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Abstract

We present the left inverse of Reynolds’s defunctionalization and we show its rel-
evance to programming and to programming languages. We propose two meth-
ods to transform a program that is almost in defunctionalized form into one that
is actually in defunctionalized form, and we illustrate them with a recognizer for
Dyck words and with Dijkstra’s shunting-yard algorithm.
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1 Introduction

This article is a continuation of Danvy and Nielsen’s earlier article “Defunctionalization at
Work” [33], that outlined the extent to which Reynolds’s defunctionalization [59] is perva-
sive in writing and transforming programs, and in specifying and implementing program-
ming languages. Our goal here is to show that the left inverse of defunctionalization, i.e.,
refunctionalization, is also relevant to programming and to programming languages.

1.1 Defunctionalization: origin, motivation, and applications

Reynolds introduced defunctionalization to specify higher-order definitional interpreters us-
ing first-order means [59]. He presented it as a mere programming technique, and, except for
deriving a first-order semantics in his textbook on programming languages [62, Section 12.4],
he never used it again [61]. Since then, defunctionalization has been chiefly used in com-
pilers [15, 17], program transformers [68], and partial evaluators [14, 20]. It has also been
independently discovered in the context of logic programming [70], and subsequently it has
been formalized in a typed setting [5, 6, 56, 58]. Today it is being used for programming the
web [44] and for modeling aspect-oriented programming [39].

Over the last few years [1,10,25,53,54], Danvy and his students have retraced Reynolds’s
steps from higher-order to first-order interpreter by closure conversion (to make the data
flow first order), transformation into Continuation-Passing Style (to sequentialize the control
flow), and defunctionalization (to make the control flow first order). They have identified
not only that a defunctionalized, CPS-transformed, and closure-converted interpreter has
the structure of an abstract machine, but also that a large number of independently designed
abstract machines for variants of the λ-calculus are the defunctionalized, CPS-transformed,
and closure-converted counterpart of a compositional interpreter [2–4, 7, 11, 24, 32, 64], in-
cluding Felleisen et al.’s CEK machine, which was actually designed as such [42, page 196].
A practical byproduct of this observation is that evaluation contexts—which are notoriously
non-trivial to get right—can be obtained mechanically by defunctionalizing the continua-
tions of a compositional interpreter.

1.2 Refunctionalization

Not all abstract machines, however, are in defunctionalized form. It is our thesis here [25,
54] that a number of them can be restated to be so. The goal of this article is to propose
two techniques—disentangling and merging apply functions—to restate programs that are
almost in defunctionalized form into ones that actually are in defunctionalized form (see
Section 3). These programs can then be refunctionalized into a higher-order counterpart. In
particular, it is our observation that refunctionalizing abstract machines always gives rise to
a continuation-passing program.

Of course, not all defunctionalized programs and not all refunctionalized programs are
interesting independently of each other, but still some of them are. We mentioned above the
case of abstract machines for the λ-calculus. Another example is the samefringe problem:
McCarthy’s famous simple solution [52] and, e.g., Henderson and Morris’s iterative solu-
tion based on lazy lists [47] are the defunctionalized / refunctionalized counterparts of each
other [13, Section 5]. Another example is the reverse function: Hughes’s efficient reverse
function based on curried list constructors [48] and the usual accumulator-based fast reverse
function are the defunctionalized / refunctionalized counterparts of each other [33]. More
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examples are available elsewhere [25, 33, 43, 53, 54] as well as in Sections 4 and 5, but let us
mention a last one that pertains to refunctionalization. On the basis that continuations are
a functional representation of control in a continuation-passing evaluation function, Landin
is not listed among the co-discoverers of continuations [60]. Yet his SECD machine is in de-
functionalized form and the defunctionalized counterpart of a compositional continuation-
passing evaluation function [24]. Furthermore, the J operator captures the current dump,
i.e., in refunctionalized form, the continuation of the caller [32]. This observation has led us
to suggest that Landin’s name be added to the list of co-discoverers of continuations [32, Sec-
tion 8].

1.3 Overview

We first review defunctionalization and its left inverse, refunctionalization (Section 2). We
then propose two steps for restating programs from almost being in defunctionalized form
to actually being in defunctionalized form: disentangling and merging apply functions (Sec-
tion 3), and we illustrate these techniques with two parsing examples: recognizing Dyck
words (Section 4) and Dijkstra’s shunting-yard algorithm (Section 5). After reviewing other
applications of refunctionalization (Section 6), we conclude (Section 7).

Prerequisites: We expect a basic familiarity with Standard ML,1 with continuation-passing
style (CPS) [29, 57, 67], and with the left inverse of the CPS transformation [31]. The presen-
tation of defunctionalization below should be self-contained, but the reader should not deny
himself the pleasure of re-reading “Definitional Interpreters” [59].

2 Refunctionalization: the left inverse of defunctionalization

In his study of definitional interpreters for programming languages [59], Reynolds drew a
distinction between those that use higher-order functions, and thus possibly depend on the
scoping rules of their metalanguage, and those that use only first-order data structures, and
thus are independent of the scoping rules of their metalanguage. He introduced defunction-
alization to transform programs that use higher-order functions into ones that use first-order
data structures. Refunctionalization is the inverse transformation. It transforms programs
that use first-order data structures into ones that use higher-order functions.

2.1 Defunctionalization

Operationally, defunctionalization replaces a function type with a polynomial (sum of prod-
ucts) data type, and introduces an apply function that interprets the data type given the
argument values of the original function type. It replaces abstractions creating elements of
the function type with applications of the data-type constructors. It replaces applications of
values of the function type to arguments with an application of the apply function to a value
of the first-order type and the same arguments. The defunctionalization algorithm can be
informally sketched as follows.

The algorithm assumes that one has identified a target set of function abstractions. In a
typed language, these abstractions minimally all have the same type. Reynolds identified
sets of abstractions by their “types” according to the semantic domains of a definitional

1And with the option data type: datatype ’a option = NONE | SOME of ’a.
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interpreter. Later work [5, 6, 33, 56, 58] considered all functions of a given type, or sets of
functions determined by a control-flow analysis [66]. In any case, the set has to be closed
under data flow to call sites: if a function in the set can be called from a call site in the
program, then all functions that can be called from that call site are in the set.

We assume the identification of a set of n abstractions {λx.Mi | 1 ≤ i ≤ n} all of type
τ → τ ′, and closed under data flow to call sites.2 Each abstraction has a (possibly empty) set
of mi typed free variables {xi

j : τi
j | 1 ≤ j ≤ mi}, not including variables that are bound in

the top-level environment. Defunctionalization consists of performing all of the following
steps:

1. Introduce a first-order data type: There are n data-type constructors Ci for 1 ≤ i ≤ n.
The constructors uniquely identify the abstractions being defunctionalized, and
each variant of the data type represents one of the abstractions. There are thus
n variants and variant i represents the values of the variables occurring free in
abstraction i:

datatype τ arrow τ′ = C1 of τ1
1× . . .× τ1

m1

| . . .

| Cn of τn
1 × . . .× τn

mn

Introduce an apply function: The apply function dispatches on the data-type construc-
tor to determine which abstraction is being applied and to bind its free variables:

fun apply(f, x) = case f of
C1(x

1
1, . . . , x

1
m1

) ⇒ M1

| . . .

| Cn(xn
1 , . . . , xn

mn
) ⇒ Mn

The apply function may be curried or not; here, it is not.

2. Replace abstractions: An abstraction λx.Mi with free variables {xi
j : τi

j | 1 ≤ j ≤ mi} is
replaced with an application of the data-type constructor, Ci(x

i
1, . . . , x

i
mi

).
Replace applications: Any call site f x that may be an application of one of the ab-

stractions is replaced with a call to the apply function, apply(f, x).

2.2 Example: from higher-order to first-order environments

An environment is a mapping from identifiers to values that minimally satisfies the ML
signature displayed in Figure 1. To satisfy this signature, a module should define a repre-
sentation of identifiers (e.g., as strings), a type of environments that is polymorphic with
respect to the values denoted by the identifiers, a representation of an empty environment,
a function extend to extend a given environment with a given identifier and a given value,
a function lookup to retrieve the value associated with a given identifier in a given environ-
ment, and an exception UNBOUND to be raised by lookup if the given identifier is not in the
domain of the given environment.

Environments are traditionally implemented either as functions from identifiers to val-
ues or as association lists. In this section we show that defunctionalizing the former imple-
mentation yields the latter one.

Here is a functional implementation:
2For simplicity we consider single-argument functions. Without loss of generality, defunctionalization and

refunctionalization can be applied to programs with multiple-argument, curried or uncurried, functions as well.
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signature ENVIRONMENT
= sig

type ide
type ’a env
exception UNBOUND of ide
val empty : ’a env
val extend : ide * ’a * ’a env -> ’a env
val lookup : ide * ’a env -> ’a

end

Figure 1: An environment signature

structure Higher_Order_Environment :> ENVIRONMENT
= struct

type ide = string
type ’a env = ide -> ’a (* the environment as a function *)
exception UNBOUND of ide

val empty = fn y => raise (UNBOUND y)

fun extend (x, v, e) = fn y => if x = y then v else e y

fun lookup (y, e) = e y
end

Here, an environment is a function mapping an identifier to a value or raising the exception
UNBOUND. Looking up an identifier in an environment is achieved by applying this environ-
ment to this identifier.

Let us defunctionalize this representation of environments. In Standard ML, the opaque
signature ascription (:>) prevents this function type from being used outside of this struc-
ture, and therefore we can proceed independently of the use of this structure elsewhere in a
program.

Only two abstractions give rise to inhabitants of the function type ide -> ’a:

• fn y => raise (UNBOUND y),
which has no free variables (we do not consider the exception name UNBOUND to be free
because it will be lexically visible in the apply function), and

• fn y => if x = y then v else e y,
which has three free variables: x of type ide, v of type ’a, and e of type ide -> ’a.

Let us follow the steps outlined in Section 2.1:

1. Introduce a first-order data type: The function type ide -> ’a is replaced by the fol-
lowing new data type:

datatype ’a ide_arrow_alpha = C1
| C2 of ide * ’a * ’a ide_arrow_alpha

This data type is isomorphic to (ide * ’a) list, which we use in the sequel.
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Introduce an apply function: The apply function dispatches on the constructors of the
first-order data type ([] and ::), and interprets each of them as the body of the
corresponding higher-order function:

fun apply ([], y)
= raise UNBOUND y

| apply ((x, v) :: e, y)
= if x = y then v else e y

2. Replace abstractions: The two abstractions are replaced with [] and (x, v) :: e re-
spectively.

Replace applications: The two applications, e x in the original lookup function and
e y in the apply function just above, are respectively replaced with apply (e, x)

and apply (e, y).

The result of defunctionalization is the traditional first-order representation of environments
as an association list:

structure First_Order_Environment :> ENVIRONMENT
= struct

type ide = string
type ’a env = (ide * ’a) list (* the environment as an association list *)
exception UNBOUND of ide

val empty = []

fun extend (x, v, e) = (x, v) :: e

fun apply ([], y)
= raise (UNBOUND y)

| apply ((x, v) :: e, y)
= if x = y then v else apply (e, y)

fun lookup (y, e) = apply (e, y)
end

2.3 Refunctionalization

Refunctionalization is the left inverse of defunctionalization, mapping data types and apply
functions in the image of defunctionalization back to higher-order functions. Danvy and
Nielsen were the first to consider an inverse of defunctionalization [33].

A program with a first-order data structure and an apply function dispatching on it is
in the image of Reynolds’s defunctionalization algorithm if this apply function is the sole
point of consumption of values of the data type. More generally, if there is only one case
dispatch on the data type, then the dispatch can be abstracted into an apply function whose
arguments are the free variables of the entire case expression and whose return type is the
type of the case expression, as described in Section 3.1.

Once a data type and an apply function are recognized as being in defunctionalized form,
refunctionalization proceeds by reversing the steps of defunctionalization. A data type δ

with an apply function of type δ × τ → τ ′ can be refunctionalized into the functional type
τ → τ ′. Refunctionalization consists of performing all of the following steps:
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1. Replace applications of the apply function: A call to the apply function, apply(f, x),
is replaced with the call to the applied function, f x.

Replace data-type constructor applications: Data-type constructor applications are re-
placed with abstractions based on the apply function. We assume an apply func-
tion:

fun apply(f, x) = case f of
C1(x

1
1, . . . , x

1
m1

) ⇒ M1

| . . .

| Cn(xn
1 , . . . , xn

mn
) ⇒ Mn

Each constructor application Ci(v1, . . . , vmi
) of Ci applied to values vj for 1 ≤ j ≤

mi is replaced by (λx.Mi){v1/xi
1, . . . , vmi

/xi
mi

}, the capture-avoiding substitution
of the constructor arguments for the free variables in the abstraction represented
by the apply function. If a constructor is applied to non-values, we insert let-
bindings for the non-value arguments before performing this step.

2. Remove the apply function: Since the apply function is never called, its definition is
no longer needed.

Remove the data-type definition: Since the constructors of the data type are never
used, and the only case dispatch on them (the apply function) has been removed,
the data-type definition is no longer needed.

Refunctionalization is akin to the Scott-encoding [69] of a data type, i.e., the functional rep-
resentation of a data type as its case-dispatch function.

2.4 Example: from first-order to higher-order environments

In this section, symmetrically to Section 2.2, we show how refunctionalizing a traditional
first-order implementation of an environment as an association list yields a traditional higher-
order implementation of an environment as a function.

Here is a traditional first-order implementation using an association list:

structure First_Order_Environment’ :> ENVIRONMENT
= struct

type ide = string
type ’a env = (ide * ’a) list
exception UNBOUND of ide

val empty = []

fun extend (x, v, e) = (x, v) :: e

fun lookup (y, e)
= let fun visit []

= raise (UNBOUND y)
| visit ((x, v) :: e)
= if x = y
then v
else visit e

in visit e
end

end
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Here, an environment is an association list, i.e., a list of pairs of identifiers and values. An
empty environment is represented as the empty list and extending a given environment with
a given identifier and a given value is achieved by pairing them and consing the pair on the
given environment. Looking up an identifier in an environment is achieved by traversing
the association list in search for the first matching identifier and raising the exception UNBOUND

if none does.
Let us refunctionalize this representation of environments, which we can do locally be-

cause of the opaque signature ascription (:>) that isolates the definition of this structure from
its uses. We identify the association list as a first-order data structure with a sole point of con-
sumption, namely the visit function. To make visit fit the pattern that the apply function
is explicitly applied to two arguments, we first apply the first step of lambda-lifting [35, 49]
to visit, i.e., we make it scope-insensitive by passing it explicitly its free variable y:

fun lookup (y, e)
= let fun visit ([], y)

= raise (UNBOUND y)
| visit ((x, v) :: e, y)
= if x = y
then v
else visit (e, y)

in visit (e, y)
end

(The second step of lambda-lifting would be to make the definition of visit float to the same
lexical level as that of lookup, thereby obtaining recursive equations.)

With that, we follow the steps outlined in Section 2.3:

1. Replace applications of the apply function: We replace calls to the apply function,
visit (e, y), with calls to the applied function, e y.

Replace data-type constructor applications: We replace data-type constructor appli-
cations with abstractions based on the apply function:

• [] is replaced by fn y => raise (UNBOUND y), and
• (x, v) :: e is replaced by fn y => if x = y then v else e y.

2. We then remove the definition of visit.

The result of refunctionalization is the traditional higher-order representation of environ-
ments as a function mapping identifiers to values.

3 Towards putting programs in defunctionalized form

The hallmark of a defunctionalized data type and an apply function is that the apply func-
tion is the single point of consumption for the data type (this characterization is due to
Danvy and Nielsen [33]). In this section, we present two simple transformations for pro-
grams that almost, but don’t quite, have this form: disentangling (Section 3.1) abstracts data-
type consumptions into functions, and merging (Section 3.2) combines multiple candidate
apply functions for the same data type when possible. Both transformations are illustrated
in Sections 4 and 5.
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3.1 Disentangling

A program can fail to be in the image of defunctionalization if there are multiple points
of consumption for elements of a data type or if the single point of consumption is not in a
separate function. This situation can occur, for example, when a program is defunctionalized
and then the apply function is inlined.

‘Disentangling’ consists of abstracting each case expression dispatching on a candidate
data type into a separate function. The arguments of the function are the free variables of
the case expression and their types are the types of the free variables. The return type is the
type of the case expression.

Disentangling was first used for the transition function of the SECD machine [24]. Disen-
tangling the transition function of an abstract machine consists of splitting single transitions
that dispatch simultaneously on multiple components of the state into multiple serial transi-
tions that dispatch separately on single components of the state. We illustrate this technique
in Figure 3 of Section 4 for a push-down automaton recognizing Dyck words.

3.2 Merging apply functions

After disentangling, every case dispatch on a data type is abstracted into a function which
is a candidate apply function. If there is a single apply function, then the program can be
refunctionalized. If there are multiple apply functions, then they can be merged under some
conditions.

A technique that frequently works for abstract machines is to merge the apply functions
using the universal property of sum types. Specifically, two functions apply1 : δ × τ1 → τ ′

and apply2 : δ × τ2 → τ ′ can be merged into a single function apply : δ × (τ1 + τ2) → τ ′

that performs a case dispatch on its second argument. To reflect this merging, calls to apply1
and apply2 are adjusted to call apply with their second argument injected into the appropriate
summand. (Dually, we can also merge the co-domains of the apply functions.)

Merging apply functions was first used to refunctionalize Burge’s version of the SECD
machine with the J operator [32]. This technique works when the possible apply functions
all have the same return types. In abstract machines this is usually the case because the
transition functions are all tail-recursive and thus share the same answer type, as illustrated
in Figure 4 of Section 4 for a push-down automaton recognizing Dyck words.

4 A worked-out example: recognizing Dyck words

Dyck words are well-balanced words of left and right parentheses, which we represent in
ML as follows:

datatype parenthesis = L | R

type word = parenthesis list

For example, the list [L, L, R, L, R, R] represents a Dyck word whereas the list [R, L]

does not.
Dyck words are classically recognized with an abstract machine implementing a push-

down automaton. This state-transition system operates iteratively over a given list and a
counter reflecting the number of open parentheses seen in the list so far:

8



datatype nat = ZERO | SUCC of nat

The machine starts with a given word and a zero counter. At each iteration, one of the
following transitions takes place:

• if the list of parentheses is empty and the counter is zero, a final, accepting state is
reached;

• if the list of parentheses is empty and the counter is positive, a final, non-accepting
state is reached;

• if the first parenthesis is a left one, the tail of the list is taken and the counter is incre-
mented;

• if the first parenthesis is a right one and if the counter is zero, a final, non-accepting
state is reached;

• if the first parenthesis is a right one and if the counter is positive, the tail of the list is
taken and the counter is decremented.

Figure 2 displays an ML program implementing this transition system.

(* recognize : word -> bool *)

fun recognize ps

= let (* run : word * nat -> bool *)

fun run ( [], ZERO ) = true

| run ( [], SUCC c) = false

| run (L :: ps, c ) = run (ps, SUCC c)

| run (R :: ps, ZERO ) = false

| run (R :: ps, SUCC c) = run (ps, c )

in run (ps, ZERO)

end

Figure 2: A Dyck-words recognizer in Standard ML

The goal of this section is to refunctionalize this Dyck-words recognizer with respect to
the counter. Graphically, we proceed as follows:

Figure
2

dis-
entangle

// Figure
3

merge

apply
functions

// Figure
4

refunc-
tionalize

// Figure
5

transform
to

direct style

// Figure
6

In Figure 2, both parameters of run serve as induction variables: run dispatches both over the
list of parentheses and over the counter. We therefore disentangle run by introducing two
specialized, mutually recursive versions: one with respect to an empty word (run nil) and
the other with respect to a right parenthesis (run par). The resulting disentangled program
is displayed in Figure 3: run solely dispatches over the list of parentheses, and run nil and
run par solely dispatch over the counter.

The transition system displayed in Figure 3 operates in lockstep with the original transi-
tion system,3 but it is not in defunctionalized form with respect to the counter: the counter

3The new machine takes one or two steps for each step in the original one.
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fun recognize_disentangled ps

= let (* run : word * nat -> bool *)

fun run ( [], c) = run_nil c

| run (L :: ps, c) = run (ps, SUCC c)

| run (R :: ps, c) = run_par (c, ps)

(* run_nil : nat -> bool *)

and run_nil ZERO = true

| run_nil (SUCC n) = false

(* run_par : nat * word -> bool *)

and run_par (ZERO , ps) = false

| run_par (SUCC c, ps) = run (ps, c)

in run (ps, ZERO)

end

Figure 3: Dyck-words recognizer: disentangled version

fun recognize_merged ps

= let (* run : word * nat -> bool *)

fun run ( [], c) = run_aux (c, NONE)

| run (L :: ps, c) = run (ps, SUCC c)

| run (R :: ps, c) = run_aux (c, SOME ps)

(* run_aux : nat * word option -> bool *)

and run_aux (ZERO , NONE ) = true

| run_aux (SUCC c, NONE ) = false

| run_aux (ZERO , SOME ps) = false

| run_aux (SUCC c, SOME ps) = run (ps, c)

in run (ps, ZERO)

end

Figure 4: Dyck-words recognizer: merged version

fun recognize_refunctionalized ps

= let (* run : word * (word option -> bool) -> bool *)

fun run ( [], c) = c NONE

| run (L :: ps, c) = run (ps, fn NONE => false

| SOME ps => run (ps, c))

| run (R :: ps, c) = c (SOME ps)

in run (ps, fn NONE => true

| SOME ps => false)

end

Figure 5: Dyck-words recognizer: refunctionalized version

fun recognize_in_direct_style ps

= callcc (fn exit => let (* run : word -> word option *)

fun run [] = NONE

| run (L :: ps) = (case run ps

of NONE => throw exit false

| SOME ps => run ps)

| run (R :: ps) = SOME ps

in case run ps

of NONE => true

| SOME ps => false

end)

Figure 6: Dyck-words recognizer: refunctionalized version expressed in direct style
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is dispatched upon both in run nil : nat -> bool and in run par : nat * word -> bool. We
therefore merge run nil and run par into a function run aux : nat * word option -> bool.
The resulting merged program is displayed in Figure 4. It is in defunctionalized form with
respect to the data type nat and its apply function run aux.

The refunctionalized counterpart of the merged program in Figure 4 is displayed in Fig-
ure 5. Its function word option -> bool is the refunctionalized counterpart of the data type
nat and the apply function run aux. This program is in CPS, and except for errors, it uses its
continuations linearly and in order. Its direct-style counterpart is displayed in Figure 6. It
is a recursive program where not all calls are in tail position. As an aid to the eye, we have
shaded the non-tail calls in grey. Errors are handled with callcc and throw [31], though of
course using an exception would do as well here.

The counter that was explicit in the original recognizer (Figure 2), the disentangled one
(Figure 3), the merged one (Figure 4), and the refunctionalized one (Figure 5) is now implicit
in the direct-style program (Figure 6). In other words, the original recognizer was imple-
mented by a tail-recursive push-down automaton that managed an explicit data stack—
namely the counter. This explicit data stack is now implicit in the control stack of the lan-
guage processor for the recursive program in direct style.

5 A worked-out example: Dijkstra’s shunting-yard algorithm

The shunting-yard algorithm is used to parse an arithmetic expression with operator prece-
dence from infix form (as a stream of tokens: literals, operators, and parentheses) to postfix
form (again, as a stream of tokens) or to an abstract-syntax tree. It is named for the railroad
shunting yard because it uses a pair of tracks (stacks): one to store operand subtrees and one
to store operators until all the operands are complete.

This bottom-up parser is attributed to Dijkstra,4 and was developed for and used in one
of the first Algol 60 compilers. It is still used today to process binary expressions in the GCC
parser for C and for Objective-C, for example.

The goal of this section is to refunctionalize a shunting-yard parser with respect to its
stack of operators. The version we consider here maps a stream of tokens (integers, addition
operator, multiplication operator, left parenthesis, or right parenthesis) to an abstract-syntax
tree:

datatype token = LIT of int | ADD | MUL | L_P | R_P

datatype expression = INT of int
| PLUS of expression * expression
| TIMES of expression * expression

For example, the ML program implementing the algorithm maps the list of tokens

[LIT 10, MUL, LIT 20, ADD, LIT 30, MUL, L_P, LIT 40, ADD, LIT 50, R_P]

into the abstract-syntax tree

PLUS (TIMES (INT 10, INT 20), TIMES (INT 30, PLUS (INT 40, INT 50)))

4“In the summer of 1959 I had discovered how to implement subroutines that could call themselves, by the
end of the year I saw how to use a stack for the evaluation of expressions and how to translate expressions from
the usual infix notation into ‘reverse Polish’ (only we did not call it that).” [38]
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that represents 10 × 20 + 30 × (40 + 50). Using ++ and ** as ML infix notation for PLUS and
TIMES, the result reads ((INT 10) ** (INT 20)) ++ ((INT 30) ** ((INT 40) ++ (INT 50))).
We make use of this infix notation in Figures 7, 8, and 9 to construct lists of expressions.

The algorithm is defined with an abstract machine implementing a pushdown automa-
ton with two stacks. This state-transition system operates iteratively over a stack of subtrees
and a stack of operators (XADD and XMUL) and parenthetical separators (XPAR):

datatype operator = XADD | XMUL | XPAR

The machine starts with a given list of tokens, an empty stack of subtrees, and an empty
stack of operators. At each iteration, one of the following transitions takes place:

• if the first token of the input list is a literal (LIT n), the tail of the list is taken and the
corresponding expression (INT n) is pushed on the stack of subtrees;

• if the first token of the input list is an operator x (ADD or MUL), then

– if the stack of operators is empty, the operator on top of this stack is a parenthesis
(XPAR), or its precedence is strictly lower than that of x, the tail of the input list is
taken and the operator corresponding to x (XADD or XMUL) is pushed on the stack of
operators;

– otherwise, the precedence of the operator on top of the stack is higher than or
the same as that of x; this operator is popped off the stack, two expressions are
popped off the stack of subtrees, the corresponding expression combining the
popped operator and the popped expressions is pushed back, and the operator
corresponding to x is pushed on the stack;

• if the first token is a left parenthesis (L P), the tail of the input list is taken and the
corresponding operator (XPAR) is pushed on the stack;

• if the first token is a right parenthesis (R P), operators are popped off the stack (and for
each of them, two expressions are popped off the stack of subtrees and the correspond-
ing expression combining the popped operator and the popped expressions is pushed
back) until a parenthesis is met on the stack of operators; the tail of the input list is
taken and the parenthesis is popped from the stack of operators;

• otherwise, a final, non-accepting state is reached.

When the list of tokens is exhausted, the stack of operators is iteratively emptied in concert
with the stack of subtrees as described above. The final result is the expression on top of the
stack of subtrees.

Figure 7 displays a program written in Standard ML that implements the shunting-yard
algorithm. We proceed as follows to refunctionalize it with respect to the stack of operators:

Figure 7
disentangle

// Figure 8

refunctionalize
and

transform to
direct style

// Figure 9

As an ML program, the transition system in Figure 7 is difficult to read because several of
the parameters of run serve as induction variables: run dispatches both over the list of tokens

12



fun parse ts = let

(* run : token list * expression list * operator list -> expression option *)

fun run ( ts as [], e :: [], []) = SOME e

| run ( ts as [], e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run ( ts as [], e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run ( LIT n :: ts, es, xs) = run (ts, INT n :: es, xs)

| run ( ADD :: ts, es, []) = run (ts, es, XADD :: [])

| run ( ADD :: ts, es, xs as XPAR :: _) = run (ts, es, XADD :: xs)

| run (ts as ADD :: _, e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run (ts as ADD :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run ( MUL :: ts, es, []) = run (ts, es, XMUL :: [])

| run ( MUL :: ts, es, xs as XPAR :: _) = run (ts, es, XMUL :: xs)

| run ( MUL :: ts, es, xs as XADD :: _) = run (ts, es, XMUL :: xs)

| run (ts as MUL :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run ( L_P :: ts, es, xs) = run (ts, es, XPAR :: xs)

| run ( R_P :: ts, es, XPAR :: xs) = run (ts, es, xs)

| run (ts as R_P :: _, e2 :: e1 :: es, XADD :: xs) = run (ts, e1 ++ e2 :: es, xs)

| run (ts as R_P :: _, e2 :: e1 :: es, XMUL :: xs) = run (ts, e1 ** e2 :: es, xs)

| run ( ts, es, xs) = NONE

in run (ts, [], [])

end

Figure 7: Dijkstra’s shunting-yard algorithm in ML

fun parse ts = let

fun run_nil ( [], e :: []) = SOME e

| run_nil (LIT n :: ts, es) = run_nil (ts, INT n :: es)

| run_nil ( ADD :: ts, es) = run_add (ts, es, [])

| run_nil ( MUL :: ts, es) = run_mul (ts, es, [])

| run_nil ( L_P :: ts, es) = run_par (ts, es, [])

| run_nil ( ts, es) = NONE

and run_add ( ts as [], e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add ( LIT n :: ts, es, xs) = run_add (ts, INT n :: es, xs)

| run_add (ts as ADD :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add ( MUL :: ts, es, xs) = run_mul (ts, es, XADD :: xs)

| run_add ( L_P :: ts, es, xs) = run_par (ts, es, XADD :: xs)

| run_add (ts as R_P :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ++ e2 :: es, xs)

| run_add ( ts, es, xs) = NONE

and run_mul ( ts as [], e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul ( LIT n :: ts, es, xs) = run_mul (ts, INT n :: es, xs)

| run_mul (ts as ADD :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul (ts as MUL :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul ( L_P :: ts, es, xs) = run_par (ts, es, XMUL :: xs)

| run_mul (ts as R_P :: _, e2 :: e1 :: es, xs) = run_aux (ts, e1 ** e2 :: es, xs)

| run_mul ( ts, es, xs) = NONE

and run_par ( LIT n :: ts, es, xs) = run_par (ts, INT n :: es, xs)

| run_par ( ADD :: ts, es, xs) = run_add (ts, es, XPAR :: xs)

| run_par ( MUL :: ts, es, xs) = run_mul (ts, es, XPAR :: xs)

| run_par ( L_P :: ts, es, xs) = run_par (ts, es, XPAR :: xs)

| run_par ( R_P :: ts, es, xs) = run_aux (ts, es, xs)

| run_par ( ts, es, xs) = NONE

and run_aux (ts, es, []) = run_nil (ts, es)

| run_aux (ts, es, XADD :: xs) = run_add (ts, es, xs)

| run_aux (ts, es, XMUL :: xs) = run_mul (ts, es, xs)

| run_aux (ts, es, XPAR :: xs) = run_par (ts, es, xs)

in run_nil (ts, [])

end

Figure 8: The shunting-yard algorithm: disentangled version

13



fun parse ts =

callcc (fn exit => let fun run_nil ( [], e :: []) = SOME e

| run_nil ( LIT n :: ts, es) = run_nil (ts, INT n :: es)

| run_nil ( ADD :: ts, es) = run_nil (run_add (ts, es))

| run_nil ( MUL :: ts, es) = run_nil (run_mul (ts, es))

| run_nil ( L_P :: ts, es) = run_nil (run_par (ts, es))

| run_nil ( ts, es) = NONE

and run_add ( ts as [], e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add ( LIT n :: ts, es) = run_add (ts, INT n :: es)

| run_add (ts as ADD :: _, e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add ( MUL :: ts, es) = run_add (run_mul (ts, es))

| run_add ( L_P :: ts, es) = run_add (run_par (ts, es))

| run_add (ts as R_P :: _, e2 :: e1 :: es) = (ts, e1 ++ e2 :: es)

| run_add ( ts, es) = throw exit NONE

and run_mul ( ts as [], e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul ( LIT n :: ts, es) = run_mul (ts, INT n :: es)

| run_mul (ts as ADD :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul (ts as MUL :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul ( L_P :: ts, es) = run_mul (run_par (ts, es))

| run_mul (ts as R_P :: _, e2 :: e1 :: es) = (ts, e1 ** e2 :: es)

| run_mul ( ts, es) = throw exit NONE

and run_par ( LIT n :: ts, es) = run_par (ts, INT n :: es)

| run_par ( ADD :: ts, es) = run_par (run_add (ts, es))

| run_par ( MUL :: ts, es) = run_par (run_mul (ts, es))

| run_par ( L_P :: ts, es) = run_par (run_par (ts, es))

| run_par ( R_P :: ts, es) = (ts, es)

| run_par ( ts, es) = throw exit NONE

in run_nil (ts, [])

end)

Figure 9: The shunting-yard algorithm: refunctionalized version expressed in direct style

and over the stack of operators. (In contrast, the stack of subtrees is only threaded passively
and, except for errors in the input list of tokens, it does not influence the control flow of the
program.)

We therefore disentangle run into several specialized, mutually recursive versions: one
with respect to an empty stack of operators (run nil), three with respect to each of the possi-
ble operators on top of the stack (run add, run mul, and run par), and one to dispatch on the
stack of operators (run aux). The resulting disentangled program is displayed in Figure 8: all
of run nil, run add, run mul, and run par solely dispatch over the list of tokens, and run aux

solely dispatches over the stack of operators. This transition system operates in lockstep
with the original one implemented in Figure 7: the new machine takes one or two steps for
each step in the original one.

In addition to being more readable, the transition system implemented in Figure 8 is also
in defunctionalized form: the stack of operators and run aux respectively form a data type
and an apply function that are in the image of defunctionalization.

As for all transition systems in defunctionalized form, the refunctionalized counterpart
of the program in Figure 8 is in CPS. Furthermore—again save for errors in the input list
of tokens—it uses its continuations linearly and in order, and can therefore be expressed in
direct style. We spare the reader with this CPS program (those who don’t like this kind of
things etc.), and display the corresponding direct-style program in Figure 9: it is a recursive
program where not all calls are in tail position. As an aid to the eye, we have shaded the
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non-tail calls in grey. Errors are handled with callcc and throw [31], though again using an
exception would do as well.

The stack of operators that was explicit in Figures 7 and 8 is now implicit in the direct-
style program of Figure 9. In other words, the original algorithm was implemented by a tail-
recursive automaton with two stacks. The stack of operators is now implicit in the control
stack of the language processor for this recursive program in direct style.

The refunctionalized shunting-yard algorithm still exhibits the standard features of a
bottom-up parser: a return corresponds to a reduce action, a simple tail call with trivial ar-
guments corresponds to a shift action, and a non-tail call corresponds to a state transition
where the control-flow at return time implements the goto transition associated with a re-
duce action.

6 Perspectives

Let us list other applications of refunctionalization (Section 6.1) and then mention its current
limitations and alternatives (Section 6.2).

6.1 Other applications

We had to intervene in the following situations to put an abstract machine into defunction-
alized form:

The SECD machine: The SECD machine only needed to be disentangled to be put in de-
functionalized form: the C and the D components can be refunctionalized into a control
continuation and a dump continuation, respectively [24].

The SECD machine with the J operator: Two versions of the SECD machine with the J
operator exist—the original one by Landin and Burge [16] and a version due to Felleisen [40].
Disentangling Felleisen’s version yields a machine that is in defunctionalized form (and uses
a control delimiter). In contrast, disentangling Landin and Burge’s version is not sufficient
to put it in defunctionalized form; its apply functions also need to be merged [32].

Properly tail-recursive stack inspection: In Clements and Felleisen’s abstract machine for
properly tail-recursive stack inspection [18], stack inspection is achieved by traversing the
current context and checking its permission tables. Unzipping this context into an ordinary
CEK-machine context and a list of permission tables yields a CEK machine with a state and
an error facility: this machine can be refunctionalized and mapped back to direct style all
the way to a compositional monadic evaluation function with a state+error monad [4]. Con-
versely, via refocusing [34], it syntactically corresponds to a new version of Fournet and
Gordon’s λsec-calculus [9, Section 7].

Strong-reduction strategies: In our ongoing work on strongly reducing abstract machines
[54, 55], we use both disentangling and merging to refunctionalize a number of abstract ma-
chines [21, 22, 45, 50, 51] into compositional normalization functions.
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6.2 Limitations and alternatives

Dynamic CPS: The original abstract machine for dynamic delimited-continuation opera-
tors [41] is not in defunctionalized form. Disentangling it and then merging its apply func-
tions was not enough for our purpose: we also needed to thread a tail of delimited contin-
uations [12]. It was then simple to make it correspond, through refocusing, to a reduction
semantics, and through refunctionalization, to a compositional evaluation function. Still, the
trail of delimited continuations is an ad-hoc device for which we have found no other use so
far.

Towards de-objectification and re-objectification: Object orientation offers an alternative
to merging apply functions with different domain and codomain types: the data type could
be represented by an abstract class with a method for each of the apply functions. Each
variant of the data type would be represented by a subclass of this abstract class with a field
for each of the variant’s free variables. This ‘reobjectified’ program can be implemented
in a language without objects using any of the standard encodings of objects in objectless
languages. The original ‘deobjectified’ program would then be such an encoding, specialized
to flat class hierarchies.

7 Conclusion

We have investigated the applicability of refunctionalization for transforming programs and
implementing programming languages. Elsewhere, we have illustrated its relevance to pro-
gramming [13, 30, 33] and to specifying programming languages [2–4, 11, 24, 32].

7.1 Wirth

In some sense, our work on defunctionalization and refunctionalization provides a concrete
illustration for the paragraph that follows the definition of the quicksort algorithm, in Sec-
tion 2.3.3 of Niklaus Wirth’s textbook ”Algorithms and Data Structures” from 1985:

Procedure sort activates itself recursively. Such use of recursion in algorithms is a very
powerful tool and will be discussed further in Chapter 3. In some programming lan-
guages of older provenience, recursion is disallowed for certain technical reasons. We
will now show how this same algorithm can be expressed as a non-recursive procedure.
Obviously, the solution is to express recursion as an iteration, whereby a certain amount
of additional bookkeeping operations become necessary.

Dijkstra’s shunting-yard algorithm and Landin’s SECD machine were directly written for
programming languages of ‘old provenience.’ In Section 5 and in our earlier work [24, 32],
we have shown how each is the defunctionalized and CPS-transformed counterpart of a
recursive program in direct style. Incidentally, the same can be said of the quicksort al-
gorithm in Wirth’s book: CPS-transforming and defunctionalizing the recursive definition
that precedes the paragraph above in the book yields the iterative definition that immedi-
ately follows in the book. So the ‘certain amount of additional bookkeeping operations’
mentioned above can be mechanized using the CPS transformation and defunctionalization.
The same could be said for their respective correctness proofs: instead of developing them
separately [46, 71], these proofs could be considered in the light of defunctionalization and
refunctionalization [33, Section 5]—a future work.
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7.2 Dijkstra

Dijkstra’s case against the GOTO statement [37] has been mostly interpreted in the negative,
as the forceful denunciation of a programming sin. It seems to us, though, that his message,
40 years on, can also be understood as an invitation to mindfulness when programming.
Indeed consider a compiler from a structured language (e.g., one with while loops and con-
ditional commands) to an unstructured language (e.g., one with labels and with conditional
and unconditional jumps): on the one hand, this compiler yields programs that use GOTO
statements; on the other hand, as denotations of structured programs, these unstructured
programs only use GOTO statements to implement the control structures of structured pro-
grams. In that light, Dijkstra’s implicit message is not so much that GOTO statements should
be considered harmful, no matter what, than one should be mindful about staying in or
straying from the image of the compiler when programming in the unstructured language:

compiler

structured
programs

unstructured
programs

In fact, finding oneself straying with good reason is a clear indication that a useful control
construct is missing in the source language. For example, C and Pascal programmers con-
done the use of GOTO for error cases because these languages lack an exception mechanism.

Dijkstra’s implicit message applies to at least two situations involving a program trans-
formation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mind-
ful of the continuation identifiers and of the parameters of continuations to stay in the
image of the CPS transformation [23, 27]:

CPS transformation

programs in
direct style

programs in
continuation−passing style

Yet programmers use “the extra expressive power of CPS” to stray with good reason:

• for a simple example, not using the current continuation identifier prevents the
computation from continuing and therefore has the effect of aborting it; this effect
can be obtained in direct style by adding an “abort” control operator;
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• for a common example, using another continuation identifier than the current one
makes the computation continue elsewhere; this effect can be obtained in direct
style by adding, e.g., the control operator escape [59] or call/cc [19, 31];

• for a more radical example, one may altogether leave the language of CPS, where
all calls are tail calls [67], and mix CPS with non-tail calls, thereby introducing the
notion of delimited control [25, Section 1.3]; this effect can be obtained in direct
style by adding, e.g., the delimited-control operators shift and reset [28].

Defunctionalization. Since, as pointed out in Section 1.1, defunctionalizing a CPS program
yields an abstract machine, one should be mindful about specifying abstract machines
in defunctionalized form:

defunctionalization

CPS transformation +

reduction
semantics

refocusing

abstract
machines semantics

CPS transformation +

defunctionalization

structural
operational
semantics

natural

︸ ︷︷ ︸

small steps
︸ ︷︷ ︸

big steps

Indeed

• CPS-transforming and defunctionalizing a function implementing a small-step
semantics yields a function implementing a reduction semantics [25];

• symmetrically, CPS-transforming and defunctionalizing a function implementing
a big-step semantics yields a function implementing an abstract machine [2–4, 7,
11, 24, 32]; and

• refocusing the evaluation function of a reduction semantics yields a function im-
plementing an abstract machine [8, 9, 34].

Straying from the image of the CPS transformation makes it possible for the reduction
semantics on the left and for the abstract machine on the right to specify, e.g., control
effects.

In any case, most abstract machines have been designed independently of defunction-
alization. It is our experience that a number of them are in defunctionalized form, and
that a number of others can be transformed to be so, using the techniques described
here (see Section 6) or using, e.g., GADTs to make them well typed [58]. We currently
have no sense about why one would want an abstract machine to stray from being in
defunctionalized form when using a functional meta-language for specifying compu-
tation.

So overall, we see the CPS transformation and defunctionalization as useful guidelines that
are consistent with Dijkstra’s implicit message.
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Getting back to the shunting-yard algorithm, it seems very plausible that Dijkstra program-
med it initially in the image of the above-mentioned compiler, while mentally picturing it as
a structured program:

initialize the operator stack to be empty;
initialize the operand stack to be empty;
WHILE there are tokens in the input stream
DO peek the first such token;

IF this first token is a number
THEN read it and push it on the operand stack
ELSIF this first token is an operator
THEN IF the stack of operators is empty or has, at its top,

a parenthetical separator or an operator with a lower precedence
THEN read this first token and push it on the operator stack
ELSE reduce

ELSIF this first token is a left parenthesis
THEN read it and push a parenthetical separator on the operator stack
ELSIF this first token is a right parenthesis
THEN IF the top operator is a parenthetical separator

THEN read this first token and pop the top operator off the stack
ELSE reduce

OD;
WHILE the operator stack is non-empty
DO reduce
OD
(* The result is on top of the operand stack. *)

In Section 5, we have (1) observed that the shunting-yard algorithm takes the form of an ab-
stract machine, and (2) nudged it to be in defunctionalized form. Refunctionalizing it yields
a program in CPS. Mapping this program back to direct style yields a functional parser,
farther and farther away from the Turing tarpit:

CPS transformation

abstract machines
direct style
programs in programs in unstructured

programs

defunctionalization
compiler

CPS (iterative structured programs)

Turing tarpit

To close, when Dijkstra submitted “A Case against the GO TO Statement” [36] to CACM
40 years ago, Wirth used his editorial discretion to change the title to “Go To Statement Con-
sidered Harmful” [37]. All proportions kept, we would be grateful to our editor if he could
leave the title of the present article as it is now: witness the drawing just above, abstract
machines in defunctionalized form are harmless. As for those that can be disentangled etc.,
it is our point that they are mostly so.
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[43] Jean-Christophe Filliâtre and François Pottier. Producing all ideals of a forest, function-
ally. Journal of Functional Programming, 13(5):945–956, 2003.

[44] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen.
Automatically restructuring programs for the web. In Martin S. Feather and Michael
Goedicke, editors, 16th IEEE International Conference on Automated Software Engineering
(ASE 2001), pages 211–222, Coronado Island, San Diego, California, USA, November
2001. IEEE Computer Society.
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