspondence

oo

reduction
semantics
for the

ςρ-calculus

syntactic
correspondence

//

abstract
machine
for the

ςρ-calculus

OO�
�
�
�
�
�
�

natural
semantics
for the

ςρ-calculus

functional
correspondence

oo

As for having a completeness theorem for the ςρ-calculus, Melliès’s proof applies mutatis mutan-
dis [1, Theorem 6.2-4, page 65].

1.3 Overview

In Section 2, we remind the reader of the ς-calculus (Section 2.1) and we present its reduction
semantics; through the syntactic correspondence, we obtain the corresponding abstract machine
(Section 2.2). Through the functional correspondence, we then present the natural semantics cor-
responding to this abstract machine (Section 2.3). This natural semantics coincides with Abadi
and Cardelli’s. In Section 3, we introduce the ςρ-calculus, which is a version of the ς-calculus with
explicit substitutions where methods are represented with closures, and we specify it with a nat-
ural semantics that uses environments (Section 3.1); through the functional correspondence, we
obtain the corresponding abstract machine (Section 3.2). Through the syntactic correspondence,
we then present the reduction semantics corresponding to this abstract machine (Section 3.3). In
Section 4.1, we present a mapping from ςρ-closures to ς-terms that performs the actual substitu-
tions that were delayed by the given environments in the given terms. In Section 4.2, using this
mapping, we show that the two abstract machines are bisimilar, which establishes a coherence
between the three semantic artifacts for the ς-calculus and the three semantic artifacts for the
ςρ-calculus. We then review related work in Section 5 and conclude in Section 6.

Prerequisites: We assume the reader to be mildly familiar with Sections 6.1 and 6.2 of Abadi
and Cardelli’s monograph [1] and with the concepts of reduction semantics (BNF of terms and
of reduction contexts, notion of redex, one-step reduction, evaluation as iterated reduction), of
abstract machines (initial, intermediate, and final states, and state-transition functions), of natural
semantics (interpreters as evaluation functions), and of bisimulation. As for the syntactic and
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functional correspondences, the unfamiliar reader can just flip through Danvy’s invited paper at
WRS’04 [20] or through Danvy and Millikin’s recent note about small-step and big-step abstract
machines [23] for what is not self-explanatory.

2 Abadi and Cardelli’s untyped calculus of objects: the ς-calculus

We consider in turn a reduction semantics for the ς-calculus (Section 2.1), the corresponding
abstract machine (Section 2.2), and the corresponding natural semantics (Section 2.3).

2.1 A reduction semantics

BNF of terms and of values: An object is a collection of named attributes. Names are labels and
all labels are distinct within each object. All attributes are methods with a bound variable repre-
senting self (and to be bound to the host object at invocation time) and a body whose execution
yields a result.

(Term) t ::= x | [l = ς(x)t, . . . , l = ς(x)t] | t.l | t.l ⇐ ς(x)t
(Value) v ::= [l = ς(x)t, . . . , l = ς(x)t]

This grammar for terms defines the same language as in Abadi and Cardelli’s book but it uses a
more uniform naming convention.

NB: Occasionally, we index a value by its number of methods, as in vn = [li = ς(xi)ti
i∈{1..n}].

Notion of redex: Methods can be invoked or updated [1, Definition 6.2-1 (1)]. Here is the gram-
mar of potential redexes:

pr ::= v.l | v.l ⇐ ς(x)t

The contraction rules read as follows:

vn.lj � tj{vn/xj}
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

vn.lj ⇐ ς(x)t � [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

A potential redex is an actual one when its side conditions are satisfied, and contraction can take
place. Otherwise, the potential redex is stuck.

BNF of reduction contexts: The following grammar for reduction contexts does not occur in
Abadi and Cardelli’s book but it plausibly reflects the ‘evaluation strategy of the sort commonly
used in programming languages’ [1, Section 6.2.4, page 63]:

(Context) C ::= [ ] | C[[ ].l] | C[[ ].l ⇐ ς(x)t]

Lemma 1 (Unique decomposition). Any term which is not a value can be uniquely decomposed into a
reduction context and a potential redex.

One is then in position to define a decomposition function mapping a term to either a value
or to a reduction context and a potential redex, a contraction function mapping an actual redex
to its contractum, and a plug function mapping a reduction context and a term to a term. Thus
equipped, one can define a one-step reduction function (noted → below) and then an evaluation
function as the iteration of the one-step reduction function (noted →∗ below). We have imple-
mented and copiously tested this reduction semantics (as well as all the other semantic artifacts
of this article) in Standard ML.
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2.2 The corresponding abstract machine

Applying the syntactic correspondence (i.e., calculating the refocus function) yields the following
eval/apply abstract machine [36]:

〈v, C〉 ⇒S 〈C, v〉
〈t.l, C〉 ⇒S 〈t, C[[ ].l]〉

〈t.l ⇐ ς(x)t′, C〉 ⇒S 〈t, C[[ ].l ⇐ ς(x)t′]〉

〈[ ], v 〉 ⇒S v

〈C[[ ].lj ], vn〉 ⇒S 〈tj{vn/xj}, C〉
if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti

i∈{1..n}]

〈C[[ ].lj ⇐ ς(x)t], vn〉 ⇒S 〈C, [lj = ς(x)t, li = ς(xi)ti
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where vn = [li = ς(xi)ti
i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, [ ]〉 and by iterating
⇒S (noted ⇒∗

S below). It halts with a value v if it reaches a configuration 〈[ ], v〉 It becomes stuck
if it reaches either of the configurations 〈C[[ ].l], v〉 or 〈C[[ ].l ⇐ ς(x)t], v〉 and v does not contain
a method with the label l.

The following proposition is a corollary of the soundness of refocusing:

Proposition 1 (Full correctness). For any closed term t, t →∗ v if and only if 〈t, [ ]〉 ⇒∗
S v.

2.3 The corresponding natural semantics

In Section 2.2, the function implementing the abstract machine is in defunctionalized form [24].
Refunctionalizing it [22] yields an evaluation function in continuation-passing style (CPS). Writ-
ing this evaluation function in direct style [19] yields an evaluation function that implements the
following natural semantics:

(INVς)
` t vn ` tj{vn/xj} v

` t.lj  v
if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

(UPDς)
` t vn

` t.lj ⇐ ς(x)t′  [lj = ς(x)t′,
li = ς(xi)ti

i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where
vn = [li = ς(xi)ti

i∈{1..n}]

This natural semantics coincides with Abadi and Cardelli’s [1, Section 6.2.4, page 64].
The following proposition is a corollary of the soundness of the CPS transformation and of

defunctionalization:

Proposition 2 (Full correctness). For any closed term t, 〈t, [ ]〉 ⇒∗
S v if and only if ` t v.

2.4 Summary and conclusion

Using the syntactic correspondence and the functional correspondence, we have mechanically
derived an abstract machine that mediates between Abadi and Cardelli’s reduction semantics
and natural semantics for the ς-calculus and the ‘evaluation strategy of the sort commonly used
in programming languages.’ The two derivations confirm (1) the soundness of the two semantics
relative to each other and (2) the BNF of the reduction contexts we put forward in Section 2.1.
They also pave the way to using closures, which we do next.
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3 Object methods as closures: the ςρ-calculus

We consider in turn a natural semantics for the ς-calculus with environments (Section 3.1), the
corresponding environment-based abstract machine (Section 3.2), and the corresponding reduc-
tion semantics (Section 3.3). The resulting calculus is one of explicit substitutions, the ςρ-calculus.

3.1 A natural semantics

Let us adapt the natural semantics of Section 2.3 to operate with environments. Three changes
take place:

1. the category of values changes to objects where each method holds its own environment
(noted ‘e’):

(Value) v ::= [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]]

2. the environment is defined as an association list:

(Environment) e ::= • | (x, v) · e

and an auxiliary function lookup is used to look up an identifier in the current environment.

3. the evaluation judgment now reads as follows:

e ` t v

Again, we occasionally index a value with the number of its methods.
The two rules from Section 2.3 are then straightforwardly adapted:

(INVςρ)
e ` t vn (xj , vn) · ej ` tj  v

e ` t.lj  v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

(UPDςρ)
e ` t vn

e ` t.lj ⇐ ς(x)t′  v
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]
and
v = [lj = (ς(x)t′)[e],

li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]

We also need the following rule to convert the methods of an object literal to method closures:

(CLOςρ)
e ` [li = ς(xi)ti

i∈{1..n}] [li = (ς(xi)ti)[e]
i∈{1..n}]

In addition, we need the following new rule to look up variables in the current environment:

(VAR-Lςρ)
e ` x v

if lookup (x, e) = v

Alternatively, and as done, e.g., in the Categorical Abstract Machine [16], one could use two rules
to incrementally peel off the environment. For closed terms, x always occurs in e. For open terms,
evaluation would become stuck here.
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3.2 The corresponding abstract machine

To apply the functional correspondence, we successively CPS-transform and defunctionalize the
evaluation function implementing the natural semantics of Section 3.1. The grammar of evalua-
tion contexts now reads as follows:

(Context) C ::= [ ] | C[[ ].l] | C[[ ].l ⇐ (ς(x)t)[e]]

All in all, the functional correspondence yields the following eval/apply abstract machine:

〈x, e, C〉 ⇒E 〈C, v〉
if lookup (x, e) = v

〈[li = ς(xi)ti
i∈{1..n}], e, C〉 ⇒E 〈C, [li = (ς(xi)ti)[e]

i∈{1..n}]〉
〈t.l, e, C〉 ⇒E 〈t, e, C[[ ].l]〉

〈t.l ⇐ ς(x)t′, e, C〉 ⇒E 〈t, e, C[[ ].l ⇐ (ς(x)t′)[e]]〉

〈[ ], v 〉 ⇒E v

〈C[[ ].lj ], vn〉 ⇒E 〈tj , (xj , vn) · ej , C〉
if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

〈C[[ ].lj ⇐ (ς(x)t)[e]], vn〉 ⇒E 〈C, [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]〉

if 1 ≤ j ≤ n, where
vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

This machine evaluates a closed term t by starting in the configuration 〈t, •, [ ]〉 and by iterating
⇒E (noted ⇒∗

E below). It halts with a value v if it reaches a configuration 〈[ ], v〉. It becomes
stuck if it reaches either of the configurations 〈C[[ ].l], v〉 or 〈C[[ ].l ⇐ (ς(x)t)[e]], v〉 and v does
not contain a method with the label l.

The following proposition is a corollary of the soundness of the CPS transformation and of
defunctionalization:

Proposition 3 (Full correctness). For any closed term t, • ` t v if and only if 〈t, •, [ ]〉 ⇒∗
E v.

3.3 The corresponding reduction semantics

BNF of terms, of values, and of closures: The BNF of terms does not change. The BNF of
values is as in Section 3.1. In addition, as in Curien’s λρ-calculus compared to the λ-calculus, a
new syntactic category appears, that of closures:

(Closure) c ::= t[e] | [l = (ς(x)t)[e], . . . , l = (ς(x)t)[e]] | c.l | c.l ⇐ (ς(x)t)[e]

Notion of redex: The two original contraction rules are adapted to closures as follows:

vn.lj � tj [(xj , vn) · ej ]
if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]

i∈{1..n}]

vn.lj ⇐ (ς(x)t)[e] � [lj = (ς(x)t)[e], li = (ς(xi)ti)[ei]
i∈{1..n}\{j}]

if 1 ≤ j ≤ n, where vn = [li = (ς(xi)ti)[ei]
i∈{1..n}]

As could be expected, there is also a contraction rule for looking variables up in the environment:

x[e] � v
if lookup (x, e) = v

7



In addition, we need three contraction rules to propagate the environment inside the terms:

[li = ς(xi)ti
i∈{1..n}][e] � [li = (ς(xi)ti)[e]

i∈{1..n}]

(t.l)[e] � t[e].l

(t.l ⇐ ς(x)t′)[e] � t[e].l ⇐ (ς(x)t′)[e]

The grammar of potential redexes therefore reads as follows:

pr ::= v.l | v.l ⇐ (ς(x)t)[e] |
x[e] | [l = ς(x)t, . . . , l = ς(x)t][e] | (t.l)[e] | (t.l ⇐ ς(x)t′)[e]

BNF of reduction contexts: The grammar for reduction contexts is the same as in Section 3.2.

Lemma 2 (Unique decomposition). Any closure which is not a value can be uniquely decomposed into
a reduction context and a potential redex.

One is then in position to define a decomposition function mapping a closure to either a value
or to a reduction context and a potential redex, a contraction function mapping an actual redex to
its contractum, and a plug function mapping a reduction context and a closure to a closure. Thus
equipped, one can define a one-step reduction function (noted → below) and then an evaluation
function as the iteration of the one-step reduction function (noted →∗ below).

Applying the syntactic correspondence yields the abstract machine from Section 3.2.
The following proposition is a corollary of the soundness of refocusing:

Proposition 4 (Full correctness). For any closed term t, 〈t, •, [ ]〉 ⇒∗
E v if and only if t[•] →∗ v.

3.4 Summary and conclusion

On the ground that practical implementations do not use actual substitutions, we have presented
an analogue of the ς-calculus, the ςρ-calculus, that uses explicit substitutions. We have inter-
derived three semantics artifacts for the ςρ-calculus: a natural semantics, an abstract machine,
and a reduction semantics. These specifications are more suitable to support the formalization of
a compiler since programs do not change (through substitution) in the course of execution. One
is then free to change their representation, e.g., by compiling them.

On the other hand, environments open the issue of space leaks since some of their bind-
ings may become obsolete but can only be recycled when the environment itself it recycled. In
functional programming, “flat” closures [13] (or again “display” closures [26]) are used instead:
closures whose environment is restricted to the free variables of the term in the closure, which
can be computed at compile time. The ς-calculus, however, is too dynamic in general for free
variables to be computable at compile time: they need to be computed at run time. One could
thus consider another possibility: to represent environments as a lightweight dictionary where
each variable only occurs once.
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4 Coherence between the ς-calculus and the ςρ-calculus

We establish the coherence between the ς-calculus and the ςρ-calculus by showing that their
abstract machines are bisimilar (Section 4.2). To this end, we first introduce substitution functions
mapping constructs from the ςρ-calculus to the ς-calculus (Section 4.1).

4.1 From closures to terms

We define by simultaneous induction three substitution functions that respectively map ςρ-values
to ς-values, ςρ method closures to ς-methods, and ςρ-terms to ς-terms:

subV([li = (ς(xi)ti)[ei]
i∈{1..n}]) = [li = subM(ς(xi)ti, ei)

i∈{1..n}]

subM(ς(x)t, e) = ς(x)t{subV(vi)/xi} ∀xi ∈ FV (t) \ {x},
where lookup (xi, e) = vi

subT(t, e) = t{subV(vi)/xi} ∀xi ∈ FV (t),
where lookup (xi, e) = vi

Here, we have extended the notation for substitutions to account for the simultaneous substi-
tution of multiple values for multiple variables. FV (t) denotes the set of free variables in t, as
defined by Abadi and Cardelli [1, page 61]

Let us also define a substitution function subC that maps ςρ-contexts to ς-contexts:

subC([ ]) = [ ]
subC(C[[ ].l]) = (subC(C))[[ ].l]

subC(C[[ ].l ⇐ (ς(x)t)[e]]) = (subC(C))[[ ].l ⇐ ς(x)subM(ς(x)t, e)]

4.2 A bisimulation between the two abstract machines

Definition 1. Let STςρ denote the set of states of the abstract machine for the ςρ-calculus, and STς denote
the set of states of the abstract machine for the ς-calculus. The substitution relation 'S : STςρ × STς is
defined as follows:

〈t, e, C〉 'S 〈subT(t, e), subC(C)〉
〈C, v〉 'S 〈subC(C), subV(v)〉

v 'S subV(v)

Theorem 1. The abstract machines from Sections 2.2 and 3.2 are strongly bisimilar with respect to 'S .

Proof. By co-induction on the execution of the abstract machine for the ςρ-calculus [30].
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5 Related work

The ς-calculus has already proved a fruitful playground. For example, Kesner and López [33]
have defined a set of contraction rules for the ς-calculus based on explicit substitutions and flat
closures. Due to the dynamic nature of the ς-calculus, and as already pointed out in Section 3.4,
managing flat closures requires the evaluator to recompute sets of free variables dynamically
during evaluation. In contrast, we opted for deep closures here. For another example, Gordon,
Hankin and Lassen [29] have considered an imperative version of the ς-calculus extended with
λ-terms. They have defined a natural semantics based on explicit substitutions for their extended
calculus, and proved it equivalent to substitution-based big-step and small-step semantics. In ad-
dition, they also provided a compiler to and a decompiler from a ZINC-like virtual machine [35].
Our approach is more inter-derivational and mechanical.

6 Conclusion and issues

We have presented an abstract machine that mediates between Abadi and Cardelli’s reduction
semantics and natural semantics for the ς-calculus. We have then presented a version of the
ς-calculus with explicit substitutions, the ςρ-calculus, and inter-derived a natural semantics, an
abstract machine, and a reduction semantics for it. By construction, each of these three semantic
artifacts is sound with respect to the two others. We have also shown that the abstract machines
for the ς-calculus and for the ςρ-calculus are bisimilar, thereby establishing a coherence between
the ς-calculus and the ςρ-calculus.

In the conclusion of “A Syntactic Correspondence between Context-Sensitive Calculi and Ab-
stract Machines” [11], Biernacka and Danvy listed 16 distinct, independently published specifi-
cations of the control operator call/cc, and candidly asked whether all these artifacts define the
same call/cc. It is the authors’ belief that inter-deriving these artifacts using correct transforma-
tions puts one in position to answer this question.

As a side benefit, the nature of each inter-derivation makes it possible to pinpoint the specific
goodness of each of the semantic artifacts. For example, a calculus in the form of a reduction se-
mantics makes it possible to state equations to reason about programs; an abstract machine gives
one some idea about the implementation requirements of a run-time system; and an interpreter
in the form of a natural semantics is well suited for prototyping. We have illustrated these issues
here with Abadi and Cardelli’s untyped calculus of objects.
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discussions and for the description of his completeness proof of the ς-calculus.

This work is partly supported by the Danish Natural Science Research Council, Grant no. 21-
03-0545.

10



References

[1] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

[2] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substi-
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