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Abstract

Church’s lambda-calculus underlies the syntax (i.e., the form) and the semantics (i.e., the
meaning) of functional programs. This thesis is dedicated to studying man-made constructs
(i.e., artifacts) in the lambda calculus. For example, one puts the expressive power of the
lambda calculus to the test in the area of lambda definability. In this area, we present a
course-of-value representation bridging Church numerals and Scott numerals. We then turn
to weak and strong normalization using Danvy et al.’s syntactic and functional correspon-
dences. We give a new account of Felleisen and Hieb’s syntactic theory of state, and of
abstract machines for strong normalization due to Curien, Crégut, Lescanne, and Kluge.
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Introduction

Part I Eric Raymond once wrote that learning Lisp makes one a better programmer, and
we believe that the same holds for functional programming. In fact, it even seems to us
that studying Church’s λ-calculus, which is standard material for functional programmers,
makes one a better computer scientist altogether.

We thus begin this thesis with this standard material and we formally introduce Church’s
original version of the λ-calculus and the most standard properties of the λ-calculus (Chap-
ter 1).

Understanding the λ-calculus, however, does not come with understanding its basic ele-
ments in separation. We thus turn to lambda definability in Chapter 2, where we show how
to syntactically represent various functions in the λ-calculus, i.e., we study syntactic artifacts
(i.e., man-made constructs) in the λ-calculus. Going beyond the usual basic lambda repre-
sentations, we identify a course-of-value representation underlying both the Church numer-
als and the Scott numerals. This representation enables us to improve on known lambda
representations, and is a joint work with Olivier Danvy.

Various extensions and modifications of the λ-calculus exist, with Plotkin’s λv-calculus
as one of the most prominent examples. We give a brief review in Chapter 3.

In Chapter 4, we introduce three kinds of semantic artifacts, to give a formal ‘meaning’
to programs in a language: (1) denotational semantics, in which definitional interpreters
have their roots, (2) reduction semantics, which Felleisen credits Plotkin’s work as the main
inspiration for, and (3) abstract machines, with Landin’s SECD machine as the first example,
historically.

So, Landin’s pioneering work on connecting the λ-calculus to functional programming
languages, Plotkin’s formal proofs of the correspondences between λ-calculi and evaluation
mechanisms, and Reynolds’s work on definitional interpreters have been an inspiration to
many computer scientists. In Chapter 5, we review Plotkin’s results, which bridge the gap
between calculi and standard programming languages. We then introduce the ‘syntactic
correspondence’, which connects reduction semantics and abstract machines and has been
developed by Biernacka, Danvy, and Nielsen, and we introduce the ‘functional correspon-
dence’, which connects interpreters and abstract machines and has been developed by Ager,
Biernacki, Danvy, and Midtgaard. Danvy et al. credit Reynolds for pioneering the functional
correspondence by CPS-transforming and defunctionalizing an interpreter to make it first-
order. The syntactic correspondence, however, is original to Danvy and Nielsen.

With the syntactic correspondence as our main tool, we investigate the relation between
reduction semantics and abstract machines in the presence of state variables and assignment
constructs in the language (Section 6). We do so by choosing an existing calculus including
state variables — Felleisen and Hieb’s λv-S(t)-calculus. We show that the syntactic corre-
spondence, perhaps unexpectedly, also applies in such an impure setting.
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Part II The second part of this thesis addresses strong normalization, i.e., normalization of
terms to full normal forms, and our domain is terms in Church’s λ-calculus. We do not
consider strong normalization in, e.g., Plotkin’s λv-calculus.

We take the usefulness of strong normalization for given, and thus consider the prob-
lem of implementing the partial function mapping terms to normal forms. Typically, one
implements a normalizer in either of the following three ways:

(i) through normalization by evaluation: one defines an evaluation function from terms
to values, mapping syntactically equivalent terms to the same semantic value, and a
left-inverse reification function from values to terms. The normalization function is
defined as the composition of these two functions. Such normalization functions are
usually higher-order compositional functions specified in direct style.

(ii) with an abstract machine: one specifies a state-transition function, the iteration of
which yields a normal form, given a term.

(iii) within the calculus: given a one-step reduction relation and a normalization strategy,
one iterates the one-step reduction relation according to the normalization strategy. In
this thesis we only consider deterministic strategies.

The approaches (i) and (ii) are ‘reduction-free’ whereas approach (iii) is ‘reduction-based’
according to Danvy et al.’s use of the words.

So far, the functional correspondence and the syntactic correspondence have only been
investigated in a weak setting, i.e., when considering evaluation mechanisms found in pro-
gramming languages like Scheme or Haskell. Considering strong normalization, a new area
of applications appears, and it is the point of Part II to illustrate this new area.

All the reduction semantics we know of define a weak reduction scheme. In Chapter 7
we show how to define a reduction semantics for strong normalization with actual substitu-
tion, i.e., with use of a meta-substitution construct as usually employed in the definition of
reductions in the λ-calculus.

In Chapter 8 we migrate to the world of explicit substitutions, i.e., where substitutions
are represented explicitly in the terms of the calculi. We present a new calculus — the λŝ-
calculus — which is a direct offspring of the standard implementation of actual substitution
and therefore inherits the standard properties of the λ-calculus. We show how the syntactic
correspondence applies to a strategy for strong normalization in this calculus (represented
as a reduction semantics): we mechanically derive an abstract machine for strong normal-
ization.

In Chapter 9 we investigate a normalizer defined by Lescanne. We show that this nor-
malizer is a cousin of an abstract machine derived from a strategy for strong normalization
in the λ^̂s-calculus, which is a variant of the λŝ-calculus. We also review how Lescanne’s
normalizer can be improved in practice.

Curien has also defined a normalizer for strong normalization. In Chapter 10 we present
this normalizer and we show that the syntactic correspondence and the functional corre-
spondence mechanically link reduction semantics to abstract machines and abstract ma-
chines to normalization functions for Curien’s normalizer. This chapter is joint work with
Olivier Danvy and Kevin Millikin.

As yet another example we apply the functional correspondence and the syntactic corre-
spondence to Crégut’s KN-machine for strong normalization and we present the correspond-
ing normalization function and reduction semantics (Chapter 11).

2



In his recent textbook, Kluge presents an abstract machine for strong normalization — the
HOR-machine. This machine is introduced as the implementation of a head-order reduction
strategy. In Chapter 12, we review the underlying normalization mechanism and we show
that Crégut’s KN-machine and the HOR-machine in essence are the same machine.

Technical details This thesis is not associated to any implementation, though every ab-
stract machine, reduction semantics, interpreter, and normalization function as well as all
derivations have been implemented in Standard ML. The author used a Scheme-to-SML
parser he implemented during his undergraduate compiler-construction course. This parser
was instrumental to define useful test examples for the various implementations. Finally,
every representation of functions developed in Chapter 2 has been implemented in Scheme.

3



Part I

λ-calculi and programming languages

4



Chapter 1

The λ-calculus

In the 1930’s Church invented the λ-calculus [11]. Originally the λ-calculus was part of a
bigger work on finding a foundation for logic [44, page 53]. In an attempt to remove ambi-
guities in mathematical statements about functions, Church suggested the lambda notation to
represent functions and function applications. The λ-calculus is a formal system and gives
precise definitions of meaningful formulas and all possible ways to manipulate such mean-
ingful or well-formed formulas or just λ-terms. The definitions formally specify how λ-terms
relate to each other in the λ-calculus.

Roadmap In this chapter we introduce the λ-calculus. We define the λ-terms in Section 1.1
including standard conventions on the λ-terms and properties on variables. We define a
fundamental relation between λ-terms (Section 1.2) used to define equality in the calculus
(Section 1.3). Equipped with a notion of λ-terms in normal form, we review standard prop-
erties about equivalence of terms to normal forms (Section 1.4) and algorithms to find a
normal form equivalent to a given term, when one exists (Section 1.5). We touch on other
representations of the λ-calculus in Section 1.6 and Section 1.7.

1.1 λ-terms

In the original presentation [11, page 8] Church defines the set of well-formed formulas in-
ductively via symbols like ‘λ’, ‘(’, and ‘)’, such that terms are finite sequences of symbols.
In other words, terms have a linear structure where only a subset of all formulas are well-
formed. Church hence uses parentheses for grouping of sub-formulas to avoid ambiguities
and he proves various properties on well-formed formulas like, e.g., matching parenthe-
ses. We abandon this linear notion of formulas and directly define the set of λ-terms via an
abstract grammar:

Var x (unspecified)
Term t ::= x | λx.t | t t

All terms are built inductively from an unspecified (but enumerable) set of variables, from
λ-abstractions, and from terms composed of two terms in juxtaposition: applications.1

1Applications was originally called combinations. In 1975 Plotkin still used that term [59], and so did Abelson
and Sussman (with Sussman) in 1985 [1].
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The grammar is abstract in the sense that it does not define a language of character strings
but a language of trees where internal nodes correspond to the use of either the abstraction
construct or the application construct, and with all leaves being variables.

The major part of the properties proved by Church and Kleene about well-formed formu-
las (i.e., λ-terms) are not relevant in an abstract setting. In the rest of this text all grammars
define abstract syntax trees.

Pure and applied λ-calculi Church’s original calculus is sometimes called the pure λ-calculus
to emphasize that no basic constants or functional constants are included in the term lan-
guage. Regularly since Landin’s work The mechanical evaluation of expressions [50], such con-
stants are included in λ-terms [33, 40, 59]. Such an ‘impure’ λ-calculus is usually called an
‘applied’ λ-calculus [45, Section 4.7].

Untyped and typed calculi In the grammar of terms, no notion of type is included. The
λ-calculus is sometimes also referred to as the untyped λ-calculus to emphasize the difference
from various kinds of typed λ-calculi, which have subsequently been developed. In this text
we only consider untyped λ-calculi.

1.1.1 Conventions

Concrete conventions We have defined terms with abstract-syntax constructions, which
eliminate the need for parentheses in grouping of sub-terms. Unfortunately, abstract-syntax
trees are not convenient when presenting sample terms in a text. Hence in the following we
use a linear abbreviation for the syntax trees when giving examples.

We will use parentheses for grouping when they are needed. We follow two conventions:

(i) Application is left associative: t1 t2 t3 means (t1 t2) t3.

(ii) Application has higher precedence than abstraction: λx.t1 t2 means λx.(t1 t2)

These conventions keep the number of parentheses to a minimum and are standard.

Abstract conventions In theorems, propositions and various kinds of defining equations
we use variables like x and t. These variables (possibly with a subscript or a superscript) are
metavariables ranging over a set of objects normally defined by a grammar. For example, t
and t ′ range over the set Term as defined above.

When we define equations by cases, the use of metavariables lets us exploit an advanced
but straightforward kind of pattern matching. Examples clarify the idea:

(a) foo t = . . .

(b) bar x = . . .

(c) baz ((λx.t) t ′) = . . .

Here the pattern in equation (a) matches every term, the pattern in (b) matches only the
subset of terms that are also variables and the pattern in (c) matches all applications where
the left-hand sub-term is an abstraction. A pattern thus implicitly corresponds to a universal
quantifier with a condition. In the right-hand side of the equations, the metavariables are
bound and can be used as part of the expressions.

In logical expressions the use of metavariables also implicitly implies an universal quan-
tifier. In each case the quantifier will be clear from context.
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1.1.2 Free variables and bound variables

Free variables The notion of free variables of a term t, FVt, is inductively defined as follows:

FV x = {x}

FV (λx.t) = (FV t)\{x}

FV (t t ′) = (FV t) ∪ (FV t ′)

If FV t = {}, t is said to be closed.

Bound variables Likewise, a corresponding notion of bound variables is inductively defined
as follows:

BV x = {}

BV (λx.t) = (BV t) ∪ {x}

BV (t t ′) = (BV t) ∪ (BV t ′)

Variable occurrences In general the set of bound variables and the set of free variables of
a term are not disjoint, i.e., a variable can be bound and free in the same term. For example,
FV ((λx.x) x) = BV ((λx.x) x) = {x}. For that reason the different occurrences of a variable
in a term are distinguished. An occurrence of a variable x is bound in t if and only if that
occurrence is a sub-term of the abstraction λx.t ′ for some term t ′ which itself is a sub-term
of t. In other words, an abstraction λx.t ′ binds all occurrences of the variable x in the body t ′

of the abstraction. By this definition an occurrence of a variable is either bound or free, and
this property of an occurrence of a variable is hence well-defined. In the above sample term,
(λx.x) x, only the right-most occurrence of x is free.

The λK-calculus or the λI-calculus Church distinguished between two formal systems
called the λI-calculus and the λK-calculus. Terms in the λI-calculus have a condition on ab-
stractions: For λx.t to be well-formed, x must have a free occurrence in t, i.e., the condition
is x ∈ FV t. In the λK-calculus this condition is not present. In other words, what we call the
λ-calculus is what Church originally called the λK-calculus.

1.1.3 λ-terms modulo bound variable names

In the following, terms only differing in choice of bound variable names are not distin-
guished. This choice is a standard convention also used by Barendregt [7, Convention 2.1.12].
For example, the terms λx.xc and λy.yc are identified, but λx.xc and λx.xd are not. To for-
malize this notion of equality an equivalence relation =α is inductively defined:

x =α x

t1 =α t
′
1, t2 =α t

′
2

t1 t2 =α t
′
1 t

′
2

t1{y/x} =α t2, x = y or (y /∈ FV t1 and y /∈ BV t1)

λx.t1 =α λy.t2

In the third rule the first condition t1{y/x} denotes the term t1 with all free occurrences of x
replaced by y. In the second condition x = y is included such that =α is reflexive. We restrict
y via the condition (y /∈ FV t1 and y /∈ BV t1) such that y is ‘fresh’. In the following a term is
a representative of an equivalence class generated by =α.
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1.2 Reductions and normal forms

Notion of reduction The fundamental relation in the λ-calculus between λ-terms is called
β and is the notion of reduction on λ-terms:

((λx.t) t ′, t{t ′/x}) ∈ β

where t{t ′/x} again is a meta-notation denoting the result of substituting t ′ for free occur-
rences of x in t:

x{t/x} = t

y{t/x} = y, if x 6= y

(t1 t2){t/x} = (t1{t/x}) (t2{t/x})
(λx.t){t ′/x} = λx.t

(λy.t){t ′/x} = λy.t{t ′/x}, if x 6= y and y /∈ FV t ′

The substitution is left undefined for terms where a renaming of bound variables is needed:
Because of =α introduced in Section 1.1.3 it is — given λy.t — always possible to choose
λy ′.t ′ such that λy ′.t ′ =α λy.t and (λy ′.t ′){t ′′/x} is defined for all t ′′ and x.

Traditionally β is stated as a contraction rule:

β : (λx.t) t ′ → t{t ′/x}

If (t, t ′) ∈ β the first component t is called a β-redex, and the second component t ′ is called
the corresponding contractum. It follows immediately that if a given term t is a variable, an
abstraction, or an application where the left sub-term is not an abstraction β does not relate
t to any term: t does not take the form of a β-redex, and no β-reduction is possible.2

β-normal forms A term that does not contain any β-redex as a sub-term, is said to be in
β-normal form. A grammar generating terms in β-normal form reads:

ANForm a ::= x | a n

NForm n ::= a | λx.n

No applications in the terms have an abstraction as left sub-term.

1.3 One-step reduction and equality

Compatibility As stated in Section 1.2, the notion of reduction only relates a term t to a
term t ′ if t takes the form of a β-redex and t ′ is the corresponding contractum. To be able to
relate t to t ′ even when t is not overall a β-redex three compatibility rules are formed:

t1 → t ′1
t1 t2 → t ′1 t2

t2 → t ′2
t1 t2 → t1 t

′
2

t → t ′

λx.t→ λx.t ′

From these rules it follows that any sub-term that is also a β-redex can be the subject of a
reduction.

2An alternative way to use α-equivalence on terms, is to treat changes of variable names explicitly by defining
a notion of reduction α, such that an α-reduction constitute the change of a bound variable and the correspond-
ing bound occurrences. Church originally defined such an α-rule.
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Alternative specification of compatibility The above rules specify in what syntactic con-
texts β-reductions can be performed:

Context C ::= [ ] | C t | t C | λx.C

A context is either just a hole or a term with a hole instead of one sub-term. C[t] de-
notes the term obtained from textually replacing the hole in C by the term t. With t =

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) the following listing illustrates the principle:

t = C1[t1], C1 = (λx.(λy.y) z) ((λx.w [ ]) (λx.w (x x))) and t1 = x x

t = C2[t2], C2 = (λx.[ ]) ((λx.w (x x)) (λx.w (x x))) and t2 = (λy.y) z
t = C3[t3], C3 = (λx.(λy.y) z) [ ] and t3 = (λx.w (x x)) (λx.w (x x))
t = C4[t4], C4 = (λx.(λy.y) z) ((λx.w (x x)) (λx.w (x [ ]))) and t4 = x
t = C5[t5], C5 = [ ] and t5 = (λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x)))

...

Of all the possible contexts only three result in the corresponding ti being a β-redex. The
redexes are t2, t3, and t5.

The compatibility rules are equivalently specified with a grammar of contexts: Two terms
t and t ′ are related if a context C and a β-redex r exist, such that t = C[r] and t ′ is t with r
replaced by the contractum of r. Formally:

→β: t →β t
′ iff t = C[r], t ′ = C[r ′], (r, r ′) ∈ β

It follows that →β relates two terms t and t ′ if t ′ is the result of choosing any sub-term
of t that is as β-redex and replace that redex with the corresponding contractum. →β is
called one-step β-reduction and is said to be defined as the compatible closure of the notion of
reduction relative to the specified contexts.

For the above example term, →β relates t to exactly the three terms obtained by perform-
ing the contraction of one of the β-redexes t2, t3, and t5:

(C2[t2], (λx.z) ((λx.w (x x)) (λx.w (x x)))) ∈ →β

(C3[t3], (λx.(λy.y) z) (w ((λx.w (x x)) (λx.w (x x))))) ∈ →β

(C5[t5], (λy.y) z) ∈ →β

β-reduction The reflexive transitive closure of one-step β-reduction defines β-reduction,→∗
β, which relates two terms if the second term can be derived in zero or more steps from

the first term by a series of β-reductions. Simple examples of terms related by a series of
β-reductions are (starting with the sample term introduced above):

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) →β (λy.y) z→β z

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) →β (λx.z) ((λx.w (x x)) (λx.w (x x)))→β z

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) →β (λx.(λy.y) z) (w ((λx.w (x x)) (λx.w (x x))))→β (λx.(λy.y) z) (w (w ((λx.w (x x)) (λx.w (x x)))))→∗
β (λx.(λy.y) z) (w (w . . . ((λx.w (x x)) (λx.w (x x))) . . . ))
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In the first case a normal form is obtained via a series of reductions consisting of two β-
reductions. The same normal form is obtained by another series of reductions in the second
case. In the third case an infinite series starting with the same term is outlined. Reductions
are performed but no normal form is obtained.

1.3.1 β-equivalence and convertibility

β-equivalence or convertibility of terms [11, page 13] is defined as the smallest equivalence re-
lation =β over →β (i.e., the symmetric, reflexive, and transitive closure of →β). For example,
the λ-terms above are all equivalent in the λ-calculus, and they are therefore also said to be
convertible. We will use the term ‘equivalent’ in this text.3

Because of the equivalence relation =α, defined in Section 1.1.3, the equations in the
system on the one hand are independent of the actual names of the bound variables. On the
other hand the equations are dependent on the names of free variables.

1.4 Uniqueness of normal forms

Divergence As illustrated by the last example series in Section 1.3, in general not all terms
are equivalent to a normal form. A counter example is the right sub-term of the sample term
from Section 1.3:

(λx.w (x x)) (λx.w (x x)) =β w ((λx.w (x x)) (λx.w (x x)))
=β w (w ((λx.w (x x)) (λx.w (x x))))
=β w (w . . . ((λx.w (x x)) (λx.w (x x))) . . . )

The initial term is on the one hand not a normal form, because it is an application that
constitutes a β-redex. On the other hand, it only contains this single β-redex, and it is not
possible by a series of reductions to remove the initial β-redex. Finally, the term can not be
obtained by some reduction without the existence of a β-redex. That is, at least one β-redex
will always be present in terms equivalent to the terms in the example, and by definition
none of the terms are equivalent to a normal form. Terms not equivalent to a normal form
are said to diverge.

Unique normal forms As mentioned in Section 1.3 it follows from the compatibility rules
that the next redex to contract in a term with more than one redex can be arbitrarily chosen.
Nevertheless it can be shown that no term is equivalent to more than one normal form. This
property of the λ-calculus follows from the fact that the notion of reduction is Church-Rosser,
which means the relation →∗

β satisfies a diamond property:

Theorem 1 (Church-Rosser)
Let t →∗

β t1, and t →∗
β t2.

Then there exists t3 such that t1 →∗
β t3, and t2 →∗

β t3.

A proof can be found in Barendregt’s textbook [7, page 62]. Assuming t1 and t2 are different
normal forms immediately gives a contradiction. It follows that if t1 and t2 both are normal

3Instead of defining convertibility as the smallest equivalence relation over →β , Church defined α-
conversions, β-conversions, and inverse β-conversions (called an expansion). In that case, convertibility is just
defined as the compatible closure of these three conversion rules.
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forms, they have to be equal. If a term t is equivalent to a normal form n, it is therefore
well-defined to say the normal form of t and t has normal form n.

The Church-Rosser property also implies that if a term has a normal form, this normal
form can always be obtained by zero or more reductions. Furthermore, it is not possible to
perform a series of reductions on the term without the possibility to extend that series and
obtain the normal form. For example, the last reduction sequence in Section 1.3 can at any
point be made finite by reducing the out-most redex and in one more reduction obtain the
normal form.

Consistency Uniqueness of normal forms also imply that the λ-calculus is consistent: for
two different normal forms n,n ′ it holds that n 6=β n

′ which means that =β defines more
than one equivalence class.

1.5 Reduction strategies

As stated in Section 1.4 the normal form of a term, if it exists, can always be found by a series
of reductions. Though in general the redexes for contraction can not be chosen arbitrarily. A
counter example is the sample term from Section 1.3:

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x)))

In that section three different reduction sequences are presented: The first sequence obtains
the normal form z of the term by twice choosing the whole term as the redex for contrac-
tion. The second sequence obtains z by choosing the inner leftmost redex first and secondly
the whole term as the redex for contraction. However, the third sequence can be extended
forever without obtaining the normal form, by choosing the rightmost redex repeatedly.

A reduction strategy constitutes a way to deterministically select a β-redex and perform
the contraction given a term not in normal form. Because β is a function on redexes, a
reduction strategy turns out to be a partial function on terms, such that t is mapped to t ′,
where t ′ is t with one redex replaced by the corresponding contractum.

1.5.1 Normal-order reduction

Normal-order reduction 7→n̄ constitutes a reduction strategy for the λ-calculus and is defined
as always choosing the leftmost of the outermost redexes, where an outermost redex means
a redex that is not a sub-term of another redex itself.4 Formally, the relation is defined as a
restricted compatible closure of β to obtain a function which is defined on all terms not in
normal form:

(t, t ′) ∈ β
t 7→n̄ t ′

∀t : (t1 t2, t) /∈ β, t1 7→n̄ t
′
1

t1 t2 7→n̄ t
′
1 t2

t 7→n̄ t
′

λx.t 7→n̄ λx.t ′
t2 7→n̄ t

′
2

a t2 7→n̄ a t
′
2

The metavariable convention from Section 1.1.1 lets us state the fourth rule very concisely.
In the definition of normal forms on page 8, a is defined to range over normal forms that

4Normal-order reduction is also known as Standard reduction.
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are not abstractions. The fourth rule hence says: When the left sub-term is a normal form
that is not an abstraction, the overall application cannot be β-reduced. Normalization must
continue in the right sub-term and (a t2, t) /∈ β is implied.

Normal-order reduction is well-defined since no rules overlap and β is a partial function.
Because →β of Section 1.3 is a proper relation, it is called a one-step reduction relation. Be-
cause 7→n̄ is a function on terms, it is called a one-step reduction function. Also, 7→n̄ is partial,
because it is not defined on β-normal forms.

Equality in the λ-calculus has not changed by the above definition of the restricted com-
patibility closure. Taking 7→∗̄

n as the reflexive transitive closure of 7→n̄, =n̄ is defined as the
smallest equivalence over 7→∗̄

n. The term (λx.w (xx)) (λx.w (xx)) ((λx.y) (xx)) illustrates that
=n̄ defines a proper subset of =β: On one hand an equation in the λ-calculus reads

(λx.w (x x)) (λx.w (x x)) ((λx.y) (x x)) =β (λx.w (x x)) (λx.w (x x)) y

which is established by a contraction of the redex (λx.y) (x x). On the other hand =n̄ clearly
does not contain that equation. Seen together = n̄ ⊂ =β holds.

1.5.2 Standardization and normalization

The crucial property of normal-order reduction is: If any reduction sequence yields a normal
form, normal-order reduction also will. Normal-order reduction thus defines a standard
reduction strategy:

Theorem 2 (Standardization)
t →∗

β n if and only if t 7→∗̄
n n

In Section 1.4 it was explained that if t is equivalent to the normal form n in the λ-calculus
then n can always be obtained by a series of β-reductions. By the standardization theorem
there is a deterministic way to select the β-reductions and obtain n. Performing a series
of reductions on the sample term (λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) as in Section 1.3
following the normal-order reduction strategy reads

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x))) 7→n̄ (λy.y) z
7→n̄ z

That is, the first series of reductions in Section 1.3 follows the normal-order reduction strat-
egy.

Normalization Reducing a term to its normal form (if it exists) is called normalization. By
Theorem 2 normalization in the λ-calculus can be defined:

normalizen̄ t = n iff t 7→∗̄
n n

This function is well-defined since 7→n̄ is not defined on normal forms, and it is partial be-
cause it is not defined on terms with no normal form.

It follows from the rules of the normal-order reduction strategy in Section 1.5.1 that con-
tractions are allowed also inside the body of abstractions and in the right sub-term of an
application when the left sub-term is a normal form that is not an abstraction. When such
contractions are allowed normalization yields β-normal forms and is also called strong nor-
malization.
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From the standardization theorem it also follows that equations involving terms with
normal forms are all contained in both =β and =n̄. In other words, the equations contained
in =β but not in =n̄ all involve terms with no normal form, which is also the crucial property
of the sample term in Section 1.5.1. By construction the following proposition is immediate:

Proposition 1
normalizen̄ t = n ⇐⇒ t =β n

1.5.3 Reducing to weak head normal forms

In Section 1.5.1 the normal-order reduction strategy for the λ-calculus was presented and
in Section 1.5.2 strong normalization following this strategy was shown to yield β-normal
forms. An alternative to reductions to normal forms is reductions to weak head normal forms,
which is a relaxed notion of normal forms:

Weak head normal forms The following grammar defines the weak head normal forms in
the λ-calculus: 5

a ::= x | a t

WHNForm w ::= a | λx.t

The normal forms are contained in the weak head normal forms. A comparison of the defi-
nition with that of normal forms in Section 1.2 pinpoints the differences: (1) All abstractions
are weak head normal forms and not only if the body is in normal form. (2) An application is
a weak head normal form if the left sub-term is either a variable or an application, in which
the leftmost application has a variable as left sub-term — regardless of the right sub-terms
on the path from the root to that application.

Weak head normalization Following this explanation and the very similar structure of the
grammars of normal forms and weak head normal forms a reduction strategy to weak head
normal forms is defined like the normal-order reduction strategy. The two differences from
normal-order reduction mentioned above are ensured by not having two of the rules found
in Section 1.5.1: The rule for reducing the body of abstractions and the rule for reducing
the right-hand sub-term of applications. The definition of the obtained strategy 7→n reads as
follows.

(t, t ′) ∈ β
t 7→n t ′

t1 7→n t
′
1

t1 t2 7→n t
′
1 t2

By not having the rule for reducing abstractions, (t1 t2, t) /∈ β is implied by t1 7→n t
′
1 and is

therefore removed as a condition in the second rule. The implication together with β being
a function ensures that 7→n is well-defined. Normalization to weak head normal form is
accordingly defined as follows:

normalizen t = w iff t 7→∗
n w

This function is well-defined since 7→n is not defined on weak head normal forms, and it is
partial, because it is not defined on terms with no weak head normal form.

5Considering only closed terms, the set of weak head normal forms simplifies to the set of abstractions.
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No uniqueness of weak head normal forms In Section 1.4 the uniqueness of the normal
form of a term was presented. An analogous result for weak head normal forms does not
hold. The term (λx.x) (λy.(λz.y)w) is a counter example:

(λx.x) (λy.(λz.y)w) →β λy.(λz.y)w→β λy.y

Both λy.(λz.y) w and λy.y are weak head normal forms and equivalent to the first term in
the λ-calculus; normalizen chooses among the weak head normal forms equivalent to the term
the first one obtained when following the normal-order reduction strategy. Therefore

normalizen ((λx.x) (λy.(λz.y)w)) = λy.(λz.y)w

Following this explanation a weak version of Proposition 1 holds:6

Proposition 2
(i) normalizen t = w =⇒ t =β w

(ii) t =β w =⇒ normalizen t = w ′, where w ′ =β w

Part (ii) says that if a term t is equal to a weak head normal form w in the λ-calculus, nor-
malization following the weak normal-order strategy yields a weak head normal form w ′

that is equal to w in the λ-calculus. This part of the proposition becomes more concrete in
Section 2.8 where the notion of weak head normal forms is extended.

1.6 The λ-calculus with de Bruijn indices

Instead of a named variable the lexical offset relative to the variable’s occurrence in the ab-
stract syntax tree can serve as a term placeholder. In that case, substitution does not rely on
free occurrences of variables but instead on a notion of the depths of sub-terms. For example,
the term λx.x (λy.x y) can be represented by λ1 (λ2 1) with de Bruijn indices starting from 1.
Lexical offsets used this way are known as de Bruijn indices [29].7 Abstractions do not bind
variables explicitly, when using de Bruijn indices:

Index i ::= {1, 2, 3, . . . }

TermdeB t ::= i | λt | t t

All closed terms in the same equivalence class of =α (defined in Section 1.1.3) are repre-
sented by the same term using de Bruijn indices. For example, the terms λx.x (λy.x y) and
λy.y (λx.y x) are both represented by λ1 (λ2 1) with de Bruijn indices starting from 1. Via
a mapping ψ from named variables to the natural numbers this property holds for terms in
general.

6Part (ii) of this proposition hinges on a lemma also used in the proof for the standardization theorem involv-
ing standard reduction sequences. We leave out the details.

7Another way to represent variables is de Bruijn levels. Instead of denoting an offset relative to the place of
occurrence, a de Bruijn level is an offset relative to the root of the term on the path from the root to the occurrence.
We do not treat de Bruijn levels in this text.
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1.6.1 Correspondence with terms using named variables

The following translations between terms with named variables and terms with de Bruijn
indices both use an auxiliary structure of named variables:

Bindings b ::= • | x · b

In the rest of this text a list of objects is represented this way, and throughout x1 · x2 · · · xk

abbreviates x1 · (x2 · . . . (xk · •) . . . ).

From named variables to de Bruijn indices Translating a term with named variables to the
corresponding term with de Bruijn indices assumes a function ψ from named variables to
natural numbers. ψ can be defined via, e.g., a preorder traversal of the term.8 ψ is assumed
to be injective:

Varmap ψ : Var → Index

toindices : Term → TermdeB
toindices t = aux (t, •)

aux : Term× Bindings → TermdeB
aux (x, x1 · · ·xk) = i, if ∀j < i : xj 6= x and xi = x

aux (x, x1 · · ·xk) = k +ψ(x), if ∀j ≤ k : xj 6= x

aux (λx.t, b) = λ(aux (t, x · b))
aux (t t ′, b) = (aux (t, b)) (aux (t ′, b))

From de Bruijn indices to named variables Translating from de Bruijn-indexed λ-terms to
terms with named variables assumes a mapping τ from indices to named variables. Like ψ,
τ is assumed to be injective:

Indexmap τ : Index → Var

fromindices : TermdeB → Term
fromindices t = aux (t, •)

aux : TermdeB × Bindings → Term
aux (i, x1 · · ·xk) = xi, if i ≤ k
aux (i, x1 · · ·xk) = τ(i− k), if i > k

aux (λt, b) = λ(aux (t, x · b)), x is fresh
aux (t t ′, b) = (aux (t, b)) (aux (t ′, b))

Here the image of Index under τmust be disjoint with the set of named variables introduced
in the translation of abstractions. In other words, τ(i) is the i-th element (according to some
ordering) in a set of variable names disjoint with the bound variables of the resulting term.

8When variables are strings over the letters {a, b, . . . , z}, ψ can be defined via the standard lexicographic
ordering on strings starting with ψ (a) = 1.
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Mapping closed terms Mapping a closed term t with named variables to a term with de
Bruijn indices and mapping back again yields a term with named variables that is equal to t
in =α:

t =α fromindices (toindices t)

These translations emphasize the independence of actual bound variables.

Mapping open terms The information about variable names is discarded under the trans-
lation to de Bruijn-indexed λ-terms — including the names of free variables. Therefore the
above property does not hold for open terms.

Because of how toindices and fromindices uses ψ and τ another property of terms
with free variables is established. When a variable occurs free in different places in a term,
toindices maps the free occurrences to the same index and adjusts according to the depth of
occurrence. fromindices maps frees de Bruijn indices relative to their depth of occurrence.

An example is illustrative. With ψ and τ defined via preorder traversals, the following
holds.

toindices (λy.(λx.z x)w (λy.(λx.z x)w v)) = (λ(λ3 1) 3 (λ(λ4 1) 4 5))
toindices (λy.(λx.w x) z (λy.(λx.w x) z v)) = (λ(λ3 1) 3 (λ(λ4 1) 4 5))

fromindices (λ(λ3 1) 3 (λ(λ4 1) 4 5)) = λb1.(λb2.f1 b2) f2 (λb3.(λb4.f1 b4) f2 f3)

The initial terms and the term after the translation to indices and back again are not α-
equivalent. But because the translation of free variables and indices are consistent, the α-
equivalence could be extended (call it =α̂) to cope with free variables.

A more feasible solution is to restrict τ further. Because ψ is injective it has a left inverse
ψ−1. Demanding τ to be this left inverse makes the property that holds for closed terms
above hold for terms in general. Mapping an arbitrary term t to a representation with de
Bruijn indices and back again yields a term α-equivalent to t.

1.6.2 β-contraction on de Bruijn-indexed λ-terms

The notion of reduction β was in Section 1.2 introduced informally via a meta construction
on terms with named variables. When using de Bruijn indices instead of named variables,
this meta construction is not applicable as it relies on the possibility to use fresh variables.
Instead, we explicitly define the meta construction (substitute) as a function on terms and
use an auxiliary function (reindex):

βdeB : (λt) t ′ → substitute (t, (1, t ′))

substitute : TermdeB × (Index× TermdeB) → TermdeB

substitute (i, (j, t)) =


i, if i < j
reindex (t, (1, i)) if i = j
i− 1, if i > j

substitute (λt, (j, t ′)) = λ(substitute (t, (j+ 1, t ′)))
substitute (t t ′, (j, t ′′)) = (substitute (t, (j, t ′′))) (substitute (t ′, (j, t ′′)))

reindex : TermdeB × (Index× Index) → TermdeB

reindex (i, (j, g)) =

{
i, if i < j
i+ g− 1, if i ≥ j

reindex (λt, (j, g)) = λ(reindex (t, (j+ 1, g)))
reindex (t t ′, (j, g)) = (reindex (t, (j, g))) (reindex (t ′, (j, g)))
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The substitution function differs only notationally from definitions found in standard texts
(e.g., Hankin’s textbook [38]).

The contraction rule βdeB states that the contractum of an application (λt) t ′ is t with
de Bruijn index 1 mapping to t ′. To realize the substitution, this mapping is distributed
to the indices via the last two clauses of substitute. When distributing into the body of
abstractions the single key (in the domain) of the mapping must be ‘lifted’. After the first
‘lift’, 2 is mapped to t ′.

Distributed to an index i, the mapping has in general been lifted a number of times, say
(j, t ′), where j ≥ 1. If i < j, the mapping has been distributed into the abstraction that i
refers to, and i is left untouched. If i > j, i is not bound in λt but because the number of
abstractions on the path from i to the root of t is one less than to the root of λt, the index
must be decremented yielding i − 1. If i = j the mapping relates i to t ′ and an actual
substitution is performed introducing t ′ instead of i. What is left to do is an adjustment of
the free indices of t ′. This reindexing is handled by reindex (t ′, (1, i)). The last two rules
of reindex distribute to the indices of t ′. If an index i ′ is reached by the mapping (j, i) two
cases is needed. If i ′ < j, i ′ is bound in t ′ and is therefore left untouched. If i ′ ≥ j, i ′ is not
bound in t ′ and must be lifted such that it is not captured by an abstraction in t. That is,
when substituting t ′ for index i in t, i− 1 abstractions have been entered and the free index
i ′ must be lifted to i ′ + i− 1.

In the following we leave out the subscript and use β for βdeB, when it is clear from
context that terms use de Bruijn indices.

Normal forms The normal forms is as defined in Section 1.2. The only difference is the use
of de Bruijn indices instead of named variables. No βdeB-redexes are left in normal forms:

ANFormdeB a ::= i | a n

NFormdeB n ::= a | λn

1.6.3 Defining the λ-calculus for de Bruijn-indexed λ-terms

With one-step βdeB-reduction →βdeB , βdeB-reduction →∗
βdeB

, and βdeB-equality =βdeB , for de
Bruijn-indexed λ-terms defined exactly as for the λ-calculus when terms use named vari-
ables, the two specifications denote the same calculus:

t =β t
′ ⇐⇒ toindices t =βdeB toindices t ′

1.7 The λ-calculus defined as a proof system

In this chapter, the λ-calculus has been defined in terms of relations on λ-terms by the notion
of reduction β, a compatibility closure →β, and a reflexive transitive symmetric closure =β.

Equivalently, the λ-calculus can be defined as a proof system with axioms and inference
rules. Axioms defines a basic set of facts, and inference rules are used to combine facts,
inductively. Axioms constitute the notion of reduction, and inference rules constitute the
compatibility rules and the reflexive transitive symmetric closure. Barendregt introduces
the λ-calculus this way [7]. Equations in the λ-calculus are then usually written λ ` t = t ′.
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The two different definitions of the λ-calculus are equivalent in the sense that t =β t
′ ⇐⇒

λ ` t = t ′ [7, Proposition 3.2.1].
In this chapter the λ-calculus has not been defined as a proof system, because the reduction-

based version directly relies on term transformations via term reductions. The use of the
relations →∗

β and 7→∗
n emphasizes a direction on the transformations: The most substantial

parts of this text concentrate on the process of obtaining possible normal forms of terms and
not on proving equivalences between terms in general.

1.8 Summary

In this chapter, we introduced the λ-calculus: an abstract term language together with re-
lations on terms. The basic relation on terms is the notion of reduction β. Allowing β-
reductions in any subpart of terms defines how to change one term to an equivalent term in
the calculus. We explained that any term is equal to at most one term in which there is no
possible ways to use β, i.e., a β-normal form.

Normal-order reduction was introduced as a strategy on how to perform theβ-reductions.
This strategy yields a normal form of a term if and only if the term and the normal form are
equal in the λ-calculus. We introduced a relaxed notion of normal forms — weak head nor-
mal forms — and a strategy to obtain relaxed normal forms.

We introduced λ-terms using de Bruijn indices instead of named variables and we de-
fined consistent mappings (also on open terms viaψ andψ−1) between the two sets of terms.
We explicitly defined βdeB, the version of β operating on de Bruijn-indexed λ-terms and jus-
tified that this set of terms and the notion of reduction βdeB also defines the λ-calculus.

We finally sketched how the calculus can be defined as a proof system with β denoting
the basic set of facts.
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Chapter 2

Definability in the λ-calculus

The terms in the λ-calculus as defined in Chapter 1 indeed only contain variables, abstrac-
tions and applications. On the one hand, primitive values like integers and booleans and
functions on such primitives are not natively supported. Data structures like tuples and lists
are also not directly supported. On the other hand, the λ-calculus is Turing-complete, i.e.,
the λ-calculus is as expressive as other sound formalisms like the Turing-machine [46]: It is
somehow possible to represent by terms in the calculus, the above mentioned mathematical
elements like integers and lists and represent functions on such elements.

Lambda definability concerns representations of elements and functions on elements in the
λ-calculus. Since Church introduced the λ-calculus, various representations of such elements
and functions has been proposed. Church himself suggested, e.g., representations of the
natural numbers, called numerals, and functions operating on these Church numerals, together
with data structures like pairs and lists. Also Rosser and Kleene suggested various functions
on Church numerals.

Roadmap Lambda representations are presented in various textbooks and papers. Often
these representations are specified with little motivation, if any. In this chapter, we sketch
how representations can be built up incrementally. To this end, we present selected rep-
resentations starting as traditional with Church numerals and some simple functions on
them exploiting the computational power built into Church numerals (Section 2.1). We in-
troduce simple structured elements (Section 2.2.1) and present Kleene’s predecessor function
(Section 2.2.2) and the iterative factorial function presented by Goldberg and Reynolds (Sec-
tion 2.2.4).

It is our observation that the pattern of Kleene’s predecessor function and the iterative
factorial function is that of dynamic programming [37, Section 12.3]. In Section 2.3, we exem-
plify this observation and we λ-define the function finding the length of a longest common
subsequence of two sequences of numerals.

In Section 2.4, we introduce Scott numerals, which do not have built-in computational
power. A simple observation lets us introduce streams, which enable us to represent func-
tions on Scott numerals in a similar way as for the Church numerals, and we present a gen-
eral relationship between Church numerals and Scott numerals (Section 2.5) and a course-of-
value representation [70, Chapter 3] underlying both numeral systems. This representation
lets us generalize Kleene’s predecessor function (Section 2.6) and we present a new version
of the subtraction function monus on Church numerals, which is linear whereas the usual
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one iterating the predecessor function is quadratic.
In Section 2.7, we review functions relying on monus and we present a new efficient ver-

sion of the quotient and remainder functions exploiting the course-of-value representation.
Finally in Section 2.8, we extend the λ-calculus with basic constants, which will become use-
ful in later chapters.

2.1 Church numerals

As described above, in particular no primitive zero value or primitive successor function
is directly supported by built-in term constructors. Church numerals are β-normal forms
abstracting over a successor function and a zero value and represent numbers in the style of
Peano [11]:1

p0qc := λs.λz.z

p1qc := λs.λz.s z =β λs.λz.s (p0qc s z)
p2qc := λs.λz.s (s z) =β λs.λz.s (p1qc s z)

...
pn+ 1qc := λs.λz.s (

n times︷ ︸︸ ︷
s (. . . (s z) . . . )) =β λs.λz.s (pnqc s z)

When applied to a successor function and a zero value these arguments are used to generate
the represented natural number. But a Church numeral can of course be used differently:
pnqc f is an abstraction that, when applied to an argument x, applies f iteratively n times
starting from x, i.e., a bounded iteration. Church numerals thus have a built-in computa-
tional power.

The successor function A term to represent the successor function on Church numerals
padd1qc must, when applied to the representation of n, be equivalent to the representation
of n+ 1:

padd1qc pnqc
?

=β pn + 1qc

=β λs.λz.s (pnqc s z)

Hence padd1qc just abstracts over the argument numeral:

padd1qc := λn.λs.λz.s (n s z)

Intuitively, padd1qc constructs a numeral that, when supplied with a successor function and
a zero value, generates the number represented byn and takes the successor of that number. 2

The successor function on natural numbers is said to be λ-definable (on Church numerals).

The addition function We define a term representing the addition function on Church
numerals that exploits the built-in iterative power of the Church numerals. Especially,

pnqc padd1qc pn ′qc =β (λn ′.

n times︷ ︸︸ ︷
padd1qc (. . . (padd1qc n

′) . . . )) pn ′q
=β pn + n ′qc

1We use p·q throughout to denote representation. We use p·qc to denote Church numerals.
2An alternative definition is padd1qc := λn.λs.λz.n s (s z). The intuition is here that the number 1 is con-

structed and used as the zero of the resulting numeral.
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That is, the addition function on Church numerals abstracts over the two numerals and is a
bounded iteration of the successor function:

paddqc := λn.λn ′.n padd1qc n
′

The multiplication function Specializing addition to one argument numeral pnqc yields
an abstraction that adds n to its argument numeral: paddnqc := λn ′.n padd1qc n

′. Iteratively
applying that abstraction n ′ times yields an abstraction that adds n × n ′ to its argument
numeral:

pn ′qc (paddqc pnqc) =β λz.

n ′ times︷ ︸︸ ︷
paddnqc (. . . (paddnqc z) . . . )

=β paddqc pn× n ′qc

Because paddqc pn × n ′qc p0qc =β pn × n ′qc a definition of the multiplication function on
Church numerals finally just abstracts over the two numerals:

pmultqc := λn.λn ′.n ′ (paddqc n) p0qc

The exponentiation function Addition was defined as bounded iteration of the simpler
successor function. Likewise multiplication was defined as bounded iteration of the simpler
addition function. This line of thought lets us define the exponentiation function on Church
numerals as well as bounded iteration of the simpler multiplication function (We leave out
the details):

pexpqc := λn.λn ′.n ′ (pmultqc n) p1qc

2.2 Representing structured elements

As explained in the previous section a Church numeral represents a bounded iteration.
The iteration implicitly generates a series of ‘intermediate results’: For pnqc f a0 the series
a0, . . . an is generated with ai+1 = f ai. The result is an. All definitions in the previous
section only iterate with ai being Church numerals, i.e., the series of intermediate results
consists of unstructured elements. Having structured elements in the series gives more possi-
ble use.

2.2.1 Ordered pairs

The most simple structured element is the 2-tuple data structure: an ordered pair of ele-
ments. The operations for this ‘domain’ consist of one injection and two projections. With
mutually consistent definitions of these three functions any representation will do: The def-
initions of the injection ppairq and the two projections for extracting the first element pπ1q
and the second element pπ2q respectively, must ensure:

pπ1q (ppairq t1 t2) =β t1
pπ2q (ppairq t1 t2) =β t2
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The injection function takes two elements (one at a time) and gives an abstraction that applies
the argument to the two elements:

ppairq := λa.λd.λs.s a d

The idea is to let the argument of the pair-abstraction be a selector: λa.λd.a or λa.λd.d. Each
of the two projections takes a pair and chooses the right selector to which the pair is applied.
According to the definition of ppairq the selector is then applied to the two elements:

pπ1q := λp.p (λa.λd.a)
pπ2q := λp.p (λa.λd.d)

In the following 〈a, d〉 denotes an ordered pair with elements a and d: Taking the first pro-
jection and taking the second projection on this pair yields a and d, respectively. In other
words, 〈a, d〉 := ppairq a d.

2.2.2 Kleene’s predecessor function and the corresponding subtraction function

A representation of the predecessor function on Church numerals was not defined in Sec-
tion 2.1. Via the successor function a series of elements where the n-th element is pn − 1qc

given p−1qc can easily be defined. However, p−1qc is not defined.
A solution is achieved by using structured elements within the bounded iteration. Using

pairs it is possible to ‘piggy-bag’ one extra numeral along with the ‘current’ numeral in each
element in the generated series:

〈p0qc, p0qc〉
〈p1qc, p0qc〉
〈p2qc, p1qc〉
〈p3qc, p2qc〉

...
〈pnqc, pn− 1qc〉

Each pair pi can be constructed from the previous pair pi−1 by taking as first component
padd1qc (pπ1q pi−1) and as second component just pπ1q pi−1. An abstraction f achieving
f pi−1 =β pi is then λp.〈padd1qc (pπ1q p), pπ1q p〉. The second projection of the pair obtained
as a bounded iteration of f via pnqc starting from 〈p0qc, p0qc〉 is the predecessor of pnqc:

psub1qc := λn.pπ2q (n (λp.〈padd1qc (pπ1q p), pπ1q p〉) 〈p0qc, p0qc〉)
This definition of the predecessor for Church numerals is due to Kleene [44].3 By analogy
with addition, subtraction is defined by iterating the simpler predecessor function:

psubqc := λn.λn ′.n ′ psub1qc n

Because psub1qc p0qc =β p0qc,4

psubqc pnqc pn ′qc =β

{
pn− n ′qc if n ≥ n ′

p0qc if n < n ′

The subtraction function with this property is also know as monus.
3Kleene’s original version is defined in the λI-calculus, which was briefly introduced in Section 1.1.2. In that

calculus p0qc is not present so the predecessor is defined such that psub1qc p1qc =β p1qc . Following the same
line of thought as in our definition of the predecessor it is seen that a triple must be used instead of a pair.

4Indeed, applying psub1qc n
′ times to pnqc subtracts p1qc each time if n > n ′. If n ≤ n ′, p1qc is subtracted

until p0qc is reached. At that point it is fixed at p0qc for the rest of the iterations.
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2.2.3 Boolean values and functions on booleans

Representing boolean values and negation is simple:

ptrueq := λx.λy.x

pfalseq := λx.λy.y

p¬q := λb.b pfalseq ptrueq

Here ptrueq and pfalseq are normal forms and

p¬q ptrueq =β pfalseq
p¬q pfalseq =β ptrueq

Many functions on numerals yielding boolean values are directly definable via the monus
function:

pzero?qc := λn.n (λx.pfalseq) ptrueq
p6qc := λn.λn ′.pzero?qc (psubqc n n

′)
p≥qc := λn.λn ′.pzero?qc (psubqc n

′ n)
p>qc := λn.λn ′.p¬q (p6qc n n

′)
p<qc := λn.λn ′.p¬q (p≥qc n n

′)
p=qc := λn.λn ′.(p6qc n n

′) (p≥qc n n
′) pfalseq

These representations all inherit the ‘efficiency’ or ‘inefficiency’ of the definition of psubqc.

2.2.4 The factorial function

The use of pairs as elements in the bounded iteration applies directly in representations of
other functions. An iterative representation of the factorial function on Church numerals,
presented by Goldberg [36] and Reynolds [64], also uses pairs in the generated series of
elements:

〈p1qc, p1qc〉
〈p2qc, p1qc〉
〈p3qc, p2qc〉
〈p4qc, p6qc〉
〈p5qc, p24qc〉

...
〈pn+ 1qc, pn!qc〉

An abstraction itfac achieving itfacpi−1 =β pi is λp.〈padd1qc (pπ1q p), pmultqc (pπ1q p) (pπ2q p)〉
The second projection of the pair obtained by bounded iteration of itfac via pnqc starting from
〈p1qc, p1qc〉 is then pn!qc (witness the first component of the initial element is p1qc and not
p0qc):

pfacqc := λn.pπ2q (n itfac 〈p1qc, p1qc〉)
The factorial function is simple in nature and is easily defined in a recursive manner in

a mathematical setting. The factorial function is therefore the canonical example used in
presentations of fixed-point combinators in standard textbooks [65, page 95] [38, page 82] [47,
page 89]. Fixed-point combinators are needed to represent recursive functions (in the sense
of computability). However, the factorial function is only primitive recursive (in the sense of
computability) as demonstrated by the iterative representation above: pfacqc is ‘composed’
of other primitive recursive functions.
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2.2.5 Representing lists

Church lists

Analogously with Church numerals (which abstract over a successor function and a zero
value) representations of lists (i.e., finite sequences) can abstract over a prepend operation
cons, and the empty-list, nil. Via such Church lists a list [a0, a1, . . . , aj−1] is represented by the
normal form λc.λn.ca0 (ca1(. . . (caj−1n) . . . )). Analogously with the successor function on
Church numerals cons’ing and element to a Church list pconsqp is a constant operation and
analogously with the predecessor function on Church numerals taking the tail of a Church
list ptlqc is a linear operation. Following the line of thought leading to Kleene’s predecessor
function in Section 2.2.2 lets us represent the tail function on Church lists. We note that
taking the head of a Church list phdqc is also a linear operation. We observe that a Church list
represents the right-folding over the represented list and hence has build-in computational
power corresponding to the represented list. We leave this representation of lists.

Lists as nested pairs

Alternatively, lists can be represented as properly nested pairs: In that case the above list
[a0, a1, . . . , aj−1] can be represented by 〈a0, 〈a1, . . . 〈aj−1, λs.ptrueq〉 . . .〉〉. The representa-
tions of the constructor prepending an element to a list pconsqp and the destructor operations
for taking the head phdqp and taking the tail ptlqp of a non-empty list are immediate:

pnilqp := λs.ptrueq
pconsqp := ppairq

phdqp := pπ1q
ptlqp := pπ2q

The representation of the empty list λs.ptrueq is constructed such that it is easy to represent
the predicate indicating if the list is empty: pnil?qp := λl.l (λa.λd.pfalseq). Every non-empty
list is a pair which expects a selector and applies this selector to its first element a and its
second element d. The result is in that case pfalseq. If the list is empty applying the list to any
selector (including λa.λd.pfalseq) yields ptrueq. In the following we use subscript p, when
lists are represented via pairs in this way: [a0, a1, . . . , aj−1]p

Taking the n-th element of a list With lists as the elements in the series generated by
bounded iteration some standard functions on lists are immediate. We obtain the function
yielding the n-th element of a list (when it contains at least n + 1 elements) by iterating the
tail function (i.e., taking the n-th tail) and taking the head of the resulting list:

pnthqp := λn.λl.phdqp (n ptlqp l)

Using the operations for Church lists phdqc and ptlqc instead, we have a representation of
taking the n-th element of a Church lists, i.e., pnthqc. Taking the n-th tail of a Church list
corresponds to subtraction on Church numerals. Defining pnthqc in this way iterating ptlqc

is hence inefficient in the same way that subtraction on Church numerals is inefficient when
represented via iteration of the predecessor function.
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Bounded reversal of a list The ability to take the first n elements of a list l and give a list
with the elements in reversed order is a bit more complicated but follows the same line of
thought: In each element an accumulator is stored together with the current tail of the list
l. In each iteration the head of the tail is added to the accumulator list. With pnilqp as the
initial accumulator, the accumulator is the first n elements of the list in reversed order:

itrevn := λp.〈ptlqp (pπ1q p), pconsqp (phdqp (pπ1q p)) (pπ2q p)〉
prevnqp := λn.λl.pπ2q (n itrevn 〈l, pnilqp〉)

Augmenting the pair representation of lists

To reverse a complete list l the length of lmust be known by the above definition. Consider-
ing Church lists the length of a list can be found by applying the list to a prepending operator
representing the successor function and as nil value the zero value. (This representation is
the standard exercise of finding the length of a list by folding over the list.) Considering lists
represented via nested pairs, finding the length of a list can not be achieved via bounded iter-
ation — this list representation does not have build-in computational power corresponding
to the represented list.

A possibility is, to augment such a list represented by nested pairs with its length: Here
[a0, a1, . . . , aj−1]a abbreviates 〈pjqc, 〈a0, 〈a1, . . . 〈aj−1, λs.ptrueq〉 . . .〉〉〉. The representa-
tions of nil, cons, etc. are easily defined using the previous representations:

pnilqa := 〈p0qc, pnilqp〉
pconsqa := λa.λl.〈padd1qc (pπ1q l), pconsqp a (pπ2q l)〉

phdqa := λl.phdqp (pπ2q l)
ptlqa := λl.〈psub1qc (pπ1q l), ptlqp (pπ2q l)〉

pnil?qa := λl.pnil?qp (pπ2q l)

Finding the length of a list is now trivial:

plenqa := pπ1q

Reversing an augmented pair-represented list uses prevnqc as an auxiliary function. From
the resulting pair-represented list we construct the corresponding augmented list:

prevqa := λl.〈plenqa l, prevnqc (plenqa l) (pπ2q l)〉

When representations has subscript a, we assume the above revised functions are used, e.g.,
pnthqa.

2.3 Dynamic programming

Kleene’s predecessor function and the iterative factorial function on Church numerals as
presented in Section 2.2 consist of (i) construction of an initial pair of numerals, (ii) bounded
iteration of an auxiliary function over the pair, and (iii) extraction of the final answer from the
resulting pair. In a functional setting the functions operate, via bounded iteration, on a pair
in a store-like manner. The iterative nature is carried out by letting the iterated function con-
sume and produce a pair.5 Kleene’s predecessor function and the iterative factorial function
hence follow a general pattern known as dynamic programming [37, Section 12.3]:

5The pair of numerals is threaded.
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(i) Define the structure of configurations and construct an initial configuration.

(ii) Specify the next configuration as a function of the current configuration in a bounded
number of iterations.

(iii) Extract the result from the final configuration.

This approach to define algorithms is usually applied in connection with optimization prob-
lems, where a naive solution is slow (relative to a solution with optimal time complexity).
Usually, to be useful, dynamic programming requires that an optimal solution can be de-
scribed in terms of optimal solutions for subproblems, and that the same subproblems occur
more times in different parts of the solution. This description also matches the predeces-
sor function and the factorial function except that subproblems do not occur more times in
different part of the solution. The solutions to subproblems are ‘optimal’ per definition:

sub1 (n) =

{
0, if n = 0, 1

1+ sub1 (n − 1) if n ≥ 2
fac (n) =

{
1, if n = 0
n× fac (n − 1) if n ≥ 1

In the function mapping natural numbers to the corresponding Fibonacci-number subprob-
lems do occur more times in the solution:

fib (n) =

{
1, if n = 1, 2

fib (n − 1) + fib (n− 2), if n ≥ 3

In fact, we encounter an exponential blowup in the number of subproblems to solve in a
naive implementation of such a specification. In the following, a more realistic problem is
presented.

2.3.1 A longest common subsequence

The problem of finding a longest common subsequence (not subsegment!) LCS of two se-
quences a and b fits perfectly into the problem area of dynamic programming. LCS is an
optimization problem where the result can be defined as a combination of optimal solutions
to subproblems. Also subproblems occur in more parts of the solution. It is a standard
exercise to give an efficient algorithm by use of dynamic programming:

With sequencesa = [a1, . . . , an] and b = [b1, . . . , bn′ ] the base structure of configurations
is a matrixM(n+1)×(n′+1). EntryMi,j represents the length of a longest common subsequence
of [a1, . . . , ai] and [b1, . . . , bj]. The length of a longest common subsequence using the empty
prefix of a will always be 0. That is, all entries in the first row is 0. Analogously with use of
the empty prefix of b all entries in the first column is 0.

A relation between solutions indicates that each entry can be defined in terms of optimal
solutions to subproblems, and that subproblems occur more times when unfolding:

| LCS ([a1, . . . , ai], [b1, . . . , bj]) | =


1+ | LCS ([a1, . . . , ai−1], [b1, . . . , bj−1]) | if ai = bj

max {| LCS ([a1, . . . , ai−1], [b1, . . . , bj]) |,

| LCS ([a1, . . . , ai], [b1, . . . , bj−1]) |} if ai 6= bj
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That is, each entry Mi,j can be found directly from the entries Mi−1,j−1, Mi−1,j, and Mi,j−1.
The complete definition of all entries hence reads:

Mi,j =


0 if i = 0
0 if j = 0

1+Mi−1,j−1 if ai = bj, i, j ≥ 1
max {Mi−1,j, Mi,j−1} if ai 6= bj, i, j ≥ 1

Obviously, the matrix can be filled out, e.g., row by row, starting in entry M1,1. The length
of a longest common subsequence of a and b isMn,n′ , and one actual common subsequence
of this length can be found by a ‘backwards traversal’ in the matrix starting in entryMn,n′ .

The problem nicely fits the pattern of dynamic programming: (1) Defining the base struc-
ture matrix M and constructing the initial configuration by filling out first row and first col-
umn with 0, (2) iteratively filling out the rest of the matrix, and finally (3) constructing the
result by a traversal in the completely filled out matrix together constitute a solution to the
problem.

2.3.2 Length of a longest common subsequence

To simplify the definitions in this section we restrict the problem to only find the length of a
longest common subsequence LLCS.

Base structure and initial configuration A simple observation from the above analysis is
that filling out row i does not depend on other rows than row i and row i − 1. Because
we only consider finding the length and not an actual longest common subsequence the
maintained structure is simplified such that only the last row and not the complete matrix
is maintained when building the current row. In addition, (parts of) the sequences a and b
are also maintained because they are consumed in each iteration. Accordingly, we represent
configuration by a list of length 4:

[last row, current row, a suffix, b suffix]a

For readability we define four ‘projections’:

rowlast := λc.pnthqa p0qc c

rowcur := λc.pnthqa p1qc c

suffixa := λc.pnthqa p2qc c

suffixb := λc.pnthqa p3qc c

The initial configuration is constructed by the following abstraction when applied to the first
sequence a and the length n ′ of the second sequence:

confstart := λa.λn ′.[pnilqa, padd1qc n
′ (pconsqa p0qc) pnilqa, pconsqa (λx.x) a, pnilqa]a

Here the term for the current row represents a list of n ′ + 1 zeros. Dummies are used in the
other three components of the initial configuration because we perform a reconfiguration
before each row is handled.
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Reconfiguration before each new row Reconfiguration is done before calculating each
row: Current row becomes last row, and we reverse that new last row to prepare it for a
left to right traversal. The new current row is just the list [p0qc]a which is the base case for a
row. Finally, we progress one step in the sequence a and reinstall b. We define reconfigura-
tion as an abstraction over the configuration c, and the sequence b:

reconf := λc.λb.[prevqa (rowcur c), [p0qc]a, ptlqa (suffixa c), b]a

Calculating one entry According to the definition in Section 2.3.1 we need to define a func-
tion yielding the maximum of two Church numerals. We define the maximum function
pmaxqc on numerals via psubqc:

pmaxqc := λn.λn ′.psubqc n n
′ (λx.n) n ′

If psubqc n n
′ 6=β p0qc, n is the maximum of the two numerals and the result is n because

λx.n is applied at least once. Otherwise n ′ is the result.
We construct the function that yields Mi,j given the three neighbors (left, diagonal, up)

and the two elements ai and bj:

calcentry := λl.λd.λu.λai.λbj.p=qc ai bj (padd1qc d) (pmaxqc l u)

The inner iterated function The inner iterated function it maps from the current config-
uration to the next configuration. it computes the next entry via an application of calcentry
and makes progress in the last row and in the b suffix:

it := λc.[ptlqa (rowlast c),
pconsqa (calcentry (phdqa (rowcur c))

(phdqa (rowlast c))
(phdqa (ptlqa (rowlast c)))
(phdqa (suffixa c))
(phdqa (suffixb c)))

(rowcur c),
suffixa c,

ptlqa (suffixb c)]a

To fill the entries of one row it is iterated the length of b times.

Extracting the result The length of a longest common subsequence is the last computed
entry in the current row of the final configuration:

extract := λc.phdqa (rowcur c)
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Assembling the representation of LLCS With the above auxiliary definitions a function
computes the length of a longest common subsequence of two sequences a = [a1, . . . , an]a
and b = [b1, . . . , bn′ ]a by (1) constructing the initial configuration via confstart, (2) iteratively
n times filling a row (via n ′ times applying it) and reconfiguring, and finally (3) extracting
the result via extract from the final configuration:

pLLCSqa := λa.λb.extract (plenqa a (λc.plenqa b it (reconf c b)) (confstart a (plenqa b)))

With the configuration representing the ‘state’ of the computation the above representation
of LLCS realize a nested for-loop. Via bounded iteration pLLCSqa works for pair-represented
lists augmented with its length. Exchanging the operations to those of Church lists we im-
mediately have pLLCSqc which operate on Church lists. A definition of pLLCSqp would
abstract over the lengths of prefixes of a and b to consider.

2.4 Scott numerals

Scott — like Church — also proposed a representation of the natural numbers in the λ-
calculus [17]:6

p0qs := λh.λt.h

p1qs := λh.λt.t p0qs = λh.λt.t (λh.λt.h)
p2qs := λh.λt.t p1qs = λh.λt.t (λh.λt.t (λh.λt.h))

...
pn+ 1qs := λh.λt.t pnqs = λh.λt.t (

n times︷ ︸︸ ︷
λh.λt.t (. . . (λh.λt.t (λh.λt.h)) . . . ))

By construction the successor function on Scott numerals stands out by abstracting over the
numeral:

padd1qs := λn.λh.λt.t n

As demonstrated in the previous section the Church numerals have built-in computational
power: a numeral represents a bounded iteration. Within that system a representation of
the predecessor function is non-trivial. In contrast, the predecessor on Scott numerals is
immediate:

psub1qs := λn.n p0qs (λt.t)

2.4.1 Scott numerals are selectors in pair-represented lists

Scott numerals are closely related to lists represented as properly nested pairs as presented
in Section 2.2.5. The central observation is that the Scott numeral pnqs is a selector of the
n-th element of such lists:

[a0, . . . , an, . . . , aj]p pnqs =β an

6We subscribe the n-th Scott numeral pnqs with s to distinguish from the corresponding Church numeral
pnqc .
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2.4.2 Lists and streams

An abstraction constructing pair-represented lists on the form:

[f (. . . f (f a) . . . ), . . . , f a, a]p

given f, a, and pnqc again relies on the bounded iteration built into the Church numerals:

pcovlistqp := λf.λa.λn.n (λl.pconsqp (f (phdqp l)) l) [a]p

If n + 1 is the length of such a list, the first element in that list is f iterated n times starting
from a.

Streams are possibly infinite sequences. Dual to pcovlistqp we seek a stream operator
pcovstreamqp that, given f and an initial element a produces prefixes of the stream:

[a, f a, . . . , f (. . . f (f a) . . . ), . . . ]p

The n-th element in such prefixes is f iterated n times starting from a. The constraints on the
definition of pcovstreamqp are co-inductive:

phdqp (pcovstreamqp f a) =β a

ptlqp (pcovstreamqp f a) =β pcovstreamqp f (f a)

Taking the head of the stream pcovstreamqpfa yields a and taking the tail of that stream yields
the stream specialized to the same function but now as head element f iterated once more,
i.e., f a. A definition of pcovstreamqp satisfying the two constraints is realized by use of the
fixed-point combinator Y, which satisfies Y f =β f (Y f):

pcovstreamqp := λf.Y (λg.λa.λs.s a (g (f a)))

2.4.3 Functions on Scott numerals

The addition function As noted pnqs is the selector of then-th element of a pair-represented
list. That is, to define addition of two numerals pnqs and pn ′qs, it would be useful to have
the list l = [pnqs, padd1qs pnqs, . . . , paddn′qs pnqs]p, because l pn ′qs =β paddn′qs pnqs =β

pn + n ′qs. Unfortunately, the construction of l is not immediate given pn ′qs because pn ′qs

has no built-in computational power corresponding to n ′ like the corresponding Church
numeral. That is, the length of the list to build is not known. A solution is to use a stream in-
stead of a list: Given pnqs and pn ′qs the addition function is thus defined as a specialization
of pcovstreamqp to the successor function:

paddqs := pcovstreamqp padd1qs

Initializing the stream with pnqs and taking the n ′-th element of the resulting stream yields
pn+n ′qs. Addition of Scott numerals is hence defined via iteration of the simpler successor
function — just like addition of Church numerals.
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The multiplication function, the exponentiation function, and the subtraction function
Specializing pcovstreamqp to other functions, which are then iterated, yields other standard
functions on numerals. Like for Church numerals the multiplication function is defined by
iterating addition, the exponentiation function is defined by iterating multiplication, and the
subtraction function is defined by iterating the predecessor function:

pmultqs := λn.pcovstreamqp (paddqs n) p0qs

pexpqs := λn.pcovstreamqp (pmultqs n) p1qs

psubqs := pcovstreamqp psub1qs

Because psub1qs maps p0qs to p0qs the subtraction function is monus.

The factorial function With the iterated function itfac in the definition of pfacqc changed to
use functions on Scott numerals (call it itfac ′) the factorial function on Scott numerals is also
seen to be closely related to its counterpart for Church numerals:

pfacqs := λn.pπ2q (pcovstreamqp itfac ′ 〈p1qs, p1qs〉 n)

2.5 A correspondence between Church numerals and Scott numer-
als

Translations between the Scott numeral system and the Church numeral system follow the
same line of thought as the definitions from the two previous sections:

pchurch2scottq := λn.n padd1qs p0qs

pscott2churchq := λn.pcovstreamqp padd1qc p0qc n

The functions defined for Church numerals apply such a numeral pnqc to an iterator function
f and an element a yielding the n-th iteration of f starting from a, which is the first element
in the list of intermediate results:

[f (. . . f (f a) . . . ), . . . , f a, a]

The functions defined for Scott numerals utilize a stream obtained by a specialization of
pcovstreamqp to an iterator function f and an initial element a. Applying the stream to pnqs

yields the n-th iteration of f starting from a, which is the n-th element in the stream of interme-
diate results:

[a, f a, . . . , f (. . . f (f a) . . . ), . . . ]p

A general relationship between the two numeral systems hence stands out:

pnqc f a =β pcovstreamqp f a pnqs

2.6 An alternative definition of the subtraction function for Church
numerals

2.6.1 Generalizing Kleene’s predecessor function

The structure of Kleene’s predecessor function presented in Section 2.2.2 can easily be adapted
to define functions that subtract p2qc, p3qc, etc. from a Church numeral: To subtract p1qc, two
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numerals are used in each element in the series of intermediate results as presented in Sec-
tion 2.2.2. To subtract p2qc, three numerals are used in each element:

〈p0qc, 〈p0qc, p0qc〉〉
〈p1qc, 〈p0qc, p0qc〉〉
〈p2qc, 〈p1qc, p0qc〉〉
〈p3qc, 〈p2qc, p1qc〉〉
〈p4qc, 〈p3qc, p2qc〉〉

...
〈pnqc, 〈pn− 1qc, pn− 2qc〉〉

Each element in the series can be generated from the previous element via padd1qc, and the
definition of psub2qc satisfying psub2qc pnqc =β pn − 2qc, n ≥ 2 follows the same line of
thought as Kleene’s predecessor:

psub2qc := λn.pπ2q (pπ2q (n (λp.〈padd1qc (pπ1q p), 〈pπ1q p, pπ1q (pπ2q p)〉〉) 〈p0qc, 〈p0qc, p0qc〉〉))

Here psub2qc p1qc =β psub2qc p0qc =β p0qc.
In general n ′ + 1 numerals are used in the definition of a function psubn′qc that satisfies

psubn′qc pnqc =β pn − n ′qc when n ≥ n ′ and psubn′qc pnqc =β p0qc when n < n ′.

2.6.2 A course-of-value representation of Church numerals

We observe that, instead of generating the whole series of intermediate elements the last el-
ement in the series can be constructed immediately as a list by specializing pcovlistqp defined
in Section 2.4.2 to iterate the successor function starting from p0qc:

pc2covqp := pcovlistqp padd1qc p0qc

pc2covqp pnqc =β [pnqc, pn− 1qc, . . . , p0qc]p

pc2covqp is thus a mapping from Church numerals to a course-of-value representation of
Church numerals here using nested pairs [70, Chapter 3]. The n ′-th prefix of this list consti-
tute the series of intermediate results encountered when iterating psub 1qc in the subtraction
psubqc pnqc pn ′qc — only in reversed order. If n ≥ n ′, by analogy with streams underlying
Scott numerals, pn − n ′qc is the n ′-th element in the list:

pminusqc := λn.λn ′.pnthqp n
′ (pc2covqp n)

Here, pminusqc pnqc pn ′qc =β psubqc pnqc pn ′qc, if n ≥ n ′. Unfortunately, this equivalence
does not hold in general when n < n ′.

2.6.3 Lists as generalized pairs

The reason pminusqc does not coincide with psubqc is the use of pair-represented lists for
the underlying course-of-value representation. Another list representation generalizes the
definition of pairs and represents lists directly:

pnilqg := λs.λn.n

pconsqg := λh.λt.λs.λn.s h t

phdqg := λl.l (λh.λt.h) p0qc

ptlqg := λl.l (λh.λt.t) pnilqg

pnil?qg := λl.l (λh.λt.pfalseq) ptrueq
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Two series of equations show that this representation is consistent:

phdqg (pconsqg a l) =β phdqg (λs.λn.s a l)
=β (λs.λn.s a l) (λh.λt.h) p0qc

=β a

ptlqg (pconsqg a l) =β ptlqg (λs.λn.s a l)
=β (λs.λn.s a l) (λh.λt.t) pnilqg

=β l

According to the new representation a list is properly nested pairs abstracting over the result
in case of taking phdqg or ptlqg on the empty list. The correctness of the following two
equations is hence immediate:

ptlqg pnilqg =β pnilqg

phdqg pnilqg =β p0qc

These properties do not hold for pair-represented lists. For Church lists and for pair-represented
lists augmented with the length the properties could be ensured.

2.6.4 The alternative definition of the subtraction function

The above two properties give that taking the tail of a list more times than the number of
elements just gives the empty list, and taking the n-th element of a list with fewer elements
yields p0qc. In other words, with this representation the tail function has the same nature
on lists as the monus function of Section 2.1 has on Church numerals. With pc2covqp and
pnthqp adjusted to the generalized list representation (pc2covqg and pnthqg) the definition of
pminusqc hence coincides with the monus function on all Church numerals:

psubqc := λn.λn ′.pnthqg n
′ (pc2covqg n)

This representation of monus is linear whereas the previous representation is quadratic.7

2.7 The quotient function and the remainder function

Relying on the monus function Representations of the quotient function and the remain-
der function can be defined by iterating the subtraction function. The function nextn ′ for
n ′ > 0, is actually iterated:

nextn ′ 〈prqc, pqqc〉 =

{ 〈psubqc prqc pn ′qc, pq+ 1qc〉 if r ≥ n ′

〈prqc, pqqc〉 if r < n ′

That is, a pair of numerals is threaded such that the quotient can be incremented in each
iteration where r ≥ n ′. Iteratively applying nextn ′ to the initial pair 〈pnqc, p0qc〉 the pair
is fixed after at most n iterations because the numeral in the first component each step —
by use of psubqc — becomes n ′ smaller until it is fixed for the rest of the iterations. The
remainder is the first component and the quotient n/n ′ is the second component in the final

7If the course-of-value representation used Church lists or augmented pair-represented lists the new repre-
sentation of monus would not be linear.
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pair (n iterations are used if n ′ = 1). Representations of the quotient function quo and
the remainder function rem heavily relying on psubqc are accordingly defined (with nextn ′

represented as next pn ′qc):

next := λn ′.λp.p<qc (pπ1q p) n ′ p 〈psubqc (pπ1q p) n ′, padd1qc (pπ2q p)〉
pquoqc := λn.λn ′.pπ2q (n (next n ′) 〈n, p0qc〉)
premqc := λn.λn ′.pπ1q (n (next n ′) 〈n, p0qc〉)

Again, the efficiency of the representations depends on the choice of definition of psubqc. In
every iteration psubqc is used in the test (p<qc). Until the quotient has been found psubqc is
also used to construct the first component in the next pair.

Relying on the monus function but with result indicator The information that the result
after q iterations is obtained is thrown away by having an explicit check for r < n ′ in each
iteration. In addition to the two components of the pair a boolean (ptrueq or pfalseq) can
be threaded as an indicator for whether the test has to be computed or the remainder and
the quotient have been found. The achievement is definitions that use psubqc only in the
iterations until the result has been found. For the rest of the iterations, both the test and the
construction are constant operations.

Exploiting the course-of-value representation In general though, pquoqc pnqc pn ′qc and
premqc pnqc pn ′qc are not linear in n and n ′ since in each iteration a list proportional to n is
created because of the monus function psubqc.

An alternative is not to rely on the monus function by deforesting the intermediate lists.
The iterated function nextn ′ , n

′ > 0 here as first component threads a list instead of a Church
numeral:

nextn ′ 〈r, pqqc〉 =

{〈r ′, pq+ 1qc〉 if r ′, the n ′-th tail of r, is not the empty list
〈r, pqqc〉 if the n ′-th tail of r is the empty list

If this function is iterated starting from the pair 〈l, p0qc〉where l is the course-of-value repre-
sentation of n using generalized lists (i.e., l = pc2covqg pnqc) the resulting pair is fixed after
at most n iterations (where the length of l each time becomes n ′ smaller) with the quotient
n/n ′ as the second component (again n iterations are used if n ′ = 1). The first component is
the course-of-value representation of the remainder. The corresponding Church numeral is
just the head element:

next := λn ′.λp.(λt.pnil?qg t p 〈t, padd1qc (pπ2q p)〉) (n ′ ptlqg (pπ1q p))
pquoqc := λn.λn ′.pπ2q (n (next n ′) 〈pc2covqg n, p0qc〉)
premqc := λn.λn ′.phdqg (ptlqg (pπ1q (n (next n ′) 〈pc2covqg n, p0qc〉)))

Remark: It is essential that the course-of-value representation of numerals use the general-
ized pair representation of lists such that ptlqg pnilqg = pnilqg and phdqg pnilqg = p0qc

The predicate pnil?qg is a constant-time operation (as opposed to pzero?qc which is a lin-
ear operation). Therefore the achievement is representations of the quotient function and
the remainder function that operate in linear time. In contrast, when building on psubqc the
functions operate in quadratic time: A Church numeral prqc (proportional to n) is at each
iteration mapped to the course-of-value representation via pc2covqg which operates in lin-
ear time. Then the n ′-th tail l ′ is found followed by a (constant time) mapping of l ′ to the
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corresponding Church numeral. In the next iteration l ′ is constructed again via pc2covqg. In
the revised version above, the mapping from Church numerals to the course-of-value rep-
resentation is only performed once—before the first iteration. The mapping back to Church
numerals is only performed once—after the last iteration.8

2.8 Extending the λ-calculus with literals and a corresponding prim-
itive successor function

As developed in this chapter Church numerals are defined as abstractions over a primitive
zero value and a primitive successor function. Instead of representing numbers by λ-terms
we introduce literal numbers including a primitive p0q and a corresponding primitive suc-
cessor function as a basic function directly in the calculus. Such basic entities are collectively
called basic constants.

The λβδ-calculus The term language of the λ-calculus is extended with literal integers and
the corresponding primitive successor S:

Var x ::= (unspecified)
Term t ::= x | λx.t | t t | b

Basic b ::= l | q

Lit l ::= {p0q, p1q, p2q, p3q, . . . }
BasicF q ::= S

The new productions give rise to an extended notion of reduction βδ := β ∪ δ, where δ
utilizes a function capp, which in our setting is very simple:9

δ : q l → capp (q, l)

capp : BasicF× Lit → Basic
capp (S, pnq) = pn+ 1q

The set of βδ-normal forms contain no β-redex and no δ-redex:

a ::= x | a n | l n | q d

d ::= a | λx.n | q

NForm n ::= d | l

Compared to the definition of normal forms in the λ-calculus on page 8 one extra nontermi-
nal d is needed to denote a term in normal form, which is not a literal.

The translations from a Church numeral or a Scott numeral into the corresponding literal
are immediate:

ptoliteralqc := λn.n S p0q
ptoliteralqs := covstream S p0q

8By analogy with previously defined functions the various versions of the quotient function and the remain-
der function can directly be translated to corresponding versions operating on Scott numerals.

9Note that pnq no longer has a subscript because it denotes an unspecified representation of the number n.
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Standard properties of the λβδ-calculus Extending the notions of reduction from β to βδ
yields a relation which is also Church-Rosser [59]. Furthermore, the restricted compatibility
closure defining normal-order reduction found in Section 1.5 can be adjusted to cope with
δ, and still satisfy the standardization theorem. Adding a more general version of δ, which
defines a contraction rule for the application of a range of basic functions to literals, is also
possible. The Church-Rosser property would still hold and the normal-order reduction strat-
egy again satisfies the standardization theorem. We use the term language and the δ-rule as
defined above, because it is simpler but still sufficient for illustration.

Reduction to weak head normal forms The set of weak head normal forms is like in the
λ-calculus generated from a grammar structurally equal to the grammar of normal forms:

a ::= x | a t | l t | q d

d ::= a | λx.t | q

WHNForm w ::= d | l

Normalization to weak head normal forms in the λ-calculus was defined on page 13 via a
restricted compatible closure of the notion of reduction. We let weak head normalization be
defined via a restricted compatible closure over βδ to cope with the basic constants:

(t, t ′) ∈ βδ
t 7→n t ′

t1 7→n t
′
1

t1 t2 7→n t
′
1 t2

t2 7→n t
′
2

q t2 7→n q t
′
2

The adjusted definition of 7→n is the only change in the function for weak head normal-
ization:

normalizen t = w iff t 7→∗
n w

Proposition 2 on page 14 also holds for the new definitions of normalizen and weak head
normal forms. Especially normalizen t = b ⇐⇒ t =βδ b.

In the following we will often just say the λ-calculus when it is clear from context that it
is the λβδ-calculus over the extended term language from this section.

2.9 Summary

In this chapter we defined Church numerals and we developed standard functions exploit-
ing the bounded iteration built into such numerals by iterating simpler functions. We de-
fined structured elements to present Kleene’s definition of the predecessor function on Church
numerals and thereby the corresponding definition of monus as iterating the predecessor
function.

Following the line of thought in Kleene’s predecessor function, we presented the iterative
factorial function on Church numerals presented by Goldberg and Reynolds. Identifying the
general pattern as that of dynamic programming, we illustrated the general principle by a
sample problem LLCS and we presented a definition corresponding to an efficient algorithm.

We introduced Scott numerals which on the one hand do not have built-in computational
power, but on the other hand have a simpler predecessor function. We observed that Scott
numerals are selectors in pair-represented lists, and furthermore by the definition of streams
the usual functions on Scott numerals are also definable via iteration of simpler functions.
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The similar structure between functions for Scott numerals and the corresponding for
Church numerals gave rise to a general relationship between Scott numerals and Church
numerals. This general relationship emphasized a course-of-value representation underly-
ing the Church numerals and made us identify an inefficiency in the representation of monus
on Church numerals, when it is defined by iterating the predecessor function. We presented
an efficient representation of monus on Church numerals.

Usually, the definitions of standard functions like the quotient function and the remain-
der function are defined via the monus function and thereby inherit the properties of the
actual representation of monus. Exploiting the course-of-value representation of numerals
we presented alternative representations of the quotient function and the remainder func-
tion that do not use monus at all. The new representations are linear whereas via monus the
representations are at least quadratic. The results on the course-of-value representations are
joint work with Olivier Danvy, but mistakes are mine.
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Chapter 3

Other λ-calculi

The calculus defined in Chapter 1 and used for definability in Chapter 2 is the original λ-
calculus as defined by Church [11]. Several extensions and variants have been defined after-
wards. In this chapter we review some of these calculi.

Roadmap In Section 3.1 we briefly touch on a direct extension of the λ-calculus. Thereafter
we introduce in Section 3.2 another view on substitution, which does not rely on a meta-
construction as in the definition of β and explicit in the definition of βdeB. This view leads to
a new class of λ-calculi with explicit substitutions. We continue in Section 3.3 with a standard
variation of the λ-calculus: Plotkin’s λv-calculus [59].

3.1 The λβη-calculus

In the λ-calculus as defined in Chapter 1, β is the only contraction rule. We can directly
extend the calculus by extending the notion of reduction. We add the contraction rule η:

η : (λx.t x) → t, if x /∈ FV t

and extend the notion of reduction to βη := β∪ η. We define βη-reduction →βη, its reflexive
transitive closure →∗

βη, and equality =βη analogously with the definitions in Section 1.3 and
leave out the details.

The set of terms in βη-normal form is by construction no longer specified by the gram-
mar in Section 1.2. Some β-normal forms are not η-normal forms. On the other hand, the
grammar of weak head normal forms from Section 1.5.3 remains unchanged.

We emphasize two properties related to normal forms and weak head normal forms:
(1) →∗

βη satisfies that same diamond property as →∗
β, i.e., βη is Church-Rosser [7, Theo-

rem 3.3.9], and (2) The set of weak head normal forms are closed under β-reductions but
not under βη-reductions (which follows directly from the definition of η where t can be a
non-value).

With the η-rule included some of the representations of functions on numerals in Chap-
ter 2 can be simplified. For example, paddnqc used in connection with the multiplication
function on Church numerals can be η-reduced (n and padd1qc are both closed terms):

paddnqc := λn ′.n padd1qc n
′→βη n padd1qc
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3.2 Explicit substitutions

As the notion of reduction β is defined in Section 1.2, an actual substitution is performed in
constructing the contractum of a redex. The substitution was denoted by a meta-construction
and intuitively explained. Such a substitution can formally be defined via a recursive descent
on a term as seen in Section 1.6.2, in connection with variables represented as de Bruijn
indices. The point is, a substitution is altering the term by replacing free occurrences of the
variable at hand by the right-hand sub-term of the application.

An alternative way to handle substitution, known as explicit substitutions, is to some-
how remember substitutions as part of the syntactic unit by an incorporation into the term
language. No actual substitution is performed when forming the contractum of a β-redex.
Instead, the notion of reduction is extended with new contraction rules for (1) distribution
of such unrealized substitutions and (2) eventually realizing a substitution of a term for a
variable and (3) removal of unneeded substitutions.

Curien’s calculus of closures λρ The λρ-calculus [15] uses explicit substitution. A syntactic
unit in the calculus essentially is the composition of a λ-term and a mapping from variables
to (in general) syntactic units. Since Landin’s work on evaluation of applicative expressions
such a composition is known as a closure [50], and the λρ-calculus is for that reason also
known as a calculus of closure.

Instead of named variables the terms contain de Bruijn indices as introduced in Sec-
tion 1.6. That is, the substitution part of a closure is a mapping from natural numbers to
closures. This mapping is represented as a list of closures.

A formal definition of Curien’s λρ-calculus is omitted because a minimal extension of it
is treated in Section 5.2.1. The extended calculus is the λρ̂-calculus defined by Biernacka and
Danvy [8, 9].

3.3 The λv-calculus

The λv-calculus, which is due to Plotkin [59], was defined with a special purpose that will
become clear in later chapters.

The term language Terms of the λv-calculus, as defined by Plotkin, include an unspecified
notion of basic constants. We will be concrete and use the term language for the λβδ-calculus
defined on page 35.

Notion of reduction The notions of reduction in the λ-calculus was in Chapter 1 defined as
the relation β. In the λβδ-calculus of Section 2.8 the notion of reduction is βδ: an extension
of β for an extended set of λ-terms including some basic constants. In the λv-calculus the
notion of reduction is βv ∪ δ, where βv is a restricted version of β.

The βv-rule relies on a syntactic notion of values, which are exactly the terms not being
applications:

Val v ::= x | b | λx.t

βv allows only contractions where the right sub-term of a β-redex is a syntactic value:

βv : (λx.t) v → t{v/x}
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One-step reduction and equality One-step reduction, →βvδ, in the λv-calculus is, like in
the λ-calculus, defined as the compatible closure of the notion of reduction according to the
same unrestricted compatibility rules or contexts found in Section 1.3.

We likewise take →∗
βvδ as the reflexive transitive closure of →βvδ. Equality =βvδ is defined

as the smallest equivalence over →∗
βvδ.

Properties and normal forms The resulting calculus is also Church-Rosser [59, page 135].
That is, →∗

βvδ satisfies the same diamond property as →∗
β.

Again the corollary of uniqueness of normal forms of terms holds, where a normal form
now is a term without any βv-redexes or δ-redexes. Because every βv-redex is also a β-
redex but not the other way around (i.e., βv ⊂ β) the definition of βv-normal forms will
be an extension of the grammar of β-normal forms from Section 1.2 employing an extra
nonterminal to represent non-value normal forms hv:

hv ::= av nv | (λx.nv) hv

av ::= x | hv
nv ::= av | λx.nv

One production is added for the case where the left sub-term of an application can be re-
duced to an abstraction but the right sub-term cannot be reduced to a value. To cope with
the basic constants we introduce yet another nonterminal, dv, just like in the grammar of
normal forms in the λβδ-calculus on page 35:

hv ::= av nv | (λx.nv) hv | l nv | q dv

av ::= x | hv

dv ::= av | λx.nv | q

NFormv nv ::= dv | l

hv still denotes the non-value normal forms.

Values vs. normal forms in the βv-rule If the definition of βv reads (λx.t) nv → t{nv/x},
where nv is a normal form instead of a value, the diamond property is no longer satisfied,
i.e., the notion of reduction would not be Church-Rosser. A minor change to our running
sample term gives an illustrative counter example:

(λx.(λy.z) (x x)) (λx.w (x x)) →βvδ (λx.z) (λx.w (x x))→βvδ z

(λx.(λy.z) (x x)) (λx.w (x x)) →βvδ λy.z ((λx.w (x x)) (λx.w (x x)))→βvδ (λy.z) (w ((λx.w (x x)) (λx.w (x x))))→∗
βvδ (λy.z) (w . . . ((λx.w (x x)) (λx.w (x x))) . . . )

Two reductions can be used to obtain the normal form z because x x (which is not a value) is
a normal form. But a series of reductions can be performed on the same term reaching terms
that can never yield z by a series of reductions. In other words, the definition of values is
essential, such that only the second series of reductions is possible in the calculus. Remark in
addition that the above example does not involve basic constants. That is, the use of values
and not normal forms in the βv-rule is essential also in a purified version of the λv-calculus
with only βv as the notion of reduction.
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β vs. βv On the one hand, the fact that a term has a normal form in the λβδ-calculus does
not imply that it has a normal form in the λv-calculus. A counter example is the term
(λx.(λy.z) (x x)) (λx.w (x x)) from above. In the λβδ-calculus the term has normal form z

because the two reductions in the first series above are β-reductions. In the λv-calculus only
the second series is possible and that series can not be extended to obtain a normal form.

On the other hand, even though βv is a restriction of β, a term with a normal form in the
λv-calculus does not necessarily have a normal form in the λβδ-calculus. For example, the
term (λd.(λx.w (xx))) (yy) (λx.w (xx)) is a normal form in the λv-calculus but diverge in the
λβδ-calculus because (λd.(λx.w (x x))) (y y) (λx.w (x x)) =β (λx.w (x x)) (λx.w (x x)), which
is the diverging sample term from Section 1.4. The above property influences on definability
in the λv-calculus.

3.3.1 Standard reduction

In Section 1.5 the one-step reduction function 7→n̄ defined a strategy to perform reductions
on terms in the λ-calculus. Likewise, an analogous one-step reduction function 7→ v̄ can be
defined for the λv-calculus. The definition is again defined as a restricted compatible closure
now of βvδ to obtain a partial function on terms which is defined on all terms not in normal
form:

(t, t ′) ∈ βvδ

t 7→v̄ t ′
t 7→v̄ t

′

λx.t 7→v̄ λx.t ′
t1 /∈ Val, t1 7→v̄ t

′
1

t1 t2 7→v̄ t
′
1 t2

t 7→v̄ t
′

av t 7→v̄ av t ′
t 7→v̄ t

′

b t 7→v̄ b t ′

t2 /∈ Val, t2 7→v̄ t
′
2

(λx.t) t2 7→v̄ (λx.t) t ′2

t 7→v̄ t
′

(λx.t) hv 7→v̄ (λx.t ′) hv

The first row of rules and the first rule of the second correspond to the rules for the standard
reduction function for the λ-calculus. In an application, the left sub-term t1 is reduced to
either a value or a non-value normal form hv. The second row of rules gives that in case
of not obtaining an abstraction the right sub-term t2 of the application is reduced which
eventually overall yields a non-value normal form or a δ-redex. The third row gives that
in the case where an abstraction is obtained, t2 is reduced to either a value or a non-value
normal form. In case a value is obtained the overall application is a βv-redex and if a non-
value normal form hv is obtained, the body of the abstraction is reduced.

Like for the λ-calculus we notice that equality in the λv-calculus has not changed by the
above definition of the restricted compatibility closure. Taking 7→∗̄

v as the reflexive transitive
closure of 7→v̄, =v̄ denotes the equivalence over 7→∗̄

v. Now =v̄ is a proper subset of =βvδ. =v̄ is
a subset because it is a restricted compatibility closure, and the term (λx.w(xx))(λx.w(xx))((λx.y)x)

illustrates that this subset is proper: On the one hand an equation in the λv-calculus reads

(λx.w (x x)) (λx.w (x x)) ((λx.y) x) =βvδ (λx.w (x x)) (λx.w (x x)) y

which is established by a contraction of the redex (λx.y) x. On the other hand = v̄ does not
contain that equation because the left sub-term (λx.w (xx)) (λx.w (xx)) must be reduced to a
value or a non-value normal form before considering the right sub-term. But as seen above
the left sub-term diverges. Hence =v̄ ⊂ =βvδ.
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3.3.2 Normalization

A standardization theorem also holds for 7→v̄ with respect to the λv-calculus. In the previ-
ous subsection it was illustrated that the set difference =βvδ\=v̄ is non-empty. The theorem
implies that these equations only consider terms with no normal forms (which is also the
crucial property of the above sample term). A term is equal to a normal form if and only if
the normal form can be obtained via a series of reductions following the standard reduction
7→v̄:
Theorem 3 (Standardization)
t →∗

βvδ nv if and only if t 7→∗
v̄ nv.

Equations involving terms with normal forms are all contained in both =βvδ and =v̄.
Because 7→v̄ is a function and the standardization theorem holds, 7→v̄ defines a strategy

that by a series of reductions eventually yields the normal form of a term if one exists. Nor-
malization in the λv-calculus can therefore be defined as follows.

normalizev̄ t = nv iff t 7→∗
v̄ nv

This function is well-defined and partial for the same reasons as normalizen̄ in the λ-calculus.
By construction the following proposition is immediate.

Proposition 3
normalizev̄ t = nv ⇐⇒ t =βvδ nv

3.3.3 Reducing to weak head normal forms

Normalization in the λv-calculus as defined in Section 3.3.2 following the standard reduction
strategy presented in Section 3.3.1 yields βvδ-normal forms. We again introduce weak head
normal forms as a relaxed notion of normal forms together with a corresponding reduction
strategy to facilitate a weak notion of normalization:

hv ::= av t | (λx.t) hv | l t | q dv

av ::= x | hv

dv ::= av | λx.t | q

WHNFormv wv ::= dv | l

Remark the relationship with the grammar of normal forms on page 40: The only difference
is all normal forms nv have been relaxed to general terms t.

The strategy 7→v is defined for all terms not in weak head normal form. Compared to the
definition of 7→v̄ the rules are simplified greatly when considering weak normalization:1

(t, t ′) ∈ βvδ

t 7→v t ′
t1 7→v t

′
1

t1 t2 7→v t
′
1 t2

t2 7→v t
′
2

(λx.t) t2 7→v (λx.t) t ′2

t2 7→v t
′
2

q t2 7→v q t
′
2

1The two rules in the second row is sometimes replaced by the rule

t2 7→v t
′
2

v t2 7→v v t ′2
For example, Plotkin’s left reduction [59, page 136] would in our notation use that rule. Under certain conditions
the difference become minor, but remark that reduction would also be defined for some weak head normal
forms.
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As in Section 1.5.3 the rule for reducing abstractions is removed. t1 /∈ Val is implied by
t1 7→v t

′
1 and is removed as a condition in the second rule. Also we only consider reducing

the right sub-term of an application if the left sub-term is an abstraction or a basic function
q and again, t2 7→v t

′
2 implies t2 /∈ Val and the overall term (λx.t) t2 in the third rule is not a

βv-redex.
With βvδ being a function it is justified that the function 7→v is well-defined. Normal-

ization to weak head normal forms can hence be given in terms of the reflexive transitive
closure of 7→v, denoted 7→∗

v:

normalizev t = wv iff t 7→∗
v wv

This function is well-defined and partial. Like in the λ-calculus, uniqueness of weak head
normal forms of terms does not hold. The term (λx.x) (λy.(λz.y)w) is again a counter exam-
ple. normalizev chooses among the possible weak head normal forms, the first one obtained
when reduction is following the standard reduction strategy.

Analogously with weak head normalization in the λ-calculus a weak version of Proposi-
tion 3 holds:2

Proposition 4
(i) normalizev t = wv =⇒ t =βvδ wv

(ii) t =βvδ wv =⇒ normalizev t = w ′
v, where wv =βvδ w

′
v

Especially, normalizev t = b ⇐⇒ t =βvδ b.

3.4 Summary

In this chapter we introduced variations in the defining elements of the λ-calculus. The
variations led to new notions of equality of λ-terms. The bigger part of the chapter was
concerned with Plotkin’s λv-calculus. We defined reduction strategies in the λv-calculus for
both weak and strong normalization.

2The right-to-left implication of the proposition again (like for weak head normalization in the λ-calculus)
hinges on a lemma involving standard reduction sequences.
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Chapter 4

Programming languages

In this chapter we give an introduction to programming languages.

Roadmap We briefly introduce a distinction between high-level programming languages
and low-level programming languages (Section 4.1) and various kinds of programming-
language classifications (Section 4.2). With programming languages defined as syntax to-
gether with a formal ‘meaning’ of syntax or semantics (Section 4.3) we briefly touch upon
syntax (Section 4.4) and continue with the main part of this chapter concerning semantics
(Section 4.5). We informally introduce a tiny sample programming language TLLF and in-
troduce three kinds of semantics artifacts by giving formal semantics for TLLF: We introduce
denotational semantics in Section 4.5.1, abstract machines in Section 4.5.2, and reduction semantics
in Section 4.5.3.

4.1 Machine-level and high-level programming languages

When a computer is used to perform some kind of calculation, the operations the machine
must perform are stated via executable programs in a machine-level programming language
that is understood by the computer. Programs in a machine level language are hardly hu-
man readable — even in symbolic form. A machine-level program includes a list of labeled
instructions directly executable by the computer. When the computer executes one instruc-
tion it unambiguously know how to perform that instruction. The instructions consists of,
e.g., moving data from one register to another, performing a simple arithmetic calculation or
logic operation, and conditional jumping to another place in the list of instructions depend-
ing on the content of a register. Computers with such an instruction set are Turing complete,
i.e., an algorithm to solve every mathematically computable problem can be expressed via
the instruction set. But, because every computer only understand one such machine-level
language and because such languages are hardly human readable even in moderate size,
high-level programming languages have been invented. This makes the programming lan-
guages machine-independent and the higher abstraction level lets programs be specified
in a human readable language. Here the languages are ‘high-level’ in the sense that the con-
structs of the languages specify rules for state changes that do not correspond one-one to
primitive operations on the machine. Of course programs in high-level languages must be
translated into the machine language before execution. For some high-level languages this
translation is done as a batch job with a compiler before the execution. For other languages an
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interpreter in a loop translates one construct of the program, executes the corresponding low-
level machine instructions and continues with the next construct. Other languages again use
a hybrid, where the high-level program as a batch job is translated to a program interpreted
by a virtual machine.

4.2 Paradigms

High-level programming languages can be grouped according to various aspects. Some
languages are general purpose languages. Others are more domain specific by including spe-
cialized constructs wrt. some domain. Some languages are object oriented, some are not.

Another — for this context more important — way to group high-level programming
languages is by the central unit of constructs. In imperative programming languages the
central unit is the statement. Routines (or methods) are used to make compound statements.
A program in such a language is intuitively a specification of an execution of a program on a
machine. Computation is the sequential execution of individual statements which changes
the state of the machine.

In logic/constraint programming languages the central unit is the relation. Relations de-
fine the constraints on variables. Computation is then the unification that overall tries to
make the relations hold by assigning values to variables. Emphasis is on the constraints to
fulfil and not the sequence.

In functional programming languages the central unit is the expression. Expressions are
evaluated yielding values and functions are used to abstract evaluation. In a purely func-
tional language (i.e., no imperative constructs are included) referential transparency is guaran-
teed. That is, any expression can be exchanged with its value without changing the meaning
of the program. In other words, the order of evaluation is irrelevant (when not considering
possible nontermination). Computation is the evaluation of expressions.

4.3 Defining a programming language

A programming language consists of (1) a definition of well-formed programs — the syntax;
and, to be able to write a compiler or an interpreter for a programming language, (2) a
definition of the exact meaning of the syntactic constructs — the semantics.

Quoting Strachey from his seminal paper Fundamental Concepts in Programming Languages [67,
page 12]:

In a rough and ready sort of way it seems to me fair to think of the semantics as
being what we want to say and the syntax as how we have to say it.

For a machine-level language a machine with the corresponding instruction set actually
is definitional for both syntax and semantics. In the following we concentrate on high-level
languages and illustrate the concepts by example.

The illustration language The sample programming language is a functional language
inspired by the λβδ-calculus from Section 2.8. The language includes variables, first-class
expression abstractions and applications of such abstractions. Furthermore, literal integers
and a primitive successor function for literals are included. Application is lazy in the sense
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that arguments to abstractions are not evaluated before application. The scope of a binding
of a variable in the application of an abstraction is the (lexical) body of the abstraction. We
will refer to this Tiny, Lazy, Lexically scoped Functional language by TLLF.

4.4 Syntax

For high-level languages the syntax of a programming language is usually specified by a
grammar of constructions like the specification on page 5 of terms in the λ-calculus. Usu-
ally though, concrete syntax is defined which specifies actual representations of programs
as strings of characters. A compiler uses a parser to map concrete syntax to abstract syn-
tax. The logical information about the used constructs and grouping is preserved in the
abstract syntax tree. What has been removed is the linear structure and with that the tokens
and precedence rules needed to unambiguously separate the constructs. Quoting David
Schmidt [65, page 8]:

We claim that the derivation trees [abstract syntax trees] are the real sentences of
a language, and strings of symbols are just abbreviations for the trees.

Abstract syntax of TLLF The abstract syntax of TLLF coincide with that of the λβδ-calculus
and the λv-calculus except wrt. variables:

Var i {1, 2, 3, . . . }

Exp e ::= i | λe | e e | b

Basic b ::= l | q

Lit l ::= {p0q, p1q, p2q, p3q, . . . }
BasicF q ::= S

Because the language is lexically scoped we let variable names be part of concrete syntax.
Hence variables are represented by lexical offsets relative to the occurrence. A program is a
closed expression, where an expression is closed if no lexical offset exceeds the number of
nesting abstractions from the occurrence to the root of the expression. Formally, 0 ` e must
hold where:

i ≤ m
m ` i

m+ 1 ` e
m ` λe

m ` e, m ` e ′
m ` e e ′ m ` b

4.5 Semantics

Specifying the semantics of a high-level programming language is more challenging and var-
ious approaches exists. Some languages have only an informal description in prose of the
semantics of the syntactic language constructs. In that case the absence of (semantic) ambi-
guities is hard to ensure and a (black-box) compiler or (black-box) interpreter then becomes
the ultimate definitional reference. To prevent ambiguities and to be able to reason about
programs in a language, e.g., to prove soundness of optimizations in a compiler, a formal
specification of the semantics of a language is usually presented via a semantic artifact.

The two main approaches result in a denotational semantics [64, 65] and an operational se-
mantics [56, 60], respectively. In the denotational approach the semantics is specified as a
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function mapping programs to their meaning, which might very well be a function of con-
cepts like an environment, a store, and a continuation. This approach is extensional in the
sense that the semantics of a program is solely a function on some input.

The operational approach is more closely related to the intuitive notion of a program as a
specification of a program execution found in imperative languages. By this approach rules
are specified to transform a program to a result in a series of steps and is for that reason said
to be intentional.

In the following, three semantic artifacts are introduced for TLLF. We begin with a deno-
tational semantics, and continue with two operational semantics: an abstract machine and
a reduction semantics. In each case we introduce the kind of semantic specification before
giving a semantics for TLLF.

4.5.1 Denotational semantics

This approach relies on domain theory [66] [65, Chapter 3] [64, Chapter 2] [70, Chapter 8].

Semantic domains and semantic algebras A semantic domain is a set of objects D with a
partial order v, where all possible chains d1 v d2 v . . . , for di ∈ R ⊆ D have a least upper
bound

⊔
R in D. Such a construction is also called a cpo (Complete Partial Order). Here we

follow Schmidt and Winskel. Reynolds refers to such a construction as a predomain. If D also
contains a least element ⊥, ‘less than’ all other objects in the set (⊥ v d,∀d ∈ D), D is called
a pointed cpo. Reynolds refers to such a construction as a domain.1

A semantic algebra is a domain together with related operations like operations to cre-
ate elements, predicates on elements, etc. The operations are the ‘interface’ to the elements
encapsulating the ‘representation’ of the elements.

Compound domains and algebras are build via a set of constructions out of existing
domains. The most used such constructions are the product construction ×, the disjoint
union construction + and the function space construction →.2 The theory gives that via
standard partial orders the results are all domains. When using the compound constructions
corresponding operations are defined implicitly as part of the construction. For example,
when using the disjoint union construction +, injection functions into the sub-domains and
predicate functions indicating which sub-domain an element belongs to, are defined as part
of the construction and left implicitly when actually forming compound domains.3

1The natural numbers N with the usual≤ ordering as the partial order is not even a predomain because there
exists chains where the least upper bound is not a natural number (e.g., 1 ≤ 2 ≤ . . . with least upper bound∞). Adding ∞ actually defines a domain with ⊥ = 1. Usually though, ⊥ will represent nontermination and the
partial order represents the degree of information. By treating N as a predomain with the trivial partial orderv
where n v n ′ iff n = n ′, we can define N⊥ := N ∪ {⊥} and extend the partial order to include ⊥ v n, ∀n ∈ N.
The result is also a domain: the flat domain (or discrete domain) denoted by N⊥.

2Starting, e.g., with the discrete domain of natural numbers N⊥ one can via the product construction × con-
struct the product domain N⊥ × N⊥.

3The theory gives that these functions are all continuous with respect to the partial order. Continuous in this
context means that the partial order is preserved under the mapping (monotonicity) and that for every chain the
least upper bound is mapped to the least upper bound of the chain after the mapping. When using the con-
struction to build a function space A → B the domain consists of all the continuous functions from A to B. That
only the continuous functions are included makes it possible to create recursive domains without introducing a
cardinality problem.

The fixed-point theorem establishes the foundation for recursive functions. Having a recursive equation of a
function between domains only using continuous functions, the function it represents is the limit of approxima-
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A metalanguage To denote the operations in the primitive and the compound semantic
algebras a metalanguage is needed. This language is written in λ-notation and often includes
a conditional construct (· → · | ·) and a case construct (case · of (· → ·)∗).

The meaning of the metalanguage used is explained differently. Schmidt explicitly gives
simplification properties for the individual meta-constructs. Reynolds refers informally, e.g.,
to the conditional construct, as a way to define the function ‘by cases’. Winskel defines a
conditional construct in a defined language by use of sets directly instead of a metacircular
use of a conditional construct in the metalanguage. From a denotational perspective the
important thing is that the metalanguage is only used to describe mathematical objects like
functions — the representation of the objects is irrelevant.

A central property of a denotational semantics is hence its descriptive nature: A denota-
tional semantics is a specification of the language. In that respect simplification rules for the
metalanguage is misleading as the denotation is the same mathematical object after a series
of simplifications.4

The valuation function When defining the meaning (denotation) of a program in a pro-
gramming language via a denotational semantics, the metalanguage is used. A valuation
function maps well-formed terms to their corresponding meaning in a semantic domain. This
valuation function is normally defined via semantic equations and must be syntax-directed
and compositional [70, page 60]: Syntax-directed means that there is exactly one equation
for each production in the abstract-syntax grammar. Compositional means that in each of
these semantic equations, the meaning of a compound construction is expressed solely as a
function on the meaning of its immediate sub-constructions.

A denotational semantics maps programs that are considered equal in the defined lan-
guage to the same semantic object — they have the same denotation. According to that
reasoning the valuation function EJ·KTLLF (defined below) defines equivalence classes on the
set of all programs:

p =TLLF p
′ iff EJpKTLLF = EJp ′KTLLF

Suppose a program p correctly implements an algorithm for a problem and program p ′

maybe implements a solution more cleverly. It would then be useful to have a tool to make
the decision EJpKTLLF = EJp ′KTLLF. Unfortunately, we can solve the halting-problem if such
a decision-method exists by letting one of the programs be a nonterminating program. It is
hence (in general) undecidable do check for equivalence.

A denotational semantics for TLLF

We define the needed semantic algebras used by the valuation function and the valuation
function itself. Denotations of terms rely on an algebra of environments which again relies
on a notion of denotable values (Basic is the sum cpo of the discrete cpos of basic functions

tions of the function. This limit function is continuous. This result is used to give a compositional specification
of, e.g., looping constructs in imperative languages and constructs for recursive declarations in functional lan-
guages.

4If one decide on a strategy to apply the simplification rules one has an implementation of the language. We
will elaborate further on that later.
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BasicF and literals Literal):

Domains : v ∈ Val := Basic + Fun
d ∈ DenVal := Val⊥

f ∈ Fun := DenVal → DenVal
ρ ∈ Env := {mt_env} ∪DenVal× Env

Operations : mt_env : Env
extend_env : Env → DenVal → Env
extend_env = λρ.λd.(d, ρ)

lookup : Env → Var → DenVal
lookup = λρ.λi.case ρ of

mt_env → ⊥
(d, ρ) → (i = 1) → d | (lookup ρ (i− 1))

Environments are represented by nested pairs. mt_env is the constant representing the empty
list. We leave out the injection functions and projection functions. DenVal is a lifting of the
predomain of values Val. To model call-by-name evaluation of applications the function
space Fun cannot be defined as Val → DenVal. In that case the result is an eager functional
language that requires arguments in applications to be proper values. The valuation function
EJ·KTLLF is syntax-directed and compositional as required:

EJ·KTLLF : Exp → Env → DenVal
EJiKTLLF = λρ.lookup ρ i
EJλeKTLLF = λρ.inVal (inFun (λd.EJeKTLLF (extend_env ρ d)))
EJe e ′KTLLF = λρ.case EJeKTLLF ρ of

isVal (isFun f) → f (EJe ′KTLLF ρ)
isVal (isBasic (isBasicF q)) → case EJe ′KTLLF ρ of

isVal (isBasic (isLiteral l))→ inVal (inBasic (capp (q, l)))
else → ⊥

else → ⊥
EJbKTLLF = λρ.inVal (inBasic (BJbKTLLF))

BJlKTLLF = inLiteral l
BJqKTLLF = inBasicF q

The denotation of an abstract syntax tree of the programming language is a function from
environments to denotable values. The specification is total because of the else-cases. Both if
a program contains a ‘type error’ (e.g., if the denotation of the left sub-term of an application
yields a constant which is not a basic function) or if it diverges the denotation is mapping
every environment to⊥. In the denotation of applications the denotation of the argument ex-
pression is applied to the argument environment. Also the body of abstractions is evaluated
in the argument environment (augmented with a new binding).

4.5.2 Abstract machines

The SECD machine To define the semantics of applicative expressions (AE), Landin de-
signed the SECD machine [50]. As Landin later points out [51, page 159] the abstract lan-
guage ISWIM (If you See What I Mean) is AE with ‘syntactic sugar’. That is, AE is the
‘kernel’ of ISWIM: Every construct of ISWIM can be expressed in AE.
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At any point in time the SECD machine’s state or configuration is a four-tuple: (S, E, C, D).
This machine performs evaluation of applicative expressions by looking at the four com-
ponents and deterministically determining the four components of the next configuration.
Iteratively performing this mapping from configuration to configuration (possibly) obtain-
ing a configuration, which cannot be mapped to another configuration, defines evaluation
of applicative expressions via the SECD machine. That is, the SECD machine defines the
semantics of applicative expressions, via an abstract specification of configurations and a
definition of transitions from configurations to configurations. In that respect, this approach
is a small-step operational semantics.5

Variations of the SECD machine The SECD machine is mostly important because it is
the first abstract machine defined as a definitional semantics for a programming language.
The original specification is not properly tail-recursive [12] and Danvy et al. show that the
dump component D (which is isomorphic to a stack of (S, E, C)-triples) is an unnecessary
artifact [3].

Directly simplified or extended versions also exist. For example, without support for
basic constants or with support for non-local control operators [3, 25]. Hannan and Miller
define such a version without support for basic functions [39]. That machine differs from the
original version in a more subtle way: In the evaluation of applications the operator subex-
pression is evaluated before the operand subexpression resulting in left-to-right applicative
evaluation order whereas the original has right-to-left applicative evaluation order. The ma-
chine also operates on expressions with de Bruijn indices instead of named variables.

Landin’s original version operates directly on applicative expressions. Felleisen and Flatt
have a version where such expressions must be compiled into a language of instructions
before running the machine [31, Section 8.1].

Plotkin allows closures involving expressions in general instead of only abstractions [59,
page 120]. Plotkin has this more general notion of closures to easily define a call-by-name
version of the SECD machine.

Other machines Felleisen and Friedman designed another machine called the CEK ma-
chine [32]; a simple machine inspired by the SECD machine but with roots in Reynolds’s
work on definitional interpreters [32, Section 2] [61]. Several variants of the CEK machine
have been presented [31]. One of these variants is the CESK machine which was presented
in Felleisen’s PhD-dissertation as a specification of the semantics of what he calls Idealized
Scheme [30]. The added component S represents a store needed to model the language: Ide-
alized Scheme is essentially applicative expressions extended with imperative constructs for
side-effecting variables and a non-local control operator.

A wide range of machines has been presented in the literature. Some other machines
are Hannan and Miller’s CLS machine, the VEC machine, which was presented as an imple-
mentation for a denotational semantics [65], the never published Krivine machine [13], and
the CAM with origin in categorical combinators [16].

Abstract machines and virtual machines Ager et al. distinguish between abstract machines
and virtual machines [2]. According to their definition a machine is a virtual machine if and

5Reynolds refers to semantics of this kind by transition semantics [64, Chapter 6].
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only if it operates on compiled terms. In that respect, e.g., Felleisen and Flatt’s version of the
SECD machine, the VEC-machine and the CAM are virtual machines and the SECD machine
and the Krivine machine are abstract machines. We follow the distinction suggested by Ager
et al. and concentrate on machines operating directly on abstract syntax.

Our notion of an abstract machine An abstract machine M is a state-transition system. It
has a set of states (or configurations) partitioned into the terminal configurations (TerminalM)
and the non-terminal configurations (NonTerminalM). It has a transition relation (σM) that de-
cides the next configuration for a given non-terminal configuration. The transition relation
is iterated until (possibly) a terminal configuration is obtained.

Following Plotkin [60] we have restricted σM to be a (total) function such that the ma-
chine is deterministic. We restrict σM further by only allowing elementary operations. This
restriction makes the evaluation steps explicit. For example, a recursive traversal on a term
is then not allowed in one transition.6

A total function loadM is specified to map a term into a corresponding start configuration
of M. Likewise, a partial function unloadM is specified to extract the result from a terminal
configuration. Running an abstract machine is then defined as the composition of loading,
iterating the transition function, and possibly unloading the final result:

TerminalM a

NonTerminalM n

ConfigurationM c ::= a | n

loadM : Term → ConfigurationM

σM : NonTerminalM → ConfigurationM

unloadM : TerminalM → Val

iterateM : ConfigurationM → TerminalM
iterateM a = a

iterateM n = iterateM (σM n)

runM : Term → Val
runM = unloadM ◦ iterateM ◦ loadM

Here Val is the set of result values. If an abstract machine M on term t never reaches a
terminal configuration, the machine is said to diverge on t. If a terminal configuration a is
reached but unloadM is not defined on a, M is said to be stuck in a.

The above specification implies that an abstract machine M is completely specified by
defining the possible terminal and nonterminal configurations and the three functions: loadM,
σM and unloadM.

As defined above an abstract machine may operate directly on terms by letting terms be
part of each configuration. But there is no constraint implying that such an explicit use of
terms is always the case. For example, by letting the load function be a compiler the result is
a virtual machine. For that reason we restrict loading and unloading as well to only perform
elementary operations.

6Felleisen and Flatt do not restrict the transition relation to be a function and they also do not restrict that
function by only allowing elementary operations. For example, the CC machine performs a recursive descent
on certain terms in one transition [31, Chapter 6].
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An abstract machine for TLLF

A configuration of the abstract machine consists of three parts: (1) an expression from the
source language, (2) an environment mapping lexical offsets to closures, and (3) a stack
where each element is either a closure or a basic function:

Closure c ::= (e, ρ)
Env ρ ::= • | c · ρ
Stack s ::= • | c · s | q · s
Val v ::= b | (λe, ρ)
Configuration = Exp× Env× Stack

Loading the machine is defined as forming the configuration of the initial expression and
the empty environment and the empty stack. Unloading consists of extracting the expres-
sion part when the stack is empty. If the expression is an abstraction it is paired with the
environment which binds the free indices of the body of the abstraction:

loadTLLF : Exp → Configuration
loadTLLF e = (e, •, •)

unloadTLLF : Configuration → Val
unloadTLLF (b, ρ, •) = b

unloadTLLF (λe, ρ, •) = (λe, ρ)

The transition function from (non-terminal) configurations to configurations reads:

σTLLF : Configuration → Configuration
σTLLF (i, c1 · · · (ei, ρi) · · · cj, s) = (ei, ρi, s)

σTLLF (λe, ρ, c · s) = (e, c · ρ, s)
σTLLF (e e ′, ρ, s) = (e, ρ, (e ′, ρ) · s)

σTLLF (q, ρ, (e, ρ ′) · s) = (e, ρ ′, q · s)
σTLLF (l, ρ, q · s) = (capp (q, l), ρ, s)

Because programs are closed terms a variable can always find a corresponding binding to a
closure in the environment. In case of a match, the expression and the associated environ-
ment is used for evaluation. Closures are shifted from the stack to the environment when the
term-part is an abstraction. The associated environment is the application-time environment
and is associated an unevaluated expression. The call-by-name application mechanism and
static scope of bindings is hence achieved. When the left sub-expression of an application is
evaluated to a basic function, the argument expression must be evaluated to a literal.

The definition of σTLLF defines the set of terminal configurations. Because unloadTLLF

is partially defined on this set the machine can get stuck. Stuck configurations correspond
to situations where the left subexpression of an application evaluates to a literal, or a basic
function is applied to a literal where capp is not defined. The machine can diverge because
of self-application.

The above abstract machine gives the semantics for TLLF. The machine is a direct exten-
sion of a well-known abstract machine: the Krivine machine. The Krivine machine performs
call-by-name evaluation of pure de Bruijn-indexed λ-terms. The extension thus consists in
the support for basic constants: The first rules of unloadTLLF and the last two rules of σTLLF
are not part of the Krivine machine.
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Adjusted representation By (lightweight) fusing the iterating function with the transition
function another useful representation of abstract machines is achieved. The fusion consists
in letting the transition function call itself after each single transition. Inlining the unload
function lets the machine directly unload the result from a terminal configuration. The aux-
iliary structures remain unchanged, and running the extended Krivine machine from above
is equivalently expressed:

σTLLF : Configuration → Val
σTLLF (b, ρ, •) = b

σTLLF (λe, ρ, •) = (λe, ρ)
σTLLF (i, c1 · · · (ei, ρi) · · · cj, s) = σTLLF (ei, ρi, s)

σTLLF (λe, ρ, c · s) = σTLLF (e, c · ρ, s)
σTLLF (e e ′, ρ, s) = σTLLF (e, ρ, (e ′, ρ) · s)

σTLLF (q, ρ, (e, ρ ′) · s) = σTLLF (e, ρ ′, q · s)
σTLLF (l, ρ, q · s) = σTLLF (capp (q, l), ρ, s)

runTLLF : Exp → Val
runTLLF e = σTLLF (e, •, •)

In the following we will often use this alternative representation of abstract machines. In
each situation it will be a straightforward exercise to translate to the other representation.
Danvy and Millikin go into details [18].

4.5.3 Reduction semantics

To specify a reduction semantics for a programming language with a given abstract syntax,
consists in defining syntactic values, notions of reductions, and a reduction strategy [30,31].

Reduction Contexts The strategy is defined via a grammar of reduction contexts. As strate-
gies are defined in Section 1.5, the use of a grammar for specifying the reduction contexts
implies that a non-value syntactic unit can be uniquely decomposed into a reduction con-
text and a potential redex [28, page 5] (which syntactically takes the form of a redex without
necessarily being an actual redex), and that the notions of reduction can be specified as a
function.7 In that respect we follow Danvy and Nielsen [28].

When contexts are defined like in Section 1.3, contexts are represented ‘outside-in’. As
mentioned a context is a syntactic unit with one sub-unit replaced by a hole. Filling that
hole consists of replacing it by a syntactic unit. This replacing is textual in the sense that
no substitution of variables is used to avoid capturing of free variables of the syntactic unit.
An often used alternative representation of contexts is ‘inside-out’, where contexts are iso-
morphic to syntactic units with a hole. Obtaining a syntactic unit from such a context and a
syntactic unit is then not a textual replacing of the hole and an explicit definition is needed.
In general we say that we plug a syntactic unit into a context.

7As explained in section 1.5 normal-order reduction cannot easily be specified as taking the compatible clo-
sure of the notion of reduction according to a grammar of contexts, because some terms not in normal form can
not be uniquely decomposed into a context and a redex. In Part II we elaborate on this point.
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A one-step reduction function A one-step reduction function 7→ must, if it is defined on a
non-value syntactic unit u, perform three tasks:8

(i) decompose u (uniquely) into a reduction context and a (actual) redex,

(ii) contract the redex following the contraction rules, and

(iii) plug the contractum into the context, yielding another syntactic unit u ′.

7→ is partial because it is not defined on values but also if not all potential redexes are also
actual redexes.

Usually the above three ‘tasks’ of the one-step reduction function are specified less ex-
plicitly via a set of rules with one rule for each contraction rule in the notion of reduction:
E[r] 7→ E[r ′] denotes a rule for the unique decomposition of the expression E[r] into the context
E and the redex r, the contraction of the redex obtaining the contractum r ′ and the plugging
of that contractum into E obtaining E[r ′]. Such a specification is well-defined because of
the assumed unique-decomposition property and because the notion of reduction defines a
function. The rules can be seen as exploiting an advanced kind of pattern matching. Expres-
sions matched by the left-hand ‘pattern’ is the expressions that are the result of plugging
the specified kind of redex into the specified kind of context. The unique-decomposition
property gives that for a given expression, it can be matched in at most one way by this
pattern.

Evaluation Evaluation is defined in terms of the reflexive transitive closure of the one-step
reduction function 7→∗. Evaluation is defined for a syntactic unit u iff 7→∗ relates u to a
value. The result is then the value. Because 7→ is a function and it is not defined on values,
evaluation is well-defined. It is partial if 7→ is not defined for some non-value syntactic units
or if an infinite number of one-step reductions can be performed starting from some syntactic
unit.

A reduction semantics for TLLF

The syntactic units in the reduction semantics for TLLF are closures. A subset of the closures
are syntactic values:

Substitution s ::= • | c · s
Closure c ::= e[s] | c c

Value v ::= (λe)[s] | b[s]

The values are the closures with an expression-part consisting of an abstraction or a basic
constant.

Reduction contexts are represented ‘outside-in’ (i.e., contexts are closures with a hole and
plugging a closure into a reduction context is a textual replacing of the hole):

EContext E ::= [ ] | E c | q[s] E

The last production represents a context with an application of a basic function, where the
argument expression has to be evaluated prior to the application.

8The one-step reduction function is not defined on non-value terms which are uniquely decomposed into a
context and a potential redex that is not an actual redex according to the notions of reduction.
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The one-step reduction function for TLLF is given by four rules:

E[i[c1 · · · ci · · · cj]] 7→TLLF E[ci]
E[(λe)[s] c] 7→TLLF E[e[c · s]]
E[(e e ′)[s]] 7→TLLF E[e[s] e ′[s]]
E[q[s] l[s ′]] 7→TLLF E[(capp (q, l))[s ′]]

This function is partial: 7→TLLF is not defined on values because they cannot be decomposed
into a reduction context and a redex. Also 7→TLLF is not defined on non-value closures that
cannot be decomposed into a reduction context and a redex. For example, 7→TLLF is not
defined on closures on the form l[s] e[s ′].

As explained above evaluation of an expression e is defined if the reflexive transitive
closure of the one-step reduction function relates e to a value:

evalTLLF e = v iff e[•] 7→∗
TLLF v

Evaluation is well-defined because 7→TLLF is not defined on values and evaluation is partial:
There exist non-value expressions for which 7→TLLF is not defined as exemplified above.

Adjusted representation The evaluation of an expression e consists in iteratively applying
the one-step reduction function. Either 7→TLLF can always be applied (e diverges), or an ex-
pression e ′ that is not mapped by 7→TLLF is obtained. If e ′ is a value this value is the result.
If e ′ is not a value e ′ is called a stuck expression. Following this explanation we equivalently
write:

evalTLLF : Exp → Value
evalTLLF e = iterate (e[•])

iterate : Closure → Value
iterate v = v

iterate E[i[c1 · · · ci · · · cj]] = iterate E[ci]
iterate E[(λe)[s] c] = iterate E[e[c · s]]
iterate E[(e e ′)[s]] = iterate E[e[s] e ′[s]]
iterate E[q[s] l[s ′]] = iterate E[(capp (q, l))[s ′]]

In each step one reduction is performed according to the inlined contraction rule. This func-
tion is partial because the one-step reduction function is partial and also because of possible
divergence.

4.6 Summary

In this chapter we introduced programming languages and we explained the need for high-
level programming languages. Programming languages are formally defined by a grammar
of abstract syntax and a semantic specification over the syntax. Three different kinds of
semantics were introduced and were used to give the semantics for the sample programming
language TLLF: A denotational description defining the meaning of programs extensionally,
and two small-step operational descriptions defining the meaning of programs intensionally.
In the following chapter we show that indeed the three semantics are equivalent.

We did not make a distinction between static semantics and dynamic semantics. Via the
introduction of a type system the set of well-formed programs can be defined to be the set
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of closed expressions that can be type-checked. The introduction of such a static semantics
would rule out expressions that by repeated application of the one-step reduction function
would eventually reach a stuck term. Furthermore, we silently ignored axiomatic frame-
works, because they will not be used in the following chapters.
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Chapter 5

λ-calculi, programming languages, and
semantic artifacts

In the previous chapter we loosely argued that the three different semantics for the tiny
programming language TLLF define the same semantics. No proposition like

EJeKTLLF mt_env = inVal (inBasic b) ⇐⇒ runTLLF e = b ⇐⇒ evalTLLF e = b[s]

was included. In this chapter we will see how such propositions are proved by applying
well-known meaning-preserving transformations to the semantic artifacts.

Roadmap We begin in Section 5.1 with Plotkin’s classical work on relations between λ-
calculi and programming languages [59]. We then introduce the ‘syntactic’ correspondence
in Section 5.2 and the ‘functional’ correspondence in Section 5.3 investigated by Danvy et
al. [2–5, 8–10]. We introduce in Section 5.2 the λρ̂-calculus, we illustrate the syntactic cor-
respondence starting from the reduction semantics for TLLF (which is a strategy in the
λρ̂-calculus), and we mechanically derive the abstract machine for TLLF. We illustrate the
functional correspondence in Section 5.3 by starting from a definitional interpreter for TLLF
(which is the denotational semantics for TLLF with a semantics for the metalanguage) and
mechanically derive the abstract machine for TLLF.

5.1 Call by value, call by name, and the λ-calculus

Plotkin’s starting point is Landin’s definitional SECD machine for the programming lan-
guage ISWIM which was introduced on page 49. Plotkin aims for a calculus of terms that
corresponds to the core of ISWIM, i.e., applicative expressions (AE). We will be concrete and
let the abstract syntax of AE coincide with the abstract syntax of TLLF found on page 46, i.e.,
pure λ-terms with literal integers and S as basic constants. We let Evalv denote the defining
function for AE according to the SECD machine. It is a partial function mapping closed AEs
to values:1

Value v ::= λe | b

1As Plotkin defines the SECD machine it evaluates closed expressions to closures. Unloading the result off
the terminal state consists in mapping a closure to the expression it represents via a function Real.
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5.1.1 Call by value

When the SECD machine encounters an application e e ′, it (1) evaluates the operand expres-
sion e ′, (2) evaluations the operator expression e, and if that last expression yields a closure
〈λx.e ′′, ρ〉 it (3) evaluates e ′′ in the environment ρ extended with a binding of x to the value
of e ′. Such a calling mechanism is said to be (right-to-left) call-by-value.

Correspondence with the λv-calculus In the following theorem, due to Plotkin, normalizev
denotes the normalization function from Section 3.3.3; e denotes a closed AE which is also a
term in the λv-calculus:

Theorem 4 (Plotkin I)
normalizev e = v ⇐⇒ Evalv e = v

In words, Plotkin has shown that considering a closed expression either (1) evaluation via
the SECD machine and weak head normalization in the λv-calculus (following the standard
reduction strategy 7→v) both do not yield a value or (2) they both yield the same value. From
Proposition 4 on page 43 it especially follows that e =βvδ b ⇐⇒ Evalv e = b. The SECD
machine evaluates a program to a basic constant if and only if the program can be proved
equal to that basic constant in the λv-calculus. Abstractions will be equal in =βvδ. In general
the abstractions are different because in the λv-calculus, reductions can be performed in the
body of abstractions.

Soundness and Incompleteness of the λv-calculus Plotkin also introduces the notion of
operational equivalence between expressions, which gives a more general notion of correctness
of the λv-calculus with respect to the programming language represented by Evalv (i.e., the
SECD machine). The above property only consider closed expressions, i.e., whole programs.
Operational equivalence (≈) is defined via the notion of contexts for λ-expressions as defined
on page 9:

e ≈ e ′ iff


Evalv C[e],Evalv C[e ′] are both undefined, or
Evalv C[e] = b ⇐⇒ Evalv C[e ′] = b
for all closed C[e], C[e ′]

In the definition e and e ′ are not restricted to closed λ-expressions. If one of the evaluations
yields a basic constant b the other evaluation also yields b. If one of the evaluation yields
an abstraction the other evaluation also yields an abstraction. Operational equivalence does
not demand a relation between these two abstractions.2

The correctness of the λv-calculus wrt. evaluation via the SECD machine (i.e., Evalv) is
summarized in the following theorem.

Theorem 5 (Plotkin II)
e =βvδ e

′=⇒ e ≈ e ′

In other words, it is only possible to prove two terms equal in the λv-calculus if they are
operationally equivalent in the SECD machine. The λv-calculus is said to be sound wrt. the
programming language defined by the SECD machine.

2If evaluation was defined to give, e.g., a symbol ‘abstraction’ when evaluation yields an abstraction the
definition of operational equivalence simplifies to EvalvC[e] = EvalvC[e ′] for all closedC[e], C[e ′]. Felleisen and
Flatt [31] follow that approach. They do not consider evaluation via the SECD machine.
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The right-to-left direction does not hold: A counter example is two closed expressions
that are not equal in the λv-calculus and that both make the SECD machine diverge. In
any context with no free variables by construction evaluation yields the same value on the
two resulting programs or evaluation is undefined for both programs. The two terms are
hence operationally equivalent but by assumption they are not equal in the λv-calculus. The
λv-calculus is said to be incomplete wrt. the programming language.

5.1.2 Call by name

Analogously with Evalv in the call-by-value case Plotkin defines Evaln to represent evalua-
tion of expressions following call-by-name evaluation order. Evaln then represents a call-by-
name version of the SECD machine. Plotkin shows similar theorems that directly connect
the call-by-name evaluation mechanism with weak head normalization in the λβδ-calculus
— the λ-calculus extended with the δ-rule to cope with the introduction of basic constants
introduced in Section 2.8. Plotkin likewise proves that the λβδ-calculus is sound and in-
complete wrt. the programming language defined by the call-by-name version of the SECD
machine.

5.2 A syntactic correspondence

In the previous section we stated Plotkin’s results from 1975, which once and for all settled
the relationship between the evaluation mechanisms in functional languages and reductions
in calculi: Call by name corresponds to weak head normalization in the λβδ-calculus and
call by value corresponds to weak head normalization in the λv-calculus.3

Reduction-based evaluation In a reduction semantics, as defined in Section 4.5.3, evalu-
ation is defined as iteratively applying the one-step reduction function until a value is ob-
tained. That is, such an evaluation is reduction-based, which means a series of intermediate
expressions are constructed, because the one-step reduction function is the composition of
decomposition, contraction and plugging as described in that section. A reduction semantics
is hence the definition of a calculus and a strategy to perform the reductions. In that respect,
Plotkin shows that a reduction semantics for normalization to weak head normal form in
the λv-calculus directly corresponds to evaluation via the SECD machine — the very first
abstract machine. Analogously, a reduction semantics for normalization to weak head nor-
mal form in the λβδ-calculus corresponds to call-by-name evaluation via the (now modified)
SECD machine.

A derivational approach In this section we illustrate a derivational approach to find corre-
spondences between reduction semantics and abstract machines. Danvy and Nielsen paved
the way in their work on removing the overhead in the naive implementation of a reduction
semantics as iteratively applying the one-step reduction function defined for the seman-
tics [28]. They introduce a refocus function. When a reduction semantics is deterministic, a

3The correspondences does not hold for weak head normal forms which are not values (with our definition
of weak head normal forms). The SECD machine and Plotkin’s left reduction evaluates right-hand sub-terms of
applications even when the left-hand sub-term evaluates to a non-functional basic constant.
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given non-value expression can be uniquely decomposed into a reduction context and a re-
dex. That is, decomposition can be defined as a function on expressions. Because plugging
is also a function it is well-defined when refocus is defined as the composition of plugging
and decomposing. Evaluation can then be defined via the refocus function because each it-
eration ends with a plugging and the next iteration starts with a decomposition. The central
observation is that as long as the refocus function is extensionally equal to the composition
of plugging and decomposing, the meaning of evaluation is preserved regardless of the in-
ternal structure of the refocus function. Danvy and Nielsen introduce a mechanical way to
create an efficient representation of refocus.

Biernacka and Danvy exploit the above result and mechanically derive abstract machines
from various reduction semantics [8, 9]. In the following we illustrate this derivational ap-
proach.

5.2.1 The λρ̂-calculus

The λρ̂-calculus defined by Biernacka and Danvy [9] is a minimal extension of Curien’s cal-
culus of closures λρ briefly introduced in Section 3.2 as a calculus with explicit substitutions.
The extension is made such that it is possible to define one-step reduction in the calculus. In
the following we define the λρ̂-calculus extended to cope with basic constants. The calculus
is extended the same way the λ-calculus was extended in Section 2.8.

Following Chapter 1, we specify a grammar of terms, the notion of reduction, and com-
patibility. One-step reduction and equality in the calculus are defined like in the λ-calculus.
The difference merely consists in the λρ̂-calculus being a calculus of closures instead of a
calculus of terms.

The language The language of the λρ̂-calculus defines a closure as either a λ-term with an
associated list of closures or two closures in juxtaposition:

Substitutionρ̂ s ::= • | c · s
Closureρ̂ c ::= t[s] | c c

Here t ranges over de Bruijn-indexed λ-terms extended with basic constants like in Sec-
tion 2.8. Closures are the syntactic units.

Notion of reduction Four contraction rules constitute the notion of reduction ρ̂ which de-
note a function from closures to closures:4

β : (λt)[s] c → t[c · s]
ι : i[c1 · · · cj] → ci , if i ≤ j
π : (t t ′)[s] → t[s] t ′[s]
δ : q[s] l[s ′] → (capp (q, l))[s ′]

ρ̂ := β ∪ ι ∪ π ∪ δ

The notion of reduction is context-insensitive in the sense that the contractum of a redex only
depends on the subparts of the redex, and does not alter the reduction context. 5

4Biernacka and Danvy do not include basic constants in the term-part of closures t[s] and hence define only
the first three contraction rules.

5Biernacka and Danvy present several context-sensitive calculi and reduction semantics in such calculi [9].
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One-step reduction and equality The one-step reduction relation →ρ̂, called ρ̂-reduction,
is defined as the compatible closure of the notion of reduction relative to contexts:

Contextρ̂ C ::= [ ] | C c | c C | t[c1 · · ·C · ci+1 · · · cj], 1 ≤ i ≤ j

Equality in the calculus =ρ̂ is defined as the smallest equivalence relation of the reflexive
transitive closure of ρ̂-reduction (denoted by →∗

ρ̂). As can be seen from the grammar of
contexts, this calculus is weak in the sense that reductions cannot be performed in the body
of abstractions.

Normal forms A grammar of closures generating the ρ̂-normal forms is structurally very
similar to normal forms in the λβδ-calculus from page 35 (with i > j):

sn ::= • | n · sn

a ::= i[n1 · · ·nj] | a n | l[sn] n | q[sn] d
d ::= a | (λt)[sn] | q[sn]

NFormρ̂ n ::= d | l[sn]

Because reductions are never performed inside the body of abstractions, these sub-terms can
be arbitrary λ-terms.

Church-Rosser of ρ̂ Just like →∗
β, →∗

βη, and →∗
βvδ all satisfy the diamond property (the

notion of reduction is said to be Church-Rosser), →∗
ρ̂ also satisfies that property. A proof is

possible via a correspondence with the λ-calculus, which is the topic of Section 5.2.2.
In the first group of calculi the syntactic units are λ-terms, which means that the con-

traction rules consume and produce λ-terms. Because one-step reductions in those cases are
standard compatible closures of the notion of reduction, redexes can occur in all parts of the
term and they can be reduced in any order and a corresponding normal form (if it exists) is
unique.

In the λρ̂-calculus the syntactic units are closures. The contraction rules consume closures
and produce closures. That is, no reductions are possible in the term-parts of closures. In
that respect the compatibility is restricted, but the uniqueness property of normal forms also
holds for the λρ̂-calculus.

5.2.2 Correspondence with the λ-calculus

From λ-calculus terms to λρ̂-calculus closures A translation of terms from the extended
λ-calculus to closures in the λρ̂-calculus consists in introducing an empty substitution, and
translating variables into de Bruijn indices. Translating to use de Bruijn indices is toindices
as defined in Section 1.6 (with the trivial extension for allowing primitive constants in the
terms).6 As seen in Section 1.6 the λ-calculus can equivalently be defined with de Bruijn-
indexed λ-terms. To simplify presentation in this section, we map from de Bruijn-indexed
λ-terms:

toclosureρ̂ : TermdeB → Closureρ̂

toclosureρ̂ t = t[•]

6To emphasize the connection between variable names and de Bruijn indices the notation for substitutions
was also used for lists of variables in the definition of toindices.
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From λρ̂-calculus closures to λ-calculus terms Translating from closures to terms is a bit
more involved. All the delayed substitutions contained in the substitution part of a closure
have to be forced into actual substitutions in the term:

σρ̂ : Closureρ̂ × Int× Int → TermdeB
σρ̂ (b[s], k, g) = b

σρ̂ (i[s], k, g) = i, if i ≤ k
σρ̂ (i[c1 · · · cj], k, g) = σρ̂ (ci−k, 0, g+ k), if k < i ≤ k+ j
σρ̂ (i[c1 · · · cj], k, g) = i − j+ g, if i > k+ j
σρ̂ ((λt)[s], k, g) = λ(σρ̂ (t[s], k+ 1, g))
σρ̂ ((t t ′)[s], k, g) = (σρ̂ (t[s], k, g)) (σρ̂ (t ′[s], k, g))

σρ̂ (c c ′, k, g) = (σρ̂ (c, k, g)) (σρ̂ (c ′, k, g))

Without the trivial extension to cope with basic constants, the definition of σρ̂ is still an
extended version of σ presented by Biernacka and Danvy [8]: σρ̂ also correctly translates
open closures. σρ̂ uses a local depth k and global depth g: k is the current depth local to the
current substitution list and g is the current depth in the overall constructed term. In the
translation of a closure with an abstraction as term-part, the local depth k of the closure is
incremented. That is, when translating an index i three possibilities show up:

(1) If i ≤ k, i is bound by an abstraction that is not reduced but translated. That is, i is the
result.

(2) If k < i ≤ k + j where j is the length of the substitution, the index refers to a closure
c that is introduced in an contracted application. Again, relative to the current depth
k a translation of the (i − k)-th closure in the substitution is the result. This recursive
translation is done with the local depth reset and the global depth raised by k.

(3) If i > k+j the index does not refer to an unreduced abstraction or to a reduced abstraction
and is therefore the (i−j−k)-th free index relative to the overall closure. The global depth
of the occurrence is k+g, and the resulting index is therefore i− j−k+k+g, i.e., i− j+g.

The explicit substitutions are converted to actual substitutions by use of σ ρ̂ with 0 as local
and global depth:

fromclosureρ̂ : Closureρ̂ → TermdeB
fromclosureρ̂ c = σρ̂ (c, 0, 0)

An example with an open term A term is mapped to the ρ̂-calculus, two reductions per-
formed, and the resulting closure is mapped back again to a λ-term. Alternatively one cor-
responding reduction is performed in the λ-calculus. The terms involved are for readability
presented with named variables:

toindices ((λx.λy.x (λy.x z)) ((λx.w x) v)) = ((λλ2 (λ3 4)) ((λ3 1) 3))

toclosureρ̂ ((λλ2 (λ3 4)) ((λ3 1) 3)) = ((λλ2 (λ3 4)) ((λ3 1) 3))[•]→ρ̂ ((λλ2 (λ3 4))[•]) (((λ3 1) 3)[•])→ρ̂ (λ2 (λ3 4))[(((λ3 1) 3)[•]) · •]
fromclosureρ̂ ((λ2 (λ3 4))[(((λ3 1) 3)[•]) · •]) = λ(λ4 1) 4 (λ(λ5 1) 5 3)

((λλ2 (λ3 4)) ((λ3 1) 3)) →β λ(λ4 1) 4 (λ(λ5 1) 5 3)

fromindices (λ(λ4 1) 4 (λ(λ5 1) 5 3)) = λy1.(λx2.f2 x2) f3 (λy3.(λx4.f2 x4) f3 f1)
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(1) Mapping the term to the λρ̂-calculus, (2) performing two reductions in the calculus, and
(3) mapping the resulting closure to a term with de Bruijn indices and no explicit substitu-
tions yields a term where indices corresponding to free variables are consistent (witness the
first occurrence of 4 and the first occurrence of 5 correspond to the same free variable in the
second to last equation).

It is clear from the contraction rules that if the sample term above was the body of an
abstraction no reductions would be possible after mapping to a closure.

Translations interaction The above example illustrates the achievement: (1) Mapping term
t to closure c ′ in the closure calculus, (2) performing a series of reductions starting with this
closure, and (3) mapping the obtained closure c back to a term in the λ-calculus yields a term
t ′ that can be obtained in a series of βδ-reductions in the λ-calculus from the original term t:

(toclosureρ̂ t) →∗
ρ̂ c =⇒ t→∗

βδ (fromclosureρ̂ c)

The achievement (proved by Biernacka and Danvy for pure λ-terms [8]) is expressible as a
figure:

t
toclosureρ̂

→∗
βδ

t ′

c ′ →∗
ρ̂

c

fromclosureρ̂

As mentioned above the λρ̂-calculus is weak. This property becomes evident here: It does
not hold that for all series of βδ-reductions starting with t the corresponding reductions can
be performed on the closure toclosureρ̂ t in the λρ̂-calculus.

5.2.3 A normal-order reduction semantics for the λρ̂-calculus

A normal-order reduction semantics for the syntax of the λρ̂-calculus as defined in Section
5.2.1 has actually already been defined. The reduction semantics for the programming lan-
guage TLLF is one such. The one-step reduction function 7→TLLF (defined on page 55) is
the compatible closure of the notion of reduction ρ̂ wrt. the specified grammar of reduction
contexts.

5.2.4 The reduction semantics with explicit decomposition

The definition of the function 7→TLLF as defined on page 55 relies as mentioned implicitly on
the unique decomposition. In this section this decomposition is made explicit.

Reduction contexts represented inside-out and plugging As reduction contexts are de-
fined in the reduction semantics they are represented ‘outside-in’. We equivalently represent
the reduction contexts ‘inside-out’:

EContext E[ ] ::= [ ] | E[[ ] c] | E[q[s] [ ]]
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A context represented ‘inside-out’ is no longer just a closure with a hole and we define plug-
ging explicitly:

plug : EContext× Closure → Closure
plug ([ ], c) = c

plug (E[[ ] c ′], c) = plug (E[ ], c c ′)
plug (E[q[s] [ ]], c) = plug (E[ ], q[s] c)

plug is total.

Potential redexes and a stronger decomposition property The unique decomposition prop-
erty only talks about closures where the one-step reduction function is defined. A stronger
property relies on potential redexes. For the reduction semantics the set of closures that
constitute the potential redexes is generated by a grammar:

PRedexρ̂ p ::= i[s] | (λt)[s] c | (t t)[s] | l[s] c | q[s] v

The closures generated by this grammar are potential in the sense that some of them are
not actual redexes: they are closures that cannot be decomposed but are still not redexes. For
example, the closures S[•] S[•] and 3[c · c · •] are potential redexes but not actual redexes.

The stronger decomposition property says that any non-value closure c can be uniquely
decomposed into a reduction context E[ ] and a potential redex p such that c = E[p]. Even
when 7→TLLF is not defined on c.

Decomposition The decomposition of a closure into a reduction contexts and a potential
redex is well-defined because of the stronger unique-decomposition property:

Decomp = PRedex× EContext
decompose : Closure → Value + Decomp
decompose c = decompose ′ (c, [ ])

decompose ′ : Closure× EContext → Value + Decomp
decompose ′ (v, E[ ]) = decompose ′aux (E[ ], v)

decompose ′ (i[s], E[ ]) = (i[s], E[ ])
decompose ′ ((t t ′)[s], E[ ]) = ((t t ′)[s], E[ ])

decompose ′ (c c ′, E[ ]) = decompose ′ (c, E[[ ] c ′])

decompose ′aux : EContext× Value → Value + Decomp
decompose ′aux ([ ], v) = v

decompose ′aux (E[[ ] c], q[s]) = decompose ′ (c, E[q[s] [ ]])
decompose ′aux (E[[ ] c], v) = (v c, E[ ]), v 6= q[s]

decompose ′aux (E[q[s] [ ]], v) = (q[s] v, E[ ])

decompose is total (it is the identity function on values) and has been proved correct by
Danvy and Nielsen [28].7 Because reduction contexts are represented inside-out and are
isomorphic with lists, decompose builds up a stack of elementary contexts.8

7Danvy and Nielsen do not have the support for basic constants but their proof directly extends to cope with
such constants

8Such a stack of elementary contexts is also known as a data-structure continuation [68].
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The evaluation function evalTLLF from page 55 is reformulated with an explicit use of
decompose and plug:

evalTLLF : Exp → Value
evalTLLF e = iterate (decompose (e[•]))

iterate : Value + Decomp → Value
iterate v = v

iterate (i[c1 · · · ci · · · cj], E[ ]) = iterate (decompose (plug (E[ ], ci)))
iterate ((λe)[s] c, E[ ]) = iterate (decompose (plug (E[ ], e[c · s])))
iterate ((e e ′)[s], E[ ]) = iterate (decompose (plug (E[ ], e[s] e ′[s])))
iterate (q[s] l[s ′], E[ ]) = iterate (decompose (plug (E[ ], (capp (q, l))[s ′])))

5.2.5 Refocusing

If the initial application of decompose in the evaluation function above is preceded by plug-
ging the closure e[•] into the empty context [ ], every application of decompose is preceded
by an application of plug. Evaluation consists of a series of reductions. In this series, ev-
ery plugging is now immediately followed by a decomposition except for the last plugging
where the resulting value is obtained. In other words, a refocusing is performed between
each actual reduction.

Danvy and Nielsen have shown that an efficient representation of refocusing is already
around [21, 28], where the intermediate closure, which is present in a direct composition of
decomposing and plugging, can be deforested. This deforestation eliminates two operations
with complexity proportional to the height of the closure:

refocus := decompose ◦ plug
= decompose ′

5.2.6 Obtaining an abstract machine

Reduction-free evaluation Evaluation can be reformulated with decompose ′ as the refo-
cusing function as presented in Section 5.2.5. Thereby evaluation is no longer reduction
based: The decomposition is building a potential redex and a stack of elementary reduc-
tion contexts. Refocusing via decompose ′ just resumes decomposing with the contractum of
the redex (if it is also an actual redex) and with the current stack of elementary reduction
contexts. That is, intermediate closures are no longer built:

evalTLLF : Exp → Value
evalTLLF e = iterate (refocus (e[•], [ ]))

iterate : Value + Decomp → Value
iterate v = v

iterate (i[c1 · · · ci · · · cj], E[ ]) = iterate (refocus (ci, E[ ]))
iterate ((λe)[s] c, E[ ]) = iterate (refocus (e[c · s], E[ ]))
iterate ((e e ′)[s], E[ ]) = iterate (refocus (e[s] e ′[s], E[ ]|))
iterate (q[s] l[s ′], E[ ]) = iterate (refocus ((capp (q, l))[s ′], E[ ]))
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Fusing iterate and refocus The auxiliary function iterate is a trampoline function [35]
for refocus together with the contraction. Fusing iterate and refocus makes refocus call
itself and therefore iterate superfluous:

evalTLLF : Exp → Value
evalTLLF e = refocus (e[•], [ ])

refocus : Closure× EContext → Value
refocus (v, E[ ]) = refocusaux (E[ ], v)

refocus (i[c1 · · · ci · · · cj], E[ ]) = refocus (ci, E[ ])
refocus ((e e ′)[s], E[ ]) = refocus (e[s] e ′[s], E[ ])

refocus (c c ′, E[ ]) = refocus (c, E[[ ] c ′])

refocusaux : EContext× Value → Value
refocusaux ([ ], v) = v

refocusaux (E[[ ] c], (λe)[s]) = refocus (e[c · s], E[ ])
refocusaux (E[[ ] c], q[s]) = refocus (c, E[q[s] [ ]])

refocusaux (E[q[s] [ ]], l[s ′]) = refocus ((capp (q, l))[s ′], E[ ])

The above specification is an abstract machine: The generation of the initial configuration
(e[•], [ ]) constitute the loading.

Short-circuiting transitions In the third clause of refocus, where the closure takes the
form (e e ′)[s], it is observed that refocus is called with a configuration that in every case is
matched by the fourth clause. Also the closure construction c c is not used elsewhere. In
other words, by merging the two transitions only one step is needed. The fourth clause is
the only place where that contexts construction is used. Therefore the closure in the context
always takes the form of a term paired with a substitution, and it is hence safe to remove the
fourth clause of refocus:

evalTLLF : Exp → Value
evalTLLF e = refocus (e[•], [ ])

refocus : Closure× EContext → Value
refocus (v, E[ ]) = refocusaux (E[ ], v)

refocus (i[c1 · · · ci · · · cj], E[ ]) = refocus (ci, E[ ])
refocus ((e e ′)[s], E[ ]) = refocus (e[s], E[[ ] e ′[s]])

refocusaux : EContext× Value → Value
refocusaux ([ ], v) = v

refocusaux (E[[ ] e ′[s ′]], (λe)[s]) = refocus (e[e ′[s ′] · s], E[ ])
refocusaux (E[[ ] e ′[s ′]], q[s]) = refocus (e ′[s ′], E[q[s] [ ]])
refocusaux (E[q[s] [ ]], l[s ′]) = refocus ((capp (q, l))[s ′], E[ ])

The Krivine machine All uses of closures are now as terms with an associated substitution.
We hence flatten the configurations such that the machine operates directly on λ-terms. With
an eye on the resulting abstract machine we remove the substitution-part of basic constants
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and inline refocusaux:

EContext ′ : E[ ] ::= [ ] | E[[ ] (e, s)] | E[q [ ]]

Value ′ : v ::= b | (λe, ρ)

evalTLLF : Exp → Value ′

evalTLLF = refocus (t, •, [ ])

refocus (b, s, [ ]) = b

refocus (λe, s, [ ]) = (λe, s)
refocus (i, (e1, s1) · · · (ei, si) · · · (ej, sj), E[ ]) = refocus (ei, si, E[ ])

refocus (λe, s, E[[ ] (e ′, s ′)]) = refocus (e, (e ′, s ′) · s, E[ ])
refocus (e e ′, s, E[ ]) = refocus (e, s, E[[ ] (e ′, s)])

refocus (q, s, E[[ ] (e, s ′)]) = refocus (e, s ′, E[q [ ]])
refocus (l, s, E[q [ ]]) = refocus (capp (q, l), s, E[ ])

Removing the first and the last two clauses of refocus, the abstract machine is the Krivine
machine [13], which is the standard abstract machine that performs call-by-name evaluation
of pure λ-terms. The extra three rules exclusively cope with basic constants.

The above derivation illustrates the syntactic correspondence but also demonstrates that
the correspondence directly applies to applied λ-calculi. In later chapters we give more
examples.

Relating the abstract machine and the reduction semantics for TLLF Starting with the re-
duction semantics for the programming language TLLF we via the syntactic correspondence
derived an abstract machine. A comparison with the abstract machine specified on page 53
defining the semantics for TLLF shows that inlining refocusaux yields that machine: The
only difference is the stack of the abstract machine for TLLF. But the stacks are isomorphic
with the contexts used in the derived abstract machine and it is hence the same machine.
That is, the abstract machine for TLLF and the reduction semantics for TLLF are equivalent
specifications:

runTLLF e = b ⇐⇒ evalTLLF e = b[s]

Considering for simplicity only basic constants as results: starting from a closed expression
e the abstract machine and the reduction semantics for TLLF either both do not yield a
basic constant or they both yield the same basic constant. This result is a corollary of the
correctness of the applied transformations in the derivation of the abstract machine starting
from the reduction semantics.

5.3 A functional correspondence

In Section 4.5.1 we introduced denotational semantics and briefly presented the underlying
domain theory. We pointed out the descriptive nature of a denotational semantics: Two pro-
grams considered equal in the defined language are mapped to the same semantic object. In
that respect, the metalanguage used in defining the valuation function is only used to iden-
tify the denotation (a point in a semantic domain) — it does not have a notion of ‘operations’
to ‘perform’ and hence also no ‘ordering’ of such operations.

From a computational perspective the constructs of the metalanguage are viewed as de-
noting operations. That perspective hence immediately introduces a notion of ordering of
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operations in the metalanguage, and the valuation function becomes an interpreter for the de-
fined language depending on the semantics of the constructs of the metalanguage. The deno-
tational specification become a definitional interpreter.9 Reynolds investigated the relationship
between the defined language and the metalanguage in such definitional interpreters in his
seminal paper Definitional Interpreters for Higher-Order Programming Languages [61] and intro-
duced relevant transformations. It is now standard to introduce various language constructs
via definitional interpreters. For example, Friedman, Wand, and Haynes use Scheme [43] as
metalanguage in Essentials of Programming Languages [34].

Danvy et al. have systematically investigated the transformations Reynolds employed.
The research has among other things given rise to several papers on a derivational approach
to the relationship between semantic artifacts [2–5] pioneered by Reynolds. The approach
has been dubbed a functional correspondence.

5.3.1 A definitional interpreter

The denotational semantics for TLLF on page 49 becomes a definitional interpreter when de-
ciding on a semantics for the metalanguage used. We assume a call-by-name metalanguage.
In the extension of the environment we inline the construction of the pair and switch to the
list notation used in this text. For closed expressions, looking up a variable i is identified to
taking the i-th element of a list. Evaluation starts with the empty environment •:

ExpVal = Int + Prim + (DenVal → ExpVal)
DenVal = ExpVal

eval : Exp×DenVal list → ExpVal
eval (i, d1 · · ·di · · ·dj) = di

eval (λe, ρ) = λd.eval (e, d · ρ)
eval (e e ′, ρ) = case eval (e, ρ) of

f → f (eval (e ′, ρ))
q → case eval (e ′, ρ) of

l → capp (q, l)
eval (b, ρ) = b

evaluate : Exp → ExpVal
evaluate e = eval (e, •)

Instead of introducing some kind of error mechanism, the interpreter is left partial. Several
of the constructs in the defined language are interpreted via a similar construct in the met-
alanguage. In such a setting the reader must be familiar with higher-order languages and
have in-depth understanding of the metalanguage to understand the defined language. In
the following we briefly introduce Reynolds’s ideas to separate the defined language from
the metalanguage.

5.3.2 Closure conversion

Closure conversion eliminates the use of the function space in the values by introducing clo-
sures: Evaluating an abstraction then results in a pair composed of the body of the abstrac-

9A definitional interpreter is an implementation of a big-step operational semantics.
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tion and the current environment. This pair represents the evaluation of the body with the
environment extended.10

5.3.3 Continuation-passing-style/direct-style transformations

Reynolds points out how the evaluation order of the defined language depends on the eval-
uation order of the metalanguage in a direct style interpreter.11 To eliminate this evaluation-
order dependency Reynolds applies a continuation-passing-style (CPS) transformation to the
interpreter. In a (higher-order) program in CPS all functions take an extra argument, the
continuation, a functional representation of the rest of the computation. Instead of returning
a value directly, all functions apply the current continuation to the value. All intermediate
results are named, and all calls are tail-calls. In other words, the computation has been se-
quentialized: in the interpreter no implicit control-flow remains, which otherwise depend
on the evaluation order of the metalanguage. Plotkin has formally proved the evaluation-
order independency of programs in CPS by simulations of call-by-value in a call-by-name
evaluation order and visa versa [59].12

The interpreter for TLLF given above relies on a call-by-name evaluation order of the
metalanguage. That is, to define TLLF evaluation-order independent we would apply a
call-by-name-CPS transformation to the interpreter.

The left-inverses of CPS transformations maps programs in CPS into corresponding pro-
grams in direct style. Danvy has formulated these direct-style transformations [19].

5.3.4 Defunctionalization/refunctionalization

After the CPS transformation the interpreter is higher-order: continuations are functions
from intermediate results to final answers. Reynolds introduced Defunctionalization as the
mechanism to translate higher-order programs into first-order: For the function space of
continuations we identify the (finite number of) inhabitants occurring in the program and
create a sum space with one injection for each of these inhabitants. Each member holds the
free variables of the function it represents. Continuation constructions become injections.
Eliminations (applications of continuations) become calls to an apply function which (1) dis-
patches on the first-order continuation representation, and (2) performs the corresponding
evaluation.

The left-inverse of defunctionalization transforms programs in defunctionalized form,
i.e., in the image of defunctionalization, into corresponding higher-order programs. Danvy
and Millikin have investigated this refunctionalization [26].

5.3.5 Relating interpreters and abstract machines

Reynolds used the transformations on a definitional interpreter to disconnect the defined
language from the metalanguage. The result is a sequentialized, first-order specification.

10The term ‘closure’ in this context is due to Landin [50].
11Because TLLF is a pure functional language referential transparency holds. That is, if the metalanguage

used call-by-value evaluation order the semantics of the language would only change in case of non-terminating
evaluation of argument expressions in applications.

12It is noted that the notion of CPS and CPS-transformations does not originate in Reynolds work on defi-
nitional interpreters. Reynolds has (like Landin [52]) later published a paper on the discoveries of continua-
tions [62].
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Danvy et al. have observed that an interpreter after the transformations implements a state-
transition system, i.e., an abstract machine. Danvy et al. have systematically applied the
transformations to a wide range of interpreters and have showed that well-known abstract
machines functionally correspond to well-known interpreters [3–5]. Especially they have shown
that the above interpreter (without support for basic constants) closure-converted on the
one hand corresponds to the Krivine machine when applying a call-by-name-CPS transfor-
mation,13 and on the other hand corresponds to the CEK machine when applying a call-
by-value-CPS transformation, when followed by defunctionalization [22]. Nothing changes
with the introduction of basic constants. The interpreter for TLLF thus functionally corre-
sponds to the abstract machine for TLLF specified on page 53.

5.4 Summary

In this chapter we presented Plotkin’s famous results on the correspondence between the
λv-calculus and the SECD machine, and the correspondence between the λ-calculus and a
call-by-name version of the SECD machine.

We continued with the syntactic correspondence between reduction semantics (i.e., a cal-
culus and an associated strategy) and abstract machines investigated by Biernacka, Danvy
and Nielsen. We showed how the reduction semantics in the λρ̂-calculus for TLLF syntacti-
cally corresponds to the abstract machine for TLLF.

We finally introduced the functional correspondence between interpreters and abstract
machines investigated by Ager, Biernacki, Danvy, Midtgaard, and Millikin. We outlined
how the definitional interpreter for TLLF functionally corresponds to the abstract machine
for TLLF.

13The apply function must be inlined to match the standard definition of the Krivine machine.
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Chapter 6

Including imperative constructs

In the previous chapters the languages of discourse have been purely functional, i.e., with
referential transparency as a central property: the ‘meaning’ of an expression is determined
solely by the value of the expression. In this chapter we add constructs to the expression lan-
guage that allow expressions to have side-effects in addition to representing a value. Expres-
sions evaluated for their side-effects correspond to statements in imperative programming
languages.1

Roadmap Our starting point is Felleisen and Hieb’s introduction of state variables in the
λv-calculus [33]. In Section 6.1 we briefly introduce state variables and assignments and
continue in Section 6.2 with a formal introduction of Felleisen and Hieb’s calculus — the
λv-S(t)-calculus.

In Section 6.3 we add closure-versions of the contraction rules involving state variables
of the λv-S(t)-calculus to the λρ̂-calculus (Section 5.2.1) and we define an applicative-order
reduction semantics in the resulting calculus. This reduction semantics has context-sensitive
clauses in the one-step reduction function. In Section 6.4 we observe that the reduction se-
mantics syntactically corresponds to the CEK machine [32] with an extra component holding
the store.

6.1 State variables and assignments

Variables in the λ-calculus are placeholders for λ-terms. In β-reductions variables are re-
placed by λ-terms. The various semantics for TLLF (Chapter 4) do not perform β-reductions
explicitly. Instead an environment is used to represent bindings of variables to denotable
values. The individual bindings never change. In that respect variables are not ‘variable’.

State variables We introduce a new set of variables in the expression language: state vari-
ables. A state variable represents at any ‘time’ some value, but as ‘time’ change, the vari-
able can represent other values. Evaluation of a state variable yields the ‘current’ value of
the variable. That is, evaluation become referentially opaque: The notion of time introduces
evaluation-order dependency also for expressions that cannot possibly diverge.2

1See Section 4.2 for an introduction to programming language paradigms.
2Expressions that cannot possibly diverge are also known as strongly normalizing.
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Assignments to state variables To change the binding of a variables we introduce an as-
signment construct to the expression language. Evaluation of a assignment expression lets
the variable in question be bound to a new value. The new binding lasts until possibly a
new assignment for that variable is evaluated.

6.2 Felleisen and Hieb’s revised calculus of state

Our starting point is the λv-S(t)-calculus defined by Felleisen and Hieb [33].

6.2.1 The term language

The term language is a direct extension of the term language for the λv-calculus from Sec-
tion 3.3 (We omit the definition of basic constants ranged over by b):

Val v ::= b | x | λx.t | λxσ.t | σxσ.t

Termσ t ::= v | t t | xσ

Here x ∈ Var and xσ ∈ Varσ. Var is the set of variables of the λ-calculus, and Varσ is the set
of state variables. These two sets are disjoint but otherwise unspecified.

The term language extends the λv-calculus language by two constructs: (1) The new set
of state variables Varσ which are not values because they do not represent a single value, and
(2) the σ-capability σxσ.t which represents the capability to globally assign the state variable
xσ a value when applied, i.e. an assignment construct which itself is a value.

6.2.2 Conventions

In relation to the presentation of the λv-calculus Felleisen and Hieb mention two conven-
tions:

1. Bound variables are always distinct from free variables in the various expressions of
mathematical definitions and claims.

2. Abstractions that only differ by a renaming of bound variables are identified, e.g.,
λx.x ≡ λy.y.

These two conventions are taken verbatim from Felleisen and Hieb’s text. The first con-
vention gives that the β-rule can be used without the side condition that variable renaming
might be needed because substitution must be capture-free. The second convention is the
usual convention also used in this text making the above mentioned renaming possible:
Textual terms are representatives of the real terms, which are the classes defined by =α.

6.2.3 The ρ-application

A ρ-application ρθ.t is a useful abbreviation. It is composed of a term t and a finite function
θ = {(x1, v1), . . . , (xn, vn)}, xi ∈ Varσ representing a part of the state. The abbreviation is
defined via two expansion rules:

ρ{}.t ≡ t

ρ{(x1, v1), . . . , (xj, vj)}.t ≡ (λx1. . . . λxj.(σx1.. . . σxj.t) v1 . . . vj) (λx.x) . . . (λx.x)

Because θ is a finite function the xi are all different.
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6.2.4 Notions of reduction

Reduction in the calculus is defined via seven contraction rules. Three of these rules rely on
applicative-order reduction contexts over the revised term language:

E ::= [ ] | E t | v E

δ : q l → capp (q, l)
βv : (λx.t) v → t{v/x}

βσ : (λxσ.t) v → ρ{(xσ, v)}.t
D : ρθ ∪ {(xσ, v)}.E[xσ] → ρθ ∪ {(xσ, v)}.E[v]
σ : ρθ ∪ {(xσ, v

′)}.E[(σxσ.t) v] → ρθ ∪ {(xσ, v)}.E[t]
gc : ρθ ∪ θ ′.t → ρθ ′.t, if θ 6= {} and Dom(θ) ∩ FVσ(ρθ ′.t) = {}

ρ∪ : ρθ ′.E[ρθ.t] → ρθ ∪ θ ′.E[t], if θ 6= {} and ρθ ′.E 6= [ ]

The notion of reduction t is defined as the union of the above seven contraction rules:

t := δ ∪ βv ∪ βσ ∪D ∪ σ ∪ gc ∪ ρ∪

The rules δ andβv are standard from the λv-calculus of Section 3.3 (with substitution straight-
forwardly extended to σ-capabilities).

A new state variable is introduced in rule βσ by extending the overall state by a new part.
According to the second expansion rule for ρ-applications the contractum of a βσ-redex is
(λxσ.(σxσ.t) v) (λx.x). That is, the introduction of state variables is capture-free according to
the first convention in Section 6.2.2: xσ /∈ FVσ(v), where FVσ is assumed to be the straight-
forward variation of FV, the function mapping a term to its free variables — here mapping
to its free state variables. FVσ also appears in the rule gc. Rules D and σ are the lookup and
update of a state variable, respectively wrt. the inner-most part of the state.

Remark that in ρθ ∪ θ ′.t, θ ∪ θ ′ denote a finite function. In the rules gc and ρ∪ the con-
dition about the finite function not being the empty function (θ 6= {}) is not essential. We
assume these conditions are included to let the last four rules be strongly normalizing, i.e., us-
ing only these four rules normalization cannot possibly diverge. But in case that property is
the reason for the conditions, one more condition is needed in the garbage-collection rule gc
which removes an unneeded part of the state: θ∪θ ′ must imply a partitioning of the domain,
i.e., Dom(θ) ∩Dom(θ ′) = {}. (This condition is not mentioned by Felleisen and Hieb.)

In rule ρ∪ the second condition relies on the expansion of the ρ-abbreviation and is equiv-
alent to (θ ′ 6= {} or E 6= [ ]). Hence ρ∪ either ‘lifts’ a part of the state towards the root of the
term (when E 6= [ ]) or ρ∪ merges two nontrivial parts of the state into one (when E = [ ]).

6.2.5 One-step reduction and equality

Contexts for the term language is mentioned to be modified appropriately given contexts for
terms in the λv-calculus. The definition of contexts must hence have productions according
to the new constructs:

C ::= [ ] | C t | t C | λx.C | λxσ.C | σxσ.C

Felleisen and Hieb do not explicitly define one-step t-reduction → t or t-reduction →∗
t , but

following the rest of the paper (and the usual approach also followed in this text) definitions
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are straightforward: One-step t-reduction is defined as the compatible closure of t according
to the above grammar of contexts:

t →t t
′ iff t = C[r], t ′ = C[r ′], (r, r ′) ∈ t

t-reduction →∗
t is the reflexive transitive closure of →t. Equality in the calculus =t is the

equivalence relation over t-reduction.

6.2.6 The Church-Rosser property

The standard property Church-Rosser of t is proved by Felleisen and Hieb. In other words,→∗
t has the usual diamond property like →∗

β on page 10.
A condition is missing in connection with liftings of ρ-applications towards the root in

the rule ρ∪. The following are two reduction sequences starting with the same term (where
v and v ′ are different closed values in normal form).

((λxσ.λy.xσ) v) ((λxσ.λy.y) v
′) →2

t (ρ{(xσ, v)}.λy.xσ) (ρ{(xσ, v
′)}.λy.y)→t (ρ{(xσ, v)}.λy.xσ) λy.y→t ρ{(xσ, v)}.((λy.xσ) λy.y)→t ρ{(xσ, v)}.xσ→t ρ{(xσ, v)}.v→t v

((λxσ.λy.xσ) v) ((λxσ.λy.y) v
′) →2

t (ρ{(xσ, v)}.λy.xσ) (ρ{(xσ, v
′)}.λy.y)→t ρ{(xσ, v)}.((λy.xσ) (ρ{(xσ, v
′)}.λy.y))

≡ ρ{(xσ, v)}.ρ{}.((λy.xσ) (ρ{(xσ, v
′)}.λy.y))→t ρ{(xσ, v)}.ρ{(xσ, v

′)}.((λy.xσ) λy.y)→t ρ{(xσ, v)}.ρ{(xσ, v
′)}.xσ→t ρ{(xσ, v)}.ρ{(xσ, v
′)}.v ′→2

t v ′

The sample term has been reduced to two different normal forms. Hence they do not have
a common reduct. In other words, the Church-Rosser property does not hold unless we add
a condition to the rule ρ∪: FVE(E) ∩ Dom(θ) = {}, where FVE maps evaluation contexts to its
free state variables.3 The condition ensures that liftings of ρ-applications in ρ∪ are capture-
free. Usually programs are closed terms. When utilizing evaluation contexts in definitions
of a one-step reduction function for a language such evaluation contexts hence cannot have
free variables. In the contraction rules D, σ and gc evaluation contexts in contrast are used in
a non-standard way: in the context of store-parts. Here it is possible for evaluation contexts
to have free variables.

6.2.7 Standard reduction

Felleisen and Hieb define a standard reduction relation via t-standard evaluation contexts:

E ::= E | ρθ.E

How to understand this grammar of contexts is not clear. We assume the definition in-
corporates the applicative-order evaluation contexts also used in the contraction rules in

3The added condition is not implied by θ ∪ θ ′ which denotes a function: In general FVE(E) * θ ′.
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Section 6.2.4, such that the intended grammar reads as follows:

Et ::= [ ] | Et t | v Et | ρθ.Et

such that t-standard reduction is defined as the compatible closure of t according to the
grammar of t-standard evaluation contexts:

Et[r] 7→t Et[r
′] iff (r, r ′) ∈ t

Remark: the above definition of evaluation contexts together with the notion of reduction
does not imply unique decomposition of a non-value term (where 7→t is defined) into a con-
text and a t-redex. In other words, 7→t does not define a function. According to Section 4.5.3,
we only have a reduction semantics if 7→t is a function. In general the rule gc can obviously
be applied in various contexts, but removing gc is not enough to obtain a function.

6.3 An applicative-order reduction semantics with explicit substi-
tution including the imperative constructs

In Section 5.2.1 we introduced the λρ̂-calculus and in Section 5.2.3 we introduced a normal-
order reduction semantics in that calculus. In this section we extend the λρ̂-calculus with the
imperative constructs from the previous section and define an applicative-order reduction
semantics.

6.3.1 The term language

The terms correspond directly to the terms of the λv-S(t)-calculus, except that de Bruijn in-
dices are used in the pure λ-calculus subset of terms. We add the ρ-application as a actual
construct for closures. That is, ρ-applications are no longer abbreviations:

TValueρ̂vi vt ::= b | λt | λxσ.t | σxσ.t

Termρ̂vi t ::= i | xσ | vt | t t

Closureρ̂vi c ::= t[s] | c c | ρθ.c

Valueρ̂vi v ::= vt[s]
Substitutionρ̂vi s ::= • | v · s
Storeρ̂vi θ ::= {} | θ ∪ {(xσ, v)}

Variables i are de Bruijn indices. State variables xσ are left unspecified. Again θ ∪ {(xσ, v)}

denote a finite function. We thus assume xσ /∈ Dom(θ).

6.3.2 The notion of reduction

The notion of reduction is an extension of ρ̂ changed to βv instead of β to follow Felleisen
and Hieb:

βv : (λt)[s] v → t[v · s]
ι : i[v1 · · · vj] → vi , if i ≤ j
π : (t t ′)[s] → t[s] t ′[s]
δ : q[s] l[s ′] → (capp (q, l))[s ′]

ρ̂v := βv ∪ ι ∪ π ∪ δ
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The extension is closure versions of the contraction rules involving the imperative constructs
in the λv-S(t)-calculus:

E ::= [ ] | E c | v E

βσ : (λxσ.t)[s] v → ρ{(xσ, v)}.t[s]
D : ρθ ∪ {(xσ, v)}.E[xσ[s]] → ρθ ∪ {(xσ, v)}.E[v]
σ : ρθ ∪ {(xσ, v

′)}.E[(σxσ.t)[s] v] → ρθ ∪ {(xσ, v)}.E[t[s]]
ρ∪ : ρθ ′.E[ρθ.c] → ρθ ∪ θ ′.E[c], if FVE(E) ∩Dom(θ) = {}

i := βσ ∪D ∪ σ ∪ ρ∪

The notion of reduction is thus defined as the union: ρ̂vi := ρ̂v ∪ i. We have excluded the
rule gc because it will not be used in the reduction semantics. Because ρ-applications are not
abbreviations only the added condition of ρ∪ is needed.

6.3.3 A one-step reduction function

Because ρ-applications are not abbreviations we cannot use the rule ρ∪ to move a store-part
to the root of the overall closure unless a ρ-application exists at the root. We hence assume
an empty ρ-application at the root of every closure which can be established in the initial
mapping from terms to closures:

toclosureρ̂vi : Termρ̂vi → Closureρ̂vi

toclosureρ̂vi t = ρ{}.t[•]

A one-step reduction function assures a reduction strategy. Without the rule gc we only need
to decide when to use the rules where the redexes are ρ-applications. We decide to always
use the ρ∪ rule if possible, such that the one-step reduction function is a gc-free version of
Felleisen and Hieb’s 7→t1 [33, Definition 4.7], which is iterated in the definition of evaluation.

Following applicative order and with a ρ-application at the root, a βσ-contraction can
always be followed by a ρ∪-contraction. We merge these two rules into one by defining its
composition (remark how the side-condition is simplified):

ρ∪ ◦ βσ : ρθ.E[(λxσ.t)[s] v] → ρθ ∪ {(xσ, v)}.E[t[s]], if xσ /∈ FVE(E)

We define evaluation contexts as either just the empty context or a standard applicative-
order evaluation contexts with a ρ-application at the root:

Eρ̂vi ::= [ ] | ρθ.E

The compatible closure of the notion of reduction with βσ and ρ∪ replaced by ρ∪ ◦βσ (call it
ρ̂vi ′) wrt. these evaluation contexts defines a one-step reduction function:

Eρ̂vi[r] 7→ Eρ̂vi[r
′] iff (r, r ′) ∈ ρ̂vi ′

The one-step reduction function is well-defined: ρ̂v is a function. If 7→ is defined for c, c can
be uniquely decomposed into an evaluation context ρθ.E and a ρ̂v-redex or (exclusively) c
itself is the left-hand side of one of the added contraction rules D, σ, or ρ∪ ◦ βσ. These rules
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match disjoint sets, and D ∪ σ ∪ (ρ∪ ◦ βσ) is hence a function. According to this explanation
the one-step reduction function is restated with context-sensitive rules:

ρθ.E[(λt)[s] v] 7→ ρθ.E[t[v · s]]
ρθ.E[i[v1 · · · vj]] 7→ ρθ.E[vi] , if i ≤ j
ρθ.E[(t t ′)[s]] 7→ ρθ.E[t[s] t ′[s]]
ρθ.E[q[s] l[s ′]] 7→ ρθ.E[(capp (q, l))[s ′]]

ρθ.E[(λxσ.t)[s] v] 7→ ρθ ∪ {(xσ, v)}.E[t[s]], if xσ /∈ FVE(E)
ρθ ∪ {(xσ, v)}.E[xσ[s]] 7→ ρθ ∪ {(xσ, v)}.E[v]

ρθ ∪ {(xσ, v
′)}.E[(σxσ.t)[s] v] 7→ ρθ ∪ {(xσ, v)}.E[t[s]]

6.3.4 Evaluation

Evaluation of closed terms is defined via the reflexive transitive closure 7→∗ of the one-step
reduction function on the initially constructed closure:

eval t = (v, θ) iff ρ{}.t[•] 7→∗ ρθ.v

If defined for term t evaluation yields a value and the current state.
Remark that the condition in the rule for introduction of new state variables can be re-

moved when considering only closed terms: xσ /∈ FVE(E) is then implied by θ ∪ {(xσ, v)}

being a function, because θ is now global.

The factorial function revisited The following is an expression in an extended Scheme
notation used for the implementation of the constructs added in this section. We assume
to be in the context of the Church numerals p0qc, p1qc, and p6qc (c0, c1, and c6), padd1qc

(csucc), pmultqc (cmul) and ptoliteralqc (c-to-nat):

(let* ([cfac (lambda (n)
(let* ([!count c0])

((n (lambda (res)
((sigma (!count)

((cmul !count) res))
(csucc !count)))) c1)))])

(c-to-nat (cfac c6)))

Variables starting with ‘!’ are assumed to be state variables. σ-capabilities are realized via
the new keyword sigma. In the assumed context the expression defines the factorial function
on Church numerals, calculates p6!qc, and converts to the built-in literal p720q. The iterated
function is a ‘lambda-dropped’ version of the iterative factorial function from Section 2.2.4:
The incremented numeral (!count) is a state variable updated via assignments. The iterative
version from Section 2.2.4 threads this numeral instead along with the intermediate results
0!, 1!, 2!, . . . , denoted by res.
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6.4 Derivation of a corresponding abstract machine

6.4.1 Introduction of explicit decomposition and plugging

In the previous section the well-definedness of 7→ hinges on a unique-decomposition prop-
erty. As developed in Section 5.2 we can explicitly define a function decomp which decom-
poses every closure not on the form ρθ.v (denoted by Result ρ̂vi) into a context and a closure
uniquely denoting a potential redex:

PotRedexρ̂vi p ::= i[s] | xσ[s] | (t t)[s] | v v

We represent the evaluation contexts inside-out separated into the standard applicative con-
texts and the store context:

E[ ] ::= [ ] | E[[ ] c] | E[v [ ]]
EContextρ̂vi Eρ̂vi[ ] ::= (E[ ], θ)

The definition of decomp follows the same template as the decomposition in the reduction
semantics for TLLF as explained in Section 5.2 on the syntactic correspondence between
reduction semantics and abstract machines. We omit the details. Plugging a closure into an
evaluation context is defined via induction over applicative-order contexts and is denoted
by plug. We again omit the details.

We thus have:

decomp : Closureρ̂vi → Resultρ̂vi + (PotRedexρ̂vi × EContextρ̂vi)
plug : EContextρ̂vi × Closureρ̂vi → Closureρ̂vi

We let closures in Resultρ̂vi be fixed points of decomp. The evaluation function eval from
Section 6.3.4 is reformulated with an explicit use of decomp and plug, exactly as developed
in Section 5.2.4:

eval : Termρ̂vi → Valueρ̂vi × Storeρ̂vi

eval t = it (decomp (ρ{}.t[•]))

it : Resultρ̂vi + (PotRedexρ̂vi × EContextρ̂vi) → Valueρ̂vi × Storeρ̂vi

it ρθ.v = (v, θ)
it (i[v1 · · · vi · · · vj], (E[ ], θ)) = it (decomp (plug ((E[ ], θ), vi)))

it ((λt)[s] v, (E[ ], θ)) = it (decomp (plug ((E[ ], θ), t[v · s])))
it ((t t ′)[s], (E[ ], θ)) = it (decomp (plug ((E[ ], θ), t[s] t ′[s])))
it (q[s] l[s ′], (E[ ], θ)) = it (decomp (plug ((E[ ], θ), (capp (q, l))[s ′])))

it ((λxσ.t)[s] v, (E[ ], θ)) = it (decomp (plug ((E[ ], θ ∪ {(xσ, v)}), t[s])))
it (xσ[s], (E[ ], θ ∪ {(xσ, v)})) = it (decomp (plug ((E[ ], θ ∪ {(xσ, v)}), v)))

it ((σxσ.t)[s] v, (E[ ], θ ∪ {(xσ, v
′)})) = it (decomp (plug ((E[ ], θ ∪ {(xσ, v)}), t[s])))

6.4.2 Obtaining a syntactically corresponding abstract machine

Introducing a refocus function and perform fusion We follow the method of the syntac-
tic correspondence (presented in Section 5.2) and introduce an efficient refocusing function
refocus extensionally equivalent to the composition of decomp and plug. Again, refocus is
immediate by construction of decomp, and we omit the details. Fusing it and refocus yields
an abstract machine.
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Short-circuiting transition and flattening of machine configurations Short-circuiting tran-
sitions of the obtained abstract machine let us eliminate the fourth rule of it which is the
only place where the construction of closures of the form c c is used. We hence flatten the
configurations of the abstract machine:

Configurationeval = Termρ̂vi × Substitutionρ̂vi × EContextρ̂vi × Storeρ̂vi

Configurationapply = EContextρ̂vi × Storeρ̂vi × Valueρ̂vi

Configurationterminal = Valueρ̂vi × Storeρ̂vi

Configuration = Configurationeval + Configurationapply + Configurationterminal

We observe that the resulting abstract machine syntactically corresponding to the original
applicative-order reduction semantics is the CEK machine extended with a store component
and rules for the imperative constructs evaluating terms in Termρ̂vi:

run : Termρ̂vi → Configurationterminal
run t = eval (t, •, [ ], {})

eval : Configurationeval → Configurationterminal
eval (vt, s, E[ ], θ) = apply (E[ ], θ, vt[s])

eval (i, v1 · · · vi · · · vj, E[ ], θ) = apply (E[ ], θ, vi)
eval (xσ, s, E[ ], θ ∪ {(xσ, v)}) = apply (E[ ], θ ∪ {(xσ, v)}, v)

eval (t t ′, s, E[ ], θ) = eval (t, s, E[[ ] t ′[s]], θ)

apply : Configurationapply → Configurationterminal
apply ([ ], θ, v) = (v, θ)

apply (E[[ ] t[s]], θ, v) = eval (t, s, E[v [ ]], θ)
apply (E[q[s] [ ]], θ, l[s ′]) = apply (E[ ], θ, (capp (q, l))[s ′])
apply (E[(λt)[s] [ ]], θ, v) = eval (t, v · s, E[ ], θ)

apply (E[(λxσ.t)[s] [ ]], θ, v) = eval (t, s, E[ ], θ ∪ {(xσ, v)})
apply (E[(σxσ.t)[s] [ ]], θ ∪ {(xσ, v

′)}, v) = eval (t, s, E[ ], θ ∪ {(xσ, v)})

Obtaining a corresponding evaluator The derived machine is in defunctionalized form.
Refunctionalizing yields an evaluator in CPS threading the store component. We leave out
the straightforward transformation.

6.5 Summary

We extended the terms of the λ-calculus to include imperative constructs and used an exist-
ing calculus: the λv-S(t)-calculus defined by Felleisen and Hieb. The notions of reduction t
has a non-standard use of evaluation contexts in that they can occur in contexts and in gen-
eral have free variables. Usually evaluation contexts are used in the definition of one-step
reduction functions for closed expression and cannot have free variables. We noticed that in
order to be Church-Rosser the rule ρ∪ must include a condition regarding the free variables
of evaluation contexts.

We defined an applicative-order reduction semantics in the λρ̂-calculus extended accord-
ing to the imperative constructs of λv-S(t)-calculus. A one-step reduction function appeared
to include context-sensitive rules. Via introduction of refocusing we outlined how the reduc-
tion semantics syntactically corresponds to an abstract machine in defunctionalized form.
The machine is the CEK machine extended to cope with the imperative constructs in the
term language of the λv-S(t)-calculus. The abstract machine maintains a store component.
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The resulting abstract machine is in defunctionalized form: The specification is in the im-
age of defunctionalization which makes it straightforward to refunctionalize and direct-style
transform the specification and thereby obtain an evaluator threading a store component.
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Part II

Strong normalization
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Chapter 7

Strong normalization with actual
substitution

Our concern for this chapter and the following chapters is strong normalization, i.e., nor-
malization to full normal form. We consider the λ-calculus as defined in Chapter 1.

Roadmap In Section 1.5 we presented a restricted compatible closure for the λ-calculus in
the definition of the one-step reduction function 7→ n̄ defining normal-order reduction to normal
forms. In Section 1.3 we saw how compatibility rules can be stated in terms of a grammar
of contexts. In Section 4.5.3 on reduction semantics we saw how a grammar of reduction
contexts is used to define a restricted compatibility identified to correspond to normal-order
reduction to weak head normal forms. In this chapter we define 7→n̄ as a reduction semantics for
normalization to full β-normal forms.

7.1 Obtaining a reduction semantics

First attempt A first attempt to define 7→n̄ via reduction contexts is to take the compatible
closure according to the following naive definition of reduction contexts.

Contextn̄ Cn̄ ::= [ ] | Cn̄ t | a Cn̄ | λx.Cn̄ *WRONG*

where a is the nonterminal from the grammar of normal forms found in Section 1.2. Com-
pared to the grammar of normal-order reduction to weak head normal form, two extra pro-
ductions are needed: (1) right-hand sub-terms of applications must be normalized if the
left-hand sub-term cannot be reduced to an abstraction (which suggests production a C n̄)
and (2) the body of abstractions must be normalized too (which suggests production λx.C n̄).

The problem is that the above grammar of reduction contexts together with the notion of
reduction β cannot in general determine a unique decomposition of a term t not in normal
form into a reduction context Cn̄ and a β-redex r, such that t = Cn̄[r]. In other words, the
one-step reduction function would not be well-defined when using the above grammar of
reduction contexts, and determinism is therefore not ensured. A counter example is the
sample term from Chapter 1:

(λx.(λy.y) z) ((λx.w (x x)) (λx.w (x x)))
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Both the whole term and the sub-term (λy.y) z can be the β-redex according to the grammar
of reduction contexts. The problem is the second production in the naive grammar above:
Normalizing an application starts by normalizing the left-hand sub-term. But because this
sub-term is in operator position a contraction of the application is needed, if the left-hand
sub-term (weak head) normalizes to an abstraction. Put differently, normalization of the left-
hand sub-term should only proceed until either a normal form that is not an abstraction is
obtained (the corresponding context now takes the form a C n̄) or an abstraction is obtained
— the body of the abstraction should in that case not be normalized before the contraction
of the application.

Second attempt We introduce an extra nonterminal to exclude the possibility to normalize
the body of abstractions when the abstraction is the left-hand sub-term of an application:

An̄ ::= [ ] | An̄ t | a Cn̄

Contextn̄ Cn̄ ::= An̄ | λx.Cn̄

This stratified grammar of contexts and the notion of reduction β imply that all terms can be
uniquely decomposed into a reduction context and a β-redex. Equivalently to the definition
in Section 1.5, the one-step reduction function can hence be defined by

Cn̄[(λx.t) t
′] 7→n̄ Cn̄[t{t

′/x}]

According to Section 4.5.3, with values defined as the β-normal forms, we have obtained a
reduction semantics.

7.2 Deriving a corresponding abstract machine

The grammar of contexts specified in Section 7.1 represents contexts ‘outside-in’. The same
contexts can equivalently be represented ‘inside-out’:

An̄[ ] ::= [ ] | Cn̄[a [ ]] | An̄[λx.[ ]]
Contextn̄ Cn̄[ ] ::= An̄[ ] | Cn̄[[ ] t]

It is straightforward to give explicit definitions of plugging a term into a context represented
‘inside-out’ and the corresponding decomposition function of a term not in normal form into
a reduction context and a β-redex. The mechanical introduction of an efficient refocus func-
tion (as described in Section 5.2.5) directly let us switch from reduction-based to reduction-
free strong normalization and obtain a corresponding ‘machine’ — exactly as demonstrated
in Section 5.2 for weak head normalization.

Primarily for one reason, the derivation is not presented here: The obtained ‘machine’
is not exactly in the right shape, according to the definition of abstract machines found in
Section 4.5.2. The problem is the actual substitution in forming the contractum of a β-redex.
Even though the actual substitution is a total operation, it is not elementary according to our
use: It consists of a recursive descent on a term, which can be an arbitrarily big tree structure.

To transform the obtained ‘machine’ into the shape of an abstract machine, the recursive
descent of the substitution must be incorporated explicitly into the transition function of the
machine, such that no meta construction is used. One possibility is to let the machine enter
a ‘substitution mode’ when considering the contraction of a β-redex (λx.t) t ′. In that mode
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a complete substitution is performed (in elementary steps). When t has been traversed and
every substitution performed the ‘machine’ leaves the ‘substitution mode’ and continues
with the result of the complete substitution in the contraction-time context. Such a complete
substitution would need to traverse the tree structure t to guarantee the substitution is prop-
erly implemented. In general, when normalizing a term some sub-terms will be repeatedly
traversed before (possibly) a normal form is reached. Even when the substitution variable
x is not used in t, the traversal will be performed. In other words, a better solution would
be to delay the substitutions until needed to eliminate unneeded and repeated traversals of
terms.

7.3 Summary

In this chapter we showed how to define a reduction semantics for strong normalization
in the λ-calculus utilizing actual substitution in forming the contractum of a β-redex. We
outlined that we via the syntactic correspondence could derive a ‘machine’.

Migrating to a calculus with explicit substitutions instead of actual substitution the meta-
construction for substitution is eliminated, and substitutions are delayed since the contrac-
tion of a β-redex explicitly represents the substitution in the term without performing it.
Within such a calculus with explicit substitutions we can redo the definition of a reduction
semantics for strong normalization and apply the syntactic correspondence to obtain an ab-
stract machine for strong normalization. We go into details in the next chapter.
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Chapter 8

Strong normalization with explicit
substitutions

According to the discussion in the previous chapter we consider strong normalization in
connection with explicit substitutions. The topic of this chapter is motivated calculi with
explicit substitutions and reduction semantics for strong normalization of λ-terms via these
calculi.

Roadmap We show how the syntactic correspondence (introduced for weak head normal-
ization in Section 5.2) also apply considering strong normalization: Motivated by the im-
plementation of the contraction rule βdeB for de Bruijn-indexed λ-terms (Section 8.1.1) we
define a new calculus with singleton substitutions explicit in the term language — the λŝ-
calculus (Section 8.1.2). The λŝ-calculus is very simple. Standard properties of the calculus
are implied by construction.

With the λŝ-calculus as starting point we define a normal-order reduction semantics fa-
cilitating reduction-based strong normalization of λ-terms (Section 8.1.3). We then show that
the syntactic correspondence between reduction semantics and abstract machines also apply
considering strong normalization (Section 8.1.4).

Motivated by some properties of the derived abstract machine we revise the λŝ-calculus
to operate on lists of substitutions instead of singletons. We denote the calculus λ ^̂s (Sec-
tion 8.2.1). We adjust the reduction semantics and present the corresponding abstract ma-
chine (Section 8.2.2).

8.1 Strong normalization via the λŝ-calculus

8.1.1 Motivation

In Section 1.6.2 we explicitly stated a definition of the substitution mechanism underlying
the βdeB-contraction rule for de Bruijn-indexed λ-terms. For convenience we repeat the defi-
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nition:

βdeB : (λt) t ′ → substitute (t, (1, t ′))

substitute : TermdeB × (Index× TermdeB) → TermdeB

substitute (i, (j, t)) =


i, if i < j
reindex (t, (1, j)) if i = j

i− 1, if i > j
substitute (λt, (j, t ′)) = λ(substitute (t, (j+ 1, t ′)))

substitute (t t ′, (j, t ′′)) = (substitute (t, (j, t ′′))) (substitute (t ′, (j, t ′′)))

reindex : TermdeB × (Index× Index) → TermdeB

reindex (i, (j, g)) =

{
i, if i < j
i+ g− 1, if i ≥ j

reindex (λt, (j, g)) = λ(reindex (t, (j+ 1, g)))
reindex (t t ′, (j, g)) = (reindex (t, (j, g))) (reindex (t ′, (j, g)))

Observing the common pattern in reindex and substitute in their treatment of abstrac-
tions and substitutions (and partly variables) a merging of reindex into the definition of
substitute is immediate:

Index i, j, g ::= {1, 2, 3, . . . }

d ::= t | G g

Substitutionŝ s ::= [j, d]

βdeB : (λt) t ′ → substitute ′ (t, [1, t ′])

substitute ′ : TermdeB × Substitutionŝ → TermdeB
substitute ′ (i, [j, d]) = i, if i < j

substitute ′ (i, [j, t]) =

{
substitute ′ (t, [1,G j]) if i = j

i − 1, if i > j
substitute ′ (i, [j, G g]) = i+ g− 1, if i ≥ j
substitute ′ (λt, [j, d]) = λ(substitute ′ (t, [j+ 1, d]))
substitute ′ (t t ′, [j, d]) = (substitute ′ (t, [j, d])) (substitute ′ (t ′, [j, d]))

A substitution [j, d] consists of a de Bruijn index and an associated term t or a ‘tagged’ index
G g (denoting a relative de Bruijn level). Instead of using reindexwhen a term is substituted
for an index, substitute ′ is applied with a substitution [1,G j] to reindex free variables in
the substituted term (see the gray box). Such a substitution is eventually matched by the
first or third clause of substitute ′.

8.1.2 The λŝ-calculus

The term language Instead of having the above meta construction to describe the corre-
sponding contractum of a βdeB-redex, we introduce a new construct in the term language.
Together with contraction rules for transformation and elimination of instances of that con-
struct according to the definition of the meta construction the need for substitute ′ is elim-
inated. The grammar of terms thus reads:

Termŝ t ::= i | λt | t t | t[j, d]

where [j, d] is a substitution as defined above. Compared to the λ-calculus one extra syntactic
construct is added. This construct associates a substitution with a term, which itself can
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contain other substitutions.1 The set of terms from the λ-calculus (with terms represented
with de Bruijn indices) is included as a subset of Termŝ.

Notion of reduction Interpreting all occurrences of substitute as the use of the construc-
tor for the new construct in the term language, the contraction rules of the calculus are evi-
dent: The new language construct is introduced in a new version of the β rule (β ŝ). Distri-
bution, transformation, and elimination of the new construct is performed according to the
definition of substitute ′:

βŝ : (λt) t ′ → t[1, t ′]
ιd : i[j, d] → i, if i < j

ιt : i[j, t] → {
t[1,G j], if i = j
i− 1, if i > j

ιg : i[j, G g] → i+ g− 1, if i ≥ j
ξ : (λt)[j, d] → λt[j+ 1, d]
π : (t t ′)[j, d] → t[j, d] t ′[j, d]

The union of the six contraction rules constitutes the notion of reduction in the ŝ-calculus:2

ŝ := βŝ ∪ ιd ∪ ιt ∪ ιg ∪ ξ ∪ π.

One-step ŝ-reduction, ŝ-reduction, and equality We define one-step ŝ-reduction →ŝ as the
compatible closure of ŝ according to a grammar of contexts:

Contextŝ C ::= [ ] | C t | t C | λC | C[j, d] | t[j, C]

The λŝ-calculus is strong as opposed to the λρ̂-calculus from Section 5.2.1, which is weak: In
the λρ̂-calculus reductions are not allowed inside the body of abstractions. In the λŝ-calculus
the grammar for compatibility include two productions related to the new construct in the
term language: Reductions can be performed both in the term-part and in the associated
substitution-part. Reductions can hence be performed in all parts of a term.

The reflexive transitive closure of one-step ŝ-reduction defines ŝ-reduction →∗
ŝ. Taking the

symmetric closure of ŝ-reduction defines ŝ-equality =ŝ, in the calculus.

Properties of the λŝ-calculus As presented above the motivation for the contraction rules
is an implementation of the β-substitution for de Bruijn-indexed λ-terms. Assume a term
contains no substitution constructs and one such is introduced via the use of β ŝ on redex
(λt) t ′. Via the rules ξ and π the substitution can be distributed to all variables of t. Uses of
the rules ιd and ιt at all these variable places either eliminate the substitution or introduce a
new substitution t ′[1,G j] with a tagged index instead. This substitution can be distributed
to all variables of t ′ (again via ξ and π) and eliminated via ιd or ιg. At this point the term
(say t ′′) is a de Bruijn-indexed λ-term containing no substitutions. All contractions are done
according to substitute ′. Hence, substitute ′ (t, [1, t ′]) = t ′′. In other words β-reductions
can be simulated by ŝ-reductions. From the Church-Rosser property of βdeB (page 17 and
page 10) it thus follows that ŝ is Church-Rosser on the subset of terms containing no substi-
tutions. We conjecture ŝ is Church-Rosser on all terms in Termŝ.3

1In contrast, closures in the λρ̂-calculus only associates substitutions with standard λ-terms.
2We denote the notion of reduction ŝ to indicate that the λŝ-calculus belong to the ‘λs-calculus family’ [41,42].
3Being Church-Rosser on Termŝ include Church-Rosser on terms containing free de Bruijn indices, i.e., ŝ is

then Church-Rosser also on open terms. This property is in an explicit-substitution setting usually called meta
confluence.
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Two substitutions cannot interfere with each other. In particular the order of substitu-
tions never changes and it is clear from the contraction rules that ŝ\βŝ is strongly normaliz-
ing.

Normal forms The normal forms in the λŝ-calculus are the normal forms of the λ-calculus
with de Bruijn-indexed λ-terms as defined on page 1.6.2:

ANFormdeB a ::= i | a n

NFormdeB n ::= a | λn

Substitutions are introduced in the contraction of a βŝ-redex, and substitutions can always
be eliminated according to the above discussion. With also no more βŝ-redexes left the term
is a βdeB-normal form containing no substitutions.

A sample series of reductions A sample series of one-step reductions on the term (λ(λ34(λ32))4)1

obtaining the corresponding normal form reads as follows (underlining the contacted redex
at each step):

(λ(λ3 4 (λ3 2)) 4) 1 →ŝ (λ(3 4 (λ3 2))[1, 4]) 1→ŝ (λ(3 4)[1, 4] (λ3 2)[1, 4]) 1→ŝ (λ(3 4)[1, 4] (λ(3 2)[2, 4])) 1→ŝ (λ(3 4)[1, 4] (λ3[2, 4] 2[2, 4])) 1→ŝ (λ(3 4)[1, 4] (λ2 2[2, 4])) 1→ŝ (λ(3 4)[1, 4] (λ2 4[1,G 2])) 1→ŝ (λ(3 4)[1, 4] (λ2 5)) 1→ŝ (λ3[1, 4] 4[1, 4] (λ2 5)) 1→ŝ (λ(2 4[1, 4]) (λ2 5)) 1→ŝ (λ2 3 (λ2 5)) 1→ŝ (2 3 (λ2 5))[1, 1]→ŝ (2 3)[1, 1] (λ2 5)[1, 1]→ŝ 2[1, 1] 3[1, 1] (λ2 5)[1, 1]→ŝ 1 3[1, 1] (λ2 5)[1, 1]→ŝ 1 2 (λ2 5)[1, 1]→ŝ 1 2 (λ(2 5)[2, 1])→ŝ 1 2 (λ2[2, 1] 5[2, 1])→ŝ 1 2 (λ1[1,G 2] 5[2, 1])→ŝ 1 2 (λ2 5[2, 1])→ŝ 1 2 (λ2 4)

Correspondence with the λ-calculus The set of terms TermdeB is a subset of the terms in the
λŝ-calculus. A translation of terms from the λ-calculus to terms in the λŝ-calculus is therefore
not needed.

Translating from terms in the λŝ-calculus to de Bruijn-indexed λ-terms is a bit more in-
volved. Like in the translation from closures in the λρ̂-calculus to de Bruijn-indexed λ-terms
(Section 5.2.2), all the delayed substitutions contained as the substitution-part must be forced
into actual substitutions. By construction, occurrences of the substitution construct can be
eliminated by normalizing using the notion of reduction ŝ\βŝ: Normalization without use
of βŝ yields terms with no substitutions.
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Alternatively, we can map to de Bruijn-indexed λ-terms deterministically via a modified
version of substitute ′: substitute ′ was defined on terms containing no substitutions and
therefore a ‘driver’ is needed to eliminate all substitutions in both the term and the substitu-
tion itself:

σŝ : Termŝ → TermdeB
σŝ (i) = i

σŝ (λt) = λ(σŝ t)
σŝ (t t ′) = (σŝ t) (σŝ t

′)
σŝ (i[j, d]) = aux (i, [j, d])

σŝ ((λt)[j, d]) = λ(σŝ (t[j+ 1, d]))
σŝ ((t t ′)[j, d]) = (σŝ (t[j, d])) (σŝ (t ′[j, d]))

σŝ (t[j ′, d ′][j, d]) = aux (σŝ (t[j ′, d ′]), [j, d])

aux : TermdeB × Substitutionŝ → TermdeB
aux (i, [j, d]) = i, if i < j
aux (i, [j, t]) = σŝ (t[1,G j]), if i = j

aux (i, [j, t]) = i− 1, if i > j
aux (i, [j, G g]) = i+ g− 1, if i ≥ j
aux (λt, [j, d]) = λ(aux (t, [j+ 1, d]))
aux (t t ′, [j, d]) = (aux (t, [j, d])) (aux (t ′, [j, d]))

The auxiliary aux is handling the actual substitution of one delayed substitution in a de
Bruijn-indexed λ-term. We conjecture the following property holds for t ∈ TermdeB (with→∗

βdeB
defined in Section 1.6.3):

t →∗
ŝ t

′ =⇒ t →∗
βdeB

σŝ(t
′)

8.1.3 A normal-order reduction semantics for the λŝ-calculus

A grammar of reduction contexts can be defined like in the case of actual substitution, pre-
sented in Chapter 7, to define a normal-order reduction strategy for λŝ-terms (performing
strong normalization). Only one extra nonterminal is needed to cope with the introduction
of explicit substitutions. The defining grammar (represented inside-out) reads:

AContextŝ A[ ] ::= [ ] | C[a [ ]] | A[λ[ ]]
CContextŝ C[ ] ::= A[ ] | C[[ ] t]
DContextŝ D[ ] ::= C[ ] | D[[ ][j, d]]

The hole of the context is immediately inside the term-part of a series (possibly empty) of the
new substitution construct. This series is inside a reduction context, C[ ] ∈ CContext ŝ, which
was introduced in Section 7.2 considering strong normalization with actual substitution.

Values and a one-step reduction function We define a reduction semantics to normal
forms and not only to weak head normal forms. Therefore the values of the reduction se-
mantics are the normal forms of the calculus.

The notions of reduction (defined in Section 8.1.2) together with the above grammar of
reduction contexts does not imply a unique decomposition of a term t not in normal form
into a context D[ ] and a ŝ-redex r such that t = D[r]. The term t = ((λ1) 2)[2, 3] is an
illustrative example:

t = D1[r1], D1 = [ ] and r1 = ((λ1) 2)[2, 3]
t = D2[r2], D2 = [[ ][2, 3]] and r2 = (λ1) 2
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Here r1 is a π-redex and r2 is a βŝ-redex. A one-step reduction function can nevertheless
be defined by allowing the rule βŝ to apply only in contexts from CContextŝ. In the above
example this restriction rules out the second decomposition t = D2[r2]. A unique decompo-
sition into a context C[ ] and a β-redex or a contextD[ ] and a ŝ-redex that is not a βŝ-redex is
ensured. By construction of the grammar and the contraction rules it is an exclusive or: both
situations cannot occur. The following definition of a one-step reduction function is hence
well-defined: (The format was introduced in Section 4.5.3)

C[(λt) t ′] n7→ŝ C[t[1, t ′]]
D[i[j, d]]

n7→ŝ D[i], if i < j

D[i[j, t]]
n7→ŝ

{
D[t[1,G j]], if i = j

D[i− 1], if i > j
D[i[j, G g]]

n7→ŝ D[i + g− 1], if i ≥ j
D[(λt)[j, d]]

n7→ŝ D[λt[j+ 1, d]]

D[(t t ′)[j, d]] n7→ŝ D[t[j, d] t ′[j, d]]

This function is partial because it is not defined on values, i.e., normal forms.

Normalization of de Bruijn-indexed λ-terms The implicit decomposition is into a context
and an actual redex, and n7→ŝ is hence defined for all terms not in normal form. In other
words, it is well-defined to define normalization in terms of the reflexive transitive closure
of n7→ŝ (denoted n7→∗

ŝ):
normalize(ŝ,n) t = n iff t

n7→∗
ŝ n

This function strongly normalizes terms by a series of one-step reductions following a normal-
order reduction strategy. normalize(ŝ,n) is partial because it is not defined on terms with no
normal form. Because ŝ\βŝ is strongly normalizing — i.e., for all terms, there exists no infi-
nite reduction sequences starting with that term when not using the β ŝ contraction rule —
terms with no normal form must contain at least one βŝ-redex.

Normalization follows standard reduction in the λ-calculus extended to consume sub-
stitutions. Considering the subset TermdeB, we hence conjecture a standardization theorem
holds saying that normalize(ŝ,n) yields a normal form, when one exists.

Sample normalization following the normal-order strategy Normalization of the term
from above, (λ(λ3 4 (λ3 2)) 4) 1, following the normal-order reduction strategy reads (under-

90



lining the contracted redex at each step):

(λ(λ3 4 (λ3 2)) 4) 1
n7→ŝ ((λ(3 4) (λ3 2)) 4)[1, 1]
n7→ŝ ((λ(3 4) (λ3 2))[1, 1] 4[1, 1]
n7→ŝ (λ((3 4) (λ3 2))[2, 1]) 4[1, 1]
n7→ŝ ((3 4) (λ3 2))[2, 1][1, 4[1, 1]]
n7→ŝ ((3 4)[2, 1] (λ3 2)[2, 1])[1, 4[1, 1]]
n7→ŝ (3 4)[2, 1][1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ (3[2, 1] 4[2, 1])[1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 3[2, 1][1, 4[1, 1]] 4[2, 1][1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 2[1, 4[1, 1]] 4[2, 1][1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 1 4[2, 1][1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 1 3[1, 4[1, 1]] (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 1 2 (λ3 2)[2, 1][1, 4[1, 1]]
n7→ŝ 1 2 (λ(3 2)[3, 1])[1, 4[1, 1]]
n7→ŝ 1 2 (λ(3 2)[3, 1][2, 4[1, 1]])
n7→ŝ 1 2 (λ(3[3, 1] 2[3, 1])[2, 4[1, 1]])
n7→ŝ 1 2 (λ3[3, 1][2, 4[1, 1]] 2[3, 1][2, 4[1, 1]])
n7→ŝ 1 2 (λ1[1,G 3][2, 4[1, 1]] 2[3, 1][2, 4[1, 1]])
n7→ŝ 1 2 (λ3[2, 4[1, 1]] 2[3, 1][2, 4[1, 1]])
n7→ŝ 1 2 (λ2 2[3, 1][2, 4[1, 1]])
n7→ŝ 1 2 (λ2 2[2, 4[1, 1]])
n7→ŝ 1 2 (λ2 4[1, 1][1,G 2])
n7→ŝ 1 2 (λ2 3[1,G 2])
n7→ŝ 1 2 (λ2 4)

Remark: we have normalized the open de Bruijn-indexed λ-term to its equivalent de Bruijn-
indexed normal form.

8.1.4 Reduction-free strong normalization in the λŝ-calculus

The normalization function from Section 8.1.3, is reformulated according to the description
in Section 4.5.3:

normalize(ŝ,n) : Termŝ → NFormdeB
normalize(ŝ,n) t = iterate t

iterate : Termŝ → NFormdeB
iteraten = n

iterateC[(λt) t ′] = iterateC[t[1, t ′]]
iterateD[i[j, d]] = iterateD[i], if i < j
iterateD[i[j, t]] = iterateD[t[1,G j]], if i = j

iterateD[i[j, t]] = iterateD[i− 1], if i > j
iterateD[i[j, G g]] = iterateD[i+ g− 1], if i ≥ j
iterateD[(λt)[j, d]] = iterateD[λt[j+ 1, d]]
iterateD[(t t ′)[j, d]] = iterateD[t[j, d] t ′[j, d]]

Again an advanced pattern matching is exploited. In other words, the above definition im-
plicitly on the left-hand side relies on a (unique) decomposition of terms not in normal form
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into a contexts and a redex. On the right-hand side it implicitly relies on a plugging of terms
into contexts.

Introducing an explicit definition of the decomposition and the plugging, a refocus func-
tion is mechanically obtained by use of the standard method explained in Section 5.2.5. Fus-
ing iterate and the refocus function yields an abstract machine. Optimization by short-
circuiting transitions yields the following abstract machine:

normalize(ŝ,n) : Termŝ → NFormdeB
normalize(ŝ,n) t = refocus (t, [ ])

refocus : Termŝ ×DContextŝ → NFormdeB
refocus (i, D[ ]) = aux (D[ ], i)

refocus (λt, D[ ]) = aux (D[ ], λt)
refocus (t t ′, D[ ]) = aux (D[ ], t t ′)

refocus (t[j, d], D[ ]) = refocus (t, D[[ ][j, d]])

auxD : DContextŝ × Termŝ → NFormdeB
auxD (C[ ], i) = auxC (C[ ], i)

auxD (C[ ], λt) = auxC (C[ ], λt)
auxD (C[ ], t t ′) = refocus (t, C[[ ] t ′])

auxD (D[[ ][j, d]], t t ′) = auxD (D[ ], t[j, d] t ′[j, d])
auxD (D[[ ][j, d]], λt) = auxD (D[ ], λt[j+ 1, d])
auxD (D[[ ][j, d]], i) = auxD (D[ ], i), if i < j
auxD (D[[ ][j, t]], i) = refocus (t, D[[ ][1,G j]]), if i = j

auxD (D[[ ][j, t]], i) = auxD (D[ ], i− 1), if i > j
auxD (D[[ ][j, G g]], i) = auxD (D[ ], i+ g− 1), if i ≥ j

auxC : CContextŝ × (ANFormdeB + Termŝ) → NFormdeB
auxC (A[ ], a) = auxA (A[ ], a)
auxC (A[ ], λt) = refocus (t, A[λ[ ]])

auxC (C[[ ] t], a) = refocus (t, C[a [ ]])
auxC (C[[ ] t ′], λt) = refocus (t, C[[ ][1, t ′]])

auxA : AContextŝ ×NFormdeB → NFormdeB
auxA ([ ], n) = n

auxA (C[a [ ]], n) = auxC (C[ ], a n)
auxA (A[λ[ ]], n) = auxA (A[ ], λn)

Normalization no longer consists of explicitly constructing a series of intermediate terms
equivalent to the initial term, i.e., normalization is reduction free.

8.2 Strong normalization via the λ^̂s-calculus

Motivation All dispatches on contexts involving substitutions are performed in auxD. Ac-
cording to the last rule of refocus and the rules of auxD all available substitutions are moved
to the context when refocusing on a unknown term and all are moved back into the term,
e.g., when distributing substitutions in applications and into the body of abstractions. This
property indicates that the representation of substitutions as part of the context might not be
ideal.

On the one hand each substitution is treated in isolation from the rest of the substitutions.
This property is a direct consequence of the term language and the notion of reduction in the
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λŝ-calculus. On the other hand, e.g., when distributing a substitution all adjacent substitu-
tions are distributed in the same way one at a time.

Instead of letting the above machine undergo surgery we adjust our starting point — the
λŝ-calculus: We introduce lists of substitutions in the term language and alter the contraction
rules accordingly.

8.2.1 The λ^̂s-calculus

The abstract syntax of the λ^̂s-calculus only differ in the substitutions. Here substitutions are
lists of substitution elements instead of exactly one substitution element as was the case in
the λŝ-calculus:

Termˆ̂s t ::= i | λt | t t ′ | t[s]
Substitutionˆ̂s s ::= • | (j, d) · s

Here i, j, and d range over the same sets as in the λŝ-calculus. The notions of reduction is
defined as ^̂s = β^̂s∪µ∪ ι ′d∪ ι ′t∪ ι ′g∪ ξ ′ ∪π ′ ∪γ, where the eight contraction rules are defined
as follows:

β^̂s : (λt) t ′ → t[(1, t ′) · •]
µ : i[•] → i

ι ′d : i[(j, d) · s] → i[s], if i < j

ι ′t : i[(j, t) · s] → {
t[(1,G j) · s], if i = j

(i − 1)[s], if i > j
ι ′g : i[(j, G g) · s] → (i+ g− 1)[s], if i ≥ j
ξ ′ : (λt)[s] → λt[Υ(s)]
π ′ : (t t ′)[s] → t[s] t ′[s]
γ : t[s ′][s] → t[s ′ ⊕ s]

The lifting operation of the contraction rule ξ ′ is the straightforward generalization of the
lifting of a singleton substitution in rule ξ of the λŝ-calculus:

Υ(•) = •
Υ((j, d) · s) = (j + 1, d) · Υ(s)

Compared to ŝ, basically two new rules are added: Rule µ consumes empty substitution
lists, and γ merges two substitution lists into one. Concatenation of two lists is denoted by
infix ⊕.

Each of the contraction rules of the λŝ-calculus has a list-based version in the λ^̂s-calculus.
One-step ^̂s-reduction, ^̂s-reduction, and ^̂s-equality, and a correspondence with the λ-calculus
are defined mutatis mutandis — we straightforwardly adjust the corresponding definition
in the λŝ-calculus to cope with the new set of contraction rules and terms.

Again, the order of substitutions never change. The difference from the λ ^̂s-calculus con-
sists in the ability to distribute more substitutions in one contraction. In other words, the
normal forms of the λ^̂s-calculus are the βdeB-normal forms of the λ-calculus and various
properties (e.g., Church-Rosser of ^̂s) are inherited from the λŝ-calculus.

8.2.2 Obtaining an efficient abstract machine

Like in Section 8.1.2, we define a normal-order reduction strategy for the λ ^̂s-calculus that
yields full normal forms, and we present the syntactically corresponding abstract machine
derived via introduction of a refocus function and transition compression via short-circuiting.
Afterwards, two inefficiencies are identified and removed from the obtained abstract ma-
chine.
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Obtaining an abstract machine We define a normal-order reduction semantics again using
the grammar of reduction contexts presented in Chapter 7 in connection to strong normal-
ization with actual substitution:

AContextˆ̂s A[ ] ::= [ ] | C[a [ ]] | A[λ[ ]]
CContextˆ̂s C[ ] ::= A[ ] | C[[ ] t]

For the λ^̂s-calculus no extra nonterminal is needed. The values of the reduction semantics
are again the normal forms.

The notions of reduction ^̂s and the above grammar of reduction contexts together satisfy
that a non-value term t, i.e., a term not in normal form, can be uniquely decomposed into a
reduction context C[ ] and a ^̂s-redex r, such that t = C[r]. Because ^̂s is a function it is hence
well-defined to specify a one-step reduction function as the compatible closure of ^̂s:

C[r]
n7→^̂s C[r ′] iff (r, r ′) ∈ ^̂s

and the corresponding normalization function (where n7→∗
^̂s denotes the reflexive transitive

closure of n7→^̂s):
normalize(^̂s,n) t = n iff t

n7→∗
^̂s n

An abstract machine is obtained via the syntactic correspondence (Section 5.2):

normalize(^̂s,n) : Termˆ̂s → NFormdeB

normalize(ŝ,n) t = refocus (t, [ ])

refocus : Termŝ × CContextˆ̂s → NFormdeB
refocus (i, C[ ]) = auxC (C[ ], i)

refocus (λt, C[ ]) = auxC (C[ ], λt)
refocus (t t ′, C[ ]) = refocus (t, C[[ ] t ′])
refocus (i[•], C[ ]) = auxC (C[ ], i)

refocus (i[(j, d) · s], C[ ]) = refocus (i[s], C[ ]), if i < j
refocus (i[(j, t) · s], C[ ]) = refocus (t[(1,G j) · s], C[ ]), if i = j
refocus (i[(j, t) · s], C[ ]) = refocus ((i − 1)[s], C[ ]), if i > j

refocus (i[(j, G g) · s], C[ ]) = refocus ((i + g− 1)[s], C[ ]), if i ≥ j
refocus ((λt)[s], C[ ]) = auxC (C[ ], λt[Υ(s)])
refocus ((t t ′)[s], C[ ]) = refocus (t[s], C[[ ] t ′[s]])
refocus (t[s ′][s], C[ ]) = refocus (t[s ′ ⊕ s], C[ ])

auxC : CContextˆ̂s × (ANFormdeB + Termˆ̂s) → NFormdeB
auxC (A[ ], a) = auxA (A[ ], a)
auxC (A[ ], λt) = refocus (t, A[λ[ ]])

auxC (C[[ ] t], a) = refocus (t, C[a [ ]])
auxC (C[[ ] t ′], λt) = refocus (t[1, t ′], C[ ])

auxA : AContextŝ ×NFormdeB → NFormdeB
auxA ([ ], n) = n

auxA (C[a [ ]], n) = auxC (C[ ], a n)
auxA (A[λ[ ]], n) = auxA (A[ ], λn)

Here auxA remains unchanged from the abstract machine for strong normalization in the
λŝ-calculus. auxC only differ in the last clause. These similarities come from the similar
grammar of contexts.
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A simple inspection of the transition rules justifies that if the initial term t is associated
with an empty substitution list — i.e., exploring the equivalence t = ^̂s t[•] — refocus is
always applied to a term of the form t[s]. Hence the first three transition rules of refocus
will never be matched and can safely be removed. Furthermore, restricting ourselves to
normalization of terms that is also in the λ-calculus, i.e., the initial term does not contain any
substitution-constructs, also the last transition rule of refocus can be removed by ‘inlining’
the rule in refocus where i = j and in the third rule of auxC.

Hereafter refocus is always applied with the first component being a construction t[s],
where t is always a term of the λ-calculus, i.e., it itself never takes the form t[s]. Flattening
the first component of refocus such that this transition function is always applied to a λ-
term, a substitution, and a context, an abstract machine performing strong normalization of
terms in the λ-calculus is obtained:

normalize : TermdeB → NFormdeB
normalize t = refocus (t, •, [ ])

refocus : TermdeB × Substitutionˆ̂s × CContextˆ̂s → NFormdeB
refocus (i, •, C[ ]) = auxC (C[ ], i)

refocus (i, (j, d) · s, C[ ]) = refocus (i, s, C[ ]), if i < j
refocus (i, (j, t[s ′]) · s, C[ ]) = refocus (t, s ′ ⊕ ((1,G j) · s), C[ ]), if i = j

refocus (i, (j, t ′[s ′]) · s, C[ ]) = refocus (i− 1, s, C[ ]), if i > j
refocus (i, (j, G g) · s, C[ ]) = refocus (i+ g− 1, s, C[ ]), if i ≥ j

refocus (λt, s, C[ ]) = auxC (C[ ], λt[Υ(s)])
refocus (t t ′, s, C[ ]) = refocus (t, s, C[[ ] t ′[s]])

auxC : CContextˆ̂s × (ANFormdeB + Termˆ̂s) → NFormdeB
auxC (A[ ], a) = auxA (A[ ], a)

auxC (A[ ], λt[s]) = refocus (t, s, A[λ[ ]])
auxC (C[[ ] t[s]], a) = refocus (t, s, C[a [ ]])

auxC (C[[ ] t ′[s ′]], λt[s]) = refocus (t, s ⊕ ((1, t ′[s ′]) · •), C[ ])

auxA : AContextŝ ×NFormdeB → NFormdeB
auxA ([ ], n) = n

auxA (C[a [ ]], n) = auxC (C[ ], a n)
auxA (A[λ[ ]], n) = auxA (A[ ], λn)

The above machine has two drawbacks: (1) it relies in two transition rules on the inefficient
concatenation of lists of substitutions, and (2) it relies on the inefficient lifting operation in
one transition rule. Let us remove these inefficiencies.

Getting rid of the inefficient concatenation and lifting of substitutions The drawbacks
cannot be removed mechanically. But it is possible to get rid of them via a nontrivial trans-
formation. The drawbacks are introduced because the machine does not exploit its own
normalization strategy: We can exploit invariants of substitution lists implied by the strat-
egy.

In the rule where i = j one of the concatenations of substitution lists occurs. One in-
variant gives that all real substitutions (j, t ′) relevant for t can be found in s ′. That is, after
introduction of t via a substitution only the adjustments of free indices of t are needed af-
ter the substitutions in s ′ has be consumed. Therefore, if substitution elements of the form
(j, G g) (used to lift free indices) are not placed in the environment, the concatenation of
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substitution lists can be removed because s can be discarded. A dedicated component of the
machine can hold the liftings of free variables.

The last clause of auxC contains the second occurrence of the concatenation. Here a new
element is added to the end of the substitution list. Immediately before that, the substitution
list has been lifted in the second to last rule of refocus. Distributing the lifting to the two
possible cases we can have an implicit lifting in the last clause of auxC by placing the element
in the front of the substitution list. By this change the second concatenation is removed.

Exploiting that the substitution lists now are never concatenated, the index in each el-
ement of the substitution elements is no longer needed: By indexing a whole list of sub-
stitutions using one index, the lifting degenerates to incrementing that index. Because the
lifting of free indices has been removed from the substitutions, the lifting counter must also
be incremented.

Instead of changing the substitution construct of terms we introduce closures and change
substitution lists according to the above discussion:

Closure c ::= t[s, g]
e ::= • | c · s

Substitution s ::= ej

where j and g are lifting indices and t ∈ TermdeB. We state the abstract machine with the two
drawbacks removed:4

normalize : TermdeB → NFormdeB
normalize t = refocus (t, •1, 1, [ ])

refocus : TermdeB × Substitution× Index× Context → NFormdeB
refocus (i, ej, g, C[ ]) = aux (C[ ], i), if i < j

refocus (i, (t[s ′, g ′] · s)j
, g, C[ ]) = refocus (t, s ′, g ′, C[ ]), if i = j

refocus (i, (c · s)j
, g, C[ ]) = refocus (i − j, s, g, C[ ]), if i > j

refocus (i, •j, g, C[ ]) = aux (C[ ], i+ g− 1), if i ≥ j
refocus (λt, s, g, C[ ]) = aux (C[ ], (λt)[s, g])
refocus (t t ′, s, g, C[ ]) = refocus (t, s, g, C[[ ] t ′[s, g]])

auxC : Context× (ANFormdeB + Closure) → NFormdeB
auxC (A[ ], a) = auxA (A[ ], a)

auxC (A[ ], (λt)[ej, g]) = refocus (t, ej+1, g+ 1, A[λ[ ]])
auxC (C[[ ] t[s, g]], a) = refocus (t, s, g, C[a [ ]])

auxC (C[[ ] c], (λt)[s, g]) = refocus (t, (c · s)1
, g, C[ ])

auxA : AContext×NFormdeB → NFormdeB
auxA ([ ], n) = n

auxA (C[a [ ]], n) = auxC (C[ ], a n)
auxA (A[λ[ ]], n) = auxA (A[ ], λn)

Obtaining a corresponding normalization function The above abstract machine is iden-
tified to be in defunctionalized form wrt. the reduction contexts with auxC and auxA consti-
tuting the apply-function. Refunctionalization yields a normalization function in CPS.

4Here the definition of contexts has been adjusted to the above closures and is denoted by Context and
AContext.
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8.3 Summary

In this chapter the starting point was the λŝ-calculus which was defined directly from a
specification of the meta construction substitute ′ for β-substitution in de Bruijn-indexed
λ-terms. The contraction rules and the calculus as such are very simple: Each substitution
is handled in isolation from other substitutions. The only difference from an actual use
of substitute ′ is that the substitutions are delayed. This property immediately gives the
simulation of β-contractions.

An analysis of the abstract machine, syntactically corresponding to a normal-order re-
duction strategy in the λŝ-calculus, pinpointed that the machine simulates operating on lists
of substitutions. We hence adjusted the λŝ-calculus to use contraction rules for lists of sub-
stitutions and defined the corresponding normal-order reduction strategy as a reduction
semantics in the λ^̂s-calculus. The syntactically corresponding abstract machine has two ma-
jor drawbacks:5 (1) it concatenates lists of substitutions and (2) it shifts lists of substitutions.
A final non-mechanical transformation yielded an improved abstract machine without the
drawbacks.

We showed that the syntactic correspondence (previously only investigated in connec-
tion with weak normalization) also applies when considering strong normalization of λ-
terms.

Applying the functional correspondence to the improved machine would let us mechan-
ically extract the corresponding higher-order normalization function for λ-terms. This nor-
malization function is compositional. In Chapter 10, we treat both the syntactic correspon-
dence and the functional correspondence for strong normalization with an existing example.

5Because of the drawbacks the machine is actually not an abstract machine according to our definition in
Section 4.5.2.
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Chapter 9

Strong normalization starting from
Lescanne’s normalizer

Lescanne defines a normalizer performing strong normalization in his paper on explicit sub-
stitution and extensions to confluent calculi [53]. This normalizer uses an abstract machine
(the U-machine). This machine is weakly normalizing but can be loaded with an arbitrary
environment and stack. To perform strong normalization of λ-terms Lescanne’s normalizer
repeatedly ‘instantiates’ the U-machine by use of a ‘driver loop’.1

Roadmap In this chapter our starting point is Lescanne’s normalizer. We present this nor-
malizer with a minimal change to let it be deterministic (Section 9.1). Simple transformations
then put the complete specification into the shape of an abstract machine (Section 4.5.2). We
relate that abstract machine to the derived abstract machines from Chapter 8.

9.1 Lescanne’s specification made deterministic

The U-machine The U-machine utilizes two auxiliary structures: environments and stacks:

i ::= {1, 2, 3, . . . }

c ::= ↑ | (t, e)
EnvU e ::= • | (c, i) · e
StackU s ::= • | (t, e) · s

Here t ∈ TermdeB. In Lescanne’s paper, i ranges over the natural numbers including zero.
We exclude zero (because the transition rules become more clear) and adjust the definition
of the U-machine accordingly.

Configurations in the U-machine consist of (1) a term, (2) an environment, and (3) a stack.
The possible terms are de Bruijn-indexed λ-terms:

ConfigurationU := TermdeB × EnvU × StackU

1The use of the term ‘instantiates’ is taken from Lescanne’s paper. The term ‘driver loop’ is standard.
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Transliterated into our notation the U-machine reads:

U : ConfigurationU → ConfigurationU

U (i, •, s) = (i, •, s)
U (i, (↑, 1) · e, s) = U (i+ 1, e, s)

U (1, ((t, e ′), 1) · e, s) = U (t, e ′ ⊕ e, s)
U (i + 1, ((t, e ′), 1) · e, s) = U (i, e, s)

U (1, (c, j + 1) · e, s) = U (1, e, s)
U (i+ 1, (c, j + 1) · e, s) = U (i, (c, j) · (↑, 1) · e, s)

U (λt, e, •) = (λt, e, •)
U (λt, e, (t ′, e ′) · s) = U (t, (Lift_env e)⊕ (((t ′, e ′), 1) · •), s)

U (t t ′, e, s) = U (t, e, (t ′, e) · s)

Here Lift_env corresponds to the lifting operation Υ in the λ ^̂s-calculus from Section 8.2.1.
The concatenation of two environments is denoted by ⊕.

The two kinds of terminal configurations (λt, e, •) and (i, •, s) make it evident that nor-
malization is not strong using the U-machine in isolation. A driver loop outside the machine
is needed to achieve strong normalization.

Strong normalization via the U-machine Lescanne defines a driver loop for the U-machine.
The complete specification for strong normalization is non-deterministic because the driver
loop does not decide on an order of normalization of right-hand-side sub-terms in nested
applications that will eventually appear in the final normal form. In other words, when
the U-machine reaches a final state of the form (i, •, s), all elements on the stack s are
normalized, but the order in which to perform these normalizations is not specified.

To match our specification in Section 4.5.2, abstract machines must be deterministic. We
decide on left-to-right normalization order of the sub-terms in question, and implement de-
terminism by adding an auxiliary function (aux):

normalize : TermdeB → NFormdeB
normalize t = nf (t, •)

nf : TermdeB × EnvU → NFormdeB
nf (t, e) = λ(nf (t ′, Lift_env e ′)), if U (t, e, •) = (λt ′, e ′, •)
nf (t, e) = aux (s, i), if U (t, e, •) = (i, •, s)

aux : StackU × ANFormdeB → NFormdeB
aux (•, a) = a

aux ((t, e) · s, a) = aux (s, a (nf (t, e)))

The above specification does still not match the shape of an abstract machine because it is
not a state-transition system: non-tail calls exist in nf and aux.2

9.2 Obtaining a corresponding abstract machine

To eliminate the non-tail calls of the normalization function we follow in the steps of the
functional correspondence (Section 5.3): (1) We eliminate nf by fusing it with U, (2) make the

2Here we ignore the lifting operation and the concatenation operation.
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specification sequential by a CPS-transformation, and (3) make that CPS program first-order
by defunctionalizing the continuation. The following data-structure continuation is used:

MContU M ::= • | (a, s) ·M | Λ ·M

The result is an abstract machine (where ClosureU abbreviates TermdeB × EnvU):

normalize : TermdeB → NFormdeB
normalize t = U (t, •, •, •)

U : TermdeB × EnvU × StackU ×MContU → NFormdeB
U (i, •, s, M) = aux (s, i, M)

U (i, (↑, 1) · e, s, M) = U (i + 1, e, s, M)
U (1, ((t, e ′), 1) · e, s, M) = U (t, e ′ ⊕ e, s, M)

U (i + 1, ((t, e ′), 1) · e, s, M) = U (i, e, s, M)
U (1, (c, j + 1) · e, s, M) = U (1, e, s, M)

U (i + 1, (c, j + 1) · e, s, M) = U (i, (c, j) · (↑, 1) · e, s, M)
U (λt, e, s, M) = aux (s, (λt, e), M)
U (t t ′, e, s, M) = U (t, e, (t ′, e) · s, M)

aux : StackU × (ANFormdeB + ClosureU) → NFormdeB
aux (•, a, M) = apply (M, a)

aux (•, (λt, e), M) = U (t, Lift_env e, •, Λ ·M)
aux ((t, e) · s, a, M) = U (t, e, •, (a, s) ·M)

aux ((t ′, e ′) · s, (λt, e), M) = U (t, (Lift_env e)⊕ (((t ′, e ′), 1) · •), s, M)

apply : MContU ×NFormdeB → NFormdeB
apply (•, n) = n

apply ((a, s) ·M, n) = aux (s, a n, M)
apply (Λ ·M, n) = apply (M, λn)

Merging the data-structure continuation into the stack The defunctionalized continua-
tion M is not changed in U. In aux and apply M is used as a stack. We thus incorporate
the continuation into the existing stack s and thereby eliminate the unneeded component
from configurations introduced by the CPS-transformation. The stack now represents four
different ‘contexts’:

s ::= • | a · s | Λ · s | (t, e) · s
Instead of using such a plain stack structure, we exploit that the first three productions are
treated separately from the fourth, and represent the stack in a stratified fashion:

MContextU M ::= • | a · s | Λ ·M
SContextU s ::= M | (t, e) · s

This alternative representation lets us directly state the abstract machine without the extra
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component:

normalize : TermdeB → NFormdeB
normalize t = U (t, •, •)

U : TermdeB × EnvU × SContextU → NFormdeB
U (i, •, s) = auxS (s, i)

U (i, (↑, 1) · e, s) = U (i + 1, e, s)
U (1, ((t, e ′), 1) · e, s) = U (t, e ′ ⊕ e, s)

U (i+ 1, ((t, e ′), 1) · e, s) = U (i, e, s)
U (1, (c, j+ 1) · e, s) = U (1, e, s)

U (i + 1, (c, j+ 1) · e, s) = U (i, (c, j) · (↑, 1) · e, s)
U (λt, e, s) = auxS (s, (λt, e))
U (t t ′, e, s) = U (t, e, (t ′, e) · s)

auxS : SContextU × (ANFormdeB + ClosureU) → NFormdeB
auxS (M, a) = auxM (M, a)

auxS (M, (λt, e)) = U (t, Lift_env e, Λ ·M)
auxS ((t, e) · s, a) = U (t, e, a · s)

auxS ((t ′, e ′) · s, (λt, e)) = U (t, (Lift_env e)⊕ (((t ′, e ′), 1) · •), s)

auxM : MContextU ×NFormdeB → NFormdeB
auxM (•, n) = n

auxM (a · s, n) = auxS (s, a n)
auxM (Λ ·M, n) = auxM (M, λn)

The above machine is closely related to the machine derived via refocusing starting from
a normal-order reduction strategy in the λ^̂s-calculus (page 95): The transition rules that
dispatch on the two kinds of contexts are the same modulo the representations (and the
distribution of the shift of environments). Also the elements in the substitution lists and
environments are the same. Especially, both machines rely in the same way on liftings and
concatenations of environments. The difference between the machines is the lookup of vari-
ables and reindexing of free variables: The U-machine treats the lookups and reindexings in
‘small steps’.

9.3 Summary

Simplicity The following is a quote of Lescanne on the idea from which the machine has
emanated:3

If λv is simple then it should entail a conceptually simple machine for (weak and
strong reduction) normalization of λ-calculus.

The paper does not describe how the calculus entails the specification of normalization us-
ing the U-machine. For a better understanding we transformed the specification into the
shape of an abstract machine (Section 4.5.2) by use of simple meaning-preserving transfor-
mations. This abstract machine revealed that the specification of strong normalization via
the U-machine is a cousin of the abstract machine from Section 8.2.2. Specifically, both ma-
chines rely in the same way on liftings and concatenations of environments.

3λv is an independently designed calculus from Lescanne’s paper [53].
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The cousin of Lescanne’s machine was systematically derived from a normal-order re-
duction semantics for strong normalization in the λ^̂s-calculus. The λ^̂s-calculus was defined
as a list-based version of the λŝ-calculus which in turn is closely related to the λv-calculus.
Both calculi are remarkably simple with the λŝ-calculus extracted directly from an imple-
mentation of β-substitution on de Bruijn-indexed λ-terms (Section 8.1.2). We conjecture that
defining a lists-based version of the λv-calculus and a normal-order reduction semantics for
strong normalization in that calculus, the ‘normalized’ version of Lescanne’s machine could
be mechanically derived.

Efficiency The following is another quote of Lescanne from the paper on the drawbacks in
relying on lifts and concatenations of substitution lists:

In a good implementation, both Lift_env and ⊕ are called by need, that is they
are evaluated on just the part of the environment that is necessary for enabling a
further transition.

The use of liftings and concatenations is a reminiscence of treating all substitutions in the
order they are introduced or detected and at the same time delaying distribution and con-
sumption of them until needed. As demonstrated in Section 8.2.2, relying on lifting and
concatenation is not essential. In fact, they are artifacts of the more general notion of terms
including a construct t[s] in the term language. Both the abstract machine corresponding to
Lescanne’s normalizer and the abstract machine derived from the λ^̂s-calculus do not exploit
that the argument term for normalization is a de Bruijn-indexed λ-term with no substitu-
tions, and that this knowledge together with the strategy of the machine implies important
invariants for the lists of substitutions.

The same arguments as in Section 8.2.2 apply for the elimination of the inefficient artifacts
from the abstract machine corresponding to Lescanne’s normalizer. This elimination would
give an efficient version of that abstract machine, which will be a cousin of the efficient
machine from Section 8.2.2.
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Chapter 10

Strong normalization starting from
Curien’s normalizer for strong
left-most reduction

In Chapter 8, we derived abstract machines for strong normalization syntactically corre-
sponding to normal-order strategies in the λŝ-calculus and the λ^̂s-calculus.

In Chapter 9, we presented Lescanne’s U-machine and strong normalization via this weak
machine. We used standard transformations to put Lescanne’s normalizer, once made deter-
ministic, into the shape of an abstract machine. We noted that the machine has the drawbacks
of relying on shiftings and concatenations like the machine directly derived from a reduction
semantics in the λ^̂s-calculus. The drawbacks are reminiscent to the nature of the λv-calculus,
the λŝ-calculus, and the λ^̂s-calculus: Each substitution from the root of the term to an index
is consumed in the introduced order.

In this chapter our starting point is not a calculus but instead a normalizer defined in-
dependently from a calculus by Curien in his textbook [16, pages 65–66]. We show system-
atically, with Curien’s normalizer as example, that the functional correspondence and the
syntactic correspondence apply to strong normalization.

Roadmap Our roadmap is outlined in the following diagram. We start from Curien’s nor-
malizer (Section 10.1):

Curien’s
normalizer

Section 10.2

continuation-based
normalization function Section 10.3

functional
correspondence

Section 10.5

abstract machine
w/ 2 stacks

reduction semantics
w/ 2 layers
of contextsSection 10.4

syntactic
correspondence

normalization function
in direct style Section 10.6

functional
correspondence abstract machine

w/ 1 stack

reduction semantics
w/ 1 layer
of contextsSection 10.7

syntactic
correspondence
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In Section 10.2, we fuse the two components of Curien’s normalizer (Section 10.2.1) us-
ing Ohori and Sasano’s fixed-point promotion [58]. We then put this fused normalizer into
defunctionalized form (Section 10.2.2) and refunctionalize it (Section 10.2.3). The result is a
continuation-based normalization function. This normalization function is compositional.
In Section 10.3, we CPS-transform the continuation-based normalization function and we
defunctionalize the result, obtaining an abstract machine for strong normalization with two
stacks. In Section 10.4, we present the corresponding reduction semantics. This reduction
semantics uses two layers of contexts and it can be refocused. Fusing the refocusing func-
tion with the function iterating it and short-circuiting transitions, we obtain the abstract ma-
chine with two stacks. In Section 10.5, we express the compositional continuation-based nor-
malization function from Section 10.2.3 into call-by-value direct style, using control delim-
iters [24]. The resulting normalization function is still compositional. Its control delimiters
are moot since the normalization function does not capture continuations. In Section 10.6
we omit the control delimiters, CPS-transform this compositional normalization function in
direct style and defunctionalize the result, obtaining an abstract machine for strong normal-
ization with one stack. In Section 10.7, we present the corresponding reduction semantics;
this reduction semantics uses one layer of contexts and it can be refocused into the abstract
machine with one stack.

10.1 Curien’s specification of strong normalization

Like Lescanne’s normalizer in Chapter 9, Curien’s specification of strong normalization con-
sists of a ‘weak’ machine and a driver loop repeatedly initializing and running that weak
machine.

10.1.1 The weak CM-machine

The weak machine is called ‘A machine for strong leftmost reduction’ in Curien’s textbook.
It is a Krivine-style abstract machine designed to be initialized with a term and a (lifted)
environment to facilitate overall strong normalization of de Bruijn-indexed λ-terms. In the
following we refer to the weak machine as the CM-machine.

Configurations of the CM-machine consist of a de Bruijn-indexed λ-term (TermdeB), a lifted
environment (SubstCM), and a stack (StackCM):1

ClosCM c ::= t[σ]
SubstCM σ ::= ρm

EnvCM ρ ::= id | c · σ
StackCM S ::= • | c · S

ConfigurationCM := TermdeB × SubstCM × StackCM

Curien’s definition of weak normalization with the CM-machine is transliterated into our
1Curien calls these components ‘codes’, ‘terms’, and ‘stacks’, respectively. We differ from Curien’s terms and

follow the rest of this text.
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notation:
CM : ConfigurationCM → ConfigurationCM

CM (i, idm
, S) = (i, idm

, S)

CM (i + 1, (c · ρm)
m ′
, S) = CM (i, ρm+m ′

, S)

CM (1, (t[ρm] · σ)m ′
, S) = CM (t, ρm+m ′

, S)
CM (t t ′, σ, S) = CM (t, σ, t ′[σ] · S)
CM (λt, σ, •) = (λt, σ, •)

CM (λt, σ, c · S) = CM (t, (c · σ)0
, S)

Two possible kinds of terminal configurations exits: (1) Where the term part is an abstraction
and the stack is empty (λt, σ, •) , and (2) where the term part is an index and the environ-
ment is empty (i, idm, S). Without the lexical adjustments of environments the CM-machine
coincides with the Krivine machine which defined the semantics for TLLF on page 53.

10.1.2 Strong normalization via the CM-machine

The driver loop initializing and repeatedly running the CM-machine to achieve strong nor-
malization is specified via two rules:

CM (t, σ, •) = (λt ′, ρm, •) nf (t ′, (1[id0] · ρm+1)
0
) = n

nf (t, σ) = λn

CM (t, σ, •) = (i, idm
, t1[σ1] · · · tk[σk]) nf (tj, σj) = nj, for 1 ≤ j ≤ k
nf (t, σ) = (i +m) n1 . . . nk

Normalization of de Bruijn-indexed λ-term t is then defined by applying nf to t paired with
the unadjusted identity environment:

normalize : TermdeB → NFormdeB

normalize t = nf (t, id0)

The second rule of nf makes the normalizer non-deterministic because that rule does not
decide on the order of normalization of closures on the stack S of terminal configurations
of the CM-machine on the form (i, idm, S). We decide (like for Lescanne’s normalizer in
Section 9.1) on left-to-right normalization order of the closures in question, and again imple-
ment determinism by adding an auxiliary function (aux):

normalize : TermdeB → NFormdeB

normalize t = nf (t, id0)

nf : TermdeB × SubstCM → NFormdeB

nf (t, σ) = λ(nf (t ′, (1[id0] · ρm+1)
0
)), if CM (t, σ, •) = (λt ′, ρm, •)

nf (t, σ) = aux (S, i+m), if CM (t, σ, •) = (i, idm
, S)

aux : StackCM × ANFormdeB → NFormdeB
aux (•, a) = a

aux (t[σ] · S, a) = aux (S, a (nf (t, σ)))
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10.2 From Curien’s normalizer to a continuation-based normaliza-
tion function

Following in the steps of the functional correspondence (Section 5.3) we (1) fuse nf and CM
to eliminate the driver loop, (2) put it in defunctionalized form with respect to the stack, and
(3) refunctionalize.

10.2.1 A fused normalizer

With nf and CM fused using Ohori and Sasano’s fixed-point promotion [58], the applications
of nf are replaced by the equivalent call of the CM-machine with an empty stack:

normalize : TermdeB → NFormdeB

normalize t = CM (t, id0
, •)

CM : ConfigurationCM → NFormdeB
CM (i, idm

, S) = aux (S, i +m)

CM (i+ 1, (c · ρm)
m ′
, S) = CM (i, ρm+m ′

, S)

CM (1, (t[ρm] · σ)m ′
, S) = CM (t, ρm+m ′

, S)
CM (t t ′, σ, S) = CM (t, σ, t ′[σ] · S)
CM (λt, ρm, •) = λ(CM (t, (1[id0] · ρm+1)

0
, •))

CM (λt, σ, c · S) = CM (t, (c · σ)0
, S)

aux : StackCM × ANFormdeB → NFormdeB
aux (•, a) = a

aux (t[σ] · S, a) = aux (S, a (CM (t, σ, •)))

The non-tail call for normalizing the body of a residual abstraction and the non-tail call
for normalizing the right sub-term of a residual application are the reasons why the fused
normalizer is not in the shape of an abstract machine.

10.2.2 A normalizer in defunctionalized form

The fused normalizer is not in defunctionalized form with respect to its stack. The char-
acteristic of a data type in defunctionalized form is that it is consumed solely by its apply
function [26, 27]. The stack, however, is consumed both in the two clauses of CM for abstrac-
tions, and in aux. We can combine these two dispatch sites into aux by changing the domain
to contain a sum type:

aux : StackCM × (ClosCM + ANFormdeB) → NFormdeB

in order to yield a normalizer in defunctionalized form with respect to its stack.
We take this opportunity to split CM into two function eval and lookup where lookup

interprets indices in an environment. In the definition of lookup, a call to eval with a known
first argument has been short-circuited:

lookup (i+ 1, (c · ρm)
m ′
, S) = eval (i, ρm+m ′

, S)

= lookup (i, ρm+m ′
, S)
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The normalizer in defunctionalized form reads:

eval : TermdeB × SubstCM × StackCM → NFormdeB
eval (i, σ, S) = lookup (i, σ, S)

eval (λt, σ, S) = aux (S, (λt)[σ])
eval (t t ′, σ, S) = eval (t, σ, t ′[σ] · S)

lookup : Index× SubstCM × StackCM → NFormdeB
lookup (i, idm

, S) = aux (S, i+m)

lookup (1, (t[ρm] · σ)m ′
, S) = eval (t, ρm+m ′

, S)

lookup (i + 1, (c · ρm)
m ′
, S) = lookup (i, ρm+m ′

, S)

aux : StackCM × (ClosCM + ANFormdeB) → NFormdeB
aux (•, a) = a

aux (•, (λt)[ρm]) = λ(eval (t, (1[id0] · ρm+1)
0
, •))

aux (t[σ] · S, a) = aux (S, a (eval (t, σ, •)))
aux (c · S, (λt)[σ]) = eval (t, (c · σ)0

, S)

normalize : TermdeB → NFormdeB

normalize t = eval (t, id0
, •)

10.2.3 A higher-order, continuation-based normalization function

We are now in position to refunctionalize the stack and its apply function. They represent
higher-order functions of type ClosCM + ANFormdeB → NFormdeB. The function represented
by the empty stack is recursive, because the stack • appears on both the left-hand and right-
hand sides of the second clause of aux. Refunctionalizing the empty stack requires naming
this recursive function. We recognize it as performing reification [20], and we write it as ‘↓’
to follow the tradition.

We can also refunctionalize the closures in substitutions. They are only consumed by
the second clause of lookup: lookup (1, (t[ρm] · σ)m

′
, S) = eval (t, ρm+m′

, S). Thus, the
closure t[ρm] represents eval (t, ρm+m′

, S) for some indexm ′ and stack S, i.e., it represents

λ(m ′, S).eval (t, ρm+m′
, S).

One of the closures represents a function that can be simplified. The closure 1[id0] represents
the function

λ(m ′, S).eval (1, id0+m′
, S).

The application of eval in the body can be short-circuited via:

eval (1, id0+m ′
, S) = lookup (1, idm ′

, S)
= S (m ′ + 1)

After refunctionalizing stacks and closures, source terms only appear as the arguments
of continuations and they are always paired with substitutions. They are consumed in two
different places, but in both places the pair of term and substitution (λt)[ρm] represents
eval (t, (c · ρm+m′

)
0
, S) for some refunctionalized closure c, indexm ′, and stack S.
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So, all in all, refunctionalizing the stack into the function space Cont, environment clo-
sures into Thunk, and argument closures for continuations into Fun yields the mutually re-
cursive types:

Cont = Fun + ANFormdeB → NFormdeB
Thunk = Index× Cont → NFormdeB

Fun = Thunk× Index× Cont → NFormdeB

We let k range over Cont, d range over Thunk, and f range over Fun. These definitions
are used in the higher-order continuation-based normalization function:

eval : TermdeB × SubstCM × Cont → NFormdeB
eval (i, σ, k) = lookup (i, σ, k)

eval (λt, ρm, k) = k (λ(d, m ′, k ′).eval (t, (d · ρm+m ′
)
0
, k ′))

eval (t t ′, ρm, k) = eval (t, ρm, λv.case v
of f ⇒ f (λ(m ′, k ′).eval (t ′, ρm+m ′

, k ′), 0, k)
| a ⇒ k (a (eval (t ′, ρm, ↓))))

lookup : Index× SubstCM × Cont → NFormdeB
lookup (i, idm

, k) = k (i +m)

lookup (1, (d · σ)m ′
, k) = d (m ′, k)

lookup (i + 1, (d · ρm)
m ′
, k) = lookup (i, ρm+m ′

, k)

↓ : Cont↓ f = λ(f (λ(m, k).k (m + 1), 1, ↓))↓ a = a

normalize : TermdeB → NFormdeB

normalize t = eval (t, id0
, ↓)

The normalization function is continuation-based, but not in continuation-passing style due
to the non-tail calls to eval, and it is compositional. The type Thunk of ‘denoted values’ (i.e.,
the values associated with indices by substitutions) are recognized as CPS thunks taking
a lexical adjustment in addition to a continuation. The type Fun of functional values are
recognized as CPS functions taking a denoted value and a lexical adjustment in addition to
a continuation.

Conclusion We have obtained the normalization function for untyped, de Bruijn-indexed
λ-terms that underlies Curien’s normalizer. It is compositional. All of the steps after the first
one (making the normalizer deterministic) were mechanical, following in the steps of the
functional correspondence between abstract machines and interpreters (Section 5.3).

10.3 From a continuation-based normalization function to an ab-
stract machine with two stacks

Through the functional correspondence, we closure convert, CPS-transform and then de-
functionalize the continuation-based normalization function from Section 10.2. The result is
an abstract machine utilizing two stacks:

Cont C ::= • | c · C
MetaCont M ::= • | (a,C) ·M | Λ ·M
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The machine normalizes a term t by starting in the configuration (t, id0, •, •). It halts with
a normal form n if it reaches a configuration (•, n):

eval : TermdeB × SubstCM × Cont×MetaCont → NFormdeB
eval (i, σ, C, M) = lookup (i, σ, C, M)

eval (λt, σ, C, M) = applyC (C, (λt)[σ], M)
eval (t t ′, σ, C, M) = eval (t, σ, t ′[σ] · C, M)

lookup : TermdeB × SubstCM × Cont×MetaCont → NFormdeB
lookup (i, idm

, C, M) = applyC (C, i +m, M)

lookup (1, (t[ρm] · σ)m ′
, C, M) = eval (t, ρm+m ′

, C, M)

lookup (i+ 1, (c · ρm)
m ′
, C, M) = lookup (i, ρm+m ′

, C, M)

applyC : Cont× (ClosCM × ANFormdeB)×MetaCont → NFormdeB
applyC (•, a, M) = applyM (M, a)

applyC (•, (λt)[ρm], M) = eval (t, (1[id0] · ρm+1)
0
, •, Λ ·M)

applyC (t[σ] · C, a, M) = eval (t, σ, •, (a,C) ·M)

applyC (t ′[σ ′] · C, (λt)[σ], M) = eval (t, (t ′[σ ′] · σ)0
, C, M)

applyM : MetaCont×NFormdeB → NFormdeB
applyM (•, n) = n

applyM (Λ ·M, n) = applyM (M, λn)
applyM ((a,C) ·M, n) = applyC (C, a n, M)

normalize : TermdeB → NFormdeB

normalize t = eval (t, id0
, •, •)

In Section 9.2 we CPS-transformed and defunctionalized the continuation of Lescanne’s nor-
malizer put on defunctionalized form wrt. the stack and derived an abstract machine with
two stacks. Likewise, CPS-transforming and defunctionalizing the continuation of Curien’s
normalizer in defunctionalized form (Section 10.2.2) yields the above abstract machine with
two stacks.

10.4 From a reduction semantics with two layers of contexts to an
abstract machine with two stacks

The goal of this section is to present the reduction semantics that corresponds to the abstract
machine derived in Section 10.3. We introduce such a reduction semantics and through the
syntactic correspondence (Section 5.2), we derive the abstract machine.

10.4.1 A reduction semantics for Curien’s calculus of closures

There is a reduction semantics that embodies the reduction strategy of Curien’s normalizer.
It is a calculus equipped with a deterministic reduction strategy that leads to a β-normal
form when one exists. Though the underlying calculus will not necessarily be confluent, we
can still use the reduction strategy to reduce terms to their β-normal forms.

The term language, contraction rules, and reduction contexts are mutually dependent.
Together, they are chosen to ensure unique decomposition, i.e., that a non-normal-form term
can be decomposed into a reduction context and potential redex (either an actual redex or a
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stuck term) in exactly one way. The syntax of terms is chosen so that they are closed under
the contraction rules. We present first the term language, then the contraction rules, then the
reduction contexts, but they do depend on each other.

Term language The configurations of the abstract machine from Section 10.3 should cor-
respond to terms in context in the reduction semantics. The data-structure continuations of
the machine are isomorphic to the reduction contexts, and thus the other components of the
configurations must correspond to the terms of the reduction semantics.

The de Bruijn-indexed λ-term and substitution in the eval and lookup configurations
represent closures, so the terms of the reduction semantics certainly includes the closures, c.
The right-hand side of the transition

eval (t t ′, σ, C, M) = eval (t, σ, t ′[σ] · C, M)

represents the application (in context) of closures, t[σ] t ′[σ], so the terms include the appli-
cation c c ′ of a pair of closures. The applyC configurations can contain atomic forms (in
context), a, so these are included in the set of terms.2 The right-hand side of the transition

applyC (•, (λt)[ρm], M) = eval (t, (1[id0] · ρm+1)
0
, •, Λ ·M)

represents an abstraction (in context) of a closure, λt[(1[id0] · ρm+1)
0
], so the syntax of terms

includes abstractions of closures, λc. These considerations suggest that the terms of the
reduction semantics are given by an extended grammar of closures: c ::= t[σ] | λc | c c |

a. The applyM configurations contain β-normal forms (in context), n, but as can easily be
checked, the β-normal forms are already given by this grammar.

This grammar of terms (together with the contraction rules and contexts) creates an over-
lap that causes unique decomposition to fail. Consider the term in context C[(λt)[σ] c]. This
could be a Beta-contraction in the context C, or it could be a contraction that moves the sub-
stitution σ inside the abstraction in the context C[[ ] c], i.e., an Abs-contraction. The same
idea used in defining the grammar of normal forms (page 17) resolves this overlap. We use
a stratified syntax of terms that prevents abstractions from occurring as operators in appli-
cations. The term language of the reduction semantics is as follows:

Atom d ::= t[σ] | d c | a

ClosCM c ::= d | λc

SubstCM σ ::= ρm

EnvCM ρ ::= id | c · σ

Substitutions and environments are defined like for the CM-machine but with the above more
general notion of closures. The set of values (i.e., terms without redexes) is exactly that of
β-normal forms.

Notion of reduction If the configurations of the machine utilizing two stacks (Section 10.3)
represent terms in context, then the contraction rules must be contained in the transitions
of the machine. Specifically, when the left-hand and right-hand sides of a transition do not

2An atomic form, a, is a β-normal form that is not an abstraction (page 17).
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represent the same term when plugged into their contexts, then that transition implements
one of the contraction rules. The other transitions, where the left-hand and right-hand sides
represent the same term when plugged into their contexts, implement the compatibility rules
of the reduction semantics.

The following six rules constitute the possible ways to perform reductions in the term
language.

Reindex : i[idm] → i+m

Subst : 1[(t[ρm] · σ)m ′
] → t[ρm+m ′

]

Subst ′ : (i+ 1)[(c · ρm)
m ′

] → i[ρm+m ′
]

App : (t t ′)[σ] → t[σ] t ′[σ]
Beta : (λt)[σ] c → t[(c · σ)0

]

Abs : (λt)[ρm] → λt[(1[id0] · ρm+1)
0
]

We define Weak = Reindex ∪ Subst ∪ Subst ′ ∪ App ∪ Beta, and Strong = Weak ∪ Abs.
Without the rule Abs all m’s would carry no information and they could be discarded.

The rules Subst, Subst ′, App, and Beta would then constitute the contraction rules of Bier-
nacka and Danvy’s λρ̂-calculus (Section 5.2.1).3 This calculus, paired with standard reduc-
tion strategies, e.g., normal order and (left-to-right) applicative order, syntactically corre-
sponds to well-known machines: the Krivine machine [13, 15] and the CEK machine [32],
respectively. In Section 5.2 we showed how to derive the Krivine machine extended to cope
with basic constants. In Section 6.4 we outlined how to derive the CEK machine extended to
cope with state variables.

In the next section, we will show that with the rules Reindex and Abs, this calculus (con-
sidering a specific strategy) syntactically corresponds to the abstract machine in Section 10.3.

Reduction contexts The reduction contexts are (when represented inside-out) isomorphic
to the stacks of the abstract machine in Section 10.3:

Cont C ::= [ ] | C[[ ] c]
MetaCont M ::= [ ] | M[C[a [ ]]] | M[λ[ ]]

The contexts, C, are the reduction contexts of normal-order reduction to weak-head normal
form. These contexts can only be plugged with an atom d ∈ Atom (i.e., not with an abstrac-
tion) according to the term syntax. The contraction rule Abs is the only rule that produces
non-atom terms, so it cannot be applied in such a context. The meta-contexts,M, are exactly
the contexts where the rule Abs can be applied: at the top of a term, or else in the operand
position of an application of an atomic form that is in a normal-order weak-head reduction
context in a meta-context, or else in the body of an abstraction in a meta-context.

A one-step reduction function The one-step reduction relation is defined according to the
reduction contexts and contraction rules. We let M#C denote M[C], where the hole of the
meta-contextM has been filled with the context C; the result is a term with a hole. Plugging
this hole with the closure c is denoted by M#C[c].

We are now in position to define one-step reduction as the following relation on non-
value terms:

M#C[c] 7→ M#C[c ′], if (c, c ′) ∈ Weak
M#[c] 7→ M#[c ′], if (c, c ′) ∈ Abs

3Rules Subst and Subst ′ together constitute rule ι of the λρ̂-calculus.
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We will see that the relation 7→ is a function. The following property is needed to prove that
it is well-defined:

Proposition 5
A closure c is either a β-normal form or it can be uniquely decomposed into a context M#C and a potential
redex pa such that c = M#C[pa] or a context M#[ ] and a potential redex pc such that c = M#[pc], where
potential redexes are defined as follows:

PotRedexa pa ::= i[σ] | (t t)[σ] | (λt)[σ] c
PotRedexc pc ::= (λt)[σ]
PotRedex = PotRedexa ∪ PotRedexc

The unique decomposition of a non-value closure into a context and a potential redex is
ensured by Proposition 5. As a function, 7→ maps any closure to at most one other closure
and is hence well-defined. It is partial because it is not defined on β-normal forms, since
they contain no potential redexes, and also because the potential redex 1[(c · σ)m] is only an
actual redex when the closure c is of the form t[σ ′].

Normalization of λ-terms The normalization of a de Bruijn-indexed λ-term t is defined by
iterating the one-step reduction function until (possibly) a normal form is obtained, starting
with the closure composed of t paired with the unadjusted identity environment id0. In
other words, the normalization of t is defined if the reflexive transitive closure of the one-
step reduction function 7→∗ relates this initial closure with a β-normal form:

normalize t = n iff t[id0] 7→∗ n.

The function normalize is well-defined because 7→ is a partial function not defined on β-
normal forms.

10.4.2 Derivation of a corresponding abstract machine

The one-step reduction function is implicitly defined in terms of the operations of decompos-
ing a term into a context and potential redex, contracting the redex if possible, and plugging
the contractum back into the context. We give an explicit definition of these three operations:

Decomposing Directed by the grammar of reduction contexts and potential redexes, we
explicitly define a function decompose performing the unique decomposition of Proposi-
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tion 5 given a closure. We let all values (i.e., β-normal forms) be fixed points:

Decomp = PotRedex× Cont×MetaCont

decompose : ClosCM → NFormdeB + Decomp
decompose c = decompose′ (c, [ ], [ ])

decompose′ : ClosCM × Cont×MetaCont → NFormdeB + Decomp
decompose′ (i[σ], C, M) = (i[σ], C, M)

decompose′ ((λt)[σ], C, M) = auxC (C, (λt)[σ], M)
decompose′ ((t t ′)[σ], C, M) = ((t t ′)[σ], C, M)

decompose′ (d c, C, M) = decompose′ (d, C[[ ] c], M)
decompose′ (a, C, M) = auxC (C, a, M)
decompose′ (λc, [ ], M) = decompose′ (c, [ ], M[λ[ ]])

auxC : Cont× (PotRedexc + ANFormdeB)×MetaCont→ NFormdeB + Decomp
auxC ([ ], a, M) = auxM (M, a)

auxC ([ ], (λt)[σ], M) = ((λt)[σ], [ ], M)
auxC (C[[ ] c], a, M) = decompose′ (c, [ ], M[C[a [ ]]])

auxC (C[[ ] c], (λt)[σ], M) = ((λt)[σ] c, C, M)

auxM : MetaCont×NFormdeB → NFormdeB + Decomp
auxM ([ ], n) = n

auxM (M[λ[ ]], n) = auxM (M, λn)
auxM (M[C[a [ ]]], n) = auxC (C, a n, M)

Decomposition is a total function here because all closures not in β-normal form are mapped
to a potential redex and the corresponding context and meta-context, and all β-normal forms
are fixed points.

Contracting We define the function contract performing the contraction of an actual re-
dex as follows:

contract : PotRedex → ClosCM
contract (i[idm]) = i+m

contract (1[(t[ρm] · σ)m ′
]) = t[ρm+m ′

]

contract ((i + 1)[(c · ρm)
m ′

]) = i[ρm+m ′
]

contract ((λt)[σ] c) = t[(c · σ)0
]

contract ((t t ′)[σ]) = t[σ] t ′[σ]

contract ((λt)[ρm]) = λt[(1[id0] · ρm+1)
0
]

This function is partial on potential redexes because the second contraction rule does not
match all kind of closures in the substitution.
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Plugging We also define a function plug to plug a closure into a context. This function is
total and is defined by structural induction as follows:

plug : ClosCM × Cont×MetaCont → ClosCM
plug (c, [ ], M) = plugM (c, M)

plug (d, C[[ ] c], M) = plug (d c, C, M)

plugM : ClosCM ×MetaCont → ClosCM
plugM (c, [ ]) = c

plugM (c, M[λ[ ]]) = plugM (λc, M)
plugM (c, M[C[a [ ]]]) = plug (a c, C, M)

Normalization defined via more explicit one-step reduction Finally, we reformulate nor-
malization from Section 10.4.1 based on the above concrete definitions:

iterate : NFormdeB + Decomp → NFormdeB
iteraten = n

iterate (p, C, M) = iterate (decompose (plug (contract p, C, M)))

normalize : TermdeB → NFormdeB

normalize t = iterate (decompose (t[id0]))

Introducing a refocus function Danvy and Nielsen [28] observed that when one-step re-
duction is iterated, decomposition is always performed on the result of plugging. The detour
to the root of the term via plugging and back down to the next redex site via decomposition
can be eliminated. Danvy and Nielsen gave an algorithm to construct a refocus function
that navigated in a term directly from redex site to redex site. Furthermore, they observed
that a refocused specification of reduction avoids constructing intermediate terms, which
is in essence the difference between reduction semantics, which are ‘reduction-based’, and
abstract machines, which are ‘reduction-free’.

Refocusing the above normalization function inlining the contract function, and fus-
ing refocus with the function iterating it yields an abstract machine. We have introduced
an auxiliary function lookup to match the three cases for the decomposition (i[σ], C, M)
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corresponding to the Reindex, Subst, and Subst ′ contraction rules:

refocus : ClosCM × Cont×MetaCont → NFormdeB
refocus (i[σ], C, M) = lookup (i[σ], C, M)

refocus ((λt)[σ], C, M) = auxC (C, (λt)[σ], M)
refocus ((t t ′)[σ], C, M) = refocus (t[σ] t ′[σ], C, M)

refocus (d c, C, M) = refocus (d, C[[ ] c], M)
refocus (a, C, M) = auxC (C, a, M)
refocus (λc, [ ], M) = refocus (c, [ ], M[λ[ ]])

lookup : ClosCM × Cont×MetaCont → NFormdeB
lookup (i[idm], C, M) = refocus (i+m, C, M)

lookup (1[(t[ρm] · σ)m ′
], C, M) = refocus (t[ρm+m ′

], C, M)

lookup ((i + 1)[(c · ρm)
m ′

], C, M) = refocus (i[ρm+m ′
], C, M)

auxC : Cont× (PotRedexc × ANFormdeB)×MetaCont → NFormdeB
auxC ([ ], a, M) = auxM (M, a)

auxC ([ ], (λt)[ρm], M) = refocus (λt[(1[id0] · ρm+1)
0
], [ ], M)

auxC (C[[ ] c], a, M) = refocus (c, [ ], M[C[a [ ]]])

auxC (C[[ ] c], (λt)[σ], M) = refocus (t[(c · σ)0
], C, M)

auxM : MetaCont×NFormdeB → NFormdeB
auxM ([ ], n) = n

auxM (M[λ[ ]], n) = auxM (M, λn)
auxM (M[C[a [ ]]], n) = auxC (C, a n, M)

normalize : TermdeB → NFormdeB

normalize t = refocus (t[id0], [ ], [ ])

This specification defines an abstract machine using four transition functions. The initial
transition maps a term t to (t[id0], [ ], [ ]), and the final transition extracts the β-normal form
n from ([ ], n). This machine uses two stacks to represent the context. Also this machine
cannot get stuck.

Short-circuiting transitions Looking, e.g., at the third clause of refocus, where the first
component takes the form (t t ′)[σ], we observe that an application to refocus can be short-
circuited via:

refocus ((t t ′)[σ], C, M) = refocus (t[σ] t ′[σ], C, M)
= refocus (t[σ], C[[ ] t ′[σ]], M)

The application of refocus that has just been short-circuited was the only place where clo-
sures of the form c cwas constructed. Thus, the fourth clause of the definition is not needed
and can be removed. We also see that this clause is the only place where the contexts are
extended. This means that the closure in the context will always take the form of a term
paired with a substitution, demonstrating that the machine cannot get stuck.

In a similar manner, the work of the last two clauses of refocus can also be short-
circuited and because afterward the corresponding constructions are never built, the two
clauses can be elided. Likewise, we can short-circuit the application of refocus in the last
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clause of lookup. The abstract machine after simplifications reads as follows:

refocus : ClosCM × Cont×MetaCont → NFormdeB
refocus (i[σ], C, M) = lookup (i[σ], C, M)

refocus ((λt)[σ], C, M) = auxC (C, (λt)[σ], M)
refocus ((t t ′)[σ], C, M) = refocus (t[σ], C[[ ] t ′[σ]], M)

lookup : ClosCM × Cont×MetaCont → NFormdeB
lookup (i[idm], C, M) = auxC (C, i +m, M)

lookup (1[(t[ρm] · σ)m ′
], C, M) = refocus (t[ρm+m ′

], C, M)

lookup ((i + 1)[(c · ρm)
m ′

], C, M) = lookup (i[ρm+m ′
], C, M)

auxC : Cont× (PotRedexc × ANFormdeB)×MetaCont → NFormdeB
auxC ([ ], a, M) = auxM (M, a)

auxC ([ ], (λt)[ρm], M) = refocus (t[(1[id0] · ρm+1)
0
], [ ], M[λ[ ]])

auxC (C[[ ] c], a, M) = refocus (c, [ ], M[C[a [ ]]])

auxC (C[[ ] c], (λt)[σ], M) = refocus (t[(c · σ)0
], C, M)

auxM : MetaCont×NFormdeB → NFormdeB
auxM ([ ], n) = n

auxM (M[λ[ ]], n) = auxM (M, λn)
auxM (M[C[a [ ]]], n) = auxC (C, a n, M)

normalize : TermdeB → NFormdeB

normalize t = refocus (t[id0], [ ], [ ])

Flattening closures At this point only one of the constructions of closures is used — the
construction with a de Bruijn indexed λ-term paired with a substitution. By splitting such
a closure into a pair of a term and a substitution, refocus and lookup can operate directly
on quadruples composed of a λ-term, a substitution, a context, and a meta-context. The first
component of lookup is simplified to just being an index.

Conclusion A direct comparison with the two-stack abstract machine from Section 10.3 is
possible: refocus coincides with eval, lookup coincides with lookup, auxC coincides with
applyC, and auxM coincides with applyM. In other words, the final abstract machine is the
abstract machine with two stacks from Section 10.3. The only difference is the representa-
tions of the two stacks.

10.5 From a continuation-based normalization function to a nor-
malization function in direct style

The continuation-based normalization function from Section 10.2.3 can be transformed to
direct style using the control delimiter reset (noted 〈〈〈·〉〉〉 in the machine below) to account for
the three occurrences of the initialization of the continuation [23]. The types Fun and Thunk
change to:

Thunk = Index → Fun + ANFormdeB
Fun = Index× Cont → Fun + ANFormdeB
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The resulting direct-style normalization function has no control effects. Therefore all three
occurrences of the delimiter reset can be erased [23]. The normalization function with the
delimiters using a call-by-value metalanguage reads as follows (The occurrences of reset are
shaded):

eval : TermdeB × SubstCM → Fun + ANFormdeB
eval (i, σ) = lookup (i, σ)

eval (λt, ρm) = λ(c, m ′).eval (t, (c · ρm+m ′
)
0
)

eval (t t ′, ρm) = case eval (t, ρm)

of f ⇒ f (λm ′.eval (t ′, ρm+m ′
), 0)

| a⇒ a 〈〈〈↓ (eval (t ′, ρm))〉〉〉

lookup : Index× SubstCM → Fun + ANFormdeB
lookup (i, idm) = i+m

lookup (1, (c · σ)m ′
) = c m ′

lookup (i + 1, (c · ρm)
m ′

) = lookup (i, ρm+m ′
)

↓ : Fun + ANFormdeB → NFormdeB↓ f = λ 〈〈〈↓ (f (λm.m + 1, 1))〉〉〉↓ a = a

normalize : TermdeB → NFormdeB

normalize t = 〈〈〈↓ (eval (t, id0))〉〉〉

10.6 From a normalization function in direct style to an abstract
machine with one stack

Through the functional correspondence, we closure convert, CPS-transform and then de-
functionalize the normalization function from Section 10.5 without the control delimiters.
The result is an abstract machine utilizing one stack for the data-structure continuation:

MCont M ::= • | a · C | Λ ·M
Cont C ::= M | c · C

This abstract machine is thus similar to the abstract machine corresponding to a reduction
semantics in the λ^̂s-calculus (Section 8.2.2) and to the abstract machine obtained from Les-
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canne’s normalizer after merging the data-structure continuation into the stack (Section 9.2):

eval : TermdeB × SubstCM × Cont → NFormdeB
eval (i, σ, C) = lookup (i, σ, C)

eval (λt, σ, C) = applyC (C, (λt)[σ])
eval (t t ′, σ, C) = eval (t, σ, t ′[σ] · C)

lookup : TermdeB × SubstCM × Cont → NFormdeB
lookup (i, idm

, C) = applyC (C, i+m)

lookup (1, (t[ρm] · σ)m ′
, C) = eval (t, ρm+m ′

, C)

lookup (i + 1, (c · ρm)
m ′
, C) = lookup (i, ρm+m ′

, C)

applyC : Cont× (PotRedexc × ANFormdeB) → NFormdeB
applyC (M, a) = applyM (M, a)

applyC (M, (λt)[ρm]) = eval (t, (1[id0] · ρm+1)
0
, Λ ·M)

applyC (t[σ] · C, a) = eval (t, σ, a · C)

applyC (c · C, (λt)[σ]) = eval (t, (c · σ)0
, C)

applyM : MCont×NFormdeB → NFormdeB
applyM (•, n) = n

applyM (Λ ·M, n) = applyM (M, λn)
applyM (a · C, n) = applyC (C, a n)

normalize : TermdeB → NFormdeB

normalize t = eval (t, id0
, •)

This machine normalizes a term t by starting in the configuration (t, id0, •). It halts with a
β-normal form n if it reaches a configuration (•, n).

10.7 From a reduction semantics with one layer of contexts to an
abstract machine with one stack

In this section, we define a reduction semantics with one-layer contexts and outline how the
abstract machine with one stack from Section 10.6 can be mechanically derived. Again the
derivation hinges on the transformations of the syntactic correspondence.

A one-layer reduction semantics Most of the definitions are the same as in the two-layer
reduction semantics of Section 10.4.1. The syntactic units are again closures and the term
language is unchanged from the one defined in Section 10.4.1. Values are still the β-normal
forms. The contraction rules are also unchanged from the ones defined in Section 10.4.1.

The sole difference from the two-layer reduction semantics is in the grammar of reduc-
tion contexts. The reduction semantics uses the one-layer (but stratified) grammar of con-
texts seen several times in the previous chapters:

AContext A[ ] ::= [ ] | C[a [ ]] | A[λ[ ]]
CContext C[ ] ::= A[ ] | C[[ ] c]

Plugging a closure c into a contextA[ ] (and context C[ ]) is denotedA[c] (and C[c]).
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One-step reduction is now defined as the following relation on non-value closures:

C[c] 7→ C[c ′], if (c, c ′) ∈ Weak
A[c] 7→ A[c ′], if (c, c ′) ∈ Abs

Again, 7→ is a function. The following unique decomposition property and the contrac-
tion rules prove the well-definedness of 7→ (where potential redexes are defined as in Sec-
tion 10.4.1):

Proposition 6
A closure c is either a β-normal form or it can be decomposed uniquely into context C[ ] and potential redex
pa such that c = C[pa] or context A[ ] and potential redex pc such that c = A[pc].

Derivation of an abstract machine Through the syntactic correspondence, we construct a
refocused specification of the one-step reduction function and fuse it with a function iterat-
ing it. The result is an abstract machine. After short-circuiting transitions and eliminating
unreachable configurations, we obtain the one-stack abstract machine from Section 10.6.

10.8 Summary

Curien’s normalizer is defined with a driver loop initializing the weak CM-machine. As seen
in Section 9.1, Lescanne’s normalizer has the same structure. We simplified the abstract ma-
chine corresponding to Lescanne’s normalizer by merging the data-structure continuation
into the existing stack. We identify this simplification as corresponding to erasing moot con-
trol delimiters in the corresponding direct-style normalization function.

We showed that both the functional correspondence between abstract machines and eval-
uation functions and the syntactic correspondence between reduction semantics and abstract
machines can be applied to strong normalization. In so doing, we established connections
between an array of semantic artifacts: Curien’s normalizer, a continuation-based normal-
ization function, a normalization function in direct style, a traditional-style abstract machine,
and a reduction semantics. A small variation on the direct-style normalization function leads
to alternate but equivalent abstract machines and reduction semantics.

The normalization function corresponding to Curien’s normalizer is compositional. The
first abstract machine (Section 10.3) uses two stacks, one corresponding to the original stack
of Curien’s machine and one corresponding to the non-tail calls introduced in the driver
loop. These two stacks are a consequence of our mechanical development of the abstract
machine. The abstract machines corresponding to known normalization functions would
normally have the one-stack architecture of the second abstract machine (Section 10.6). We
do note, however, that this two-stack architecture is also found in Landin’s SECD machine
(Section 4.5.2).

This chapter is based on joint work with Olivier Danvy and Kevin Millikin, but mistakes
are mine.
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Chapter 11

Strong normalization starting from
Crégut’s KN-machine

In the previous chapter our starting point was Curien’s normalizer, implementing normal-
ization of de Bruijn-indexed λ-terms to β-normal forms. The normalizer has a driver loop,
which repeatedly instantiates the weak CM-machine.

Crégut’s first specification for strong normalization also consists of a driver loop and a
weak machine, with the driver loop repeatedly instantiating the weak machine [13]. Crégut
has recently superseded this normalizer with his definition of the KN-machine [14]. This ma-
chine takes the form of an abstract machine (Section 4.5.2).

Roadmap In this chapter our starting point is Crégut’s KN-machine (Section 11.1). In pre-
vious chapters we have seen the value of having abstract machines in disentangled form.
We hence disentangle the KN-machine in Section 11.2. Again, the disentangled version is
in the image of defunctionalization. We present the higher-order direct-style compositional
normalization function functionally corresponding to this version of the KN-machine (Sec-
tion 11.3). We present the reduction semantics syntactically corresponding to that abstract
machine in Section 11.4.

11.1 Crégut’s definitional specification of the KN-machine

Crégut’s machine performs strong normalization of closed de Bruijn-indexed λ-terms. In
the paper Crégut lets de Bruijn indices start at 0. For uniformity with the rest of this text,
we ‘shift’ the de Bruijn indices such that they start at 1 and we adjust the transition rules
accordingly.

Nonterminal configurations of the KN-machine are composed of four parts: (1) a ‘term’
element u, (2) an environment e, (3) a stack s, and (4) a global de Bruijn level m holding the
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current abstraction-depth:1

Level m ::= {0, 1, 2, . . . }

P p ::= {t,m}

U u ::= t | V m | p

c ::= (u, e)
EnvKN e ::= • | c · e
StackKN s ::= • | c · s | Λ · s | p · s
ConfigurationKN := U × EnvKN × StackKN × Level

Here t ∈ TermdeB as defined in Section 1.6. The start configuration of the KN-machine is
composed of the argument term for normalization t, an empty environment, an empty stack,
and 0 as the current abstraction-depth: (t, •, •, 0). The machine always stops with a use of
the ‘unload transition’ when the term-part is a λ-term with an associated de Bruijn level and
the stack is empty:2

KN ({t,m ′}, e, •, m) → t

Crégut’s definition of the KN-machine is transliterated into our notation:

normalizeKN : TermdeB → TermdeB
normalizeKN t = KN (t, •, •, 0)

KN : ConfigurationKN → TermdeB
KN (1, (u, e ′) · e, s, m) = KN (u, e ′, s, m)
KN (i+ 1, c · e, s, m) = KN (i, e, s, m)

KN (t t ′, e, s, m) = KN (t, e, (t ′, e) · s, m)
KN (λt, e, s, m) = KN (t, c · e, s ′, m), if s = c · s ′
KN (λt, e, s, m) = KN (t, (V m, •) · e, Λ · s, m+ 1), if s 6= c · s ′

KN (V m ′, e, s, m) = KN ({m−m ′,m}, e, s, m)
KN ({t,m ′}, e, •, m) = t

KN ({t,m ′}, e, (t ′, e ′) · s, m) = KN (t ′, e ′, {t,m ′} · s, m ′)
KN ({t,m ′}, e, {t ′,m ′′} · s, m) = KN ({t ′ t,m ′′}, e, s, m)

KN ({t,m ′}, e, Λ · s, m) = KN ({λt,m ′}, e, s, m)

Crégut proves the correctness of the KN-machine, i.e., that the KN-machine actually computes
normal forms when they exist:3

Theorem 6 (Crégut)
Let t a be closed term and t ′ be a β-normal form.
Then t =β t

′ ⇐⇒ normalizeKN t = t ′

11.1.1 Normalization method

When the current term element is an index i, the second rule removes the first i − 1 clo-
sures in the environment and the first rule then selects the i-th closure. Because Crégut only
considers closed terms the environment always contains enough closures.

1The set of de Bruijn levels Level contain 0 as opposed to the set of de Bruijn indices Index used in λ-terms.
2For now, we differ from using the metavariable n ranging over β-normal forms to follow Crégut’s definition.

We thus also define the co-domain of the normalization function to be TermdeB instead of NFormdeB.
3Lescanne and Curien do not present corresponding theorems for their machines.
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Considering an application tt ′ the machine continues normalization of the left sub-term t

with a new closure (consisting of the right sub-term t ′ paired with the current environment)
pushed on the stack.

Meeting an abstraction the top element of the stack is inspected with two different out-
comes: (1) If that element is a closure c the abstraction is the left sub-term of an application,
and c is moved to the environment. That is, de Bruijn index 1 is bound to that closure and the
rest of the environment is ‘lifted’ by one. (2) If the top element of the stack is not a closure,
the abstraction is not the left sub-term of an application and the body of the abstraction must
be normalized with an indication Λ on the stack that the normalized body is the body of an
abstraction in the residual normal form. Also the current de Bruijn level is incremented and
1 is bound to a special closure (V m, •).

When such a special closure (V m ′, •) is substituted for a de Bruijn index, that index is (as
explained above) bound by an abstraction that is part of the normal form. That is, the result
should be an adjusted de Bruijn index. By construction the abstraction has level m ′ and the
current de Bruijn level is m, i.e., the resulting index is the difference m −m ′. This residual
de Bruijn index is introduced in the construction {m−m ′,m}.

A construction {t,m ′} indicates that a partial result t is found and its de Bruijn level ism ′.
The next configuration depends on the stack. If the stack is empty t is the complete normal
form. If the top element of the stack is a closure (t ′, e ′), the left sub-term of an application
could not be reduced to an abstraction, and the right sub-term t ′ must be normalized in the
application-time environment e ′. {t,m ′} is pushed on the stack to indicate an application
must be constructed with t as left sub-term when normalization of the right sub-term is
finished. Finally, if the top element of the stack indicates a residual abstraction (Λ) the partial
result t is the normalized body of an abstraction, and the partial result is λt.

A de Bruijn level m is included in {t,m}-constructions such that right sub-terms of resid-
ual applications are normalized with the correct current de Bruijn level.

11.1.2 Normalization of open terms

Because not all terms have a normal form, normalization is partial. But as the KN-machine
is defined above normalization is also not defined on terms with free variables. In this text
all machines so far normalize also such open terms. Only one transition rule is needed to
extend the KN-machine to also normalize open terms:

KN (i, •, s, m) = KN ({i+m,m}, •, s, m)

Considering an index that in the argument term corresponds to the i-th free variable, the
second rule of KN subtracts the length of the environment in small steps. This length is the
number of abstractions from the root of the term to the index, because the environment is
always extended when normalizing the body of abstractions and nowhere else. The obtained
index is therefore i. The above rule then adds the current abstraction-depth m, i.e., the
number or constructed abstractions from the root to the index where it occurs in the residual
term. In result, the de Bruijn index i+m at that place in the normal form, then corresponds
to the i-th free variable of the overall term. Also m is the current level of the residual term
i+m. We continue with the above rule included.
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11.2 Simplifications of the KN-machine

Splitting the set of configurations in two When the first component of a configuration
is a {t,m}-construction the level m in the fourth component is never used. This observation
applies to the last four rules of KN. The same property holds for the environment component.
We split the transition rules by introducing an auxiliary function aux in which the level and
the environment components have been discarded according to the above observation:

normalizeKN : TermdeB → TermdeB
normalizeKN t = KN (t, •, •, 0)

KN : ConfigurationKN → TermdeB
KN (i, •, s, m) = aux (s, {i+m,m})

KN (1, (u, e ′) · e, s, m) = KN (u, e ′, s, m)
KN (i+ 1, c · e, s, m) = KN (i, e, s, m)

KN (t t ′, e, s, m) = KN (t, e, (t ′, e) · s, m)
KN (λt, e, s, m) = KN (t, c · e, s ′, m), if s = c · s ′
KN (λt, e, s, m) = KN (t, (V m, •) · e, Λ · s, m+ 1), if s 6= c · s ′

KN (Vm ′, e, s, m) = aux (s, {m−m ′,m})

aux : StackKN × P → TermdeB
aux (•, {t,m}) = t

aux ({t ′,m ′} · s, {t,m}) = aux (s, {t ′ t,m ′})
aux (Λ · s, {t,m}) = aux (s, {λt,m})

aux ((t ′, e) · s, {t,m}) = KN (t ′, e, {t,m} · s, m)

We follow the convention and let the stack be the first argument to emphasize that aux dis-
patches on the possible stacks.

Eliminating P A simple analysis of the transformation rules gives that the first part t of a
{t,m}-construction is always a normal form. Furthermore as explained in Section 11.1.1, the
second part m is only included to proceed normalization with the correct de Bruijn level in
the right sub-term of an application that eventually will be constructed in the normal form
(if it exists). By storing that level in the closures on the stack, the level paired with normal
forms in {t,m}-constructions can be discarded. It is hence implied that P is no longer needed;
the set of normal forms NFormdeB is sufficient.

Stacks are now defined such that stack closures contain a de Bruijn index. Also accord-
ing to the above analysis a non-abstraction normal form on the stack a denotes a residual
application with a as left sub-term:

Stack ′KN s ::= • | (t, e,m) · s | Λ · s | a · s
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The adjusted version of the KN-machine reads as follows:

normalizeKN : TermdeB → NFormdeB
normalizeKN t = KN (t, •, •, 0)

KN : U × EnvKN × Stack ′KN × Level → NFormdeB
KN (i, •, s, m) = aux (s, i+m)

KN (1, (u, e ′) · e, s, m) = KN (u, e ′, s, m)
KN (i + 1, (u, e ′) · e, s, m) = KN (i, e, s, m)

KN (t t ′, e, s, m) = KN (t, e, (t ′, e,m) · s, m)
KN (λt, e, s, m) = KN (t, (t ′, e ′) · e, s ′, m), if s = (t ′, e ′,m ′) · s ′
KN (λt, e, s, m) = KN (t, (V m, •) · e, Λ · s, m + 1), if s 6= (t ′, e ′,m ′) · s ′

KN (V m ′, e, s, m) = aux (s, m −m ′)

aux : Stack ′KN ×NFormdeB → NFormdeB
aux (•, n) = n

aux (a · s, n) = aux (s, a n)
aux (Λ · s, n) = aux (s, λn)

aux ((t, e,m) · s, a) = KN (t, e, a · s, m)

Eliminate U from configurations and disentangle with respect to the stack Except for the
last rule, KN operates on standard λ-terms. By splitting the second rule into two and match
on the first element in the environment the last rule of KN can be removed, which eliminates
the need for U. The definition of environments is adjusted, such that only actual λ-terms are
associated with an environment, because retrieving a (V m,e ′) from the environment never
uses e ′.

We move the two conditional rules of KN to aux, such that only aux dispatches on the
structure of the stack. Like for the abstract machine corresponding to Lescanne’s normalizer
(Chapter 9.2), we define the stack in a stratified fashion to facilitate pattern matching. The
revised definitions of EnvKN and Stack ′KN read:

v ::= (t, e) | V m
Env ′KN e ::= • | v · e
MStackKN M ::= • | a · s | Λ ·M
Stack ′′KN s ::= M | (t, e,m) · s

In all but one call to aux the second argument is in ANFormdeB. All applications of aux in KN
and the second clause in aux are of this kind. The exception is the third clause of aux. Here
the argument takes the form λn.

The simplified KN-machine finally reads (where ClosKN = TermdeB × Env ′KN × Level denotes
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the set of closures):

normalizeKN : TermdeB → NFormdeB
normalizeKN t = KN (t, •, •, 0)

KN : TermdeB × Env ′KN × Stack ′′KN × Level → NFormdeB
KN (i, •, s, m) = aux (s, i+m)

KN (1, V m ′ · e, s, m) = aux (s, m−m ′)
KN (1, (t, e ′) · e, s, m) = KN (t, e ′, s, m)
KN (i + 1, v · e, s, m) = KN (i, e, s, m)

KN (t t ′, e, s, m) = KN (t, e, (t ′, e,m) · s, m)
KN (λt, e, s, m) = aux (s, (λt, e,m))

aux : Stack ′′KN × (ANFormdeB × Cl) → NFormdeB
aux (M, a) = aux ′ (M, a)

aux ((t, e,m) · s, a) = KN (t, e, a · s, m)
aux (M, (λt, e,m)) = KN (t, V m · e, Λ ·M, m+ 1)

aux ((t ′, e ′,m ′) · s, (λt, e,m)) = KN (t, (t ′, e ′) · e, s, m)

aux ′ : MStackKN ×NFormdeB → NFormdeB
aux ′ (•, n) = n

aux ′ (a · s, n) = aux (s, a n)
aux ′ (Λ ·M, n) = aux ′ (M, λn)

This simplified version of the KN-machine is in defunctionalized form with respect to the
stack.

A direct comparison with the initial KN-machine Let us summarize the ‘distance’ from
Crégut’s definition of the KN-machine (extended to cope with open terms) to the above sim-
plified version:

1. By including the level in stack closures, the need to pair the residual normal forms with
a de Bruijn level was eliminated.

2. To follow the use of the stack we slightly modified the representation of the stack and
disentangled the machine accordingly by separating the rules dispatching on the stack
from the rest. The separation of the rules emphasized that the environment and the de
Bruijn level are only used in some of the rules.

3. By pattern matching on the top element in the environment, one transition step was
eliminated by short-circuiting and KN is adjusted to operate directly on λ-terms.

The correctness of the first simplification was informally justified. The other simplifications
are immediate.

11.3 A corresponding higher-order direct-style normalization func-
tion

In this section we derive a higher-order direct-style normalization function that corresponds
to the simplified version of the KN-machine. The normalization function is compositional.
The derivation is yet another application of the standard transformations of the functional
correspondence (Section 5.3).
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Refunctionalizing the continuation The simplified version of the KN-machine is in defunc-
tionalized form wrt. the stack: KN is an evaluation function in CPS; aux and aux ′ together
constitute the apply function for the data-structure continuation — the stack component of
KN. Refunctionalizing the continuation yields a higher-order normalization function in CPS.
We leave out this normalization function.

Direct-style transformation of the normalization function Applying a (call-by-value) direct-
style transformation yields the (call-by-value) direct-style counter-part (where ExpVal =

ANFormdeB + ClosKN):

normalizeKN : TermdeB → NFormdeB
normalizeKN t = reify (KN (t, •, 0))

KN : TermdeB × Env ′KN × Level → ExpVal
KN (i, •, m) = i +m

KN (1, V m ′ · e, m) = m −m ′

KN (1, (t, e ′) · e, m) = KN (t, e ′, m)
KN (i + 1, v · e, m) = KN (i, e, m)

KN (λt, e, m) = (t, e, m)
KN (t t ′, e, m) = case KN (t, e, m)

of a ⇒ a (reify (KN (t ′, e, m)))
| (t, e ′, m ′) ⇒ KN (t, (t ′, e) · e ′, m ′)

reify : ExpVal → NFormdeB
reify a = a

reify (t, e, m) = λ(reify (KN (t, V m · e, m+ 1)))

This normalization function is evaluation-order dependent and assumes applicative-order
evaluation of the metalanguage.

Converting denotable and expressible values In the previous paragraph denotable and
expressible values are first-order. They can be seen as the result of a closure conversion,
which is an in-place defunctionalization [27] of higher-order values. Refunctionalizing the
expressible values and the denotable values requires new definitions. Both expressible and
denotable values now contain function spaces:

DenVal := Level → ExpVal
ExpVal := ANFormdeB × ((Level → DenVal) → Int → ExpVal)

Env ′′KN := DenVal list

We make the resulting normalization function compositional by separating the lookup of a
variable from KN. We emphasize the denotational nature of this compositional function by
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letting KN map a λ-term to its denotational meaning:

normalizeKN : TermdeB → NFormdeB
normalizeKN t = reify (KN t • 0)

KN : TermdeB → Env ′′KN → Level → ExpVal
KN i e m = lookup (i, e, m)

KN (λt) e m = λg.λi.KN t ((g m) · e) (m + i)
KN (t t ′) e m = case KN t e m

of a⇒ a (reify (KN t ′ e m))
| f ⇒ f (λm ′.λm.KN t ′ e m) 0

lookup : Index× Env ′′KN × Level → ExpVal
lookup (i, •, m) = i+m

lookup (1, v · e, m) = v m

lookup (i+ 1, v · e, m) = lookup (i, e, m)

reify : ExpVal → NFormdeB
reify a = a

reify f = λ(reify (f (λm ′.λm.m −m ′) 1))

The correctness of the resulting higher-order direct-style normalization function comes for
free as a corollary of the correctness of each of the transformations in the functional corre-
spondence.

11.4 A corresponding reduction semantics in a calculus of closures

In this section we apply the transformations of the syntactic correspondence (Section 5.2)
starting from a reduction semantics and deriving the version from Section 11.2 of Crégut’s
KN-machine.

11.4.1 Definition of a reduction semantics

To define the reduction semantics, we must define the syntax, values, and a one-step reduc-
tion function on non-value terms.

Term language The syntactic units of the language are closures. The defining grammar is
defined in a stratified fashion:

v ::= (t, s) | Vm
s ::= • | v · s
d ::= t[s,m] | d c | a

Closure c ::= d | λc

Here m ∈ Level denotes a de Bruijn level, a ∈ ANFormdeB denotes as usual a normal form
that is not an abstraction, and t is a de Bruijn-indexed λ-term.
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Contraction rules Seven rules constitute the possible ways to perform reductions in the
term language:

Reindex : i[•,m] → i+m
Subst : 1[t[s ′,m ′] · s,m] → t[s ′,m]

SubstV : 1[V m ′ · s,m] → m −m ′

Subst ′ : (i + 1)[c · s,m] → i[s,m]
App : (t t ′)[s,m] → (t[s,m]) (t ′[s,m])
Beta : ((λt)[s,m]) c → t[c · s,m]
Abs : (λt)[s,m] → λ(t[V m · s,m + 1])

Because the syntactic units of the language are closures, the contraction rules constitute a
binary reduction relation on closures which is also a function. We exclude the contraction
rule Abs to define a ‘partition’ of this function:

Weak := Reindex ∪ Subst ∪ SubstV ∪ Subst ′ ∪ App ∪ Beta

A one-step reduction function A strategy for reductions in closures is defined via a gram-
mar of reduction contexts:

A[ ] ::= [ ] | A[λ[ ]] | C[a [ ]]
C[ ] ::= A[ ] | C[[ ] c]

This grammar represents reduction contexts inside-out and is the standard grammar pre-
sented and used in Section 7.2 and thereafter used in Section 8.2.2 and Section 10.7. The only
difference is that c here ranges over the definition of closures of this chapter. We can define a
one-step reduction function directly via the reduction contexts because the following unique
decomposition property holds:

Proposition 7 (Unique decomposition)
A closure c is either a β-normal form or it can be uniquely decomposed into context C[ ] and potential redex pa

such that c = C[pa] or context A[ ] and potential redex pc such that c = A[pc], where potential redexes are
defined as follows:

PotRedexa pa ::= i[s,m] | (t t ′)[s,m] | (λt)[s,m] c
PotRedexc pc ::= (λt)[s,m]

We define the one-step reduction function as a restricted compatible closure of the con-
traction rules according to the above reduction contexts:

A[r] 7→KN A[r ′], where (r, r ′) ∈ Abs
C[r] 7→KN C[r ′], where (r, r ′) ∈ Weak

Well-definedness of the one-step reduction function follows immediately from the above
unique decomposition property together with the fact that Weak is a function. 7→KN is partial
on Closure for two reasons: (1) the function is not defined on β-normal forms, and (2) not all
potential redexes are actual redexes.

Normalization of de Bruijn-indexed λ-terms Iterating the one-step reduction function
7→KN until (possibly) a normal form is obtained defines normalization of λ-terms.
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11.4.2 Derivation of the KN-machine on defunctionalized form

With an explicit definition of a function to perform the unique decomposition and to plug a
closure into a reduction context we can define the iterated one-step reduction more explic-
itly. Identifying an auxiliary function of the decomposition function to be a refocus function
according to the grammar of contexts and the contraction rules we can change the normal-
ization of terms from being reduction-based to be reduction-free.

Fusing the iterating function with the refocus function the specification becomes a state-
transition system, i.e., an abstract machine.

The notion of closures is not needed after optimization by short-circuiting transitions.
We can hence make the machine operate directly on λ-terms. The resulting abstract machine
is the normalized version of Crégut’s KN-machine from Section 11.2.

11.5 Summary

In this chapter the starting point was Crégut’s KN-machine. This abstract machine performs
strong normalization of closed λ-terms. We extended the KN-machine to handle all of TermdeB
and performed simple adjustments to put the machine on defunctionalized form.

We used the KN-machine as yet another example to illustrate that the functional corre-
spondence applies also in the context of strong normalization: Via the standard transforma-
tions of the functional correspondence we were able to derive a corresponding higher-order
direct-style normalization function following the operational framework of normalization-
by-evaluation. This normalization function is compositional. The correctness of the normal-
ization function follows immediately from the correctness of the individual transformations.

Furthermore, we used the KN-machine as yet another example to illustrate that the syn-
tactic correspondence applies also in the context of strong normalization: We specified a re-
duction semantics that defined a reduction-based way to normalize λ-terms. The syntactic
correspondence immediately justifies the correctness of the reduction semantics because the
sound transformations let us derive the defunctionalized version of the KN-machine.
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Chapter 12

An abstract head-order reduction
machine

Kluge presents an abstract machine for strong reduction of closed λ-terms in his textbook [45,
Section 6.4].1 We refer to this machine as the HOR-machine. Kluge informally introduces three
‘extended’ contraction rules as the underlying normalization mechanism of the HOR-machine
to justify the correctness of this machine.

Roadmap In Section 12.1, we introduce the three ‘extended’ contraction rules. We do that
formally and justify their soundness and relate them to rules of the λρ̂-calculus. In Sec-
tion 12.2, we formally define the HOR-machine and extend it to also normalize open terms. In
Section 12.3, we disentangle the HOR-machine and show that the HOR-machine as a clever im-
plementation of the underlying normalization mechanism in essence coincide with Crégut’s
KN-machine from Section 11.2: The two machines coincide when specified in a disentangled
way.

12.1 The normalization mechanism underlying the HOR-machine

In his textbook, Kluge introduces three rules to transform de Bruijn-indexed λ-terms. He lets
de Bruijn indices start from 0. For uniformity with the rest of this text, we shift the de Bruijn
indices to start from 1. The three rules are named

identity_reduction_in_the_large
β-distribution_in_the_large
η-extension_in_the_large

For simplicity, we denote these three rules by ι l, πl, and ηl, respectively.

The contraction rule ιl The rule ι corresponds to the contraction of a series of consecutive
β-redexes where the body of the innermost redex is an index:

ιl : (

n times︷ ︸︸ ︷
λ . . . λi) tn . . . t1 → ti

1Kluge credits Troullinos for the formal definition of this abstract machine.
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No reindexing is needed in ti. This rule is sound in the λ-calculus, i.e., the left-hand side is
β-equivalent to the right-hand side for all i, and t1, . . . , tn.

The contraction rule πl The rule πl distributes a series of consecutive β-redexes into an
application:

πl : (

n times︷ ︸︸ ︷
λ . . . λt t ′) tn . . . t1 → ((

n times︷ ︸︸ ︷
λ . . . λt) tn . . . t1) ((

n times︷ ︸︸ ︷
λ . . . λt ′) tn . . . t1)

Noβ-reductions are performed. This rule is used to eventually be able to perform ι l-reductions.
Also the rule πl is sound in the λ-calculus.

The contraction rule ηl It does not hold that it is always possible to either use ι l or πl on
all λ-terms that are not β-normal forms.2 Consider a term ta which is a left-hand side of
the rule πl but with fewer argument terms ti than the number of abstractions immediately
outside the inner application. On the one hand it holds (according to the definition of βdeB
in Section 1.6.2) that:3

ta = (

n times︷ ︸︸ ︷
λ . . . λt ′ t ′′) tn . . . tn ′ , n ′> 1

=β

n ′−1 times︷ ︸︸ ︷
λ . . . λsubstitute (. . . (substitute (t t ′, (n, tn))) . . ., (n ′, tn ′))

On the other hand, letting dten denote t with all free indices lifted n it holds that:

tb :=

n ′−1 times︷ ︸︸ ︷
λ . . . λdtaen ′−1 (n ′ − 1) . . . 1

=β

n ′−1 times︷ ︸︸ ︷
λ . . . λd

n ′−1 times︷ ︸︸ ︷
λ . . . λ !substitute (. . . (substitute (t t ′, (n, tn))) . . ., (n ′, tn ′))en ′−1 (n ′ − 1) . . . 1

=β

n ′−1 times︷ ︸︸ ︷
λ . . . λsubstitute (. . . (substitute (t t ′, (n, tn))) . . ., (n ′, tn ′))

=β ta

Because all free variables initially is greater than n ′ − 1 each application to an index corre-
sponds to decrementing all free variables. In all n ′−1 times the free variables is decremented,
which make tb equivalent to ta. By construction of tb the distribution rule πl can be applied
to its body:

dtaen ′−1 (n ′ − 1) . . . 1

The rule ηl just performs the construction of tb in such cases to facilitate further distribution
via πl:

ηl : ta → n ′−1 times︷ ︸︸ ︷
λ . . . λdtaen ′−1 (n ′ − 1) . . . 1

Kluge presents a more general version of this rule which performs η-extensions on general
terms instead of only the terms ranged over by ta. By construction the rule as defined above
is sound in the λ-calculus even when only considering β. Kluge’s version is sound when
adding η as presented in Section 3.1.

2Overall the terms in consideration are closed. This property implies that terms cannot take the form

ιl : (

n times︷ ︸︸ ︷
λ . . . λi) tn ′ . . . t1, i > n

3Such a term corresponds to a partial application of a curried function.
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Observation It is our observation that the rule πl corresponds to the rule π of the λρ̂-
calculus and ιl corresponds to the rule ι of that calculus (Section 5.2.1). In the λρ̂-calculus the
syntactic units are closures, i.e., there are explicit constructs for closures. With the closures
seen as abbreviations of terms in TermdeB, πl is π and ιl is ι. No rule corresponding to a gener-
alized version of β in the λρ̂-calculus is needed, when closures are abbreviations. The gener-
alized version of β is the β+ rule introduced by Biernacka and Danvy [8, Section 5.1], which
is presented as a context-sensitive rule corresponding to the optimized evaluation used in
Krivine’s original specification of a call-by-name abstract machine for the λ-calculus [48,49].

Because the λρ̂-calculus is weak and Krivine’s original machine is weakly normalizing
they do not contain elements corresponding to η l, which facilitates strong normalization.

12.2 The HOR-machine

The HOR-machine normalizes de Bruijn-indexed λ-terms where indices start from 0. For uni-
formity with the rest of this text, the de Bruijn indices are shifted to start from 1. The rules of
the machine are adjusted accordingly.

Configurations Configurations of the HOR-machine are composed of five parts: (1) a λ-term
t, (2) an environment e, (3) a stack s, (4) a levelm indicating current de Bruijn level, and (5) a
direction directive d. The λ-terms are the de Bruijn-indexed λ-terms TermdeB from Section 1.6.
Definitions of the rest of the entities (transliterated into our notation) read as follows:

ClosHOR c ::= (t, e)
EnvHOR e ::= • | c · e | V m · e
StackHOR s ::= • | @ · t · s | Λ · s | c · s
Level m ::= {0, 1, 2, . . . }

Dir d ::= ↑ | ↓ | done

An environment is a list, where the elements are closures (t, e) or tagged levels V m. 4 Pos-
sible elements on the stack are closures, the special symbol Λ, and the special symbol @
followed by a λ-term. The possible directions indicate that the machine is either on its way
‘down’ normalizing the term-part (↓), or on its way ‘up’ with a partial result (↑), or in a final
state with the term part being a normal form (done). Configurations are formally defined as
follows:

ConfigurationHOR := StackHOR × EnvHOR × TermdeB × Level×Dir

The transition rules Kluge states the transition rules of the HOR-machine in an order-depen-
dent way: The rules must be ‘tried’ in a specific order on actual machine configurations. In
other words, some configurations are matched by several of the transition rules, and de-
terminism of the machine is ensured by the specified order. Only two rules turn out to be
influenced by the order-dependency. We eliminate this dependency by letting these two

4Kluge uses the terms suspensions and unapplied lambdas counts (ULCs) to denote closures and de Bruijn levels
respectively.
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rules be conditional. We transliterate the HOR-machine into our notation:5

HOR : ConfigurationHOR → ConfigurationHOR

HOR (s, Vm ′ · e, 1, m, ↓) = HOR (s, e, m −m ′, m, ↑)
HOR (s, (t, e ′) · e, 1, m, ↓) = HOR (s, e ′, t, m, ↓)
HOR (s, v · e, i+ 1, m, ↓) = HOR (s, e, i, m, ↓)

HOR (s, e, t t ′, m, ↓) = HOR ((t ′, e) · s, e, t, m, ↓)
HOR (s, e, λt, m, ↓) = HOR (s ′, (t ′, e ′) · e, t, m, ↓), if s = (t ′, e ′) · s ′
HOR (s, e, λt, m, ↓) = HOR (Λ · s, V m · e, t, m+ 1, ↓), if s 6= (t ′, e ′) · s ′
HOR (•, e, t, m, ↑) = (•, e, t, m, done)

HOR (@ · t ′ · s, e, t, m, ↑) = HOR (s, e, t ′ t, m, ↑)
HOR (Λ · s, e, t, m, ↑) = HOR (s, e, λt, m− 1, ↑)

HOR ((t ′, e ′) · s, e, t, m, ↑) = HOR (@ · t · s, e ′, t ′, m, ↓)

From these transition rules it is seen that the machine implements both ι l and ηl in small step.
The first conditional rule in small steps navigates in the term to find the form where either
ιl or πl apply. If it is not possible to directly obtain such a form a use of ηl followed by πl is
needed. The second conditional rule in small steps perform the introduction of the added
abstractions and implicitly performs the navigation of the following use of πl by directly
placing V m in the environment. Also the the free variables are incremented (lazily) in small
steps by incrementing the de Bruijn level.

Strong normalization via the HOR-machine Normalization of a closed λ-term t via the HOR-
machine is defined as (1) initializing the machine with t by constructing an initial configu-
ration, (2) running the machine starting form the initial configuration, and (3) extracting the
term part from the terminal configuration. The initial configuration is (•, •, t, 0, ↓) where
the stack and the environment is empty, the term is t, the current de Bruijn level is 0, and
the direction directive is ↓ indicating that t in general is not a normal form. Normalization
of closed t thus reads as follows:

normalizeHOR : TermdeB → TermdeB
normalizeHOR t = t ′, if HOR (•, •, t, 0, ↓) = (s, e, t ′, m, done)

Kluge informally justifies the following correctness theorem of the HOR-machine:

Theorem 7
Let t a be closed term and t ′ be a β-normal form.
Then t =β t

′ ⇐⇒ normalizeHOR t = t ′

normalizeHOR is partial because it is not defined for open λ-terms and for closed terms
only when the term is β-equivalent to a normal form. To be defined on open terms (β-
equivalent to a normal form) the HOR-machine must include a rule matching a de Bruijn
index occurring in a configuration with an empty environment. We add one transition rule
to facilitate normalization of open terms with normal forms:

HOR (s, •, i, m, ↓) = HOR (s, •, i+m, m, ↑)

5In the sixth transition rule V m is placed in the environment. In Kluge’s specification V (m + 1) is used. The
difference comes from letting de Bruijn indices start from 0 instead of 1.
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12.3 Simplifying the HOR-machine

Eliminating the direction directive and emphasizing partial results We inline the ‘un-
loading’ to short-circuit one transition:

HOR (•, e, t, m, ↑) = (•, e, t, m, done)
= t

In every state where the direction directive is ↓ the term component is a general λ-term.
When the directive is ↑, the term component is a normal form. We separate the rules into two,
to make the distinction between general λ-terms and terms on normal form more explicit.
This separation also makes the direction directive in configurations superfluous.

The above observation also gives that the term placed on the stack in the last rule of HOR
is a normal form. A simple analysis gives that this normal formal is not an abstraction, i.e., it
is an a ∈ ANFormdeB defined on page 16. We change the representation of stacks accordingly:

Stack ′HOR s ::= • | a · s | Λ · s | (t, e) · s

Finally the first three parts of the machine are rearranged to follow the rest of this text:

normalizeHOR : TermdeB → NFormdeB
normalizeHOR t = HOR (t, •, •, 0)

HOR : TermdeB × EnvHOR × Stack ′HOR × Level → NFormdeB
HOR (i, •, s, m) = aux (s, •, i+m, m)

HOR (1, Vm ′ · e, s, m) = aux (s, e, m −m ′, m)
HOR (1, (t, e ′) · e, s, m) = HOR (t, e ′, s, m)
HOR (i+ 1, v · e, s, m) = HOR (i, e, s, m)

HOR (t t ′, e, s, m) = HOR (t, e, (t ′, e) · s, m)
HOR (λt, e, s, m) = HOR (t, (t ′, e ′) · e, s ′, m), if s = (t ′, e ′) · s ′
HOR (λt, e, s, m) = HOR (t, V m · e, Λ · s, m + 1), if s 6= (t ′, e ′) · s ′

aux : Stack ′HOR × EnvHOR ×NFormdeB × Level → NFormdeB
aux (•, e, n, m) = n

aux (a · s, e, n, m) = aux (s, e, a n, m)
aux (Λ · s, e, n, m) = aux (s, e, λn, m− 1)

aux ((t ′, e ′) · s, e, a, m) = HOR (t ′, e ′, a · s, m)

Disentangling with respect to the stack We observe that the argument environment in aux
is never used. That argument can hence be removed from aux. Also, the de Bruijn level is
only used in aux when the right-hand sub-term of an application must be normalized. The
de Bruijn level is incremented when entering an abstraction for normalization and is decre-
mented when generating the corresponding abstraction as part of the resulting normal form.
By storing the level together with the right-hand sub-term and the environment, the level is
available if that term must be normalized. In other words, the level is also superfluous in
aux and can be discarded. The modified abstract machine reads as follows (where Stack ′′HOR is
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an adjusted definition of stacks to cope with the above mentioned changes).

normalizeHOR : TermdeB → NFormdeB
normalizeHOR t = HOR (t, •, •, 0)

HOR : TermdeB × EnvHOR × Stack ′′HOR × Level → NFormdeB
HOR (i, •, s, m) = aux (s, i+m)

HOR (1, V m ′ · e, s, m) = aux (s, m−m ′)
HOR (1, (t, e ′) · e, s, m) = HOR (t, e ′, s, m)
HOR (i+ 1, v · e, s, m) = HOR (i, e, s, m)

HOR (t t ′, e, s, m) = HOR (t, e, (t ′, e,m) · s, m)
HOR (λt, e, s, m) = HOR (t, (t ′, e ′) · e, s ′, m), if s = (t ′, e ′,m ′) · s ′
HOR (λt, e, s, m) = HOR (t, V m · e, Λ · s, m + 1), if s 6= (t ′, e ′,m ′) · s ′

aux (•, n) = n

aux (a · s, n) = aux (s, a n)
aux (Λ · s, n) = aux (s, λn)

aux ((t, e,m) · s, a) = HOR (t, e, a · s, m)

If we move the dispatch on the stack from HOR to aux only aux dispatch on the stack and the
HOR-machine becomes in defunctionalized form with respect to the stack. We identify that
after such a final adjustment, the disentangled HOR-machine coincides with the disentangled
KN-machine from Section 11.2. We hence leave further analysis of the HOR-machine and refer
to Chapter 11 where we presented a functionally corresponding normalization function and
a syntactically corresponding reduction semantics.

12.4 Summary

In this chapter our starting point was three sound rules, which are informally explained by
Kluge [45, Section 6.4] to be the foundation or strategy of an abstract machine for strong
normalization — the HOR-machine. The rule ηl is presented in relation to πl: If not either ιl or
πl apply one use of ηl prepare for a use of πl. We observed the relation between these three
rules, the contraction rules in the (generalized) λρ̂-calculus and Krivine’s original machine
for weak normalization.

We presented strong normalization via the HOR-machine and extended the specification
to cope with open terms. We disentangled the HOR-machine which let us eliminate un-
needed parts in the new kind of configurations. We saw in Section 11.2 the result of this
simple transformation: Disentangling the HOR-machine yields the disentangled KN-machine.
In other words, two independently presented abstract machines for strong normalization are
the same abstract machine when stated in a disentangled way.

Crégut presents the KN-machine as an extension of what we now call the Krivine ma-
chine (Section 4.5.2). In other words, Crégut’s starting point is normal-order reduction to
weak head normal forms, where β-redexes are contracted according the possible evalua-
tion contexts E ::= [ ] | E t. From Kluge’s perspective, β-redexes in these contexts should
not be contracted but instead distributed towards the indices, where the contractum of the
generalized contraction rule ιl is trivial. An abstract machine should then perform an imple-
mentation of the navigation to πl-redexes or preparation of such redexes by implementing
ηl. The HOR-machine is such an abstract machine implementing the rules cleverly including
a lazy implementation of liftings of free variables. We showed that the KN-machine and the

135



HOR-machine — regardless of the different starting points — in essence are the same abstract
machine. We observe that the clever (lazy) implementation of β-reductions by extending an
environment in the KN-machine corresponds to constructing a πl-redex in the HOR-machine.
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Chapter 13

Conclusion, future work, and
perspectives

Conclusion In this thesis, we have studied (1) Church’s λ-calculus, which is standard mate-
rial, (2) the functional correspondence and the syntactic correspondence in relation to weak
normalization, which is known material, and (3) the functional correspondence and the syn-
tactic correspondence in relation to strong normalization, which is new material.

Within the standard material, we were able to identify a general relationship between
Church numerals and Scott numerals, which is new. This general relationship emphasized a
course-of-value representation underlying both the Church numerals and the Scott numer-
als. This representation then enabled us to improve on existing representations of functions.

With the known material, we started from a calculus that includes state variables. We
defined an applicative-order one-step reduction function for weak normalization in this cal-
culus and we showed that evaluation by iterating this function syntactically corresponds to
the well-known CEK machine extended with state variables, an assignment construct, and a
component holding the global state.

The second part of the thesis was dedicated to the new material: we considered the syn-
tactic correspondence and the functional correspondence in relation to strong normalization.

• We presented a simple calculus with explicit substitution as a direct offspring of an
implementation of β-contraction. By construction, this calculus inherits the standard
properties from the λ-calculus. We then showed that the syntactic correspondence also
applies to strong normalization in that we derived an abstract machine corresponding
to a strategy in the calculus and we connected it to another one independently due to
Lescanne.

• Starting from Crégut’s KN-machine and Curien’s normalizer, we showed that the func-
tional correspondence mechanically links normalization functions and abstract ma-
chines and that the syntactic correspondence mechanically links abstract machines and
calculi with deterministic strategies.

• Finally we identified that two independently presented abstract machines for strong
normalization — Crégut’s KN-machine and the HOR-machine — in essence are the same
machine.
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Future work and perspectives In Chapter 6, we showed that the syntactic correspondence
also applies in the presence of mutable variables. In the contraction rules of the λv-S(t)-
calculus, reduction contexts were used in a non-standard fashion, but still the syntactic cor-
respondence applied, and we were able to derive a corresponding abstract machine. Moreau
uses also reduction contexts in such a non-standard fashion in his definition of a reduction
semantics for a language including dynamic bindings [55, page 251]. Before Moreau’s work,
it was only implementational folklore that there exists a translation, the dynamic-environment
passing transformation, which translates programs using dynamic variables into programs
using lexical variables only. After such a translation, evaluation can be implemented with
an abstract machine using a dynamic stack of bindings. Entering the body of a ‘dynamic
let’-expression the new binding is pushed onto the dynamic stack, and leaving the body the
binding is popped off again. Lookups of dynamic variables are then performed according to
the current dynamic stack. Such an abstract machine implements the idea of threading the
dynamic environment. We conjecture that Moreau’s reduction semantics gives rise to that
abstract machine, using the syntactic correspondence.

Other possibilities include applying the syntactic correspondence to Maraist, Odersky,
and Wadler’s call-by-need λ-calculus [54] and to Ariola and Felleisen’s call-by-need calcu-
lus [6]. The result would be an abstract machine for call-by-need, a topic that has only been
partially explored [4] [9, Section 9].

So, all in all, studying functional programming and the λ-calculus has put us in position
to contribute to λ-definability and to syntactic and semantic artifacts about weak normaliza-
tion and strong normalization, and to understand them better.
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